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The slingshot argument, Gödel’s hesitation and Tarskian semantics 
 
ARHAT VIRDI 
 
The slingshot argument is a reductio purporting to show that if there are facts at all there is only one 
to which all true statements correspond. If facts are not non-trivially individuable then this 
presumably must render the notion of fact and, by implication, theories such as the correspondence 
theory of truth incoherent. Church and Davidson (among others) deployed the slingshot in 
exoneration of the Fregean conclusion that there is a uni-referent – the ‘True’ –  for all true 
statements. The slingshot relies crucially on treating definite descriptions as singular, referring 
terms, a treatment that is rendered unnecessary on Russell’s theory of descriptions. If this is so, 
friends of facts such as Russell can rest content. I, however, argue against the thesis that Russell’s 
theory so succeeds and develop what Gödel could have meant when, in thinking about this 
application of Russellian semantics, was prompted to write: “I cannot help feeling that the problem 
raised by Frege’s puzzling conclusion has only been evaded by Russell’s theory of descriptions and 
that there is something behind it which is not yet completely understood.” (1944: 215). I conclude 
by suggesting that the coarse-grained, folk theory of facts to which the slingshot objection 
incontestably applies is in need of being fine-grained into a scientifically more sophisticated theory, 
and that such an account is to be found in a Tarskian definition of truth which, moreover, also 
succeeds in placing the correspondence theory of truth on a secure and satisfactory footing.1  
 

1. The slingshot argument and Russellian semantics 

 

The slingshot was first developed by Alonzo Church. In Introduction to Mathematical Logic (1956: 
24-25) he considers the following set of sentences: 
 

(1) Sir Walter Scott is the author of Waverley 
(2) Sir Walter Scott is the man who wrote twenty-nine Waverley novels altogether 
(3) The number, such that Sir Walter Scott is the man who wrote that many Waverley novels 

altogether, is twenty-nine 
(4) The number of counties in Utah is twenty-nine 

 

Given that the name or description ‘the author of Waverley’ is replaced by another (‘the man who 
wrote twenty-nine Waverley novels altogether’) which has the same reference, i.e. Scott, (1) and (2) 
must have the same reference. The same applies to (3) and (4): the latter is obtained from the former 
by replacing the description ‘the number, such that Sir Walter Scott is the man who wrote that many 
Waverley novels altogether’ by another referring to the same object (the number twenty-nine). 
Given that (2) and (3) are “if not synonymous...[then] at least so nearly so as to ensure its having the 
same denotation” for Church, they too must have the same reference. Therefore, (1) and (2), (2) and 
(3), and (3) and (4) have the same reference when taken pairwise, which means that (1) and (4) 
must do too. So, (1) and (4) have differing senses yet the same reference. The only semantic feature 
that they retain is their truth-value. Church used this example to demonstrate that sentences with 
non-equivalent senses may still have equivalent referents, and that no matter what the reference is 
each will have the same one. 
 
Davidson lost no time in using this argument explicitly against the correspondence theory of truth. 
In “True to the Facts”, Davidson (1969: 41) first considers when 
 
                                                 
1 I thank an anonymous referee for useful suggestions on improving the original draft.  



(S)    The statement that p corresponds to the fact that q 
 
would be true. Clearly (S) is true when both p and q are replaced by the same sentence. However, 
unless facts are to be understood as mere reflections of true sentences, there ought to be true 
instances of (S) where p and q are not identical. Davidson then observes that since (as an example) 
Naples satisfies the following description ‘the largest city within thirty miles of Ischia’, then the 
statement that Naples is farther north than Red Bluff corresponds to the fact that Red Bluff is farther 
south than the largest city within thirty miles of Ischia. Given further that Naples also satisfies the 
description ‘the largest city within thirty miles of Ischia, and such that London is in England’, then 
“we begin to suspect that if a statement corresponds to one fact, it corresponds to all.” (1969: 42). 
This suspicion is validated as long as the following two principles are assumed to hold: 
 

• The statements replacing ‘p’ and ‘q’ are logically equivalent 
 
• ‘p’ and ‘q’ differ only in that a singular term has been replaced by a co-extensive singular 

term 
 
 
For Davidson then, the argument is this: 
 

