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A Course in Bimodal Provability Logic

Albert Visser

1 Introduction

The aim of the present paper is twofold: first I am somewhat dissatisfied with current
treatments of Bimodal Provability Logic: the models employed there are singled out by
certain syntactical conditions, moreover they validate the logics under consideration
only locally. In this paper I give a decent model- & frame-theory for these logics.

Secondly I study the modal logic of subsystems of Peano Arithmetic whose axiom sets
are bounded by non-standard numbers (to be specific: non-standard numbers specifi-
able as the smallest number satifying some A0-formula). These systems play a role in
certain arguments concerning Relative Interpretability. Moreover the Arithmetical
Completeness Theorem for these systems can be applied to characterize which
formulas of the language of ordinary, 'unimodal', provability logic are E1 (modulo
provable equivalence in Peano Arithmetic) under all arithmetical interpretations (where
the is interpreted as provability in Peano Arithmetic).

Why go bimodal? Why study the logic of the provability predicate of a system in combi-
nation with the provability predicate of a familiar system like Peano Arithmetic as
opposed to simply studying the logic of the new provability predicate alone? One
possible answer is: because there is a 'coupling' effect between the 'new' predicate
and the familiar one. The familiar predicate functions as an auxiliary to prove and
express facts about the 'new' predicate. For an elaboration of this theme, see:
Smoryriski[1985], chapter 4. This answer will not do however for the systems studied in
this paper, for in each case there is provably a complete decoupling between the
predicates considered. In fact the logic of the 'new' predicate, taken alone, is in each
case Lob's Logic L. Our answer should rather be (i) that only in combination with the
familiar predicate do the specific properties of the new one become visible at all (or
perhaps: that we are simply interested in the interaction between the two predicates)
and (ii) that in some cases results about the bimodal system can be applied to the
traditional 'unimodal' system (see section 11 of this paper).

2 Prerequisites

Knowledge of Smoryriski[1985] should be amply sufficient.

3 Acknowledgements

I thank Dick de Jongh, Franco Montagna, Craig Smoryriski & Frank Veltman for
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stimulating discussions.

4 Contents of the paper

In section 5 some notations & simple or known facts are introduced. Section 6 descri-
bes the modal systems studied in this paper. Section 7 gives the arithmetical
interpretations that motivate the study of these systems. Section 8 is an extensive
treatment of the Kripke model semantics of the systems under consideration. Section 9
studies the closed fragment of one of these systems. In section 10 1 prove Arithmetical
Completeness of the systems and section 11 contains an application of these comple-
teness results: I give a characterization of the formulas of the usual modal language for
Provability Logic that are E1 (modulo provable equivalence in Peano Arithmetic) under
all arithmetical interpretations (where the is interpreted as- provability in Peano
Arithmetic). Section 11 briefly dwells on the connection between the work in this paper
and Relative Interpretability.

5 Conventions, notions & elementary facts

In this paper we restrict our attention (mainly) to RE theories T extending PA in the
language of PA. This restriction is not at all essential: many results go through for RE
theories T into which PRA can be interpreted. For certain results we use that the
theories considered are essentially reflexive. These results evidently cannot be
claimed for e.g. PRA.

5.1 Terms

We will employ 'terms' for any definable function that is provably total in PA. For our
purposes we may remain neutral as to whether these 'terms' are really in the language
or just function as abbreviations. It is convenient to make a terminological distinction
between 'terms' for provably recursive functions and others. If we have a 'term' for a
provably recursive function we will simply call it a term, otherwise we will speak of a
semiterm.

5.2 Formulas

At certain points in this paper the precise form of formulas will be relevant, so we need
some slightly idiosyncratic conventions.

A formula A of the language of PA is A0 if all quantifiers of A are bounded (i.e.
bounded by terms, where the variable of quantification does not occur in the bounding
term).

A formula A is E if it is of the form 3x1... 3xnA0(x1,...,xn), where A0cA0.
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A formula A is II if it is of the form Vx1...VxnAo(x1,...,xn), where A0cA0.

A formula A is Al if it is provably equivalent in PA both to a E- and to a II-formula.

A formula A is E1 if it is of the form 3xAo(x), where A0cA1. (It is essential that we have
one existential quantifier here!)

Clearly the difference between E and E1 disappears modulo provable equivalence in
PA.

5.3 Provability

Let ProofT(x,y) be the Al arithmetical formula representing the, relation: x is the
Godelnumber of a T-proof of the formula with Godelnumber y. We assume that every
theory comes equipped with a A1-formula (XT representing the set of (non-predicate-
logical) axioms. So identity of theories simply is not identity of the sets of theorems.
ProofT will be built in some standard way from aT. If we want to stress that we are
looking at the Proof-relation based at a certain specific formula R we write: Proof,.

We assume for convenience that: PAi- `dx 3!y ProofT(x,y) . Let ProvT(y) := 3xProofT(x,y).

We write par abus de langage 'ProofT(x, A(x1,...,xn) )' for:

Proof (x,rA(x1,...,XJ), here:
i) all free variables of A are among those shown.
ii) rA(x1,...,xn)' is the "Godelterm" for A(x1,...,xn) as defined in Smoryriski [1985],

p43.

or 'ATA(xl,...,xn)' will stand for: ProvT(rA(k1,...,XnY). The choice whether

to use or A will depend on extra-arithmetical considerations, namely the modal
system we are studying.

if t is a term (by our convention: for a provably recursive function) we will have (suppo-
sing that t is substitutable for x in A):

PAi- H TA(t).
So as long as we only consider terms we may indeed treat x1,...,xn in TA(x1,...,xn) as
free variables. Occurrences of semiterms within 'modal' context should always be read
with the smallest possible scope. Similarly for AT.

'OT' will stand for: and 'VT' for: -AT, .
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5.3 Tfx and T*

Suppose T is given by a.

Define: afx(y) (a(y), y<x) ,

Tfx A :4-* arx A ,
OTfx A

:4--> A.

Of course PAS TA H T*A , but the difference in form will be of some importance
when Rosser-orderings come into play. (The usefulness of T* in this connection was
discovered by Svejdar, see Svejdar[1983].)

5.4 Witnessing and the Rosser-ordering

Let A be of the form 3xAo(x). Define for terms t: t wit A A0(t) . Here we assume that
bound variables in A0 are renamed -if necessary- to make t substitutable for x in A0.

Let A be of the form 3xAo(x) and B of the form 3xBo(x). The Rosser-orderings between
A and B are defined as follows:

A<_B :<-* 3x (Ao(x)- Vy<x-Bo(y)) ,

A<B :,t:* 3x (Ao(x).. vy<_x-,Bo(y))

We will always apply witnessing and the Rosser-ordering to the precise forms in which
the relevant arithmetical formulas are introduced.

In connection with the NB-systems we will consider formulas of the form PA*C<S,
where S is a E1-sentence. It is easily seen that PA*C<S is itself E1. (This depends
crucially on the fact that S consists of just one existential quantifier followed by a
A1-formula.) On the other hand need not even be provably equivalent to a
E1-sentence. happens to be A2.)

5.5 Relative Interpretability

Let T be an RE theory (verifiably) extending PA in the language of PA. In this case T
will be essentially reflexive.

'AaTB' stands for the arithmetization of: T+A is relatively interpretable in T+B. We write
'A=TB' for: A©TB and B<TA.

By a result of Orey and Hajek:
PA[- AaTB H
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We list a number of principles valid for T and <T:

11 PAH T(B-+A) -3, A<TB
12 PAH (A<TB,.B<TC) -> A<TC
13 PAl- (A<TB,.A<TC) - ACT(B.,C)
14 PAH AaTB - (QTB-*QTA)
15 PAH OTAaTB - T(B-> OTA)
16 PAH A<T<TA
17 PAI- A<TB -3.

The principle 17 is due to Franco Montagna. An additional useful principle of which 14
and 16 are consequences is:

J for all P in II1: PAl- P<TB -3. T(B-P)

For further information see: Svejdar[1983] and Visser[1986].

6 The Modal Systems

For the record I first describe the usual Lob's logic L.

Let Lo be the language of modal propositional logic. The truthfunctional connectives
are: i,..,.., ,, --->, <-+. The modal operator is . Lob's logic L is given as the minimal
set of L0-formulas containing the following axioms and closed under the following
rules:

LO All tautologies of propositional logic
L1 I- (11(-411yr)

L2 1- 0 -9 (
L3 F-

L4 F-0 and i-V
L5 E-c_

We turn to the bimodal systems that are the subject of this paper.

Let L be the language of bimodal propositional logic. L is the result of adding the
modal operator A to Lo. The logic CSM0 is given as the minimal set of L-formulas
containing the following axioms and closed under the following rules:

Al

A2

A3

A4

All tautologies of propositional logic
- (L -9LW)

I- (1)-*yr) -
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A5 H L4 -4 0
A6 0 -,
R1 i-4 and r(4-4iyr) i-yr

R2 F-0 = l- A0

Some theorems of CSMo are :

B1

B2 H - b4)
B3 F- 4) O
B4 h D4-.> 0110

The logic CSM1 is given as the minimal set of L-formulas closed under R1, R2 and
containing Al-6, plus:

A7 I- (A$- 4)

The logic CSM2 is given as the minimal set of L-formulas closed under R1 and
containing the following axioms:

A8 All theorems of CSM1

A9 x-00-*0

The logic CSM3 is given as the minimal set of L-formulas closed under R1 and
containing A8 and:

A10 I- o4 - 4

Clearly A9 is derived in CSM3.

The logic NB1 is given as the minimal set of L-formulas closed under R1, R2 and
containing Al-6, plus:

All i- (oyr->yr)

Finally the logic NB2 is the minimal set of L-formulas closed under R1 and containing
A10, plus:

A12 All theorems of NB1

A13 i-o4-AO

'CSM' stands for, Carlson-Smoryn®ski-Montagna. CSMo is PRL1 of Smoryriski[1985]
and F- of Montagna[1984]. CSM1 is PRLZF of Smoryriski[1985] and F of Montag-
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na[1984]. CSM2 is PRLZF+Reflectiono of Smoryriski[1985] (Smoryhski writes 'Reflec-
but his is my A, and his A my ) and it is F1 of Montagna[1984]. CSM3 is

PRLZF+Reflection of Smoryriski[1985]. The NB-systems are new on the scene. NB
stands for: Non-standardly Bounded.

,It is easily seen that each of the CSM and NB systems extends L.

7 Arithmetical Interpretations

An interpretation function f is a function from the propositional variables of L to the
sentences of the language of PA. We will also consider functions from the propositional
variables of L to formulas of the language of PA. In this case we will speak of open
interpretation functions.

7.1 GS-style Interpretations for the CSM theories

Let T and U be RE extensions of PA in the language of PA. We will write 'AT' for
provability in T, for provability in U. We assume that Ui-ATA-*A, for all sentences
A of the language of arithmetic. (The restriction to the language of PA is not at all
essential here: all results of this section could be stated for RE T and U such that PRA
can be interpreted in T (say via (.)+), T can be interpreted in U (say via (.)*) and
Ui-((LTA)+)*_(A)* for all sentences A in the language of T.)

7.1.1 Definition

Let f be an interpretation function. We define (.)(f,U,T) from L to the sentences of the
language of PA as follows

(p)(f,U,T) fp

(.)(f,U,T) commutes with the propositional logical constants

(L 4)(f,U,T) ATM(f,U,T)

7.1.2 Soundness for CSM1

CSM11-4 Tr(4)(f,U,T)

Proof: entirely routine.

7.1.3 Soundness for CSM2

CSM21-4 4 UF-(4)(f,U,T)

Proof: entirely routine.
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7.1.3 Soundness for CSM3

Suppose U is true, then:

CSM3E-$ = N=(4)(f,U,T)

Proof: entirely routine.

7.2 M-style Interpretations for the CS.M theories

Let f be an open interpretation function. Let v be a fixed variable. We write "APAvA"
for: PAfvA.

We set our definition of interpretation up in a way slightly different from Montagna's
(see Montagna[1984]). We take it to be known that some finite subtheory of PA implies
(translations of) all the arithmetical axioms of PRA. (This uses the existence of a
E1-truth predicate for E1-sentences.) We fix a number N such that N is bigger than all
the Godelnumbers of the arithmetical axioms of this finite subtheory. Because
PRAF- we have PAM- VAVX0PA(0PArxA-),A).

7.2.1 Definition

Let t be a term in the language of PA. We define (.)(f,PA,t) from L to the sentences of the

language of PA as follows
(p)(f,PA,t) := fp[t/v]

(.)(f,PA,t) commutes with the propositional logical constants

($)(f,PA,t)
(L$)(f,PA,t) ApA,t(0)(f,PA,t)

Note that for this definition to work it is necessary that t is substitutable for v in fp for all
atoms p.

