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ABSTRACT: How many words – and which ones – are sufficient to define all other words? 
When dictionaries are analyzed as directed graphs with links from defining words to defined 
words, they reveal a latent structure. Recursively removing all words that are reachable by 
definition but that do not define any further words reduces the dictionary to a Kernel of  
about 10%. This is still not the smallest number of words that can define all the rest. About 
75% of the Kernel turns out to be its Core, a “Strongly Connected Subset” of words with a 
definitional path to and from any pair of its words and no word’s definition depending on a 
word outside the set. But the Core cannot define all the rest of the dictionary. The 25% of 
the Kernel surrounding the Core consists of small strongly connected subsets of words: the 
Satellites. The size of the smallest set of words that can define all the rest – the graph’s 
“minimum feedback vertex set” or MinSet – is about 1% of the dictionary,15% of the Kernel, 
and half-Core/half-Satellite. But every dictionary has a huge number of MinSets. The Core 
words are learned earlier, more frequent, and less concrete than the Satellites, which in turn 
are learned earlier and more frequent but more concrete than the rest of the Dictionary. In 
principle, only one MinSet’s words would need to be grounded through the sensorimotor 
capacity to recognize and categorize their referents. In a dual-code sensorimotor/symbolic 
model of the mental lexicon, the symbolic code could do all the rest via re-combinatory 
definition. 

The Representation of Meaning. One can argue that the set of all the written words of a 
language constitutes the biggest and richest digital database on the planet. Numbers and 
algorithms are just special cases of words and sentences, so they are all part of that same 
global verbal database. Analog images are not words, but even their digitized versions only 
become tractable once they are sufficiently tagged with verbal descriptions. So in the end it 
all comes down to words. But how are the meanings of words represented? There are two 
prominent representations of word meaning: one is in our external dictionaries and the 
other is in our brains: our “mental lexicon.” How are the two related? 

The Symbol Grounding Problem. We consult a dictionary in order to learn the meaning 
of a word whose meaning we do not yet already know. Its meaning is not yet in our mental 
lexicon. The dictionary conveys that meaning to us through a definition consisting of further 
words, whose meanings we already know. If a definition contains words whose meanings 
we do not yet know, we can look up their definitions too. But it is clear that meaning cannot 
be dictionary look-up all the way down. The meanings of some words, at least, have to be 
learned by some means other than dictionary look-up, otherwise word meaning is 
ungrounded: just strings of meaningless symbols (defining words) pointing to meaningless 
symbols (defined words). This is the “symbol grounding problem” (Harnad 1990). 

This paper addresses the question of how many words – and which words – have to be 
learned (grounded) by means other than dictionary look-up so that all the rest of the words 



in the dictionary can be defined either directly, using only combinations of those grounded 
words, or, recursively, using further words that can themselves be defined using solely 
those grounded words. Let us call those grounded words in our mental lexicon – the ones 
sufficient to define all the others – a “Grounding Set.”  

Category Learning. The process of word grounding itself is the subject of a growing body 
of ongoing work on the sensorimotor learning of categories, by people as well as by 
computational models (Harnad 2005; De Vega, Glenberg & Graesser 2008; Ashby & 
Maddox 2011; Meteyard, Cuadrado, Bahrami & Vigliocco 2012; Pezzulo, Barsalou, 
Cangelosi, Fischer, McRae & Spivey 2012; Blondin Massé, Harnad, Picard & St-Louis 
2013; Kang 2014; Maier, Glage, Hohlfeld & Rahman 2014). Here we just note that almost 
all the words in any dictionary (nouns, verbs, adjectives and adverbs) are “content” words,1 
meaning that they are the names of categories (objects, individuals, kinds, states, actions, 
events, properties, relations) of various degrees of abstractness. The more concrete of 
these categories, and hence the words that name them, can be learned directly through 
trial-and-error sensorimotor experience, guided by feedback that indicates whether an 
attempted categorization was correct or incorrect. The successful result of this learning is a 
sensorimotor category representation – that is, a feature-detector that enables the learner 
to categorize sensory inputs correctly, identifying them with the right category name (Ashby 
& Maddox 2011; Folstein, Palmeri, Van Gulick & Gauthier 2015; Hammer, Sloutsky & Grill-
Spector 2015). A grounding set composed of such experientially grounded words would 
then be enough (in principle, though not necessarily in practice) to allow the meaning of all 
further words to be learned through verbal definition alone. It is only the symbolic module of 
such a dual-code sensorimotor/symbolic system for representing word meaning (Paivio 
2014) that is the object of study in this paper. But the underlying assumption is that the 
symbolic code is grounded in the sensorimotor code. 

Expressive Power. Perhaps the most remarkable and powerful feature of natural 
language is the fact that it can say anything and everything that can be said (Katz 1978). 
There exists no language in which you can say this, but not that. (Pick a pair of languages 
and try it out.) Word-for-word translation may not work: you may not be able to say 
everything in the same number of words, equally succinctly, or equally elegantly, in the 
same form. But you will always be able to translate in paraphrase the propositional content 
of anything and everything that can be said in any one language into any other language. 
(If you think that may still leave out anything that can be said, just say it in any language at 
all and it will prove to be sayable in all the others too; Steklis & Harnad 1976.) 

One counter-intuition about this is that the language may lack the words: its vocabulary 
may be insufficient: How can you explain quantum mechanics in the language of isolated 
Amazonian hunter-gatherers? But one can ask the very same question about how you can 
																																																								
1	Content	or	Open	Class	words	are	growing	in	all	spoken	languages	all	the	time.	In	contrast,	
Function	or	Closed	Class	words	like	if,	off,	is,	or	his	are	few	and	fixed,	with	mostly	a	formal	or	
syntactic	function:	Our	study	considers	only	content	words.	Definitions	are	treated	as	
unordered	strings	of	content	words,	ignoring	function	words,	syntax	and	polysemy	(i.e,	
multiple	meanings,	of	which	we	use	only	the	first	and	most	common	meaning	for	each	word-
form).	

	



explain it to an American 6-year-old – or, for that matter, to an eighteenth century physicist. 
And the banal answer is that it takes time, and a lot of words, to explain – but you can 
always do it, in any language. Where do all those missing words come from, if not from the 
same language? We coin (i.e., lexicalize) words all the time, as they are needed, but we 
are coining them within the same language; it does not become a different language every 
time we add a new word. Nor are most of the new words we coin labels for unique new 
experiences, like names for new colors (e.g., “ochre”) or new odors (“acetic”) that you have 
to see or smell directly at first hand in order to know what their names refer to. 

Consider the German word “Schadenfreude” for example. There happens to be no single 
word for this in English. It means “feeling glee at another’s misfortune.” English is highly 
assimilative, so instead of bothering to coin a new English word (say, “misfortune-glee,” or, 
more latinately, “malfelicity”) whose definition is “glee at another’s misfortune,” English has 
simply adopted Schadenfreude as part of its own lexicon. All it needed was to be defined, 
and then it could be added to the English dictionary. The shapes of words themselves are 
arbitrary, after all, as Saussure (1911/1972) noted: words do not resemble the things they 
refer to. 

So what it is that gives English or any language its limitless expressive power is its capacity 
to define anything with words. But is this defining power really limitless? First, we have 
already skipped over one special case that eludes language’s grasp, and that is new 
sensations that you have to experience at first hand in order to know what they are – hence 
to understand what any word referring to them means. But even if we set aside words for 
new sensations, what about other words, like Schadenfreude? That does not refer to a new 
sensory experience. We understand what it refers to because we understand what the 
words “glee at another’s misfortune” refer to. That definition is itself a combination of 
words; we have to understand those words in order to understand the definition. If we don’t 
understand some of the words, we can of course look up their definitions too – but as we 
have noted, it cannot be dictionary look-ups all the way down! The meanings of some 
words, at least (e.g., “glee”) need to have been grounded in direct experience, whereas 
others (e.g., “another” or “misfortune”) may be grounded in the meaning of words that are 
grounded in the meaning of words… that are grounded in direct experience. 

Direct Sensorimotor Grounding. How the meaning of a word referring to a sensation like 
“glee” can be grounded in direct experience is fairly straightforward: It’s much the same as 
teaching the meaning of “ochre” or “acetic”: “Look (sniff): that’s ochre (acetic) and look 
(sniff) that’s not.” “Glee” is likewise a category of perceptual experience. To teach someone 
which experience “glee” is, you need to point to examples that are members of the 
category “glee” and examples that are not: “Look, that’s glee” – pointing to someone who 
looks and acts and has reason to feel gleeful - and “Look, that’s not glee” – pointing2 to 
someone who looks and acts and has reason to feel ungleeful (Harnad 2005).  