     Let ‘s’ abbreviate some true sentence. Then surely the statement that s corresponds to the fact  
     that s. But we may substitute for the second ‘s’ the logically equivalent ‘(the x such that x is  
     identical with Diogenes and s) is identical with (the x such that x is identical with Diogenes)’. 
    Applying the principle that we may substitute coextensive singular terms, we can substitute ‘t’  
    for ‘s’ in the last quoted sentence, provided ‘t’ is true. Finally, reversing the first step we  
    conclude that the statement that s corresponds to the fact that t, where ‘s’ and ‘t’ are any true  
    sentences. (Davidson 1969: 42) 
 

Formally, the argument looks like this {where ‘(ιx)’ means ‘the x such that…x…’}: 
 
1. s                                                     Premise 
2. (ιx)(x = d ∧ s) = (ιx)(x = d)           From 1., given substitution salva veritate of logical equivalents 
3. (ιx)(x = d ∧ t) = (ιx)(x = d)            From 2., given substitution salva veritate of co-referring terms 
4. t                                                      From 3., given substitution salva veritate of logical equivalents 
 
All four lines of this argument correspond to the same fact. In “The Structure and Content of 
Truth”, Davidson argued that the moral to draw from this is that it: 
 

     …trivialize[s] the concept of correspondence completely; there is no interest in the relation of  
     correspondence if there is only one thing to which to correspond, since, as in any such case, the  
     relation may well be collapsed into a simple property: thus, “s corresponds to the universe”, like  
     “s corresponds to (or names) the True”, or “s corresponds to the facts” can less misleadingly be  
     read “s is true”. (Davidson 1990: 303) 

 

In fact, as Gödel indicated in “Russell’s Mathematical Logic” (1944: 213-214), the slingshot being 
loaded here can be made even more powerful. Gödel employed a notion of equivalence weaker than 



that of logical equivalence – what Stephen Neale has termed Gödelian equivalence2 – one obtaining 
between sentences like ‘Fa’ and ‘a = (ιx)((x = a) ∧ Fx)’:3 they are to “mean the same thing”. This is 
weaker because true identity statements remaining true under the substitution of logically equivalent 
statements entails Gödelian equivalence, but not vice-versa. The argument runs through assuming 
this weaker equivalence principle. 
 
There remains a question, however. The validity of the slingshot argument presumably depends on 
the validity of the semantics of definite descriptions adopted. Such a semantics, it is argued, must – 
in the case of the Church-Davidson version – (i) render ‘s’ and ‘ιx(x = d ∧ s) = ιx(x = d)’ logically 
equivalent, (ii) declare the definite descriptions ‘ιx(x = d ∧ s)’ and ‘ιx(x = d ∧ t)’ co-referential 
when ‘s’ and ‘t’ are true, and (iii) treat definite descriptions as singular, referring terms. And 
similarly for the Gödelian version: if one wished to hold that definite descriptions are singular terms 
that refer and that sentences standing for facts are determined by the referents of their component 
parts then one cannot hold that ‘Fa’ is somehow a different fact from the fact that ‘a = (ιx)((x = a) ∧ 
Fx)’. However, as many have pointed out, on Russell’s theory of descriptions,4 definite descriptions 
do not stand for objects, or refer to things; they are not referential because they are not singular 
terms. According to this theory, any sentence of the form ‘the F is G’ ought rather to be understood 
as belonging to the class of quantificational-predicational expressions; they are on a par with the 
quantifiers ‘every’, ‘some’, ‘a’, ‘no’ which are syncategorematic terms that, when combined with 
nominal expressions, yield noun phrases (cf. Russell 1905: 42). Thus, the sentence ‘the F is G’ is 
equivalent to the corresponding sentence ‘there is one and only one F, and it is G’, formalized as 
‘∃x(Fx ∧ ∀y(Fy → y = x) ∧ Gx)’, giving us the wherewithal to turn any sentence containing definite 
descriptions into an equivalent that is description-free. Given this theory, and the ‘principle of 
compositionality’, it cannot then be the case that both ‘a = (ιx)((x = a) ∧ Fx)’ and ‘a = (ιx)((x = a) ∧ 
a ≠ b)’ are obtainable from each other from the substitution of co-referring terms. And so, it does 
not follow that they stand for the same fact. The property of being F is part of the fact 
corresponding to ‘a = (ιx)((x = a) ∧ Fx)’ but not the fact corresponding to ‘a = (ιx)((x = a) ∧ a ≠ b)’. 
Indeed, ‘Fa’ has a truthmaker that is an entirely different (singular) fact from the general fact 
making ‘a = (ιx)((x = a) ∧ Fx)’ true, and so a Russellian need not accept that they stand for the same 
fact. On Russell’s theory, ‘a = (ιx)((x = a) ∧ Fx)’ is shorthand for ‘∃y[((y = a) ∧ Fy) ∧ ∀z(((z = a) ∧ 
Fz) → (z = y)) ∧ (a = y)]’5 and so its truthmaker – a – need not be the truthmaker of ‘Fa’.  
 