7.2.2 Soundness for CSM1

CSM1i-4 = PArNF-vv_N(4)(f,PA,v)
PAi-- Vv_N(4)(f,PA,v)

Proof: One shows that {4IPArN+-vv_N(4)(f,PA,v)} contains the axioms of CSM1 and
is closed under R1,R2. As usual we just treat a sample.

First we check R2. Clearly it is sufficient to show:

PArNF- Vv_NBv PAPNF- Vv_NLPA,VBv.
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Suppose PArNf- `dv_NBv. It follows that Vv>! By and hence that
PAfNf- Vv>JNoPAfvBv.

Next we check A7. Clearly it is sufficient to show:

PAfNH

But this last principle is an immediate consequence of the fact that the Reflexiveness of
PA is verifiable in PAf N.

The other axioms and rules are routine.

7.2.3 Soundness for CSM2

for all k?N PAf-(O)'(f,PA,k)

Proof: The fact that {0Ifor all k_N PAf-(O)(f,PA,k)} contains A8 is an immediate
consequence of 7.2.2. . A9 is in because of the Reflexiveness of PA. Closure under R1
is trivial.

7.2.4 Soundness for CSM3

CSM3f-O for all k_N 1NH(O)(f,PA,k)

N= Vv>_N(t)(f,PA,v)

Proof: entirely routine.

7.3 Interpretations for the NB theories

Let S be a false E1-sentence. Say S= 3xSox, where SOEd1. Define:

APA PA,SA : = PA*A<S.

Clearly APA,SAEF-1.

We note some equivalents of APA sA.

Suppose p is the Godelnumber of a PA-proof it. Let Ip be the supremum of the
Godelnumbers of the arithmetical axioms occurring in it. If p is not a Godelnumber of a
PA-proof, let Ip be 0. We make the reasonable assumption that the Godelnumbers of
formulas occurring in a proof is are smaller then the Godelnumber p of X. Hence for
p#0: lp<p. We have:

PAf- APA sA H 3y ProofPA(y,A)/. Vz<_Iy,Soz.

Suppose 7cx is the A1-formula associated with PA. Define:
7cfµS(Y) : = Icy,. `dz<_y- Soz.
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We have:
PAi- APA,SA " nrµsA.

7.3.1 Definition

Let f be an interpretation function. We define (.)(f,PA,S) from L to the sentences of the
language of PA, as follows:

(p)(f,PA,S) := fp

(.)(f,PA,S) commutes with the propositional logical constants

($)(f,PA,S)
(A$)(f,PA,S) := APA,s(0)(f,PA,S)

7.3.2 Soundness for NB1

NB1i-4 for all false Ei-sentences S and for all interpretation func-
tions f: PAi-(4)(f,PA,S).

Proof: One shows that JOE LIPAr(O)(f,PA,S)} contains the axioms of NB1 and is
closed under the rules of NB1. Most of this is routine. Closure under R2 essentially
uses the falsity of S. We check A11.

Suppose S is a false E1-sentence. It is clearly sufficient to show:
PAi-

Reason in PA:
Suppose and PAA. It clearly follows that and hence that S.
Let u be the smallest witness of S. Clearly PA(APA,sB - PArUB). Hence (by the
essential reflexiveness of PA): PA(APA,sB-> B). PA

Note that we cannot go from S<_ PA*A to PA*A), S<_ PA*A not being in
general provably equivalent to a E1-sentence. If we could, the principle:

would be valid, but it isn't: the arithmetical completeness theorem for NB1 provides a
counterexample (see §10).

7.3.3 Soundness for NB2

NB2i-4 = for all false E1-sentences S and for all interpretation func-
tions f: Ni=(4)(f,PA,S).

Proof: entirely routine

Bimodal Provability Logic, May 22, 1987 , 12:10 . 10
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7.3.4 APA s and ©PA

One of the reasons to be interested in APA,S is the fact that it interacts with relative
interpretability in an interesting way. Let S be a E1-sentence (not necessarily false). We
have:

PAH S - VPA,SA)),

and:
PAF- -S -), A i PAv PA,SA.

Proof: Reason in PA:

To show the first principle assume S and Aa PAB. It follows that
OPArxA). Let u be the smallest witness of S. Clearly for any C:

PArUC), hence PA(VPA SAH OPAruA). Conclude:
PA(B- VPASA).

To show the second principle, assume -S. We have: Vx-.Sox. Hence by Z-
completeness VXDPA-Sox. Thus: for any C. It follows

that: )OPArxA) and hence A.<PAVPAsA. PA

We can use the above principles to produce a variant of an argument due to Per
Lindstrom to show that sentences of the form Aa PAB are not always provably
equivalent to a 11-sentence. Pick by the Godel Fixed Point Lemma a E1-sentence J
such that PAI-J - APA,S,J. We claim:

PAI- J<PAT H

Proof: Reason in PA:

.. -->": Assume J<PAT and S. It follows that PAVPA,SJ and hence PA--,J. On

the other hand J< PAT implies by 14: O PAT -> O PAJ. In other words:
PA-J-4 PA1. Conclude PA1

.

" +- ": First assume -S. It follows that J.<PAV PA SJ. Hence by 11,12: J <PA-J.
On the other hand (by 11) Ja PAJ. Hence (by 13) J© PA(J.. ,J), i.e. (by 11,12)
J ©PAT.

Secondly assume PA1. It follows immediately that: J a PAT. Hence
from i.e. we have J<PAT. PA

If we take e.g then it is easily seen that J©PAT is not provably
equivalent to a E1-sentence.

Note that if S is false (or even just if the smallest witness of S is 'big enough'), Lob's
Logic will be valid for APA,s and hence J will be provably equivalent in PA to APA s1.
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In §12 we will look at the above argument from the point of view of embedding a
countermodel to NB1 -p<T--o(p<T) into PA.

8 Kripke Semantics

Our aim in this section is to provide a decent semantics for the CSM- and NB-systems.
The usual treatment of CSM-style systems in the literature suffers from three disadvan-
tages: in the first place the models considered are partly specified. 'syntactically': there
should be nodes that force such and such formulas. Consequently the usual treatment
does not admit a frame-theory as opposed to a model-theory. This is surely inelegant,
but, what is more, some of the practical ease of constructing models using the
geometrical intuition is lost. The second disadvantage is that the models employed in
the literature only locally (i.e. for certain restricted classes of formulas) satisfy the
principles of the theory under consideration.. Thirdly and lastly under the usual
approach Solovay-style arithmetical interpretations do not provide an embedding of
the diagonalizable algebras associated with the Kripke models into the diagonalizable
algebra of Peano Arithmetic. All three disadvantages are absent in the present
approach. One sacrifice has to be made however: our models cannot be finite
anymore. I think this is only a seeming disadvantage: the models considered are not
finite but -as will be explained in due course- compact, which means that their
'propositions' can be specified in a direct and simple way. Compactness guarantees
that the sentences used in the arihmetical embeddings have a particularly simple form.
Moreover we have the additional advantage that certain natural models like the Henkin
model of the closed fragments of the theory under consideration are in the relevant
class of models used in both the Kripke-model and the arithmetical completeness
theorem for that theory.

The main problem we are facing is how to deal with the Reflection Principle in
irreflexive Kripke-style frames. The constraint we want to put on solutions is that the
nodes satisfying the Reflection Principle should be precisely the nodes satisfying some
simple condition that is given in terms of structure. Our solution is to have our frames
equipped with a certain topology. The nodes satisfying Reflection will be precisely the
limit points in the sense of this topology.

First we introduce frames.

8.1 Definition

A preframe Fis a structure <K,R,S>, where:

i) K is a non empty set.

ii) R and S are binary, irreflexive relations on K.
iii) RCS.
iv) R and S are transitive, and: xSyRz xRz.

Bimodal Provability Logic, May 22, 1987 , 12:10 . 12
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R is the accessibility relation for the ; S is the accessibility relation for A.

Per abus de langage we will ascribe relational properties to F while intending to
convey that S satisfies these properties. E.g. we say "F is upwards wellfounded"
meaning that S is upwards wellfounded.

8.2 Some notations

xWSy xSy or x=y

xWRy ; xRy or x=y

xS {yE KIxSy}

Sx {yE KIySx}

etcetera ...

8.3 Definition

i) Consider a preframe F=<K,S,R>. Define a topology OF by taking the sets of the
form xWS and Sx as subbasis.
F is a frame if F is treelike, i.e. xSz and ySz xWSy or ySx, and the sets xR are
open in OF. The clopens of OF are the propositions of the frame F.

At this point we give some information about the topology OF. A.o. we characterize
what it is for a frame to be compact. Compactness is important for us because the
models we are going to embed into arithmetic will be compact models. The crucial con-
sequence of compactness is that the are finite unions of finite intersections of
the elements of our subbasis.

8.4 Fact

Let Fbe a frame, then:
i) xWS, Sx and Rx are clopen.
ii) OF is Hausdorff.

iii) If K is finite, then OF is discrete.

Proof: Left as an excercise.

8.5 Definition

Let F=<K,R,S> be a frame. Consider a subset X of K. x in K is a limit of X if for all opens
Y in OF with xEY there is a y in K such that y:f-x and yEYnX. We say that x is a limit if x
is a limit of K.

Bimodal Provability Logic, May 22, 1987 , 12:10 . 13
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8.6 Fact

Let F=<K,R,S> be a frame and let Xs K. x is a limit of X iff for some u uSx and for every
u,v with xSu and xSv there is a zEX such that xSz, zSu and zSv.

Proof: left as an excercise to the reader.

8.7 Definition

Let F=<K,R,S> be a frame. u is an antidirect successor of x if xSu and xSnWSu does
not have a minimum.

8.8 Theorem

Let F=<K,R,S> be a frame. Fis compact iff:

i) For every x there is an S-minimal y with yWSx.

ii) S is upwards wellfounded.
iii) Every S-antichain is finite.
iv) If x has an antidirect successor, then x is a limit.

Proof: Consider a frame F.=
Suppose F is compact.

i) Consider Y:={uWSIuEK}. Clearly Y is an open cover of K. Consider a finite
subcover YO. Let y be S-minimal such that xEyWSE Yo. It is easily seen that y is
S-minimal in K.

ii) Suppose S is not upwards wellfounded. There is an ascending sequence
x1Sx2Sx3.... Consider Y:={SxnlnEo)}u{zWSjfor no n zSxn}. It is easily seen that Yis
an open cover of K that has no finite subcover.

iii) Suppose there is an infinite S-antichain. Then by Zorn's Lemma there is a
maximal infinite S-antichain, say X. Consider Y:={xWSIxEX}u{SxIxEX}. It is easily

seen that Y is an open cover of K that has no finite subcover.
iv) Consider an x with antidirect successor y. Suppose x is not a limit. Clearly {x} is

open. Let Y:={WSx}u{uWSInot uWSx}. Clearly Yis an open cover of K. If Yhad a
finite subcover, xSnWSy would be covered by a finite number of sets
uOWS,...,ukWS for ui with xSu1WSy. Clearly the ui are linearly ordered by S, so
there is a minimum ui. It follows that uiWS covers xSnWSy, and hence that ui is
the minimum of xSnWSy.

..

Suppose F satisfies (i), (ii), (iii) and (iv). By (i) the set of S-minimal elements is non
empty, by (iii) it is finite. So without loss of generality we may assume that F has a
bottom b.
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Let Y be an open cover of K. To find a finite subcover we construct a finitely branching
tree as follows: the nodes of the tree will be of the form <x,O> where OE Y. Moreover if
<y,O'> lies above <x,O> in the tree, then xSy. The O such that <x,O> is in the tree will
form a finite open subcover.

As bottom of the tree take <b,00>, where 00 is some element of Y containing b.
Suppose <x,O> is a node we already created. We choose its direct successors as
follows. Let X:={yExWSIxWSnSygO, y;E'O}. The elements of X are pairwise incompa-
rable, hence X is finite. For each yEX pick some O'E Ysuch that yEO' and take <y,O'>
as immediate successor of <x,O> in the tree.

Our tree is finitely branching. Moreover if <y,O'> lies above <x,O> we have xSy, hence

by the upwards wellfoundedness of S the tree has no infinite paths. Conclude by
Konig's Lemma that the tree is finite.

Let Yo:={Ol<x,O> is in the tree}. We claim: U Y0=K. Suppose z is not in U Yo. Let Z:={xlfor

some O <x,O> is in the tree}. Clearly for some x (e.g. b) xSz and xEZ. Pick x maximal
such that xSz and xEZ. Consider the node <x,O> in the tree. Let y be maximal such that
xWSySz and xWSnWSys O. Suppose y is a limit. Clearly for some x1,...,xk:

yEyWSnSx1 n...nSxknSzC O,
hence there is an y' with y':#y and y'E yWS n Sxi n ... n Sxkn Sz C 0. It follows that
yWSnWSy'CO and thus that xWSnWSy'=(xWSnWSy)u(yWSnWSy')cO. Moreover
xWSy'Sz. But ySy', contradicting the maximality of y. Conclude that y is not a limit. By
(iv) ySnWSz has a minimum, say, u. If u were in O, then hence xWSuSz and
xWSnWSu=(xWSnWSy)u{u}cO, contradicting the maximality of y. So uzO. Clearly
xWSnSu=xWSnWSysO. By the construction of the tree u will be in Z and thus u#z
and uSz, contradicting the maximality of x.