																																																								
2	Wittgenstein	had	some	cautions	about	the	possibility	of	grounding	words	for	private	
experiences	because	there	would	be	no	basis	for	correcting	errors.	But	thanks	to	our	“mirror	
neurons”	and	our	“mind-reading”	capacity	we	are	adept	at	inferring	most	private	experiences	
from	their	accompanying	public	behavior,	and	reasonable	agreement	on	word	meaning	can	be	
reached	on	the	basis	of	common	experience	together	with	these	observable	behavioral	
correlates	(Apperley	2010).	Because	of	the	“other-minds	problem” – i.e.,	because	the	only	



What about the categories denoted by the words “another” and “misfortune”? These are 
not direct, concrete sensory categories, but they still have examples in our direct 
sensorimotor experience: “That’s you” and “that’s another” (i.e., someone else). “That’s 
good fortune” and “that’s misfortune.” But it is more likely that higher-order, more abstract 
categories like these would be grounded in verbal definitions composed of words that each 
name already grounded categories, rather than being grounded in direct sensorimotor 
experience (Summers 1988; Aitchison 2012; Huang & Eslami 2013; Nesi 2014). 

Dictionary Grounding. This brings us to the question that is being addressed in this 
paper: A dictionary provides an (approximate) definition for every word in the language. 
Apart from a small, fixed set of words whose role is mainly syntactic (“function words,” e.g. 
articles, particles, conjunctions), all the rest of the words in the dictionary are the names of 
categories (“content words,” i.e. nouns, verbs, adjectives, adverbs). How many content 
words (i) – and which ones (ii) – need to be grounded already so that all the rest can be 
learned from definitions composed only out of those grounded words? We think the answer 
casts some light on how the meaning of words is represented – externally, in dictionaries, 
and internally, in our mental lexicon – as well as on the evolutionary origin and adaptive 
function of language for our species (Cangelosi & Parisi 2012; Blondin Massé et al. 2013). 

Synopsis of Findings. Before we describe in detail what we did, and how, here is a 
synopsis of what we found: When dictionaries are represented as graphs, with arrows from 
each defining word to each defined word, their graphs reveal a latent structure that had not 
previously been identified or reported, as far as we know. Dictionaries have a special 
subset of words (about 10%) that we have called their “Kernel” words. Figure 1 illustrates a 
dictionary and its latent structure using a tiny mini-dictionary graph (Picard, Lord, Blondin 
Massé, Marcotte, Lopes & Harnad 2013) derived from an online definition game that will be 
described later. A full-sized dictionary has the same latent structure as this mini-dictionary, 
but with a much higher proportion of the words (90%) lying outside the Kernel. Table 1 and 
Figure 2 show the proportions for a full-size dictionary.  

The dictionary’s Kernel is unique, and its words can define the remaining 90% of the 
dictionary (the “Rest”). The Kernel is hence a grounding set. But it is not the smallest 
grounding set. This smallest grounding subset of the Kernel – which we have called the 
“Minimal Grounding Set” (“MinSet”) – turns out to be much smaller than the Kernel (about 
15% of the Kernel and 1% of the whole dictionary), but it is not unique: The Kernel contains 
a huge number of different MinSets. Each of these is of the same minimum size and each 
is able to define all the other words in the dictionary.  

The Kernel also turns out to have further latent structure: About 75% of the Kernel consists 
of a very big “strongly connected component” (SCC: a subset of words within which there is 
a definitional path to and from every pair of words but no incoming definitional links from 
																																																																																																																																																																																									
experiences	you	can	have	are	your	own – there	is	no	way	to	know	for	sure	whether	private	
experiences	accompanied	by	the	same	public	behavior	are	indeed	identical	experiences.	These	
subtleties	do	not	enter	into	the	analyses	we	are	doing	in	this	paper.	Word	meaning	is	in	any	
case	not	exact but	approximate	in	all	fields	other	than	formal	mathematics	and	logic.	Even	
observable,	empirical	categories	can	only	be	defined	or	described	provisionally	and	
approximately:	Like	a	picture	or	an	object,	an	experience	is	always	worth	more	than	a	
thousand	(or	any	number)	of	words	(Harnad	1987).	



outside the SCC). We call this the Kernel’s (and hence the entire dictionary’s) “Core.” The 
remaining 25% of the Kernel surrounding the Core consists of many tiny strongly 
connected subsets, which we call the Core’s “Satellites.” It turns out that each MinSet is 
part-Core and part Satellite.  

The words in these distinct latent structures also turn out to differ in their psycholinguistic 
properties: As we go deeper into the dictionary, from the 90% Rest to the 10% Kernel, to 
the Satellites (1-4%) surrounding the Kernel’s Core, to the Core itself (6-9%), the words 
turn out on average to be more frequently used (orally and in writing) and to have been 
learned at a younger age. This is reflected in a gradient within the Satellite layer: the 
shorter a Satellite word’s definitional distance (the number of definitional steps to reach it) 
from the Core, the more frequently it is used and the earlier it was learned. The average 
concreteness of the words within the Core and the 90% of words that are outside the 
Kernel (i.e., the Rest) is about the same. Within the Satellite layer in between them, 
however, Kernel words become more concrete the greater their definitional distance 
outward from the Core. There is also a (much weaker) definitional distance gradient from 
the Kernel outward into the 90% Rest of the dictionary for age and concreteness, but not 
for frequency. We will now describe how this latent structure was discovered. 

Control Vocabularies. Our investigation began with two small, special dictionaries – the 
Cambridge International Dictionary of English (47,147 words; Procter 1995; henceforth 
Cambridge) and the Longman Dictionary of Contemporary English (69,223 words; Procter 
1978; henceforth Longman) (Table 1). These two dictionaries were created especially for 
people with limited English vocabularies, such as non-native speakers; all words are 
defined using only a “control” vocabulary of 2000 words that users are likely to know 
already. Our objective was to analyze each dictionary as a directed graph (digraph) in 
which there is a directional link from each defining word to each defined word. Each word 
in the dictionary should be reachable, either directly or indirectly, via definitions composed 
of the 2000-word control vocabulary. 

A direct analysis of the graphs of Longman and Cambridge, however, revealed that their 
underlying control-vocabulary principle was not faithfully followed: There turned out to be 
words in each dictionary that were not defined using only the 2000-word “control” 
vocabulary, and there were also words that were not defined at all. So we decided to use 
each dictionary’s digraph (a directed graph with arrows pointing from the words in each 
definition to the word they define) to work backward in order to see if we could generate a 
genuine control vocabulary out of which all the other words could be defined. (We first 
removed all undefined words.) 

Dictionaries as Graphs. Dictionaries can be represented as directed graphs 𝐷 =  (𝑉,𝐴) 
(digraphs). The vertices are words and the arcs connect defining words to defined words, 
i.e. there is an arc from word u to word v if u is a word in the definition of v. Moreover, in a 
complete dictionary, every word is defined by at least one word, so we assume that there is 
no word without an incoming arc. A path is a sequence (𝑣!, 𝑣!,… , 𝑣!) of vertices such that 
(𝑣! , 𝑣!!!) is an arc for 𝑖 =  1,2,… , 𝑘 − 1. A circuit is a path starting and ending at the same 
vertex. A graph is called acyclic if it does not contain any circuits. 

Grounding Sets. Let 𝑈 ⊆ 𝑉 be any subset of words and let u be some given word. We are 
interested in computing all words that can be learned through definitions composed only of 



words in 𝑈. This can be stated recursively as follows: We say that u is definable from 𝑈 if 
all predecessors of u either belong to 𝑈 or are definable from 𝑈. The set of words that can 
be defined from 𝑈 is denoted by  𝐷𝑒𝑓 (𝑈). In particular, if 𝐷𝑒𝑓(𝑈) ∪ 𝑈 =  𝑉, then U is called 
a grounding set of 𝐷. Intuitively, a set 𝑈 is a grounding set if, provided we already know the 
meaning of each word in 𝑈, we can learn the meaning of all the remaining words just by 
looking up the definitions of the unknown words (in the right order). 

Grounding sets are equivalent to well-known sets in graph theory called feedback vertex 
sets (Festa, Pardalos  & Resende (1999). These are sets of vertices 𝑈 that cover all 
circuits, i.e. for any circuit c, there is at least one word of c belonging to 𝑈. It is rather easy 
to see this. On the one hand, if there exists a circuit of unknown words, then there is no 
way to learn any of them by definition alone. On the other hand, if every circuit is covered, 
then the graph of unknown words is acyclic, which means that the meaning of at least one 
word can be learned – a word having no unknown predecessor (Blondin Massé et al 
2008)). 