2. Gödel’s hesitation 
 

Gödel, however, was hesitant to endorse this application of Russell’s semantics, saying: 
 

     ...I cannot help feeling that the problem raised by Frege’s puzzling conclusion [that all true  
     sentences have the same signification] has only been evaded by Russell’s theory of descriptions  
     and that there is something behind it which is not yet completely understood. (Gödel 1944: 215) 

                                                 
2 See Neale 1995, 1997 & 2001. 
 
3 Gödel also assumed that any sentence standing for a fact can be rephrased into predicate-argument form (cf. Gödel 
1944: 214, footnote 5). Clearly, without this assumption the slingshot envisaged would only hold for all true atomic 
sentences. 
 
4 See Russell 1905, 1918. 
 
5 Strictly speaking, Russell’s theory that definite descriptions are ‘incomplete’ means that they have to analyzed within 
a sentence; they are not themselves sentences (nor equivalent to sentences).  
 



 

Gödel was right to be hesitant. Excluding definite descriptions from the primitive notation just 
creates the illusion of a solution, since, as Church (1943) showed, the argument can be reformulated 
in terms of set-abstraction operators where there is no question that they refer (in the standard 
model, whose existence we can reasonably assume here). This is what Davidson’s slingshot looks 
like when the iota operators are replaced by set abstracts:  let s and t abbreviate true sentences. The 
following then is a valid argument, with each line corresponding to the same fact: 
 
1. s                                                     Premise 
2. {x: x = d ∧ s} = {x: x = d}            From 1., given substitution salva veritate of logical equivalents 
3. {x: x = d ∧ t} = {x: x = d}             From 2., given substitution salva veritate of co-referring terms 
4. t                                                      From 3., given substitution salva veritate of logical equivalents 
 
To argue, as Neale does, that Gödel’s slingshot “forces philosophers to say something about the 
semantics of definite descriptions…as soon as they posit entities to which sentences are meant to 
correspond” (2001: 223) would, therefore, be wrong-headed: too much weight has been placed on 
imaginary problems concerning the iota operator.6 Does the slingshot argument force us to revise 
our ordinary speech permitting us to speak, as it appears to be doing, of nothing more than one fact? 
What the argument does demonstrate is that the folk theory of facts has (quite possibly) 
unacceptable consequences, and rather graphically exhibits one. It shows that there is a need to 
move from folk, fact-based semantics, which doesn’t work properly, to a more scientific semantics. 
The conceptual apparatus provided by Tarski, it will be demonstrated, succeeds where the ‘folk’ 
fact-talk failed: facts are a very important, almost indispensable, ontological category whose 
intensional structure is actually preserved in a theory like Tarski’s and it is owing to this kind of 
faithfulness to the structure of facts which serves to deflect the slingshot. 
 

3. Tarskian semantics 

 
Fortunately, the conceptual apparatus provided by Alfred Tarski succeeds where the ‘folk’ fact-talk 
failed, and collaterally the account of facts provided in a Tarskian truth definition (pace Davidson et 
al) allows us to see precisely how true sentences correspond to facts: true sentences are 
homomorphic images of facts, i.e. a true sentence represents, in a form-preserving manner, the 
truth-making facts in it. To see all this, we need to recount the clauses of a Tarskian truth definition. 
In his mature work, Tarski adopted the convention according to which the non-logical constants of a 
language L are enumerated in a fixed order and their interpretations in a relational structure are then 
given in the same order. So, for a given interpretation function I from L to a domain of individuals 
X, we can treat (L, I) as an interpreted language and define a structure for this language as a 
relational system of the form (X, s1,…, A1,…, R1,…) with designated elements s, subsets A and 
relations R that are the I-images of the vocabulary of L in the domain X. Tarski did not make the 
interpretation function I explicit but it is clear that such a function from L to the relational system is 
presupposed.7 In textbooks on model theory, it has become standard to explicitly express the link 
                                                 
6 This does not mean that the friend of facts has nothing instructive to say; only that she is not forced into making any 
commitments about the semantics of descriptions (cf. Rodriguez-Pereya 2003). 
 