Conclude that Yo is a finite open cover.

We turn to models.

8.9 Definition

Consider a preframe F=<K,R,S>.

i) We define the following operations on P(K):

1 :=0
-X :=X°
X,.Y := XnY

XUY

X--*Y ,X..Y
X-Y (X-;.Y),.(Y-*X)
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AX {xEK(xSCX}

X {xcKjxRsX}

ii) A preassignment f on F is a function from the propositional atoms po, p1, p2, ... to
the subsets of K. We define the interpretation Q.] from our bimodal language and
preassignments to subsets of K as follows:
- (p;]1f := fp1

- IT "commutes" with the logical constants, i.e. Q0,yrjf=Q4]1f,I{ r1f, etc.

If f is an preassignment on a preframe F, we say that G:=<F,f> is a premodel.
Define: xo--4(f) :<-* xEQ4]lf.

Suppose F is a frame. A preassignment f on F is an assignment on F if fp1 is clopen
for all i.

A premodel G=<F,f> is a model if F is a frame and f is an assignment.
v) On frames we define:

xir4 :4:* for all assignments f on F: xv-4(f)

Fro :<-* for all x in K: xv-0

8.10 Fact

Let Fbe a frame. The propositions are closed under .l, A and .
And thus: Q4]1f is clopen for any assignment f on F.

Proof: We treat the cases of A and . Let X be any subset of X. We show that AX and
X are clopen.

Suppose XEOX. Consider y with xSy. If ySz, then xSz and hence zEX. It follows that
yEOX. Ergo xExWScoX.

Suppose xeAX. For some y xSy and yFX. Clearly xESy. Moreover if zSy, then zeAX.
Ergo xESy9 (AX)E

Suppose Consider y with xSy. If yRz then xSyRz, hence xRz and thus zEX. It

follows that Ergo xExWS9oX.

Suppose xrcX. For some y xRy and yZX. Clearly xERy. Moreover if zRy, then zeoX.
Ergo

8.11 Theorem

Let Fbe a frame. iff S is upwards wellfounded.

Bimodal Provability Logic, May 22, 1987 , 12:10 . 16

iv)



Proof:

Entirely routine.

Let X:={xjxWS is upwards wellfounded w.r.t. S}. It is easily seen that X is clopen. Set
fp:=X. Clearly every x in K forces o(Ap-*p) under f but any x not in the upwards well-
founded part would not force op under f.

8.12 Theorem

Let Fbe a frame, xcK. We have:
i) x

x is a limit point of xR

Proof:
i)

Suppose xll-op-->p. If x were not a limit point, {x} would be open and hence clopen
(because our topology is Hausdorff). Thus {x}° would be clopen. Clearly xEa{x}c and
x,e{x}°. To arrive at a contradiction set fp:={x}°.

Suppose x is a limit point, X is clopen and xEOX. For a reductio assume xZX. We have
xExWSnXc and xWSnXc is open. x is a limit point, so there is a y with xSy and yzX.
Ergo xZLX, contradiction.

ii)

Suppose x a limit point of xR. Then there is
an open X such that xE X and Xn x R= ( . Clearly for certain yi ,...,yk:
xEZ:=xWSnSy1n...nSyksX. Z is clopen by 8.4(i). If xRx', then x'ZZ. Hence but
x,eZc. To arrive at a contradiction put fp:=Zc.

.,

Suppose x is a limit point of xR, X is clopen and Suppose for a reductio xZX. We
have: xEX° and X° is open. x is a limit point of xR so there is a y with xRy and yzX.
Contradiction.

We present the frames needed for our treatment of the various logics. It is pleasant to
present these frames in the kind of format discovered by Timothy Carlson.
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8.13 Definition

i) A set-preframe Fis a structure <K,K0,K1,S>, here:

K is a non empty set.

K0 K19 K
S is transitive and treelike.
XEK1 and xSy yEK1.

Define xRy :4-* xSy and (xE'K1 or yEK0).

It is easily verified that <K,R,S> is a preframe.

If K=K1 we speak of a Carlson preframe. We will write <K,K0,S> for <K,K0,K,S>.

ii) A set-preframe F is a set-frame if Ki is closed (and hence clopen) in the topology
generated by the xWS and the Sx. It is easily seen that a set-frame can be viewed
as a frame, defining R as in (i).

Ki is the Kripke model counterpart of the E1-sentence S in the arithmetical
interpretation of the NB systems. The fact that S is E1 is reflected by the fact that
Ki is upwards closed. The fact that Ki corresponds to an arithmetical sentence is
shown by K1's clopenness.

It K=K1 we speak of a Carlson-frame. Carlson-frames are frames for
Carlson-models as introduced in Smoryhski[1985], p196. Note that Carlson-
frames have the property: xSz, yRz xRz. Conversely: every frame with this
property can be presented as a Carlson-frame by taking K0:=range R.

iii) A Carlson-1-frame is a Carlson-frame, in which every x in KO is a limit point.
iv) A Carlson-3-frame is a Carlson-1 -frame with a bottom b which is a limit point of Ko,
v) A set-1-frame is a set-frame in which every element of KO is a limit point.
vi) A set-2-frame is a set-1 -frame with bottom b, which is not in Ki and which is a limit

point. (The fact that bzK 1 reflects the falsity of the Ei -sentence S in the
interpretation of the NB systems.)

Set-premodels, set-models etc. are defined in the obvious way.

8.14 Little fact

Suppose F is a Carlson-frame. Then x is a limit point of xR iff x is a limit point of Ko.
Consequently: xii-op-p iff x is a limit point of KO.

Proof: Left to the industrious reader. o
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8.15 Soundness Theorem

i) CSM0 r4 = for all upwards wellfounded frames F Ri -O
ii) CSM1 I-4 = for all upwards wellfounded Carlson-1-frames FFiF-4
iii) CSM2 I-4 for all upwards wellfounded Carlson-l-frames F=<K,K0,S>, for all x

in K0 xll-4

iv) CSM3 I-4 for all upwards wellfounded Carlson-3-frames Fwith bottom b bll-4
v) NB1 I-0 for all upwards wellfounded set-l-frames FFiI-4
vi) NB2 h 0 = for all upwards wellfounded set-2-frames Fwith bottom b bil-4

Proof: Mostly routine using 8.11 and 8.12. We sample two cases.

First we show that All is valid on upwards wellfounded set-1 -frames. Suppose F is a
upwards wellfounded set-l-frame and let f be an assignment on F. Suppose

Clearly xSxR and thus xEK1. Consider y with xRy. y is in Ko by the
definition of R, hence y is a limit point. It follows that

Secondly we show that A13 is forced at the bottom b of a set-2-frame. Suppose F is a
set-2-frame with bottom b. Let f be an assignment on F. Suppose bi-04(f). Suppose
bSy. b eK1, hence by the definition of R: bRy and thus yi -4(f). Conclude bil-o4(f).

Of course we want to reverse the arrows of 8.15. To arrive at the desired completeness
theorems we need two procedures to transform premodels into set-premodels, two
procedures to add certain limit points to set-models and the Henkin construction for
CSMo.

8.16 Definition

We define two procedures to transform premodels into set-premodels.

Let F=<K,R,S> be a preframe and let f be a preassignment on F. G:=<F,f>.

i) First we transform G into a Carlson-premodel. Define XG:=G'=<F,f'>, where
F=<K',K'0,S'>, as follows:

-

K'

K'0

{<x1,x2,...,xn>jx1Sx2S...Sxn, n=1,2,...}.

{<x1,x2,...,xn,y>E K'IxnRy}

- <x1,x2,...,xn>S'<y1,y2,...,yk> :4:* n<k and xi=yi for i=1,...,n.

The resulting structure is clearly treelike and irreflexive.

Define f'pi := {<x1,x2,.... xn>EK'IxnEfpi}. We claim: <x1,x2,...,xn>iF-4(f') xnli-4(f).
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Proof: By induction on 0. The cases of the propositional atoms and the
truthfunctional connectives are trivial.

Suppose 4=Ayr. Suppose moreover: <x1,x2,...,xn>II-Ayr(f') and xnSy. Clearly
<x1,x2,...,xn>S'<x1,x2,...,xn,y>, so <x1,x2,...,xn,y>1r-V(f'). Hence by the Induction Hy-

pothesis: ylF-yr(f). Conversely suppose xnll-Ayr(f) and <xl,x2.... ,xn>S'<yl,y2,...,yk>.

By the transitivity of S clearly xnSyk, hence ykll- yr(f) and so by the Induction
Hypothesis: <y1,y2,...,yk>IH-yr(f).

The case that 4=oyr is analogous.

We transform G into a set-model.

Consider a set of formulas IF that is closed under subformulas and such that
pEF = ApET. Define A(G,r):=G=<F,f'>, where F=<K',K'O,K'1,S'> and:

-

K'

K'1

{<X1,X2,...,Xn>IXISX2S...SXn, n=1,2,...}.

{<x1,x2,...,xn>EK'Ifor some i<_n and for some and xiiv Ayr},

- K10 {<x1,X2,...,Xn,y>EK'I<x1,X2,...,xn>EK'1 and xnRy}.

- <x1,x2.... ,xn>S'<y1,y2,...,yk> :<-* n<k and x1=y1 for i=1,...,n.

Clearly S' is transitive, treelike and irreflexive. Moreover K'09; K'1 c K' and xE K'1
and xS'y yE K'1.

Define f'p1 := {<x1,x2,...,xn>EK'Ixn(z_fpl}. We claim:

for all 4Ef: <x1,x2,...,xn>II-4(f') <4

Proof: By induction on 0 in T. The cases of the propositional atoms and the
truthfunctional connectives are trivial. The case of A is as in (i).

Suppose And suppose: and xnRy. Clearly if
<x1,x2,...,xn>k'K'1, then <x1,x2,...,xn>R'<x1,x2,...,xn,y>; if <X1,X2,.... xn>EK'1, then

<x1,x2,...,xn,y>E K'0 and hence <x1,x2,...,xn>R'<x1,x2,...,xn,y>; Conclude:
<x1,x2,...,xn,y>1-yr(f'). Hence by the Induction Hypothesis: yi--yr(f). Suppose

and suppose <xl,x2,...,xn>R'<y1,y2,.... yk>. In case <x1,x2,...,xn>,eK'1 it
follows that and hence ykil-w(f). In case <x1,x2,...,xn>EK'1 we have: xnRyk

and thus ykll-yr(f). In both cases: ykil-yr(f) and so by the Induction Hypothesis:
<y1,y2,...,yk>1Hw(f').

8.17 Definition

We define a transformation Os of set-frames. Js has the effect of "expanding" the
elements of KO in such a way that the downmost element of the expansion (which will
be in the new KO) is a limit point. Suppose Fis a set-frame.
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(Ds1 := F, where F=<K',K'0,K'1,S'>, with:

K' {<x,i>I(XEK0 and iE()) or (xzK0 and i=0)}

K10 {<x,0>EK'IxEKO}

K11 {<x,i>EK'IxEK1}

i< j :e-* (i=0 and j#0) or (iA and j<i) (here < is the usual ordering
of (0)

<x,i>S'<y,j> :,t* xSy or (x=y and i<j)

We define two functions F and G respectively from K to K' and from K' to K by:
Fx:=<x,O> if xzK0, Fx:=<x,1> if x c KO, G<x,i>:=x.

8.18 Fact

Under the conditions of 8.17:
i) F' is a set frame.
ii) F and G are continuous.

Proof: Ad (i): the first four conditions of the definition of set-frame are easily verified.
The satisfaction of the fifth immediately follows from the continuity of G, seeing that
K'1=G-1 K1.

Ad (ii): it is sufficient to observe: F-1<x,i>WS'=xWS, F-1S'<x,i>=Sx, G-1xWS=<x,0>WS',.

G-1 Sx=S'<x,0>. a

8.19 Fact

Under the conditions of 8.17:
i) <x,i> is a limit point in F <x,i>EK'0 or <x,i>=Fx and x is a limit point of F.

ii) <x,i> is a limit point of <x,i>R' <x,i>=Fx and x is a limit point of xR.

Proof:
i)

Suppose <x,i> is a limit point. If <x,i>EK0' we are done. So suppose we'K'o. Clearly if
i=2,3,... <x,i> is not a limit. Hence i is 0 or 1. Conclude <x,i>=Fx. Suppose xEO. Then
<x,i>EG-1On<x,i>WS'. It follows that there is an <y,j> with <y,j>EG-1On<x,i>WS' and
<y,j>#<x,i>. Clearly <x,i>S'<y,j>, hence because <x,i>=Fx: y#x. Moreover yEO.