Clearly, every dictionary D has many grounding sets. For example, the set of all words in D 
is itself a grounding set. But how small can grounding sets be? In other words, what is the 
smallest number of words you need to know already in order to be able to learn the 
meaning of all the remaining words in D through definition alone? These are the Minimal 
Grounding Sets (MinSets) mentioned earlier (Fomin, Gaspers, Pyatkin & Razgon 2008). It 
is already known that finding a minimum feedback vertex set in a general digraph is NP-
hard (Karp, 1972), which implies that finding MinSets is also NP-hard. Hence, it is highly 
unlikely that one will ever find an algorithm that solves the general problem without taking 
an exponentially long time. However, because some real dictionary graphs are relatively 
small and also seem to be structured in a favorable way, our algorithms are able to 
compute their MinSets. 

Kernel. As a first step, we observed that in all dictionaries analyzed so far there exist many 
words that are never used in any definition. These words can be removed without changing 
the MinSets. This reduction can be done iteratively until no further word can be removed 
without leaving any word undefinable from the rest. The resulting subgraph is what we 
called the dictionary’s (grounding) Kernel. Each dictionary’s Kernel is unique, in the sense 
that every dictionary has one and only one Kernel. The Kernels of our two small 
dictionaries, Longman and Cambridge, turned out to amount to 8% and 7% of the 
dictionary as a whole, respectively. We have since extended the analysis to two larger 
dictionaries, Merriam-Webster (248,466 words; Webster 2006; henceforth Webster) and 
WordNet (132,477 words; Fellbaum 2010) whose Kernels are both 12% of the dictionary as 
a whole (Table 1). 

Core and Satellites. Next, since we are dealing with directed graphs, we can subdivide 
the words according to their strongly connected components. Two words u and v are 
strongly connected if there exists a path from u to v as well as a path from v to u. Strongly 
Connected Components (SCCs) are hence maximal sets of words with a definitional path 
to and from any pair of their words. There is a well-known algorithm in graph theory that 
computes all the SCCs very efficiently (Tarjan 1972). Sources are SCCs in which no word’s 
definition depends on a word outside the SCC (no incoming arcs). The Kernel of each of 
the four dictionary graphs turns out to contain an SCC much larger than all the others. One 
would intuitively expect the Kernel’s Core (as the union of Sources) to be that largest SCC. 



And so it is in two of the four dictionaries we analyzed. But because of the algorithm we 
used in preprocessing our dictionaries, in the other two dictionaries the Core consists of the 
largest SCC plus a few extra (small) SCCs. We think those small extra SCCs are just an 
artifact of the preprocessing. In any case, for each of the four dictionaries, the Core 
amounts to 65%-90% of the Kernel or about 6.5%-9.0% of the dictionary as a whole. The 
SCCs that are inside the Kernel but outside the Core are called Satellites; collectively they 
make up the remaining 10%-35% of the Kernel or about 1.0%-3.5% of the whole dictionary. 
Satellites. 

Definitional Distance from the Kernel: the K-Hierarchy. Another potentially informative 
graph-theoretic property is the “definitional distance” of any given word from the Kernel or 
from the Core in terms of the number of arcs separating them. We define these two 
distance hierarchies as follows. First, for the Kernel hierarchy, suppose K is the Kernel of a 
dictionary graph D. Then, for any word u, we define its distance recursively as follows: 

1. 𝑑𝑖𝑠𝑡(𝑢)  =  0, if u is in K;  
2. 𝑑𝑖𝑠𝑡(𝑢)  =  1 +  𝑚𝑎𝑥{𝑑𝑖𝑠𝑡(𝑣) ∶ 𝑣 is a predecessor of 𝑢}, otherwise. 

 
In other words, to compute the distance between K, as origin, and any word u in the rest of 
D, we compute the distances of all words defining u and add one. This distance is well 
defined, because K is a grounding set of D and hence the procedure cannot cycle because 
every circuit is covered. The mapping that relates every word to its distance from the 
Kernel is called the K-hierarchy. 

Definitional Distance from the Core: the C-Hierarchy. The second metric is slightly 
more complicated but based on the same idea. Let D be the directed graph of a dictionary, 
and D’ be the graph obtained from D by merging each strongly connected component 
(SCC) into a single vertex. The resulting graph is acyclic. We can then compute the 
distance of any word from the Core (the vertex corresponding to the biggest of the merged 
strongly connected components of the Kernel) as follows: 

1. 𝑑𝑖𝑠𝑡(𝑢)  =  0, if u is in a source vertex of D’;  
2. 𝑑𝑖𝑠𝑡(𝑢)  =  1 +  𝑚𝑎𝑥{𝑑𝑖𝑠𝑡(𝑣) ∶

𝑣 is a predecessor of 𝑤 for some 𝑤 in the same SCC as 𝑢}, otherwise. 
 

The words in the merged vertices of the Core have no predecessor and constitute the 
origin of the C-hierarchy. Like the K-hierarchy, the C-hierarchy is well defined because D’ is 
acyclic.  

MinSets. We have computed the Kernel K, Core C, and Set of satellites S as well as the K-
hierarchy and the C-hierarchy for four English dictionaries: two smaller ones – (1) 
Longman’s Dictionary of Contemporary English (Longman, 47,147 words), (2) Cambridge’s 
International Dictionary of English (Cambridge, 69,223 words) – and two larger ones - (3) 
Merriam-Webster (Webster, 248,466 words), (4) WordNet (132,477 words). Because of 
polysemy (multiple meanings)3, there can be more than one word with the same word-form 
																																																								
3	Once	the	problem	of	polysemy	is	solved	for	both	defined	and	defining	words,	the	analysis	
described	in	this	paper	can	be	applied	to	each	unique	word/meaning	pair	instead	of	just	to	the	
first	meaning	of	each	defined	word.	



(lexeme). As an approximation, for each stemmatized word-form we used only the first 
(and most frequent) meaning for each part of speech of that word-form (noun, verb, 
adjective, adverb). (This reduced the total number of words by 53% for Cambridge, 49% for 
Longman, 37% for Webster and 65% for WordNet.) The sizes of their respective Kernels 
turned out to be between 8% of the whole dictionary for the smaller dictionaries and 12% 
for the larger dictionaries. The Kernel itself varied from 10% Satellite and 90% Core for the 
two small dictionaries to 35% Satellite and 65% Core for the two large dictionaries (Table 
1). 

As noted earlier, computing the MinSets is much more difficult than computing K, C, or S 
(in our current state of knowledge), because the problem is NP-hard. (Note that the most 
difficult part consists of computing MinSets for the Core, which can be further reduced by a 
few simple operations.) This problem can be modelled as an integer linear program whose 
constraints correspond to set-wise minimal circuits in the dictionary graph. The number of 
these constraints is huge but one can "add" constraints as they are needed. For the two 
"small" dictionaries (Longman and Cambridge), we were able to use CPLEX, a powerful 
optimizer, to compute a few MinSets (although not all of them, because there are a very 
large number of MinSets). For Webster and WordNet, the MinSets that we obtained after 
several days of computation were almost optimal.4  

These analyses answered our first question about the size of the MinSet for these four 
dictionaries (373 and 452 words for the small dictionaries; 1396 and 1094 for the larger 
ones; about 1% for each dictionary). But because, unlike a dictionary’s unique Kernel, its 
MinSets are not unique, a dictionary has a vast number of MinSets, all within the Kernel, all 
the same minimal size, but each one different in terms of which combination of Core and 
Satellite words it is composed of. The natural question to ask now is whether the words 
contained in these latent components of the dictionary, identified via their graph-theoretic 
properties – the MinSets, Core, Satellites, Kernel and the rest of the dictionary – differ from 
one another in any systematic way that might give a clue as to the function (if any) of the 
different latent structures identified by our analysis. 

																																																								
4	This	is	yet	another	approximation	in	an	analysis	that	necessitated	many	approximations:	
ignoring	syntax	and	word	order,	using	only	the	first	meaning,	and	finding	only	something	close	
to	the	MinSet	for	the	biggest	dictionaries.	Despite	all	these	approximations	and	potential	
sources	of	error,	systematic	and	interpretable	effects	emerged	from	the	data.	