7 This is arguably confirmed by the fact that in his Introduction to Semantics, Carnap’s own characterization of Tarski’s 
approach (of which he was a great admirer) a designation function Des corresponding to the pair (L, I) is explicitly 
given in Carnap’s semantical system S. For Carnap, Des is a language-world relation where individual constants 
designate individual objects and predicates designate properties. Des is first defined for individuals and predicates and 
then by recursion for sentences. For example, if a designates snow {DesInd(‘a’, snow)}and P designates the property 
of being white {DesAttr(‘P’, the property of being white)}, then P(a) designates the proposition that snow is white 
{DesProp(‘P(a)’, snow is white)}. Truth of sentences in semantical system S is defined as follows: 
 



between language L and a set-theoretic structure M by the interpretation function I.8 An L-structure 
M is thus defined as the pair (X, I). Language L is then an uninterpreted syntactic language which 
becomes interpreted via M. We follow the standard modern formulation.9 For atomic sentences of 
L, truth in structure M=(X, I) is defined by the following conditions: 
 
               M√P(a1)  iff  I(a1)∈I(P) 
               M√Q(a1,a2)  iff  <I(a1), I(a2)>∈I(Q) 
 
An open formula A of L with free variable xi is assigned a truth value in the structure M by some 
element of X. Let s = (s1, s2, s3,…) be an infinite sequence of objects from X. Then sequence s 
satisfies formula A in structure M, i.e. the relation M√s A, is defined by recursion on the complexity 
of A. For example: 
 
               M√s A∨B  iff  M√s A or M√s B 
               M√s ∀xiA  iff  M√s(i/b) A for all b∈X 
 
where s(i/b) is the sequence obtained from s by replacing the i-th element of s with b. The basic 
clauses for atomic formulas take the following form: 
 
               M√s P(xi)  iff  si∈I(P) 
               M√s Q(ai,xj)  iff  <I(ai), sj>∈I(Q) 
 
When A does not contain occurrences of free variables, i.e. it is a sentence of L, then it is satisfied 
in M by one sequence s if and only if it is satisfied by all sequences. Hence, we can define M’s 
being a model of A, i.e. A is true in M, thus: 
 
               M√A  iff  M√s A for every s 
 
On the right hand side of each clausal biconditional you have a condition with exactly the same 
logical form as the sentence on the left, employing the same atomic formula structure for atomic 
sentences and the same connectives and quantifiers for the compound sentences; the corresponding 
facts are built up recursively matching the functional composition portrayed in the sentence-
structure. Here we have a model of facts that preserves their intensional structure, thus immunizing 
it from the slingshot objection, and a perspicuous account of truth as correspondence with fact.10  

                                                                                                                                                               
     (C) Sentence s is true in S iff there is a proposition p such that s designates p in S and p 
 
(C) clearly resembles Tarski’s T-schema but does have the advantage of making the semantic connection between 
sentences and their truth conditions explicit by the relation of designation. Niiniluoto says: “[I]n this respect…the 
treatment of semantics by Carnap in the late 1930s and early 1940s was more satisfactory than Tarski’s (1944) own 
explanations.” (Niiniluoto 1999, p. 96). While this is certainly true, it should not be overlooked that Tarski was explicit 
in restricting his attention to interpreted languages, i.e. languages assumed to be interpreted in the domain of all objects 
(see Tarski 1936, pp. 166-167 and Tarski 1969, p. 68 ). 
 
8 See, for example, Chang & Keisler 1973. 
 
9 We follow Niiniluoto 2002. 
 
10 This is how Tarski’s theory meets Wittgenstein’s (early) view that true sentences correspond to facts by being 
pictures of them. Both, I submit, understood that the logical structure of sentences is in every case a functional 
composition of corresponding names of Boolean functions. Thus, ∧ names the Boolean meet, ∨ names the Boolean join, 
¬ names complementation ∼, and ∀ and ∃ name the infinitary Boolean meet and join over all instances. The truth-table 
rules just ensure that the truth-value in the Boolean algebra {0,1} is given by the composite Boolean function mirrored 
in the structure of the proposition. For example, consider the formula ‘p∧¬(q∨r)’. Using 1 to symbolize ‘true’ and 0 to 
symbolize ‘false’, suppose v(p) = 1, v(q) = 0 and v(r) = 0 under a valuation v of the generators p, q and r. ‘p∧¬(q∨r)’ is 
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true under the valuation v, i.e. v(p∧∼(q∨r)) = 1, just in case the Boolean function 1∧∼(0∨0) has the value 1 in the 
Boolean algebra {0,1}, which it has. More generally, v(p∧∼(q∨r)) is the value of the function v(p)∧∼(v(q)∨v(r)). 
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