The simple verification is left to the reader.
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ii)

Suppose <x,i> is a limit point of <x,i>R'. Suppose Then xEK0 and i:A1. Hence

S'<x,1>n<x,i>R'=S'<x,1>n<x,i>S'nK'0=l. This is impossible. So <x,i>=Fx. Suppose
xEO. Then <x,i>EG-1O. Let <y,j> be in G-1On<x,i>R'. As is easily seen it follows that
xRy. Also yEO and we are done.

Suppose x is a limit point of xR and <x,i>=Fx. Suppose <x,i>EO'. Then for some
<z1,j1>,...,<zn,in> <x,i>E<x,i>WS'nS'<z1,j1>n...nS'<zn,jn>=:O"CO'. Clearly x E F-1 0". Let

y be in F-10"nxR. In case xeK1 we have <x,i>R'K'1, hence <x,i>R'Fy and FyEO". In
case xEK1 we find It follows that: <x,i>R'<y,0>. Also <y,0>S'Fy and FyEO", hence

by our choice of O": <y,0>EO".

8.20 Fact

Suppose F is a compact set-frame. Then 0sF is compact.

Proof: To show that compactness is preserved, it is sufficient to show that each of the
properties (i), (ii), (iii) and (iv) of 8.8 is preserved. Preservation of (i), (ii) and (iii) is easy.
We treat (iv). Suppose that in F every element that has an antidirect successor is a limit
point. Consider <x,i> in F and suppose <x,i> has an antidirect succesor <y,j>. Clearly
iZ{2,3,...}. Moreover if i=0 and xE K. then <x,i> is a limit point and we are done. So we
may assume that <x,i>=Fx. By 8.19(1) we only need to show that x is a limit point, hence
it is sufficient to see that y is an antidirect sucessor of x. Suppose xSn WSy has a
minimum z. Clearly <z,0>E<x,i>S'nWS'<y,j>, so there is a <u,s> with <x,i>S'<u,s> and
<u,s>S'<z,0>, Because <x,i>=Fx it follows that xSu. Moreover clearly uSz. Contra-
diction.

8.21 Definition

We define an operation T. on set-models as follows:
'PS<F,f> := <(DSFG-1 of>.

Let's call Ts<F,f>: <F,f'>. Obviously <F,f'> is a set-model.

8.22 Theorem

Let r be a set of formulas that is closed under subformulas. Let G=<F,f> be a
set-model. <F',f'>:= PS<F,f>. Suppose that for every 0 in I and for every x in KO:
xli-LO- (f). Then for every yf in F and every <y,j> in K: <y,j>iF-yr(f') 4* yip-yr(f).

Proof: By induction on V in r. The cases of the atoms, 1, and <--> are
trivial. We treat o and .
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Suppose yr is Ox. Suppose yii-AX(f) and <y,j>S'<u,s>. In case ySu we have: uii-x(f)
and thus by the Induction Hypothesis: <u,s>il-x(f'). In case not ySu we have: yEKo, y=u
and j < s. Because yEKo it follows that yii-x(f). Hence by the Induction Hypothesis:
<y,s>il-x(f'). Conversely assume <y,j>il-Ax(f') and ySu. Clearly <y,j>S'<u,0>, hence
<u,0>iF-x(f) and so by the Induction Hypothesis: uii-x(f).

Suppose yr is x. Suppose and <y,j>R'<u,s>. As is easily seen it follows that
yRu, hence uii-x(f). By Induction Hypothesis: <u,s>il-7,(f'). Conversely assume

and yRu. Clearly <y,j>R'<u,0>, hence <u,0>if-x(f'). By the Induction
Hypothesis: uiF-x(f).

Note that we could trivially strengthen 8.22 by replacing r by the closure of r under
the truthfunctional connectives.

8.23 Definition

We define an operation (DR on set-frames with bottom as follows:

cRF:= F, where F=<K',K'o,K'1,S'>, with:
K' {<x,i>IxEK and ((x=b and iECo) or (x#b and i=0))}

K10 {<x,i>E K'j(bE K1 and ((x=b and k,-O) or (x:t-b and xE Ko))) or
(b,eK1 and xEK0)}

K'1 {<x,i>EK'IxEK1}

<x,i>S'<y,j> :<-* xSy or (x=y=b and i<j)

We define two functions H and J respectively from K to K' and from K' to K as follows:
Hx:=<x,O> if x:?,-b, Hb:=<b,1>, J<x,i>:=x.

8.24 Fact

Under the conditions of 8.23:
i) F is a set-frame with bottom <b,0>.

ii) H and J are continuous.

Proof: a trivial variation on the proof of 8.18.

8.25 Fact

Under the conditions of 8.23:

i) <x,i> is a limit point in F

ii) <x,i> is a limit point of <x,i>R'

<x,i>=<b,O> or <x,i>=Hx and x is a limitpoint of F.

<x,i>=<b,O> or <x,i>=Hx and x is a limit point of
xR.

Bimodal Provability Logic, May 22, 1987 , 12:10 . 23



Proof: trivial.

8.26 Fact

Suppose F is a compact set-frame with bottom. Then IRF is compact with bottom.

Proof: easy.

8.27 Definition

We define an operation TR on set-models with bottom as follows:
TR<F,f> := <IRF,J-1 of>.

Obviously TR<F,f> is a set-model with bottom.

8.28 Theorem

Let <F,f> be a set-model with bottom; let <F,f'>:= `I'R<F,f>. Let F be a set of formulas
that is closed under subformulas. Suppose that for every 4 in F: bu-04-*4(f) and that
for every A0 in F: bv-A0-*4. Then for every V in r and for every <y,j> in K':

<y,j>Ir-V(f) yv-yr(f).

Proof: Trivially for yob: <y,0>i -yr(f') yii-yr(f). So it is sufficient to show: <b,i>IHW(f')

big-yr(f). This is done by an easy induction on yr which we leave to the reader.

Note that we could strengthen 8.28 by replacing F by the closure of r under the
truthfunctional connectives.

We turn to the Henkin construction. This construction is essentially the same as the one
in Smoryr ki[1985] and as the one in Montagna[19841.

8.29 The Henkin Construction

Let X be a set of formulas of L. We write Xi-4 for: there is a finite X0 C X such that

Fix a set F of formulas that is closed under subformulas. A set X is F-saturated iff
X C F, Xv ± and for all 0 and W in F: Xi- 4.. yr 4 E X or VEX. Note that if X is
17-saturated then: XI-4 4EX.

By an entirely routine argument one may show: for every YsF such that Ylv4 there is a
r-saturated X such that Y s X and Xv4.
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We define a premodel Gr:=<F,f>, where F=<K,R,S>, as follows:
K := {X5: FIX is r-saturated} (Note that K is non-empty.)
XRY :t-* and

(D(tEX = (,D(tEY) and
for some yr: (AWEY and AVeX) or and WYX).

- XSY :<=> (tEY) and
(a(tEX (t,d(tEY) and

for some W: (LWEY and L j; X) or and W)e'X).

Clearly R and S are irreflexive and transitive. Moreover XSYRZ XRZ, and RS.

Define fpi := {XEKIp1EX}. Clearly G. is a premodel.

We have for 0 in r and X in K: XiF-(t(f) (EX.

Proof: By induction on 0 in F. The cases of atoms and the -truth functional connectives
are trivial.

Suppose O=oyr.

Suppose WEX and XRY. Clearly WEY so by the Induction Hypothesis: YiF-W(f).

Conversely suppose that VOX. Define:

We claim: X0vW. If it did we would have:

F- W-4W,
and hence: Thus it would follow that: XF-oW, quod non.

Let Y be r-saturated such that X., sY and YvW. It is easily seen that XRY and WzY. By
the Induction Hypothesis: Yiv W(f).

Suppose O= A yr.

Suppose oWEX and XSY. Clearly WEY. Thus by the Induction Hypothesis: YiF-W(f).

Conversely suppose LWtX. Define:
Xa:=

We claim: XovW. If it did we would have:

l- OW-*yr,
and hence XF-o(oW->W). Thus it would follow that Xi-AV, quod non.
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Let Y be saturated such that Xo sY and YVyr. It is easily seen that XSY and yfOY. By
the Induction Hypothesis: Yiv yr(f).

8.30 Completeness for CSM0

Suppose CSM0Vo. Then there is a compact Carlson-frame Fa such that Fair 0.

Proof: Let F:=the set of subformulas of 0. Construct Ga:=XGr. Say Ga <Fa,fa> and
Fa=<Ka,Kao,Sa>. Because I' is finite, Ga is finite, OGa trivializes to the discrete topology
and Ga is compact. Hence Ga is a model. There is a F-saturated set X such that XVO.
By 8.29 and 8.16 we have <X> iv 0(fa). It follows that Fair 0.

8.31 Definition

Let F=<K,R,S> be a frame and let xEK. Define F[x]:=<K',R',S'>, where K':={yEKjxWSy},
R':=RtK', S':=StK'. If G=<F,f> is a model, define G[x]:=<F[x],f[x]>, where f[x]pi:=fpinK'. It

is easily seen that F[x] and G[x] are again frame respectively model. Clearly for xEK':
xiH-1(f) xii-O(f[x]). This definition is trivially adapted to Carlson-frames, etc. .

8.32 Completeness for CSM1

Suppose CSM1vo. Then there is an compact Carlson-l-frame Fsuch that FiV

Proof: Suppose CSM1Vo. Define:
is a subformula of

Clearly CSM0Vx. Let I':={yrIV is a subformula of x}., Consider the treeification of the
Henkin premodel for F, i.e. consider Gbwith Gb:=XGr.(see 8.29 and 8.16(i)). Gb is finite
so OGb is discrete. Thus Gb is a compact model. There is a node x of Kb such that:

for all subformulas Ayr of 0, and: X'V 0(fb). We may assume that x is of

the form <X>, so that xjL,'KbO.

Consider Gb[x]. Say Ga:=Gb[x]. Clearly Ga is compact. Let ro be the set of subformulas
of 0. Trivially for all yEKao and for all Ayr in F0 : yii-Dyr---) yr(fa). We change the elements

of Kao into limits by transforming Ga into G with G:=`PsGa. Let b:=<x,0>. Clearly b is the
bottom of G. Say G=<F,f>. By 8.19 and 8.20 G is a compact Carlson-1-model and by
8,22 and the fact that 0 is in F0: b iv 0(f).

8.33 Definition

Let F=<K,K0,S> be a Carlson-frame and let xE K. Define F<x>:=<K',K'o,S'>, where
K':={yEKlxWSy}, K'o:=(KonK')u{x}, S':=SPK'. If G=<F,f> is a Carlson-model we define:
G<x>:=<F<x>,f<x», where f<x>p;:=fpinK'. Clearly F<x> and G<x> are a Carlson-frame
respectively a Carlson-model. For yEK' we have: yiHO(f) yii-O(f<x>).
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8.34 Completeness for CSM2

Suppose CSM2vf. Then there is a compact Carlson-1-frame F=<K,K0,S> and an xEK0
such that x iv 0.

Proof: Suppose CSM2v4. Let ro:={WIyr is a subformula of 0}. Define:
X:=(A,\ yr)IAVET0}->0)

and r:={WIV is a subformula of x}. Clearly CSM0vx. Let Gb:=XGr,. Gb is a compact
Carlson-model. There is an x in Kb such that: xiH-Ayr-yr(fb) and for all

Ayr in ro and xiv 0(fb).

Consider Gb<x>. Say Ga:=Gb<x>. Clearly for all yEKao and AWEF0: ylF-AV-)'V(fa).
Define G:=TsGa and b:=<x,0>. Say G=<F,f>. G is a compact Carlson- 1 -model, bE K0
and by 8.22 : b iv 4(f).

8.35 Completeness for CSM3

Suppose CSM3v4. Then there is a Carlson-3-frame Fwith bottom b such that biv 0.

Proof: Suppose CSM3v4. Let ro:={WIW is a subformula of 0}. Define:

V)IAWEro})
Let r:={VIV is a subformula of x}. Clearly CSMovx. Consider Gb:=XGr,. Clearly Gb is a
compact Carlson-model. There is an x such that xlF-oV-4V(fb) for WEro, xlHAW--yr(fb)
and for AWEro and xiv 0(fb).

Consider Gb[x]. Say Ga:=Gb[x]. Clearly for all yEKao and all AVEro: yiF-AV_ W(fa).
Moreover: xiF-Ayr-)V(fa) for all AyJEro and for all VEF0. Let G:=TsTRGa
and b:=«x,0>,0>. Say G=<F,f>. By 8.19 and 8.20 we find that G is is a compact
Carlson-3-model. By 8.22, 8.28 and the fact that 0EF0 we find that biv 4(f).

8.36 Completeness of NB1

Suppose NB1v4. Then there is a compact set-1-frame Fwith File 0.