 

Figure 1. Illustration of a dictionary graph using data for a tiny (but complete) mini-
dictionary (Picard et al 2013) generated by our dictionary game (see text for explanation). 
Arrows are from defining words to defined words. The entire mini-dictionary consists of just 
32 words. Mini-dictionaries have all the latent structures of full-sized dictionaries. The 
smallest ellipse is the Core. The medium-sized ellipse is the Kernel. The part of the Kernel 
outside the Core is the Satellites. The part outside the Kernel is the Rest of the dictionary. 
There are many MinSets, all part-Core and part-Satellites (only one MinSet is shown here). 
In full-sized dictionaries the Rest is about 90% of the dictionary but in the game mini-
dictionaries the Kernel is about 90% of the dictionary. The average Satellite-to-Core ratio in 
the Kernel for full-sized and mini-dictionaries is about the same (3/7) (see Table 1) but 
within MinSets this ratio is reversed (2/5 for full dictionaries and 5/2 for mini-dictionaries).  

  



 

Table 1. Number and percentage of word-meanings for each latent structure in each of the 
four dictionaries used (plus averages for game-generated dictionaries). Based on using 
only the first word-meaning for each stemmatized part of speech wherever there are 
multiple meanings (hence multiple words). 

  

Cambridge Longman Webster WordNet
Game 

dictionaries 
(average)

Total word-meanings 47147 69223 248466 132477 182
First word-meanings 25132 31026 91388 85195 182

Rest 22891 (91%) 28700 (93%) 80433 (88%) 75393 (88%) 10.1 (7%)
Kernel 2241 (9%) 2326 (8%) 10955 (12%) 9802 (12%) 171.7 (93%)

Satellites 232 (1%) 540 (2%) 2978 (3%) 3410 (4%) 54.5 (29%)
Core 2009 (8%) 1786 (6%) 7977 (9%) 6392 (8%) 117.2 (64%)

MinSets 373 (1%) 452 (1%) 1396 (2%) 1094 (1%) 32.8 (18%)
Satellite-MinSets 59 (16%) 167 (37%) 596 (43%) 532 (49%) 20.6 (63%)

Core-MinSets 314 (84%) 285 (63%) 800 (57%) 562 (51%) 12.2 (37%)



 

 

Figure 2. Overall pattern for average psycholinguistic differences (age of 
acquisition, concreteness, frequency) between words in latent structures revealed 
by the analysis of the dictionary digraph. Pattern is the same for all four dictionaries 
analyzed but image is not drawn to scale: for exact numbers and percentages see 
Table 1 and Figures 3 & 7). (MinSets are part Core and part Satellite. Core + 
Satellites = Kernel [~10%]. Outside the Kernel is the Rest [~90%]). Core words are 
more frequent (blue) and learned younger (orange) than the Rest of the dictionary. 
Within the Kernel’s Satellite layer, this difference increases gradually as definitional 
distance from the Core increases. Outside the Kernel, for age, the difference 
decreases gradually (but weakly) as definitional distance from the Kernel increases; 
frequency remains uniform. For concreteness (green), it is the Satellite layer that is 
more concrete than the Core. This difference increases gradually as definitional 
distance from the Core increases within the Satellite layer of the Kernel. Outside the 
Kernel, concreteness is at first equal to the Core and then increases gradually (but 
weakly) as definitional distance from the Kernel increases. 

  



Psycholinguistic Correlates of Dictionary Latent Structure. A number of databases 
have been compiled that index various psycholinguistic properties of words (e.g., Wilson 
1988). We used three of them: For word frequency, we used the SUBTLEXUS Corpus, 
which has been found to be more reliable than the widely used Kučera and Francis (1967) 
word frequency norms (Brysbaert & New, 2009). Raw frequencies range from 1 to over 2 
million, with an average of 669 and with about 1% of the values over 5000. For our goal of 
determining the average frequency for different sets of words, instead of using raw 
frequency, we used the Lg10WF metric (log10(FREQcount+1)) to reduce the effect of 
extreme values. For concreteness, the Brysbaert, Warriner & Kuperman (2014) 
concreteness ratings for 40,000 common English word lemmas were used. For age of 
acquisition, we used the Kuperman et al. (2012) age-of-acquisition ratings for 30,000 
English words. 

We tested whether the words in the latent components we identified in dictionary graphs 
differ systematically in frequency, concreteness or age of acquisition. Our overall pattern of 
findings (for all four dictionaries) is illustrated in Figure 2, which shows the latent structures 
of the dictionary: the 90% Rest and the 10% Kernel, and within it the Core surrounded by 
its Satellites. Shown also is one MinSet (just one of many); all MinSets are part Core and 
part Satellite.  

Based on the data for word frequency (blue), concreteness (green) and age of acquisition 
(orange) from the psycholinguistic databases, the words in the Core for all four dictionaries 
are more frequent and learned younger than the Satellite words, which are in turn more 
frequent and younger than the Rest of the dictionary. The Satellites are more concrete than 
the Core or the Rest. The average values for each of the psycholinguistic variables in each 
of the latent substructures are shown in Figure 3. The pattern is the same for all four 
dictionaries. Because the results are based on the entire population of each dictionary 
graph, no statistical tests were done. All differences would be highly significant because 
the number of words in each dictionary is so big. The effects themselves, however, are not 
very big; there are clearly many other factors underlying these variables apart from the 
dictionary latent structures.  



 

 

Figure 3: Average age, concreteness and frequency of words in Core, Satellites, Kernel 
and Rest. The pattern is the same for all four dictionaries: The Core is youngest and most 
frequent, then the Satellites, then the Rest. The Satellites are more concrete than the Core 
and the Rest, which are about equal (but see the gradients in Figure 7.) 



The effect size for each of the pairwise differences in Figure 3 is shown in Figure 4. Note 
that the biggest effect size tends to be for frequency. This may be because the 
psycholinguistic database coverage for frequency is close to 100% complete5 for all the 
words in all three latent structures, Core, Satellites and Rest, whereas the coverage for age 
and concreteness declines with frequency, especially for the two larger dictionaries (Figure 
5). It is possible that the effect sizes for age and concreteness would have been larger, 
especially for the larger dictionaries, if the database coverage had been more complete. It 
is likely that the incompleteness of the data for age and concreteness is itself an indirect 
effect of word frequency: Age and concreteness data are lacking for the less frequent 
words6.  

All three variables – age, concreteness, and frequency – are intercorrelated 
(frequency/age: -0.5915; frequency/concreteness: 0.1583; age/concreteness: -0.3773). 
Decorrelating frequency from age and concreteness by recalculating effect sizes for only 
the residual variance left after removing the frequency variance reduces the effect sizes for 
age and concreteness (Figure 6). Age and concreteness data, which are much harder to 
gather than frequency data, are less available for less frequent words:  

“From a list of English words that one of the authors (M.B.) is currently compiling, we 
selected all of the base words (lemmas) that are used most frequently as nouns, 
verbs, or adjectives” (Kuperman et al 2012). 

“Because ratings are only useful for well known words, we used a cut-off score of 
85% known. In practice, this meant that not more than 4 participants out of the 
average of 25 raters indicated they did not know the word well enough to rate it. This 
left us with a list of 37,058 words and 2,896 two-word expressions (i.e., a total of 
39,954 stimuli)” (Brysbaert, Warriner & Kuperman 2014). 

This introduces a frequency bias into our analysis, because of missing age and 
concreteness data for less frequent words. This frequency bias could either be (1) helping 
to reveal valid effects, (2) spuriously inflating them or (3) spuriously reducing them (Figure 
4); or (4) removing the frequency bias by decorrelating frequency could be masking valid 
effects (Figure 6). We think it is unlikely that word frequency causes concreteness or age 
effects. It is more likely that age of acquisition and concreteness are part of the cause of 
frequency effects. But the direction of causality cannot be resolved by the available data. 

 

 

																																																								
5	Words	in	our	four	dictionaries	that	had	no	values	for	SUBTELXus’	frequencies	were	assigned	
frequency	value	zero.	The	SUBTELXus	frequency	data	were	collected	on	a	corpus	used	as	the	
reference	database;	zero	means	the	word	never	occurred	in	that	corpus.		
6	Brysbaert	(personal	communication)	has	noted	that:	“Dictionaries	contain	many	words	not	
known	to	most	humans.	This	is	particularly	the	case	for	Webster	and	WordNet,	of	which	nearly	
half	the	words	refer	to	chemical	or	biological	science	words	(types	of	plants,	animals,	tissues)…	
For	many	of	these	words	there	are	no	values	for	concreteness	or	Age	of	Acquisition.	However,	
certainly	for	concreteness	the	main	reason	is	that	the	raters	do	not	know	the	words.	Only	experts	
are	able	to	rate	these.”	



 

 

Figure 4. Effect size and direction for the principal comparisons among Core, Satellites, 
Kernel and Rest for age, concreteness and frequency, for each of the four dictionaries. 
Note that the effect size for frequency tends to be the largest, then age, then concreteness.  