Proof: Suppose NB1v4. Let F0:={VIW is a subformula of 0}. Define: A+p:=p^Ap.
and r:={WIyr is a subformula of x}.

Clearly CSM0vx. Take Gd:=Gr,. There is an xEKd with:

for all c and AV in r0 and xiv 4(fd). Let and let GC:=A(Gd,rl). Gc is

a compact set-model. Let xc:=<x>. Clearly xCiv O(f). Suppose ycEKC0 and xcWScyc. We

have: yc=<y1,...yk>, where y1=x, yk-1Rdyk and there is an i with 1<i<k and there is a
aEro such that and yiiv Ac(fd). xWSyl and thus for all
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AWEr0. Finally yiRdyk so yklHaW__3'W(fd) for all AWEro. Conclude: ycii-AW-*W(fc) for all

LWEF0.

Construct Gb:=Gc[xc]. By the above: for all ybEKbo: ybii-dW-*W(fb) for all IWEFo. Let
G:=WSGb, say G=<F,f>. Clearly G is a compact set-1-model and <x0,0>iv 0(f).

8.37 Completeness of NB2

Suppose NB2vo. Then there is a compact set-2-frame Fwith bottom b such that b IV

Proof: Suppose Let r0:={WIW is a subformula of 0}. Define:

r:={WIW is a subformula of x}. Clearly CSM0Vx.

Take Gc:=Gr,. There is an xEK, with xiHow_*W(f,),

for all a and AV in r0 and xiv (fc).

Let r1:=rou{oajoaEr0} and let Gb:=A(GC,rl). Gb is a compact set-model. Let xb:=<x>.
Clearly xbl 0(fb). By the same reasoning as in 8.36 we have that for ybEKbo with
xbWSbyb: YO_ AV-* W(fb) for all AWEr0. Moreover for all cEr1 and
hence x. Kb,

Construct Ga:=Gb[xb]. By the above: for all yaEKao: yail-AW->W(fa) for all o JEro and
XalHLW`W(fa), for all Let G:=TSTRGa, say G=<F,f>. Clearly G
is a compact set-2-model and «xb,O>,O> IV 0(f).

11

8.38 Corollary

The following facts are rather obvious using completeness for the appropriate
arithmetical interpretations. They have however also purely Kripke model proofs.

i) CSM1 i-O CSM1 H

44 CSM2H

CSM3HL

ii) CSM2i-O

44

iii) NB1i-O NB1H-

NB2i-00

Bimodal Provability Logic, May 22, 1987 , 12:10 . 28

11

0.

xl1-



iv) Let xVE Lo, then:

Li-yr CSM1i-yr

CSM2i-v
NB1i-yf

Proof: Left as an excercise to the reader.
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9 The closed fragment of CSM1

Let CL be the set of closed formulas (i.e. of formulas not containing propositional
variables) of L. We describe the behaviour of the CL formulas in CSL1.

Define for 0 in L: 04:=4, and oo4):=4), on+14:=oono Define further:

and -L ,,.:=T. Let "a" and "a" range over w2U{oo}. We stipulate that for
all a a<_°°, that oo+a=a+°°=°° and that: °°.a=a.°°=°° for a:;,-O.

9.1 Fact

a<R CSM1F-1a-1R.

Proof:

The only interesting subcase is:

CSM1F L for m<l,

We have:
CSM1I- l

m+11

11
1

Suppose a>R we have:

CSM1i- 1a-41R CSM1F-1R+1-a L
13

CSM11-11 (Lob's Rule for A)

But by an easy Kripke model argument: CSM1V1R ((3 being below °°).

9.2 Convention

If Ti...... Tn are forms for formulas in certain variables (e.g. T1=1y- a), we write:
W[!1,.... ,Tn] for a finite disjunction of formulas, where any of these formulas is of one
of the forms T1,.... ,Tn. If n=1 we drop "[" and "]". Similarly for /A.

9.3 Lemma

Let 0 be a Boolean combination of La's, then for some R: CSM11-o4 - 1R. Moreover
R=y+1 and CSM1F-(4 .L 4) 1y.

Proof: note that CSM1F-(1yi1g)* 1max(y,3 and CSM1F-(1y..J )H-Lmin(y,8)-

Consider a Boolean combination of la's 0. Clearly 0 can be brought in the form
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/X\ W [1y,-,1J. In the disjunction we can contract (modulo CSM1-provable equiva-
lence) the 1ys to 1y., where y` is the maximum of the Ys, and we can contract the 1,,'s
to 1s<, where S* is the minimum of the S's. Hence CSM1F-4H /X\(1s.-i1,,) and so
CSMif-L 4HL1X\(1s.--L ) and thus CSM1E-o4H In case S*<_y

CSM1 F-o(1s.-) 1,r) H 1.. In case S*>i':
CSM1F- o(1S.- Ly) a(1,+1 -l r)

111,x,. (Lob's Principle for L )

- A(18.-+1 .)
Hence CSM1Ho(1s.-> L ).-1,+1. So CSM1F-a4H 1,y..+1, where -f* is the minimum
of the y" s.

The second claim is an easy consequence of the above.

9.4 Lemma
Let o be a Boolean combination of 1as, then for some (3EfU{00}: CSM1 H 1w

R.

Proof: the proof is essentially similar to the proof of 9.3 using CS M 1 i- (L ka <a (y).

9.5 Theorem

Consider any WE CL. We have: yr is provably equivalent in CSM1 to a Boolean
combination of 1(,s.

Proof: By a simple induction on yr in CL using 9.3 and 9.4.

Consider the following Carlson-frame: Fo:=<{0},0,0>. Consider: (s(RFO. We claim that
this last frame corresponds precisely with the closed fragment of CSM1, i.e.: (i) for
every proposition X of (s(RFO there is a of CL such that X=Iolf, where fpi=0 for all i,
and (ii) for all OE CL: CSM1F-o (DsORFoiF-o (thus: for all yr,,GECL CSM1i-yr - a

1W]f=Q'flf).

Before we verify this claim it seems appropriate to replace the frame OSORFO by an
isomorphic one. Define: 522:=<((02\{0})u{oo},{o.njnEo)},E>, where aZ[3 :4=> a>p. It is
easily seen that 02 is isomorphic to OSORFO. Note that aiF-1R(f) a<_R. We prove our

claim for 522.

Proof: To see that the first part of our claim is correct it is sufficient to note that our
frame is compact and that aWS=Q1Jf and Sa=1,1Jf.

We turn to the second part. the "=>" side is immediate, because Q2 is a Carlson-2-
frame.
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For the "W' side Suppose 4E CL and CSM1 e4. Let Xo:={WE CLICSM1 Ayr}. Clearly X0e4.

Let X be CL-saturated such that X0 S X and XIe 0. Clearly ..L,, E X. Let O(X) be the
smallest element a of (w2\{0})u{°°} such that La is in X. We have: L EX if Q_O(X) and
(--L )EX if ii<O(X). By 9.5 X is uniquely determined by O(X) (among the CS-saturated
extensions of X0). Let a:=O(X). Consider Y:={WE CLjc%-W(f)}. Clearly X. c Y, Y is CS-

saturated and O(Y)=a. Conclude X=Y,OYY and thus ally 4(f).

9.6 Remarks

i) The above reasoning could be elaborated by showing that g22 with the empty
assignment is precisely the Henkin model of CSM1 w.r.t. CL.

ii) As is easily seen for 4E CL:

CSM21-4 for all n o.niH4(f),

CSM3i-4 001F-O(f).

9.7 Question

Clearly NB1 does not have such a well behaved closed fragment. This is plausible also
from the arithmatical point of view: NB1 is 'about' a number of different arithmetical
interpretations of 0 at the same time. Many (all?) of these interpretations taken by
themselves would yield a different provability logic and thus a different closed frag-
ment. Is there some interesting description of the closed fragment of NB1?

10 Arithmetical Completeness Results

Our aim in this section is to embed certain frames employed in the various modal
completeness theorems into arithmetic. The precise nature of these embeddings will
depend on the chosen interpretation of the bimodal logic involved. All embeddings
map the propositions of the frames on equivalence classes of the relevant sort (e.g.
w.r.t. provable equivalence in PA) of arithmetical sentences and 'commute' with the
corresponding connectives and operators.

The neatest way to build the embeddings is in two stages. The first stage is common to
all embeddings: we go from clopens to (equivalence classes of) arithmetical formulas
in one variable that represent the clopens as sets of numbers in a canonical way. In the
second stage we go from these formulas to sentences by something like substituting a
term for the one free variable. We proceed to describe the first stage.

The frames we are going to embed all have the form ISIRFa, where Fa is a finite
set-frame. We assume that the domain Ka of Fa consists of numbers 0,...,n and that
'<...>' is a standard numerical coding of sequences. Thus the elements of the domain
of F:=IsIRFa will be numbers and simple arithmetical descriptions of K0, Ki, S (and
hence of R) can be read of from our definitions of `t's and OR. In arithmetical contexts we
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will simply confuse K, KO, etc. with their arithmetical descriptions. All kind of simple facts
about K, KO, etc. can be formalized in PA -like: S is transitive, treelike, upwards well-
founded. The facts we need will be collected along the way.

Let A be an arithmetical formula with just x free. Instead of the usual notation 'Ax' to
exhibit the free occurrence of x in A, we will use 'xcA' to show our intention that A
stands for a set.

Let A and B be arithmetical formulas with just x free. Define:
A=B :<= PAHbx(xcAHxEB)

What we are going to do is map the propositions X of frames of the form ISIRFa, where
Fa is a finite set-frame with bottom, on =-equivalence classes in such a way that each
element of the equivalence class assigned to X represents X as a set. (Clearly there
are also inequivalent formulas that represent X as a set.) Even if it not strictly necessary
the most pleasant way to give the representation is via a normal. form theorem for
clopens in compact frames. A normal form for a clopen X is going to be a designated
finite set of clopens Nx such that X=UNx.

10.1 Normal forms for clopens

Consider a compact frame F=<K,R,S>. Let x,y be elements of K. We call xWSnWSy an
interval just in case xWSy and y is not a limit. If xWSnWSy is an interval we use the
notation: [x,y].

As is easily seen intervals are clopen.

Let X be clopen (and thus compact).

10.1.1 Prenormal forms for clopens

There is a finite collection of intervals M such that X=UM.

Proof: By compactness it is sufficient to produce a collection of intervals P such that
X=UP. If xcX is not a limit put lx:=[x,x]. Suppose x is a limit. xWSnX is open, hence
there is a y such that y#x and yExWSnX. Pick a maximal such y, say yo. yo cannot be a
limit, otherwise there would be a z with z#y and zc yoW S n X, hence y0Sz and
zExWSnX, contradicting the maximality of yo. Put Ix:=[x,yo]. Define P:={lxlxEX}.

10.1.2 Normal form theorem

There is a unique finite collection of intervals Nx such that:
i) X=UNx.
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ii) [x,y] E Nx, [u,v] E Nx and [x,y] c [u,v] [x,y]=[u,v].

iii) [z,w]9X 3[x,Y]ENx [z,w] [x,Y]

Proof: It is easily verified that conditions imply uniqueness. To prove
existence, consider a finite set of intervals M such that X=UM. We convert M into Nx.

Clearly by compactness and treelikeness every x in K which is not a bottom element
has an S-predecessor. We write 'y=pd(x)', for: y is the S-predecessor of x. We define a
relation between pairs <[x,y],q>, where gE[x,y], as follows:

<[x,y],q>Q<[u,v],r> :4-* pd(r)E [q,y].
We collect two simple facts about Q:

a) <[x,y],q>Q<[u,v],r> = [x,v] is an interval and [x,v]=[x,pd(r)]u[r,v] c [x,y]u[u,v].

b) <[x,y],q>Q<[u,v],r>Q<[z,w],s> = <[x,v],r>Q<[z,w],s>.

Define:

P:={[x,y]l there is a Q-chain <[x1,y1],g1>Q...Q<[xn,yn],gn>, such that: [xi,yi]EM,

x=x1, Y=yn}.

Clearly P is finite and by (a),(b) P is a set of intervals satisfying UP=X.

Let Nx be the set of c -maximal elements of P. It is immediate that Nx as defined
satisfies (i) and (ii). We verify (iii): consider [z,w]9X. It is sufficient to produce [x,y]EP
with [z,w] c [x,y]. We produce a Q-chain of pairs <[xi,yi],gi> with qiE [z,w] as follows:

step 1) Pick [x1 ,y1] E M such that zE [x1,y1]. Let q1 be z.

step i+1) Suppose we have produced <[xi,yi],gi>. Let pi be the maximum of
[xi,yi]n[z,w]. As is easily seen pi is not a limit. If pi=w we stop and put
n:=i. If pi:t-w, let qi+, be the immediate S-successor of pi in [z,w] and
pick [xi+13Yi+1]EM such that qi+1 is in [Xi+1,Yi+1]'

It is immediate that <[xi,yi],gi>Q<[xi+i,yi+i],qi+1>. Moreover g1Sgi+1, hence our procedure

stops by the upwards wellfoundedness of S. Finally define [x,y]:=[x1,yn]. Clearly
xi WSzWSwWSyn, so [z,w] c [x,Y]

Consider a frame Fof the form `Is`IRFa, where Fa is a finite set-model with bottom. Let
X be a proposition of F. We represent X by rX, in the language of arithmetic with just x
free, where:

XErX1 := W{XErM,aJ[m,n]ENx}.

Note that:

mEX = PA[-mE'X
m.gX PAr , m E X

It follows that if then PAi- 3y((yE W,.ye Y').,(ye X,yE rYl)), hence not rXi=rY,.
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Define for arithmetical formulas A with just x free, AA and A by:
xEAA := by xSy yEA.

`dy xRy yEA.

10.2 Lemma

Let X be a proposition of F. Suppose M is a prenormal form for X. Then:

W{xE[m,n]I[m,n]EM} =_ W.

Proof: If [m,n] E M, then there is a [p,q] E NX such that [m,n] s [p,q]. The (formalization of

the) fact that [m,n] c [p,q] can easily be verified in PA. Conversely for [p,q] in NX there is
a Q-chain <[m1,n1],r1>Q...Q<[mk,nk],rk> in M such that [p,q]=[m1,nk]. The facts about
Q-chains can be verified in PA and hence also the fact that [p,q] s U M.

10.3 First Commutation Theorem

. commutes with the propositional constants, A and modulol

Proof: The proof is long, boring and trivial. We just sketch it.

Let X,Y be propositions of F.

We show: r1l=1. This one is easy: T=1

We show: Y=T. NT={[b,t]lt is a top element of F. The formalization of the fact that
UNT=K is easily verified in PA.

We show: rX,iY'=-')(, Y. Clearly rXl, rY =_W {xE [m,n]I[m,n] E Nxu NY}. NxU NY is a

prenormal form for X\.Y. The desired result follows from 10.2.

We show: _)=_rX. Consider [m,n]ENX and [p,q]EN,X. The fact that [m,n]n[p,q]=Q is
easily verified in PA. Consequently rXlnrrXl=i On the other hand X,/-X=T, thus by
the above Conclude

We show: Clearly -by the above- it is sufficient to show:

PAH `dx xE -OX( H
Consider M:={[b,pd(n)]l[m,n] E N ,x}. M is a prenormal form for _AX By 10.2:
W{xE[m,n]I[m,n]EM}. ;AXE. It is easily verified that:

PAH Vx W{xE[m,n]l[m,n]EM} H 3y(xSynyEr,Xl).

Finally we show: W. Clearly -by the above- it is sufficient to show:

PAf- VXXE;0XlH3y(xRy,.yEr=)q
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First note that for every interval [p,q]: [p,q]nK1° is also an interval. Define:
a,(m,n):=max(KOn [m, n]).

Consider:
M:={[b,pd(n)]nK1cl[m,n]EN,x}u{[b,pd(A,(m,n))I2(m,n) exists, [m,n]EN,x}.

,n]j[m,n]EM}= We show:M is a prenormal form for X, so by 10.2: W{xc[m
PAS- Vx W{xE[m,n_]l[m,n]EM} c-4 ;)q

Reason in PA (We will insert remarks that are best viewed as coming from outside
PA; these will be in italics):

Suppose xED,n], for (b,n]EM. Clearly for some k in -X: nRk, hence xRk. Say
kE[l,s]EN'x. Then: kEG,]. It follows that 3y (xRy and yE r-,)().

Conversely suppose xRy and yE[I,.$], for fl,s] in N,x. Suppose x e'K1. In this case

xE [b,pd(.a)] n K1c=[b,r for some r. (The reader should convince him/herself by
inspecting the coding that PA indeed proves the identity: [¢,pd())] n K10=[b.,L1)
Clearly [b,r]EM. Suppose xEK1. In case [l,s]nK0=:O this is verifiable in PA and
hence: -L. In case (l,s]nK0#, , A.(l,s) exists and hence: 2 for some q. (The

reader should convince him/herself that PA verifies this last identity.) Hence
yWSg and thus xc[b.,pd(g)]=[j2,pd(all. Clearly(b,pd(q)]EM. PA

The other cases follow from the cases treated thus far.

10.4 Fact

i) Remember that par abus de langage we write "xE K1" for the arithmetization of
"xEK1" that can be read off from a description of F. and the definitions of (DR and
Os. We have: PAi- xE K1 H xE rK1'.

ii) PAI- (XEKon VyEXS yE W) -3, XErXi

Proof: Left to the industrious reader.

We proceed to the second stage. This stage splits into cases depending on the chosen
interpretation of the logic involved. In all cases a primitive recursive function h will be
introduced, with the property: PAi-VxVy(x<y--hxWShy). Let Lx:=(3yVz>_y hz=x). We
have: PAi- 3 !xLx. We use L as a semiterm for the unique x such that U. Define
[X]:=(LE rXl). [X] is the arithmetical image of X that we are after (modulo an equivalence
relation like provable equivalence). Note that:

PAI- [X] H W{LE[m,n]I[m,n]ENX}.
And that:

PAi- LQm_,n] H ((3x rWShx) - (Vy hyWSn)).
It follows that [X] is provably equivalent in PA to a Boolean combination of E1-formulas.
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10.5 The NB Theories

Consider a set-2-frame F of the form OS(RFa, where F. is a set-frame with bottom ba
with baeKa1.

Remember that if x is the Godel number of a proof ir, then I(x) is the largest of the Gbdel
numbers of arithmetical axioms occurring in ir. We plausibly assume: I(x)<x.

Define both by the Recursion Theorem and by Course of Values Recursion:

hO := b

if hxRy and ProofPA(x,L#y)

if hxSy and Proof and `dy<_I(x) hy.9K1

otherwise

L := the unique x such that 3yVz_y hz=x

S := 3y hyE K1

[X] :=LEX

(Note that "Vy<_I(x) could even be simplified to: h(Ix)j'K1.)

10.5.1 Lemma

i) PAi- x<y - hxWShy
ii) PA[- "L exists"

Proof: Entirely routine.

10.5.2 Second Commutation Theorem

[.] commutes with the propositional logical constants (modulo provability in PA) and:
a) PAi- [AX] APA,s[X]I

b) [oX] PA[X].

Proof: The cases of the propositional logical constants are trivial by 10.5.1 and the
First Commutation Theorem (10.3).

Case (a) "--3.". Reason in PA:

Suppose [AX]. Say L=xErAX7 and hence L=xEOrXl.
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First suppose x=b. Ifb is indeed in AX, we have AX=X=T and hence: APALE X. if
b is noon AX we have: i, and hence: APALEX.

Suppose x#b. Let u be the smallest number such that hu=x. Clearly u, is a succes-
sor, say u=v+1. By the definition of h: ProofPA(v,L:f-x). We distinguish two cases:

Case I: Suppose hveK1. Surely lv<v, hence for all y<_Iv hy.'K1. Thus we have
both ProofPA(v,L#x) and for all y<_Iv hy. K1, hence APA,SL#x. By 1-completeness

we have: APA Shu=x. Ergo oPA SxSL and so (by the fact that xE A)(, so by
1-completeness: A PA Sx E '-A XO, thus by the First Commutation Theorem:

APASXEAX): APASLEX.

Case II: Suppose hvEK1. We distinguish two subcases.

Subcase 11(i): Suppose xE Ko. By 1-completeness we have A PA shu=x and so
APA,SxWSL. Also we have: APA SXE Ko, APA,SXE A) and hence: APA SXEA r)(, It

follows by 10.4(ii) that: APA S Vy(XWSy-4yE rX,). Ergo: APA SLE W.

Subcase Il(ii): Suppose xeK0. We have: APA SL#x (how else could h move up
from hv, which is in Kt, to x, which is not in KO?). Also APAshu=x. Ergo APA,SxSL

and hence: APA,BLErXl. PA

Case (a) Reason in PA:

Suppose A PA s[X]. Suppose for a reductio: L=x e AXE. Clearly by 10.3: x. 'X1

and hence for some y xSy and y.'rXl. By Y--completeness: APA,Sye'X(. Hence
APA,SL#y. It follows that for some u Proof PA(u,U--y) and Vv<_Iu -Sov, i.e. Vv<lu

Because L=x, we have: huWSxSy, hence huSy. By the definition of h:
h(u+1)=y. Contradiction.

Conclude: LErAX1, i.e. [AX]. PA

Case (b) "--> ". Reason in PA:

Suppose say and hence In case x=b, it is easily seen (by
the same reasoning as under case (a) "-") that: PALE X. Suppose x#b. Say
hu=x. We have PAL:;6:x (how else could h move up to x?) and by E-complete-
ness: PAhu=x. Hence PAxSL. If it follows that: PAxRL, hence PALE rXl
and thus PA[X]. Suppose xEK1. We have: By hyEK1, i.e. S. Hence for any A:

PA(A PA,sA -4A)

We claim: PALEKO.
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Reason inside PA:

Suppose L=yeK0. We have xSy and xEK1. Thus APA SL#y (how else could

h move up from an element of Ki to y, y not being in Ko?). By
APA,s-reflec-

tion: Lay. Contradiction. Conclude: LEK0.

We have: PAXSL and PALEKO. Hence: PAxRL and thus: PALEY, i.e. PA[X].
PA

Case (b) "F- ". Reason in PA:

Suppose PA[X]. Suppose for a reductio: L=X. By 10.3 there is a y with xRy

and ye Xl. By Y--completeness: PAy.'X1. Hence from PALE rX1: Say

ProofPA(u,L#y). From L=x: huWSxRy. Hence: huRy. Thus by the definition of h:
h(u+1)=y. Contradiction. Conclude: LE X7, i.e.

This ends our proof.

Note that [.] really has the character of an embedding: it is injective modulo provable
equivalence in PA. For suppose X#Y. Inspection of the frame shows that: for some k
(((XHY)^A(XHY)),Dk I)=T. Hence:

PAF- (([X] H [Y])^EPA,S([X] (__4[Y])) -) PAk1.
Suppose PAi- [X] H [Y]. It follows that:

PAF- ([X] - [Yl)^APA,s([X] - [Y]),
hence: i . Quad non.

10.5.3 Definition

Consider a set-2-model G=<F,f>. Suppose G is of the form ISIRGa, where Ga <Fa,fa>
and Ga is a finite set-model (also finite in the sense that fa(p)=Q for all but finitely many
p), with bottom baR Kai . Define for 4E L:

[0l [If0f].

Let f*p:=[p], and define:

<4> := (4)(f*,PA,S),

where S is defined as in the beginning of 10.5.

10.5.4 Theorem

PAF- <4> H [4l

Proof: By a trivial induction on 0 using 10.5.2.
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10.5.5 Arithmetical Completeness for NB1

Suppose NB1v4. Then there is an interpretation function f* and a E1-sentence S such
that PAv(0)(f*,PA,S).

Proof: Suppose NB1v4. Consider the finite set-model Gbconstructed in the proof of
8.36. The bottom, say z of Gb forces -0 (under fb ). Pick a b with b eKb. Define Ga as
follows: Ka:=KbU{b}; Kao:=Kbo; Kal:=Kbl; Sa:=SbU{<b,y>lyEKb}; fay:=fby, if yEKb; fab:=fbz.

Clearly b. Ka1. Consider Ge:='Ps`PRGa. Let u=«z,0>,0>. Clearly the submodel with
domain uWSe will be isomorphic to G of the proof of 8.36. Hence, because uWSe is
upwards closed Ge the forcing relations of Ge and G of 8.36 will coincide on the nodes
connected by the isomorphism. Ergo u iv O(fe).

It follows that Q01fe#T, and hence that PAv[4] (where [.] is based on Ge). Thus: PAv<4>.

10.5.6 Arithmetical Completeness for NB2

Suppose NB2v4. Then there is an interpretation function f* and a E1-sentence S such
that Nw (0)(f*,PA,S).

Proof: Suppose NB2v4. Consider the model G of the proof of 8.37. Let b be the
bottom of G. We have: bites 4(f). Consider h, [.], etc. based on G. Clearly NFL=12, hence

,[4]. Thus Nw<4>.

10.6 The CSM Theories under the CS-Interpretation

Consider a Carlson-2-frame F of the form Os(DRFa, where Fa is a Carlson-frame with
bottom ba. Let U and T be RE theories in the language of PA, extending PA, such that
for all sentences A of the language of PA: UF-OTA-A.

Define by the Recursion Theorem:

hO := b

y if hxRy and Proofu(x,L:t-y)

h(x+1) := j y if hxSy and ProofT(x,L#y)

otherwise

L := the unique x such that 3y bz_y hz=x

[X] :=LEX
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10.6.1 Lemma

i) PAH x<y - hxWShy
ii) PAi- "L exists"

Proof: Entirely routine.