 	



	

Figure 5. Percentage of words in Core, Satellites and Rest for which psycholinguistic data 
were available for age and concreteness for each of the four dictionaries. (Frequency data 
not shown because they are at 100% for all dictionaries.)  Note that the percentage of 
available data is lower for the two bigger dictionaries, and decreases from the Core to the 
Satellites to the Rest. 

 

  



 

Figure 6. Effect size and direction for the principal comparisons among Core, Satellites, 
Kernel and Rest for age, concreteness and frequency, for each of the four dictionaries 
when correlation with frequency is removed.  Age and concreteness effects are reduced 
considerably (cf. Figure 4), especially for the bigger dictionaries, in which the 
psycholinguistic database coverage for age and frequency was lower for the less frequent 
words (cf. Figure 7). 

 

 

 



Definitional Distance Gradients. Alongside the main effects – the average differences in 
frequency, age and concreteness between the Core, Satellites and the Rest – our analysis 
also revealed two kinds of graded effects:  

The upper part of Figure 7 shows the gradient for the K-Hierarchy, which is the definitional 
distance from the Kernel to the words in the Rest of the dictionary (i.e. the number of 
definitional steps to reach a word starting from the Kernel). The first step in this gradient, 
from distance level 0 (the Kernel) to level 1 corresponds roughly to the main effects in 
Figure 3: For frequency there is a decrease from level 0 to 1 for all four dictionaries; then 
frequency is flat for all but Cambridge. For age there is an increase from level 0 to 1 (i.e., 
level 1 words are “older” – i.e., learned later – than the Kernel) for all four dictionaries, then 
descending slightly for all but WordNet. For concreteness there is a decrease (i.e., 
becoming more abstract) from 0 to 1, and then a gradual increase. Apart from the first step, 
from 0 to 1, the K-Hierarchy curves are hard to interpret because not only do the words at 
each succeeding distance level become fewer (Table 1) and less frequent, but the 
psycholinguistic database coverage for age (orange) and concreteness (green) is 
incomplete, especially for the two bigger dictionaries (Figure 8, left), many of whose rarer 
words are scientific, biological and technical terms.  

The lower part of Figure 7 shows the gradient for the C-Hierarchy, which is the definitional 
distance from the Core for words in the Satellite layer (i.e. the number of definitional steps 
to reach a Satellite word starting from the Core). Here the gradients are consistent for all 
four dictionaries and all three psycholinguistic variables: they are descending (less 
frequent) for frequency, rising (getting older) for age, and rising (getting more concrete) for 
concreteness. Here too the number of words diminishes at each distance level (Table 2), 
but for the two larger dictionaries there is a particularly marked decrease in database 
coverage for age (orange) and frequency (Figure 8, left). (This very visible negative 
correlation between definitional distance from the Core within the Satellite layer and 
psycholinguistic database coverage is probably due to the decline of word frequency with 
definitional distance from the Core within the Satellite layer (Figure 7, lower, blue). The red 
lines show the same effects when we analyze words that are present at the same level 
(intersection) in both large dictionaries (thick red line) and (separately) words that are 
present in both smaller dictionaries (thin red line). 

  



 

Figure 7:  Average age, concreteness and frequency at each level of the definitional 
distance hierarchy starting from the Kernel through the Rest of the dictionary (K-Hierarchy, 
above), and within the Kernel, starting from the Core through the Satellites (C-Hierarchy, 
below), for each of the four dictionaries. K-Hierarchy: for age there is a big increase from 
the Kernel to level 1 and then a slight decrease at higher levels; for concreteness a slight 
decrease from K to 1, then slight increase; for frequency a big decrease from K to 1, then 
mostly flat. C-Hierarchy: increases for age and concreteness and decreases for frequency. 
All effects are stronger in the smaller dictionaries. The thick red lines show that the pattern 
is the same when considering only those words that occur at the same level (intersection) 
in both bigger dictionaries. The thin red lines show the pattern for words that occur at the 
same level in both smaller dictionaries.   



 

 

Table 2.  Number of words at each level of the definitional distance hierarchy starting from 
the Kernel through the Rest of dictionary (K-Hierarchy, above), and, within the Kernel, 
starting from the Core through the Satellites (C-Hierarchy below), for each of the four 
dictionaries. Note that Figure 7 was truncated at the blue level past which frequencies 
became too low to be representative. Words past the truncation point were added to the 
blue value (total number of words for blue level shown in parentheses). 

 	

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
Cambridge 2241 15935 9483 4122 1663 (2796) 730 276 105 20 2 - - - - -
Longman 2326 20555 12231 4966 1906 (3025) 611 259 121 81 39 6 2 - - -
Webster 10955 59160 38111 19860 9577 4396 (7615) 1904 666 292 201 89 38 25 2 2
WordNet 9802 48186 26186 12642 5379 2248 (4304) 989 609 293 125 32 7 1 - -

K-Hierarchy

0 1 2 3 4 5 6 7 8 9 10 11 12
Cambridge 2008 127 51 26 (54) 20 4 4 - - - - - -
Longman 1786* 248 159 66 34 (64) 14 6 4 4 2 - - -
Webster 7976* 1220 640 425 245 153 106 (287) 68 49 39 19 6 -
WordNet 6391 1270 683 443 308 252 179 117 (275) 77 56 17 6 2

C-Hierarchy



	

	

Figure 8. Percentage of words at each level of the definitional distance hierarchy starting 
from the Kernel through the Rest of dictionary (K-Hierarchy, left), and, only within the 
Kernel, starting from the Core through the Satellites (C-Hierarchy right), for which 
psycholinguistic data were available for age and concreteness for each of the four 
dictionaries. (Frequency data not shown because 100% for all dictionaries.) Note that the 
percentage of available data is lower for the two bigger dictionaries, and that within the 
Satellite layer it decreases with increasing definitional distance from the Core in the C-
Hierarchy. 
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Core and Satellite Components of the MinSets. Because it takes so long to compute 
MinSets, even for the two small dictionaries, we do not have many of them yet; and for the 
two large dictionaries we so far only have one approximate MinSet each. Every MinSet is 
part-Core and part-Satellites. A natural question to ask is: What is the difference between 
the words in these two subcomponents of every MinSet? In the Kernel, the Core is more 
frequent, younger and less concrete than the Satellites. Comparing the words in the Core 
component of each MinSet with equal-sized random sets of Core words, and comparing 
the words in the Satellite component of each MinSet with equal-sized random sets of 
Satellite words also shows this ratio: For all four dictionaries, the Core component of the 
MinSet is more frequent, younger and less concrete than its random counterparts, and the 
Satellite component is less frequent, older and more concrete (Figure 9). (This effect was 
confirmed by t-tests (p<0.001) for the two smaller dictionaries, for which we had enough 
MinSets (n=20 and n=19 for Cambridge and Longman respectively). Because we were 
only able to compute one MinSet each for the two larger dictionaries, we could not do t-
tests, but their pattern of results was the same as for the small dictionaries.) The 
Core/Satellite pattern is hence even more pronounced within the MinSets than in the 
Kernel as a whole.  

Comparing the Core, Satellites and Rest in terms of parts of speech again points to the 
Satellite layer, which has more nouns and fewer adjectives, adverbs and verbs than the 
Core or the Rest in all four dictionaries (Figure 10). This may be a hint of some sort of 
functional complementarity between Core and Satellites. Our digraphs and computations 
treat definitions as if they were just unordered strings of stemmatized content words’ first 
meanings, ignoring syntax and even part of speech – yet definitions themselves are all 
subject/predicate propositions. The next step in further work will be to look into this formal 
black box, at the words themselves. There are very many words in the Core and the 
Satellites, and very many potential MinSets within each Kernel. To get a clearer idea of 
what the functional role of Core and Satellite words might be in making up a MinSet, in 
ongoing work we are examining the actual words themselves (rather than just their 
psycholinguistic correlates), as well as the actual definitions of which they are each a part, 
beginning with the words in individual mini-dictionaries generated by players in an online 
dictionary game (which will be briefly described in the next section of this paper). 