10.6.2 Second Commutation Theorem

[.] commutes with the propositional logical constants (modulo provability in PA) and:
a) PAI- [AX] AT[X],

b) PAI- [X]

Proof: The cases of the propositional logical constants are trivial by 10.6.1 and the
First Commutation Theorem (10.3). The cases of A and are very much like the
corresponding cases in 10.5.2:

Case (a) Reason in PA:

Suppose [AX]. Say L=XEAX1 and hence L=xcA W.

The case that x=.b is easy.

Suppose x#b.. Let u be the smallest number such that hu=x. Clearly u is a
successor, say u=v+1. We distinguish two cases:

Case I: Suppose xEK0. By 1-completeness we have AThu=x and so ATxWSL.
Also we have: ATxEKO, ATXE A)( and hence: ATXEAW. It follows by 10.4(ii) that:

ATby(XWSY->yE'X'). Ergo: ATLEX.

Case II: Suppose xzK0. We have: ProofT(v,L,-x) (how else could h move up
from by to x, which is not in Ko?). Hence ATL#x. Also AThu=x. Ergo ATxSL and
hence: ATLE X. PA

Case (a) " - ". Reason in PA:

Suppose AT[X]. Suppose for a reductio: L=x, 'A)1. Clearly by 10.3: xeA X and
hence for some y xSy and ye X1. By 1-completeness: Hence ATL#y. It

follows that for some u ProofT(u,L#y). Because L=x, we have: huWSxSy, hence
huSy. By the definition of h: h(u+1)=y. Contradiction.

Conclude: LEA), i.e. [AX]. PA
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Case (b) "- ". Reason in PA:

Suppose say and hence The case x=12 is easy. Suppose
x#_. Say hu=x. We have uL#x (how else could h move up to x?) and by
E-completeness: uhu=x. Hence ouxSL. We claim: uLEKo.

Reason inside u:

Suppose L=yzK0. We have xSy. Thus ATL#y (how else could h move up to
y, y not being in Ko?). By AT reflection: Lay. Contradiction. Conclude: LEK0.

We have: uxSL and uLEKo. Hence: uxRL and thus: uLEIX1, i.e. u[X].
U

Case (b) "E- ". Reason in PA:

Suppose u[X]. Suppose for a reductio: By 10.3 there is a y with xRy

and 'yorXl. By Y--completeness: uy e Xl. Hence from uLE X1: uL#y. Say
Proofu(u,L#y). From L=x: huWSxRy. Hence: huRy. Thus by the definition of h:
h(u+1)=y. Contradiction. Conclude: LE i.e.

This ends our proof.

10.6.3 Definition

Consider a Carlson-2-model G=<F,f>. Suppose G is of the form PS'PRGa, where
Ga <Fa,fa> and Ga is a finite Carlson-model (also finite in the sense that fa(p)=O for all
but finitely many p), with bottom ba. Define for 0E L:

Let f*p:=[p], and define:

<0> := ($)(f*,U,T),

10.6.4 Theorem

PA[-- <0> - [0]

Proof: By a trivial induction on 0 using 10.6.2.
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10.6.5 Definition

Let Fbe a compact set-frame. Define d from K to the ordinals by:
dx := 1 +sup{dy!xSy}.

Note that if x is a top element, dx=1.

10.6.6 Fact

Let Fbe of the form (DSORFa, where Fa is a finite Carlson-frame with bottom. Let d*x:=dx

if dx<GJ2, d*x:=oo otherwise. We have for aEw2u{°°}
d*x<_(x xil-1a.

Proof: Left to the reader.

10.6.7 Definition

i) L1(U,T)

L2(U,T)

all interpretation functions f TI--(O)(f,U,T)}

{0[for all interpretation functions f UF-(O)(f,U,T)}

ii) CSM1(a)

CSM2(fi)

:= CSM1+-L(" (aEc)2u{°°})
:= CSM2+1,R ({3ECau{°°})

10.6.6 Theorem

L1(U,T)=CSM1(a) and L2(U,T)=CSM2((i) for some a with aEa2u{co} and some
REau{°°}, such that: (Note that if either a or R are oo then
L1(U,T)=CSM1 and L2(U,T)=CSM2.)

Proof: First we show: L1(U,T)=CSM1(a) for some aEa2u{°°}. If x is in the closed
fragment (x)(f,U,T) is independent of f, so let's write "(x)(U,T)" instead. Evidently
TI-(1J(U,T). Let a be the smallest element of w2u{°°} such that TF-(1a)(U,T). Clearly
CSM1(a) c L1(U,T).

Suppose VF-L1(U,T) and CSM1(a)vyr. It follows that CSMi Consider the
Carlson-model Ga constructed in 8.32 for t:=(1a-> yr) with bottom x. Construct
Ge:=`Ps PRGa. Let z:=«x,1>,0>. Clearly the restriction of G. to ZWSe is isomorphic to G
of 8.32. Hence, because zWSe is upwards closed, the forcing relations of Ge and G will
coincide on the nodes connected by the isomorphism. Consequently ziv 0(fe), hence
ZIF-1a(fe) and zivyr(fe). We claim that for some f3<a and for all uEKe:

UIF- e)

Inspection of the model shows that below z there just is a long tail, so vlF-(yr.,dyr)(fe)
implies zSev. Let v1,...,vn be the minimal elements of Qyr..AyrYe (these exist e.g. by the

normal form theorem). We have d*z<a and hence d*v,<a (i=1,...,n). Let 0 be the
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maximum of the d*vi. We have R<a and vill-LR(fe) (i=1,...,n). Conclude:

Q(yr..Ayf) -4 -L RI(fe)=T.

Let [] and <.> be based on Ge. We have: PAH <(yr.. A yr) - L R> and hence
TI-<(yr,.Lyf)-*LR>, so: TI- (<yr>^AT<yf>)-<LR>. On the other hand TI-<V>, and
hence TI-<yr>AOT<yf>. Ergo TI-< i >, i.e. TH(LR)(U,T). Quod non.

Conclude L1(U,T)=CSM 1(a).

Secondly we show: L2(U,T)=CSM2(Q) for some [3Ewu{oo}. Evidently UI-(Lw.)(U,T).
Let R be the smallest element of cou {oo} such that UI- (L w R)(U,T). Note that, by
OT Reflection, for no y<w.l: UI-(-L 7)(U,T). Clearly CSM2([i) s L2(U,T).

Suppose yfc L2(U,T) and CSM2((3)vyr. It follows that CSM2V Lw R-> yr. Consider the
Carlson-model Ga constructed in 8.34 for with bottom x. Construct
Ge:= SFRGa. Let z:=«x,1>,O>. Note that zEKeo. Clearly the restriction of G. to zWSe is
isomorphic to G of 8.34. Hence, because zWSe is upwards closed, the forcing relations
of Ge and G coincide on the nodes connected by the isomorphism. Consequently
z IV 0(fe), hence zlH-Lw R(fe) and z iv yr(fe). We claim that for some y<w.l and for all u E K,,:

UII- -4 -Ly(fe)

Below z there just is a long tail, so, because zEKeo: vlI-(yr..oyr)(fe) implies zSev. Let
v1,...,vn be the minimal elements of We have d*z<_co.(3 and hence d*vl<co.(3

(i=1,...,n). Let y be the maximum of the d*vi. We have y<co.l and vile±,,(fe) (i=1,...,n).
Conclude:

Let [.] and <.> be based on Ge. We have: PAr <(yr.. yr) -* L
Y>

and hence
so: <L,>. On the other hand UI-<yr>, and

hence Ergo UI-<L?, i.e. UI-(LY)(U,T). Quod non.

Conclude L2(U,T)=CSM2(l).

Suppose L1(U,T)=CSM1(a) and L2(U,T)=CSM2(R). Clearly TI-La(U,T), and hence by
1-completeness UI-AT(1 (U,T)). By AT-reflection: UI-La(U,T). Thus Also

U E- -L w R(U,T), hence by 1-completeness: TI- u L w R(U,T). In other words:
TI-Lw(R+1)(U,T). Ergo

10.6.7 Theorem

Let cc be in co2u{oo} and let l3 be in cou{oo}. Suppose Then there are RE

extensions T and U of PA such that L1(U,T)=CSM1(a) and L2(U,T)=CSM2(R).

Proof: Let's write "RT' for:
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T+{oTA-+AIA a sentence of the language of PA}.

Suppose co.05a<co.([3+1). Let T:=PA+la(RPA,PA) and U:=RPA+1a(RPA,PA). By
E1-completeness: Tl-APAAH oTA and hence also Also Ui-oTA-+A.
We find: TF-_L a(U,T) and Ui-la(U,T). By AT -reflection it follows that Ui-± (U,T).

Suppose y<a and Ti-iY(U,T), then PAF-la(RPA,PA)-+-LY(RPA,PA). Quod non.
Suppose y<co.(i and Ui-l.,(U,T), then i.e. TF-lY+i(U,T). Butt'+1<co.R<_a.

Quod non.

Let a=c&.((3+1). Take T:=PA and U:=RPA+1., R(RPA,PA). By E1-completeness
Hence UF-± (U,T). Clearly (U,T), so T[-.iw.(R+1)

We leave it to the reader to verify that for no y<c).[i UF-±Y(U,T) and for no 6<co.([+1)
TF-1S(U,T).

10.6.8 Consequence

L1(RPA,PA)=CSM1, L2(RPA,PA)=CSM2.

10.6.9 An Arithmetical Completeness Result for CSM3

Suppose CSM3e4). Then there is an interpretation function f* such that:

Ni (4))(f*,RPA,PA).

Proof: Suppose CSM3e4). Consider the model G constructed in 8.35. G is of the form
Ts 'RGa, where Ga is finite. We have bdo f. Clearly Ni=L=j. Consider h, [.], <.> based
on G, RPA and PA. We find >N w [O], and so by 10.6.4 IN i<4)>.

10.7 The CSM Theories under the M-Interpretation

Consider a Carlson-2-frame F of the form (Ds(DRFa, where Fa is a Carlson-frame with
bottom ba.

Define by the Recursion Theorem:

h(0,v) := b

h(x+1,v) :=

if hxRy and ProofPA(x,Lv#y)

if hxSy and Proof PArv(x, Lv#y)

otherwise

Lv := the unique x such that 3y'dz>_y h(z,v)=x
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[X]v := LVE rX1

10.7.1 Lemma

i) PAf NH x<y --) h(x,v)WSh(y,v)
ii) PAf NH "Lv exists"

Proof: Entirely routine.

10.7.2 Second Commutation Theorem

[.]v commutes with the propositional logical constants modulo provability in PAM and:
a) PAfNE- `dv_N ([LX]v H APA,v[X]v),

b) PAfNH Vv_N ([oX]v PA[X]v).

Proof: The proof is completely analogous to the one of 10.6.2. Note that we need to
verify that 10.3 even holds for PAM.

10.7.3 Definition

Consider a Carlson-2-model G=<F,f>. Suppose G is of the form 'FS'FR Ga, where
Ga <Fa,fa> and Ga is a finite Carlson-model (also finite in the sense that fa(p)=Q) for all
but finitely many p), with bottom ba. Define for pEL:

[$]v := [Qolf]v.

Let f*p:=[p]v, and define:

<O>v := (4)(f*,PA,v),

10.7.4 Theorem

PA%- Vv>N (<4>ve- [[]v)

Proof: By a trivial induction on 0 using 10.7.2.

10.7.5 Arithmetical Completeness for CSM1

Suppose CSM1i7 . Then there is an open interpretation function f* such that:
PAv Vv_N (0)(f*,PA,v).

Proof: Suppose CSM1i7 . Consider the finite set-model Gaconstructed in the proof of
8.32. The bottom, say z of Ga forces 0 (under fa ). Consider Gc:=iPS PRGa. Let
u=«z,0>,0>. Clearly the submodel with domain uWS0 will be isomorphic to G of the
proof of 8.32 Hence, because uWSC is upwards closed Gc the forcing relations of Gc
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and G of 8.32 will coincide on the nodes connected by the isomorphism. Ergo u li O(fd.

Hence for some a<°° and for all wEK.: wlF-(O^AO)- -La.

Let h, [.]v, <.>v be based on G. We have: PAr V v_N [(4),.A 4))-* L Jv and thus by
10.7.2: PAF- Vv_N ([4)]v,.APA,v[4)]v) -> [1a]v. Let ic be a proof of this fact.

Suppose PAF- Vv>N <4)>v. Then by 10.7.4: PA[- Vv_N [4)]v. Let ic* be a proof of this fact.

Let M be bigger than both N and the codes of the arithmetical axioms in ic and is*. It
follows that:

PAM- ([$]NI..OPAm[$]M) - [1aM,
and:

PAM- 10IM'APAU10IM'
Ergo PAM-[1a]M, quod non.

10.7.6 Arithmetical Completeness for CSM2

Suppose CSM2i 4. Then there is an open interpretation function f* such that for some
k?N PAl, (cp)(f*,PA,k).

Proof: In fact we have for all k_N PAi,(4))(f*,PA,k). The proof for the pair PA, PAfk is
fully the same as the proof for the pair RPA, PA.

10.7.7 Arithmetical Completeness for CSM3

Suppose CSM3v4). Then there is an interpretation function f* and a k?N such that:
IN w (0) (f*, PA, k).

Proof: Again this holds for all k?N. The proof is the same as the proof of 10.6.9.

10.7.8 Montagna's Uniformization Theorem

Let Cx be a formula of the language of PA. Define fC by: fCpi:= Ci. There is a
A2 formula Bx with just x free such that for all 4):
i) CSM1i-4 PAF- Vv_N (0)(fB,PA,v),
ii) CSM2i-4 <4 for all k_N PAi-(4))(fB,PA,k)..
Note that we do not only obtain uniformization in this way but also closed counter-
examples.

Proof: We first give a sketch of the proof of (ii). This part of the proof is taken from
Montagna[1984].

Let for 0 such that CSM2i 4), f4) stand for the counterexample function constructed from
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an appropriate countermodel.

Let TR be a A2 truthpredicate for Boolean combinations of E1-formulas with just v free.
This means that if Dv is such a Boolean combination we have:

PAF- Vv(TR(Dv,v)H Dv).

Consider Bx such that:

PAF- Vx( Bx H if for any <y,v,o>, which is the first (coded) tripel such that
CSM2vo, v_N, ProofPA(y,(0)(fB,PA,v)) we have: TR(fOpx,v) ).

It is easily seen that Bx is A2.

Suppose CSM2vo, but for some k_N PAF-(O)(fB,PA,k). It follows that there is a <q,m,yr>

such that:

PAi- <.Q,rrm, 5> is the first triple such that CSM2VW, m>_N and ProofPA(Q, (0)(fB,PA,m))

Hence:

PAi- Vx( Bx H TR(fwpx,rrm)).

Because PAF-(yr)(fB,PA,m), we find: PAi-(yt)(fW,PA,m). Quod non.

Finally we prove (i): remember that by a Kripke model argument:
CSM1i0» CSM2i-A .

We have:

CSM1 F-0 = PAf NF- Vv>!N (0)(fB,PA,v)

for all k?N PAi-APA](O)(fB,PA,k)

CSM2F-A

CSM1F-O.

13

11 The essentially E-formulas of Lo

A formula 0 of Lo is called essentially E w.r.t. T if for all interpretations f t(f,T) is prova-
bly equivalent in T to a E1-sentence.

In this section we want to characterize the essentially E-formula's of Lo w.r.t. PA. The
first conjecture that comes to mind turns turns out to be correct: such 0 are provably
equivalent in L to T or to 1 or to a finite disjunction of sentences of the form o.

How to prove this conjecture? A first idea is to look at those yr in Lo such that LF-yr4
Perhaps they are precisely the essentially Y--formulas w.r.t. PA? This idea however
does not work. Consider e. g. p,-..op. Clearly Ll- (p.. p) - (p.. p), but there is an
arithmetical sentence A such that is not provably equivalent to a E1-senten-
ce in PA. (This well known result is due to Kent, see Kent[1973].) A second idea is to
use an operator A standing for provability in a theory U which is weaker than PA (e.g.
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PRA) and to consider those yr such that yr- Ayr is arithmetically valid. This idea does
not quite work yet: one only gets a characterization of the 0 such that for all interpre-
tations f 4(f,PA) is provably equivalent to a E1-sentence in U. The way in which the
second attempt fails suggests that one should look at a theory or theories that is/are in
some sense weaker than PA, in some other sense equal to PA. This third idea works. I
found two ways to implement it. The first one is to use Montagna's interpretation of
CSM2 plus his uniformized completeness theorem. The growing sequence of finite
subtheories is as it were in the limit (extensionally) equal to PA. A disadvantage of this
approach compared with the one elaborated below is that the counterexamples it
produces tend to be A2 rather than Boole(E1). The second way to work out the third
idea is to consider the interpretation associated with NB1. This way will be pursued
here. (Both succesful strategies use -in different senses- infinitely many interpretations
of A; whether this is a necessary feature I don't know.)

11.1 Theorem

Suppose 4ELo and 0 is essentially Ew.r.t. PA. Then NB1f-O-oo.

Proof: Let be an essentially E-formula w.r.t. PA of LO. Consider any false E1-sentence
S and any, interpretation function f. Clearly: (4)(f,PA)=(4)(f,PA,S). Ex hypothesi there is a
E1-sentence A such that PAi-(4)(f,PA) H A. It follows that PA -APA s((4)(f,PA) "A) and
hence PAi-APA s(4))(f,PA) H APA,sA. Thus:

PAl- (4)(f,PA,S) -> A
APASA

(A4)(f,PA,S)

By the arithmetical completeness theorem for NB1 we may conclude: NB1l-4- A4.

11.2 Fact

Suppose 4c Lo. Then: NB1 l4 Li-4.

Proof: The proof is surprisingly trivial. The "<=" side is as usual. For the "W' side note
that substituting for "A" in NB1 axioms and rules yields theorems and rules of L.

I

11.3 Theorem

Suppose 4ELo and NB1i-4->A4, then Lt--O" Wo-a.

(We use convention 9.2 here. Note that the disjunction may be empty, in which case it
reduces to 1, or one of the o may be T, in which case the disjunction reduces to T.)
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Proof: Let 4 E L0 and suppose N B1 i- 4 -* A o. Clearly 0 can be written in the form
W where yr,XEL0. Consider any disjunct We
may assume that LV /X\ yr--* x, otherwise C would reduce to i and could be dropped
from our disjunction. Similarly we may assume that the p in C and the q in C are
disjoint. Clearly NB1 We claim: LF-/X\oyr-*4. Suppose not.
There is a finite L-model K,=«K,,R>,f,> with bottom b, such that: b0iV /X\ yr-+0(fo).
Moreover for each of the x occurring in C there is a finite L-model Kx=«Kx,Rx>,fx> with
bottom bx such that bx lV /X\ oyJ-* x(fx). Let "p" range over 0 and the x in C. Without
loss of generality we may assume that the KP are pairwise disjoint and do not contain
0.

We "glue" the KP together to a Carlson-model (and hence a set-model) G in the
following way: G:=<F,f>, where F=<K,K0,S> and:

K {0}uUKP

K0 := U(Kp\bP)

xSy :4--* (x=O and yA) or (for some p: x,yEKP and xRpy)

fp1 := Ufppiu{Ojp1 is a p in C}

Clearly if xEKP and aEL0: xll-a(f) xlra(fp). for each of the yr in C. Moreover:
ORx (bPRx for some p). It follows that For each x of C bx1V x(f), so there is
an x in Kx\bx with xIV x(f). Hence for each x in C: 016 x(f). Also 011--p(f) for the p in C

and OiV q(f) for the q in C. Conclude Finally bcIV 4(f).

Now consider G':=PsG. Say G =<F,f>. G' is a Carlson-1-model (and hence a set-1-
model). By 8.22 <0,0>1F-C(f'),, because CEL0 and no formulas of the form Aa occur in
Lo. Also <N,0>v4(f) (because 4E4). Hence <0,0>u, Ao(f'). Contradiction!

It follows that U- (W /X1 yr)-* 4. On the other hand clearly W /X\ yr. Finally:
oa for some a (which may be taken T if the conjunction is empty). Hence

LF-0 (-4 W a.

11.4 Theorem

Suppose 0 is in Lo. The following are equivalent:

i) 0 is essentially E w.r.t. PA

ii) NB11-404
iii) LF-4 H W a.

Proof: is 11.1; is 11.3; " (iii)=>(i)" is trivial.

11.5 Kent's Theorem revisited

Clearly if 4EL0 is not essentially E w.r.t. PA our method should provide us with counter-
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examples to that effect. Let's by way of example show that pop is not essentially E
w.r.t. PA.

First we show that This is easily verified by considering the
following Carlson-1-model:. G:=«{1,2},l,S>,f>, where 1S2 and fp={1 }.

To find the desired arithmetical counterexample we must change G into a set-2-model
and embed this into arithmetic.

Let G`.=<<{O,1,2},Q,{1,2},S'>,f'>, where OS1 S2 and f'p={0,1 }. Let G" be PRG'. Clearly
G" is set-2-model of the desired sort. Let [.] be the interpretation function associated
with NB, PA and G". B:=[p] is clearly a counterexample as desired. Note that f"p is
downwards closed in G", so B is (provably equivalent in PA to) a II1-sentence.

Inspection of the model G" shows that B itself has the property: but B is

not provably equivalent in PA to a E1-sentence.

11.6 Open problems

i) Our proof of theorem 11.4 uses the essential reflexiveness of PA. The proof would
also work if we substituted any essentially reflexive extension of PRA for PA. What
is the situation for PRA? Do we still have the equivalence between (i) and (iii) of
11.4 for PRA? (Conjecture: yes!).

ii) What are the essentially 1-formulas w.r.t., say, PA in L. extended with the Rosser
orderings, i.e. the language of the theory R of Solovay & Guaspari under the usual
interpretation. (This problem was first posed by D. Guaspari, see Guaspari[1983].)

11.7 Remark

Let's extend the language Lo to L0(E) by adding new propositional variables s. An
interpretation function for the extended language assigns to the old variables p
arithmetical sentences and to the new variables s E1-sentences. Let LE:=L+i-s-* r]s. It
is easily seen that L. is arithmetically sound and complete (interpreting as PA). The
argument of this § can be extended to show that the essentially E-formulas of L0(E) are
precisely those 0 that are provably equivalent in L., to formulas of the form W

12 A reduction theorem for Relative Interpretability

Consider a set-2-frame F, of the form (Ds(DRFa, where Fa is a finite set-frame. Let [.] be
the embedding of the propositions of Finto arithmetic defined in 10.5. S:=3x hxEK1. Let
X be a proposition. Finally we write "v +PA sC" for: C.. V PA,sC, and "O +PAC" for:
C.. O PAC.
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We have:

12.1 Reduction Theorem

PAH [X]<PAB c-* PA[X])))

Proof: Reason in PA:

Suppose -S. We have: [X] a PAV PA S[X]. Hence by 11,13: [X] =PAV +PA,s[X]. By

10.5.2: PA(V +PA,s[X] c-a [v +X]), hence, because v +X is downwards closed,

PA(V+PA,s[X]" Vx Hence:

[X]©PAB H (V +PA,S[X]) 1 PAB 12

(Vx hxErv+X1)zPAB 11,12

PA(B- Vx hxE'V+)0
PA(B-)V+PA,S[X1)

Suppose S. By 16: [X]©PAOPA[X]. Hence by 11,13: [X]=PAO+PA[X]. By 10.5.2:
PA(O+PA[X] c a [O+X]). By the reasoning of 10.5.2 (case (b) PALE KO. We

claim: PA([O+X]H Vx hxE'O+Xl ).

Reason in PA:

The "(--" side is trivial. For the "-_" side, suppose L=zE RO+X1. zEK0, hence

for every y with yWSz we have yWRz and thus yE rO+Xl.

PA

It follows that: PA([O+X] c---> tax hxE rO+Xl). Hence:

[X] PAB (G+PA[X])©PAB 12

(Vx hxErO+X1)QPAB 11,12

PA(B-* b'x hxE J
PA(B--)Q+PA[X])

PA

Translating the above result back to the frame we define:
X<Y :_

Alternatively define:

xE(X<Y) :4:* for every y with xRy and yEY there is a z with xRz, yWSz and zEX.

As is easily seen both definitions amount to the same thing. The Reduction Theorem
implies: PAI- [XaY] H [X]<PA[Y],

The Reduction Theorem can be used to produce arithmetical counterexamples to
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various principles for PA and <PA. For example consider the following countermodel
to p ©T - (p a T ): first define Ga by: Ka:={1,2,3,4}, Kai :={2,3,4}, Kao:={3}, 1S2S3S4,
fap={4}. G:=' S'YRGa. Clearly «1,0>,0>il-p<T(f), but «1,0>,0>iv (p<T)(f). Hence:

PAv [P]<PAT - PA([P1 PAT).

Note that [p} is provably equivalent to a 11-sentence. So our present counterexample is
as good as the one produced in 7.3.4.

Excercise (De Jongh): Show that there are A,B,C in the language of PA such that:
PAv

^-.C) ..(C^-,A^-,B))) -

Our present reduction theorem is to poor to produce counterexamples to all

arithmetically non-valid principles for a PA, e.g. 1-p< T --,(,p©T) is arithmetically
non-valid, but in no set-2-frame is there a clopen X with (Xa T^,X1 T)=T.
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