 	



	

Figure 9. Comparing average age, concreteness and frequency of words in MinSets and equal-
sized random subsets of the Core (left) and the Satellites (right) for each of the four dictionaries. In 
all four dictionaries the average MinSets are younger, more concrete and more frequent than 
random Core words and older, more abstract and less frequent than random Satellite words. 
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Figure 10. Percentage of parts of speech in the Core, Satellites and Rest for each of the 
four dictionaries. Note that the percentage of both nouns and adjectives is higher in the 
Satellite layer, whereas the percentage of verbs and adverbs is lower. 
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Discussion  

Word-Association Graphs. Graph-theoretic analysis has been used in other approaches 
to investigating how words are represented in the mental lexicon. Vitevitch (2008) has 
analyzed the phonological representations of words. Phonological representations are not 
semantic but share with dictionary definitions the property that they too are combinatory. In 
addition, the phonetic, phonemic and articulatory properties of words have been shown to 
influence word recognition and retrieval in the lexical decision task (Barber, Otten, Kousta 
& Vigliocco 2013). Variants of this task, in which subjects must quickly decide whether or 
not a series of letters is a word, have been widely used to study the representation of 
meaning in the mental lexicon (Aitchison 2012). 

Word-association graphs have also been derived from a number of different measures of 
word-word association, including synonymy (Pilehvar & Navigli 2015), semantic similarity 
(De Deyne & Storms 2008; De Deyne, Navarro & Storms 2015), word co-occurrence 
frequency (e.g., Latent Semantic Analysis; Landauer & Dumais 1997; Jones, Willits, 
Dennis & Jones 2015) and people’s free associations to words (Nelson, McEvoy & 
Schreiber 2004).  

The relation between the definitional links in dictionary-definition graphs and the 
associative links in word-association graphs is ripe for further investigation. The underlying 
idea of an associative approach to the representation of meaning in the mental lexicon is 
that word meanings consist of word nodes and their pattern of interconnections in a 
network (Van Rensbergen, Storms & De Deyne 2015). The connections in a dictionary 
graph are definitional. There are defined words and defining words. The defining words 
point to the defined words. That relation is like a subject/predicate statement (although our 
analysis so far ignores syntax and function words, treating the defining content words as an 
unordered vector):  The subject is simple (the word to be defined, e.g., “apple”) and the 
predicate is compound and complex (the words that define the subject, e.g. “round red 
fruit”).  

The other important property peculiar to word-definition graphs is their minimal grounding 
sets (MinSets). An associative model of word meaning is ungrounded, in that there is no 
connection between the words and their referents; there are only connections between 
words and words. Words are just arbitrary symbols, and meaning is assumed to reside 
somehow in the words’ patterns of interconnections. It is important to note, however, that 
dictionaries (and dictionary graphs) are ungrounded too, in that all they contain is words 
and the definitional links between them. A way in which this vicious circle of symbols can 
be broken, however, is if the words in a MinSet (actually or potentially – since there are 
many alternative potential Minsets, just as there are many alternative potential bases for an 
N-dimensional vector space) are connected to their referents directly in some other way, so 
that their meaning is not just a pattern of connections within the dictionary graph.  

(Continuous N-dimensional vector spaces have an infinite number of potential bases, but N 
is always their minimal size. For a discrete, finite dictionary graph, its number of potential 
grounding MinSets is not infinite, but it is still very large – with N [the cardinality of the 
graph’s minimum feedback vertex sets] being their minimal size.) 

The size, N, of the MinSet is hence the smallest number of words that would need to be 



connected to their referents in this other way in order to generate meaning in what would 
then be a dual-code representation of word meaning in the mental lexicon. Our paper 
analyzes only the verbal (symbolic) code. The other code in which this verbal code must be 
grounded is a sensorimotor one, consisting of feature-detectors (inborn as well as learned) 
that can detect in their sensorimotor input the members of the category referred to by each 
(directly grounded) word (Harnad 1990, 2011; Barsalou 1999, 2010). 

Dual-Code Models of Mental Representation. Dual-code models began with the work of 
Alan Paivio (1971,1986, 2014). The original idea was simply that we think in both words 
and pictures. But the connection between a picture and what it is a picture of is almost as 
ungrounded as the connection between a word and what the word is about – almost, 
because a picture can resemble its referent whereas (except for onomatompoeia) a word 
cannot. But resemblance is not enough for the perceptual recognition of the referent, 
especially when the referent is a category (e.g., “fruit”) rather than an individual (this 
particular apple, “Alvin,” now) and the category’s members vary on many dimensions: The 
features that distinguish the members from the non-members can be complex and non-
obvious.  

What is needed in order to ground either pictures or words in their referents is a 
mechanism that can recognize sensorimotor categories. Modeling the capacity for the 
learning, recognition, and representation of sensorimotor categories has become a rich and 
fertile field (De Vega, Glenberg & Graesser 2008; Ashby & Maddox 2011; Lupyan 2012; 
Meteyard, Cuadrado, Bahrami & Vigliocco 2012; Pezzulo, Barsalou, Cangelosi, Fischer, 
McRae & Spivey, M. J. 2012; Maier, Glage, Hohlfeld & Rahman 2014; Folstein, Palmeri, 
Van Gulick & Gauthier 2015). In a dual-coding sensorimotor/symbolic model it is the 
sensorimotor module that needs to connect words to their referents. What our findings 
suggest is that it need not connect them all, nor even most of them: In principle (though not 
necessarily in practice), only the words in one MinSet would need to be connected directly 
to their referents by the sensorimotor module: all other words could then be formally 
encoded by the symbolic module via words alone, through the recombinatory expressive 
power of language, in the form of definitions, composed of those directly grounded MinSet 
words. 

Steyvers & Tenenbaum’s important study in 2005 found that word-association graphs tend 
to be small-world graphs consisting of a minority of highly connected central nodes fanning 
out into many less highly connected peripheral nodes, and that the words in the central 
nodes tend to be the ones that are more frequent and acquired earlier. They showed that 
as an associative net grows, the earlier nodes turn into the ones with many connections. 
This pattern would fit the growth of an individual speaker’s vocabulary across time or the 
growth of the vocabulary of a language across time. 

Our analysis of definitional depth in a dictionary-graph – from the periphery to the Kernel to 
the Satellites to the Core, with each MinSet turning out to be part-Satellite and part-Core – 
shows that the words in a dictionary-graph become increasingly frequent and young with 
increasing depth as we move inward toward the dictionary’s Core (Figure 2). This finding 
parallels Steyvers & Tenenbaum’s finding that words are increasingly frequent and younger 
toward the central nodes in their associative graphs. Our interpretation that our grounding 
MinSets are learned earlier is consistent with Steyvers & Tenenbaum’s interpretation that 
their central words are learned earlier. Later studies will examine the extent to which the 



same words are involved in both kinds of graph.  

As noted, a definitional network can be more than just an associative network: If it is also 
one of the two interconnected modules in a dual-coding sensorimotor/symbolic 
representation of meaning in the mental lexicon then the internal representation of word 
meaning itself is more than just associative. The difference resides in the functional role of 
a MinSet in a dictionary graph. Each MinSet is a (potential) generator of the meaning of all 
the rest of the words in the dictionary, via formal definitional connections alone. Hence, in 
principle, none of the rest of the words need to be grounded directly in their referents: They 
can instead inherit their grounding indirectly, via the formal definitional connections – on 
condition that the words in the generator MinSet have been grounded by the sensorimotor 
module. The meanings of the words in the MinSet need to have been learned previously 
via direct sensorimotor experience rather than via definition. That is why those words are 
younger: not just because they were learned first but because they acquired their meaning 
in a fundamentally different way. 

Of course it is not only unlikely but almost certainly false that it will turn out to be as neat 
and simple as the following: First (1) one MinSet of word meanings of size N is learned 
from direct inductive experience (internally implemented by sensorimotor feature-detectors 
that allow each category member to be reliably assigned to its category and hence to the 
word that names it). Then (2) every other content word in the language, and the category it 
refers to, is learned indirectly via purely verbal definitions consisting of re-combinations of 
the directly grounded words of the MinSet (along with any further words reached from them 
indirectly via definition). 

What is more realistic than (1) and (2) is to assume that the growth of the mental lexicon 
continues to be hybrid sensorimotor/symbolic throughout a speaker’s lifespan, with some 
later direct sensorimotor experience complementing and reinforcing the acquisition of new 
meanings alongside verbal instruction whenever it is needed or makes learning and 
understanding easier.  

But what cannot be hybrid is the initialization of this dual representational system: Some 
words first have to be grounded directly through sensorimotor experience; then those 
words can go on to ground further word learning, either via whatever new words they can 
define symbolically by recombination, or via hybrid sensorimotor/symbolic learning. 

Semantic and syntactic “bootstrapping” occurs when children learn the meaning of words 
from written or spoken context (Gleitman & Landau 1994). Dictionaries simply define 
words: all words. Being told in words what a word refers to (just as being shown, by 
pointing, what a word refers to) is importantly different from inferring, from context, what the 
word might refer to (bootstrapping), though the two may work hand in hand: Dictionaries 
sometimes provide examples of the use of the defined word in context, but that is by way of 
supplementing the definition: the user is not expected to “bootstrap” to the meaning from 
just the example of its use in context. 

What really comes first, before words or even language itself, is categories themselves. A 
category need not be given a name. To categorize is simply to do the right thing with the 
right kind of thing (Cohen & Lefebvre 2005). With language, the right thing to do might be 
to name (or describe) the category; but pre-verbally it can be anything that needs to be 



done with the members of the category, and not-done with the non-members: approaching, 
avoiding, eating, mating-with, manipulating, etc., based on the sensorimotor features 
(affordances) that afford doing the right thing (Montesano, Lopes, Bernardino & Santos-
Victor  2008; Yürüten, Şahin & Kalkan 2013). 

So in our view the mental lexicon is itself hybrid – a dual-code representational system 
consisting of learned sensorimotor feature (affordance) detectors for the grounding words 
(and any later hybrid words) plus re-combinatory and purely symbolic (i.e., verbal) 
definitions and descriptions for the referents of the words that are learned via words alone. 
No doubt the words in such a dual-code mental lexicon will have associative properties too, 
based on similarities in sound, meaning and context of use, but meaning itself cannot 
consist of word-word associations all the way down, for the same reason it cannot consist 
of words all the way down. Linguistic symbols have to be grounded in their real-world 
referents. 

Frequency, Concreteness and Age of Acquisition. Frequency is the most objective of 
the three psycholinguistic variables we have tested so far, but it is also the least specific 
(and its measurement is complicated by factors such as the type/token distinction, 
polysemy and familiarity). Age of acquisition (AoA) is much more specific, but less 
objective: It is very hard to get data on the age at which children actually first hear and 
understand particular words, whereas retrospective adult estimates about this could be 
influenced by many complicating factors. Yet AoA nevertheless seems to be a reasonably 
reliable parameter.  

Frequency and AoA are highly correlated (younger words are more frequent), so one of the 
big challenges is to try to disentangle them and interpret the difference. Brysbaert, Van 
Wijnendaele & De Deyne (2000) showed that age effects are more sensitive to the 
semantic (meaning) properties of words than to their word-form frequency (lexical or 
phonological) properties, with younger-learned words being processed faster for meaning 
than older-learned words. This accords with the symbol-grounding interpretation of our 
dictionary findings: The Kernel is younger than the words in the rest of the dictionary; and 
within the Kernel, the Core is youngest, with words getting younger and younger the 
shorter their definitional distance from the Core. Brysbaert’s finding that the speed of 
processing of a word’s meaning is influenced by how early it was learned rather than just 
how frequent it is in the language reinforces our finding of the primacy of the Satellite and 
Core words in the encoding of meaning in dictionaries.  It also accords with Steyvers & 
Tennenbaum’s (2005; Tenenbaum, Kemp, Griffiths  & Goodman 2011) finding that the 
earliest nodes of a semantic network are the most strongly connected ones. 

The question of the causal role of frequency is still an open one. There is no doubt that 
frequency is correlated with grounding – the Core words are the most frequent ones, then 
the Satellites, then the Rest. The frequency gradient within the Satellite layer also follows 
this pattern, and there is no detectable frequency gradient in the rest of the dictionary, even 
though the frequency database is 100% complete. It may well be that some words are 
learned earlier because they are more frequent in the language: But why are they more 
frequent in the language? Frequency is undeniably the strongest of the psycholinguistic 
correlates of the latent structures of the dictionary. But its causal role must be explained by 
something other than frequency: It cannot be frequency all the way down, any more than it 
can be definitions all the way down. 



Concreteness/abstractness is more problematic because it can mean so many different 
things. At bottom, it can mean the difference between physical objects, like tables, plants 
and animals, and their properties, such as hard, green or fast. Properties are more abstract 
than the objects of which they are the properties, but properties can themselves have 
properties, such as texture, color or speed, and so on, in a rising hierarchy of higher-order 
properties. If higher-order properties were its only dimension, abstractness/concreteness 
would be straightforward (except for parts, composite properties, and intransitive 
properties), but another dimension of concreteness is the sensorimotor one: the closer 
something is to something that can be perceived directly with the senses, the more 
concrete we consider it. That means that “shape,” a 3rd order property (apple, round, 
shape), is more concrete than “quark,” a 1st-order object (but imperceptible). Moreover, 
both objects and properties of any order can have emotional associations (reflected in 
other neural correlates as well), which would again make them more concrete (in the 
sensorimotor sense), no matter how abstract they are (in the property-hierarchy sense): 

The lexical decision task (of deciding whether or not a string of letters is a word) had at first 
seemed to indicate that concrete words are recognized faster than abstract ones. But 
Kousta and coworkers have found that when other variables are controlled, certain abstract 
words are recognized faster because they have emotional associations (Kousta, Vigliocco, 
Vinson, Andrews & Del Campo 2011; Barber, Otten, Kousta & Vigliocco 2013; Vigliocco, 
Kousta, Della Rosa, Vinson, Tettamanti, Devlin & Cappa 2014; cf. Paivio 2013). This raises 
the question of what it is that we mean by “concrete” vs. “abstract” (Borghi & Binkofski 
(2014). As noted, abstract has at least two distinct senses: (1) an ontic, object-centered 
sense, in which individual physical objects are concrete and their hierarchy of higher-order 
properties becomes increasingly abstract; and (2) a sensorimotor, subject-centered sense, 
in which both objects and properties become more concrete the more palpable they or their 
properties are to our senses. In this second sense, emotions and emotional associations, 
being sensory, would be concrete rather than abstract. 

Kousta and co-workers’ finding that (some) abstract words can reverse the reaction time 
advantage of concrete over abstract words in the lexical decision task because of their 
emotional connotations may well be related to the multidimensionality of our judgments of 
concreteness/abstractness. What is not clear yet is the relationship between performance 
in the lexical decision task and how meaning differences between words (as opposed to 
the difference between words and non-words) are perceived or mentally represented. The 
C-hierarchy of definitional distance we found radiating from the Core outward through the 
Satellite layer may help cast some light on how meaning differences are represented, 
because it is in this hierarchy that the concreteness effect seems to be concentrated. But 
this will only become testable in the individual mini-dictionaries that are currently being 
generated in our dictionary game, rather than the full-sized lexicographers’ dictionaries, 
which are a composite product originating from the many individual mental lexicons of 
many different individual lexicographers. 

Other Psycholinguistic Variables. Any evidence that can distinguish word frequency 
from the other psycholinguistic variables can be important in trying to make causal 
interpretations. Comparing word frequency data with data in which people simply indicate 
whether or not they know a word will be very useful (Keuleers, Stevens, Mandera & 
Brysbaert 2015; Brysbaert, Stevens, Mandera & Keuleers, in press). Brysbaert calls this 
new variable, which correlates only .50 with word frequency, word prevalence (“knowledge 



of the word in the crowd”) and suggests (personal communication) that “one would expect 
all words of the Core to be known, whereas the Satellites may contain more specialized 
knowledge.”  

If, as is likely, the familiarity of a word depends on the expertise or some other 
characteristic of sub-populations, that too needs to be taken into account (Vinson, Ponari & 
Vigliocco 2014; Della Rosa, Catricalà, Vigliocco & Cappa 2010). Dictionaries tend to be 
generic, but there is scope for investigating specialized technical dictionaries, glossaries 
and “ontologies” separately in their own right as well as for using psycholinguistic data 
derived from their corresponding expert sub-populations rather than generic 
psycholinguistic data. This pertains to human performance studies rather than to graph-
theoretic analyses of dictionaries per se. It is also likely to become increasingly important in 
our work on the dictionary game. 

Another promising new variable based on estimating how a word was learned (whether 
from direct sensorimotor experience or verbally) rather than just when it was learned 
(although the two are of course correlated) is Mode-of-Acquisition (Della Rosa, Catricalà, 
Vigliocco & Cappa, 2010; Connell & Lynott (2012), Dellantonio, Mulatti, Pastore & Job 
2014; Brysbaert, Warriner & Kuperman 2014). Sensorimotor experience is sensory as well 
as motor; it includes anything that is experienced – i.e. felt – via any modality, whether the 
usual five “external” senses or the interoceptive ones, such as proprioception, kinesthesia 
or emotion (Barsalou, Simmons, Barbey & Wilson 2003; Montesano, Lopes, Bernardino & 
Santos-Victor 2008; Frak, Nazir, Goyette, Cohen & Jeannerod 2010; Guan, Meng, Yao & 
Glenberg 2013; Vigliocco, Kousta, Della Rosa, Vinson, Tettamanti, Devlin & Cappa 2014). 
Mode-of-acquisition may well prove to be at least as relevant to our dictionary analyses as 
the three variables we have analyzed, but it is unfortunately not yet available for enough 
words to be useable in the present study.  

Conclusions 

What we have learned from the graph-theoretic analysis of dictionaries so far is that 
someone who knows the meaning of a grounding set of as few as 373 words – for a small 
dictionary of 25,132 words (first meanings only) or 1396 words for a larger dictionary of 
91,388 words (first meanings) – could in principle learn the (first) meanings of all the rest of 
the words in the dictionary through definition alone. It does not follow, of course, that that is 
the way we actually do learn the meanings of all the rest of the words. If the grounding set 
was learned through direct sensorimotor experience, it is probable that a lot of later words 
are learned in a hybrid way, through a combination of direct experience and verbal 
definition (or description, or instruction or explanation). Most of our categories are not 
lexicalized at all, and are described (rather than defined) by ad hoc verbal descriptions: 
there is no dictionary entry for “things that are bigger than a breadbox,” for example, nor for 
“things that I saw last Tuesday” – nor even, in most people’s vocabularies, for “feeling glee 
at another’s misfortune.” But even the words in ad hoc verbal descriptions of unlexicalized 
categories have to be grounded, just as dictionary definitions have to be. So that’s back to 
the grounding set. 

Language and Propositions. One can equally well ask: “Why couldn’t the meanings of all 
words be learned through direct sensorimotor grounding?” First of all, if it really were 
possible to learn the meaning of every word through direct sensorimotor experience, then 



why bother to have words at all? Presumably it is to transmit what one of us has learned 
(say, via direct experience) to another who has not. Here we cannot avoid considering the 
question of the nature of language itself, and its adaptive value for our species. No other 
species speaks (in any modality, including gesture). What do other species lack, and what 
has ours gained, for having evolved the capacity for language? It is the ability to say 
anything and everything that can be said: the ability to express every possible proposition.  

Most of what we say (even questions and commands) consists of subject/predicate 
propositions. Some propositions are “deictic,” which means that they point to the immediate 
sensorimotor here-and-now: “She is here.” Deictic terms are all function words, which were 
excluded from our dictionary analysis. We were only interested in content words, which, as 
noted, are the names of categories, and make up almost all the words in the dictionary. 
“Apples are red” is a simple subject/predicate proposition, very much like most of what we 
say (including this very sentence). The proposition could be formalized as stating that 
“apples” are a member (or a subset) of “things that are red.” It could be the reply to 
someone asking either “What color are apples?” or “What things are red?” This already has 
most of the features of asking the question “What does ‘apple’ mean?” or “What is an 
‘apple’?” and then learning from an interlocutor or from a dictionary that (to a first 
approximation) “An apple is a round, red fruit.” 

So far, all these categories (“apple, “red,” “fruit”) could have been learned either from a 
verbal description/definition or from direct sensorimotor experience: They are all pretty 
concrete, and they could all be learned early, fairly quickly, and without any particular risk. 
“Goodness,” “truth, and “beauty” are becoming more abstract – although “that’s good (true, 
beautiful)” and “that’s not good (true, beautiful)” could be learned from positive and 
negative examples through direct experience too. Learning what “quark”or “quiddity” mean 
nonverbally, from direct experience, would be quite a bit harder, and the meaning of 
“peekaboo-unicorn” (“a one-horned horse that vanishes without a trace whenever either 
senses or an instrument are aimed at it”) would be impossible to learn directly via the 
senses, whereas its verbal definition is just as well grounded as the definition of apple. 

Category Learning: the Hard and Easy Way. Now suppose the category that someone 
lacks is not “apples” but “toadstools,” and that the person is starving, and the only thing 
available to eat is edible mushrooms or poisonous toadstools that look very much like the 
edible mushrooms. Being told, by someone who knows, that “The striped gray mushrooms 
are poisonous toadstools” could save someone a lot of time (and possibly their life) by 
making it unnecessary to find out through direct trial-and-error experience which kind is 
which.  

And that, in a nutshell, is our hypothesis about the nature and adaptive value of language 
(Blondin Massé et al 2013): Language makes it possible to learn new categories by word of 
mouth, by recombining already grounded category names into propositions 
defining/describing new categories, instead of having to learn them the hard way, from 
direct experience. But to make it possible to learn by word of mouth, some words, at least, 
still have to be grounded in direct experience. The grounding would need to occur earlier, 



before the grounded words could be used to define and transmit further categories. And 
because grounding is sensorimotor, the grounding words would tend to be more concrete.7  

There is no reason to expect the grounding words to be unique and identical for everyone. 
The minimal grounding set of any individual’s mental lexicon might be like the basis set of 
an N-dimensional vector space: the basis can generate every point in the vector space, but 
it is not unique: just a set of N linearly independent points with the property that linear 
combinations of them can generate any and every point in the vector space. But, because 
people share a lot of common experiences, and because this is in turn reflected in the 
vocabulary of their language, there is nevertheless reason to expect that some words will 
be part of many people’s grounding vocabularies; so those words would be spoken and 
written more frequently (see the frequency curves as well as the red curves for 
intersections in Figure 7).  

This hypothesis is certainly not entailed by our findings on the greater frequency of Kernel 
words, the earlier age of acquisition of Core words, the greater concreteness of Satellite 
words, or the multiplicity of MinSets. But if the hypothesis were correct, it would help make 
sense of some of these findings: Not all. It remains a puzzle why Kernel words in the 
Satellite layer become increasingly concrete but also older and less frequent, the greater 
their definitional distance from the Core. We will not understand that until we get a better 
idea of the complementary role of Core words and Satellite words in making up a MinSet. 
But even for our two smallest dictionaries there are still very many words in their Kernels 
(over 2000), and they have very many different MinSets (each of c. 400 words each). So 
we are currently also generating tiny dictionaries by means of an online dictionary game:8  

The participant is given a word, asked to define it, and then to define the words used to 
define it, and so on, until all the words used have been defined. This yields dictionaries with 
an average size of about 200 words, 90% of them in the Kernel, and with MinSets of about 
30 words, 2/3 of them Satellite words and 1/3 Core words (which is a reversal of our 
observed ratio for the full-size dictionaries) (Table 1). We hope that these much smaller 
dictionaries generated by individuals will turn out to reflect the way meanings are 
represented in the mental lexicon and will allow us to get a better idea of the 
complementary roles played by Core and Satellite words in jointly making up a MinSet. We 
also hope that this article will encourage “crowd-sourcing” the analysis of dictionary graphs 
for further psycholinguistic variables as well as in further languages9. 

																																																								
7	As noted, however, there are some conceptual problems with the notion of concreteness 
(Borghu & Binkofski 2014), and hence also with judgments of concreteness: To name a 
kind, like “apple,” rather than just a unique individual on a unique occasion, is already to 
abstract.	
8	Readers	are	invited	to	try	their	hand	at	generating	a	few	mini-dictionaries	at	
http://lexis.uqam.ca:8080/dictGame.	It	will	deepen	their	understanding	and	appreciation	of	
the	nature	of	a	dictionary	and	their	own	individual	mental	lexicon	as	well	as	many	of	the	
points	discussed	in	this	paper.	
9	We	have	archived	the	Kernels	(separated	into	Satellites	and	Core)	for	all	four	dictionaries	
online	for	use	by	other	researchers	at	(URL	to	come).	

	



Language evolution. Symbol grounding concerns not only the origin of the words 
acquired during a speaker’s lifetime but also the origin of words themselves, in the 
evolution (both biological and historical) of language (Pagel, Atkinson & Meade 2007; 
Monaghan 2014). There may turn out to be a relation between word origins and the 
psycholinguistic correlates of Core, Satellite and MinSet words. Language may have begun 
concretely, with sensorimotor categorization, pantomime and gesture (Steklis & Harnad 
1976; Harnad 2011; Cangelosi & Parisi 2012; Blondin Massé, Harnad, Picard & St-Louis 
2013) and some of this may still be reflected in language acquisition and vocabulary today. 
But that question is still speculative and awaits the outcome of dictionary analyses across 
other languages.  

What is certain is that it is human language that has not only generated the biggest and 
richest digital database on the planet, far bigger than what our species could have 
generated by sensorimotor means alone; but it is also language (of which computation is 
just a subset) that has generated the means to derive meaning from all those data – on 
condition that those minimal means, at least, are grounded in the kinds of sensorimotor 
experience that we share with all other species on the planet. 
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