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A Course in Bimodal Provability Logic

Albert Visser

1 Introduction

The aim of the present paper is twofold: first | am somewhat dissatisfied with current
treatments of Bimodal Provability Logic: the models employed there are singled out by
certain syntactical conditions, moreover they validate the logics under consideration
only locally. In this paper | give a decent model- & frame-theory for these logics.

Secondly | study the modal logic of subsystems of Peano Arithmetic whose axiom sets
are bounded by non-standard numbers (to be specific: non-standard numbers specifi-
able as the smallest number satifying some A,-formula). These systems play a role in
certain arguments concerning Relative Interpretability. Moreover the Arithmetical
Completeness Theorem for these systems can be applied to characterize which
formulas of the language of ordinary, 'unimodal’, provability logic are X, (modulo
provable equivalence in Peano Arithmetic) under all arithmetical interpretations (where
the o is interpreted as provability in Peano Arithmetic).

Why go bimodal? Why study the logic of the provability predicate of a system in combi-
nation with the provability predicate of a familiar system like Peano Arithmetic as
opposed to simply studying the logic of the new provability predicate alone? One
possible answer is: because there is a 'coupling' effect between the 'new' predicate
and the familiar one. The familiar predicate functions as an auxiliary to prove and
express facts about the 'new' predicate. For an elaboration of this theme, see:
Smoryriski[1985], chapter 4. This answer will not do however for the systems studied in
this paper, for in each case there is provably a complete decoupling between the
predicates considered. In fact the logic of the 'new' predicate, taken alone, is in each
case Lob's Logic L. Our answer should rather be (i) that only in combination with the
familiar predicate do the specific properties of the new one become visible at all (or
perhaps: that we are simply interested in the interaction between the two predicates)
and (ii) that in some cases results about the bimodal system can be applied to the
traditional 'unimodal' system (see section 11 of this paper).

2 Prerequisites
Knowledge of Smoryriski[1985] should be amply sufficient.
3 Acknowledgements
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Bimodal Provability Logic, May 22, 1987 , 12:10 . 1



stimulating discussions.
4 Contents of the paper

In section 5 some notations & simple or known facts are introduced. Section 6 descri-
bes the modal systems studied in this paper. Section 7 gives the arithmetical
interpretations that motivate the study of these systems. Section 8 is an extensive
treatment of the Kripke model semantics of the systems under consideration. Section 9
studies the closed fragment of one of these systems. In section 10 | prove Arithmetical
Completeness of the systems and section 11 contains an application of these comple-
teness results: | give a characterization of the formulas of the usual modal language for
Provability Logic that are X, (modulo provable equivalence in Peano Arithmetic) under
all arithmetical interpretations (where the O is interpreted as provability in Peano
Arithmetic). Section 11 briefly dwells on the connection between the work in this paper
and Relative Interpretability.

5 Conventions, notions & elementary facts

In this paper we restrict our attention (mainly) to RE theories T extending PA in the
language of PA. This restriction is not at all essential: many results go through for RE
theories T into which PRA can be interpreted. For certain results we use that the

theories considered are essentially reflexive. These results evidently cannot be
claimed for e.g. PRA.

5.1 Terms

We will employ 'terms' for any definable function that is provably total in PA. For our
purposes we may remain neutral as to whether these 'terms' are really in the language
or just function as abbreviations. It is convenient to make a terminological distinction
between 'terms' for provably recursive functions and others. If we have a 'term' for a
provably recursive function we will simply call it a term, otherwise we will speak of a
semiterm.

5.2 Formulas

At certain points in this paper the precise form of formulas will be relevant, so we need
some slightly idiosyncratic conventions.

A formula A of the language of PA is A, if all quantifiers of A are bounded (i.e.
bounded by terms, where the variable of quantification does not occur in the bounding

term).

Aformula Ais Z if itis of the form 3x,...3x Ag(Xy,....X,,), where AjEA,.
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Aformula Ais II if itis of the form Vx,...VX Ag(X{-...X,,), Where Aj€EA,,.
A formula A is A, if it is provably equivalent in PA both to a £- and to a TI-formula.

A formula A'is X, if it is of the form 3xA,(x), where Ay€A,. (It is essential that we have
one existential quantifier here!)

Clearly the difference between £ and X, disappears modulo provable equivalence in
PA.

5.3 Provability

Let Proof;(x,y) be the A, arithmetical formula representing the relation: x is the
Godelnumber of a T-proof of the formula with Gédelnumber y. We assume that every
theory comes equipped with a A,-formula o representing the set of (non-predicate-
logical) axioms. So identity of theories simply is not identity of the sets of theorems.
Proof; will be built in some standard way from o If we want to stress that we are
looking at the Proof-relation based at a certain specific formula B we write: ProofB.

We assume for convenience that: PAVx3ly Proof;(x,y) . Let Prov,(y) := 3xProof (x,y).

We write par abus de langage 'Proof(x, A(xy,....x,)) )" for:

Proof(x,'A(X 4,...,%,)'), here:

i) all free variables of A are among those shown.

i) A(Xy,...,X,) is the "Godelterm” for A(xy,...,x,,) as defined in Smoryriski [1985],
p43.

'OAX X)) OF "ATA(Xy,...,X,)" Will stand for: Provi('A(X,...,X,)'). The choice whether
to use o or A will depend on extra-arithmetical considerations, namely the modal
system we are studying.

If t is a term (by our convention: for a provably recursive function) we will have (suppo-
sing that t is substitutable for x in A):

PA- (O7A(X)[UX] < DOA(D).
So as long as we only consider terms we may indeed treat x,...,x,, in O7A(X4,...,X,) as
free variables. Occurrences of semiterms within 'modal’ context should always be read
with the smallest possible scope. Similarly for A-.

'O+ will stand for: —oO;- ,and 'v{' for: —A¢- .
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5.3 O¢fx and O*

Suppose T is given by .

Define:  alx(y) & (o(y)Ay<x),
OfxA & 0O,A,
O1Ix A & —DOIx-A,
oA & dxogfxA.

Of course PA- O;A < DO7*A , but the difference in form will be of some importance
when Rosser-orderings come into play. (The usefulness of o;* in this connection was
discovered by Svejdar, see Svejdar[1983].)

5.4 Witnessing and the Rosser-ordering

Let A be of the form IxA,(x). Define for terms t: t wit A ;< A,(t) . Here we assume that
bound variables in A, are renamed -if necessary- to make t substitutable for x in A,,.

Let A be of the form 3xAy(x) and B of the form IxBy(x). The Rosser-orderings between
A and B are defined as follows:

A<B & Ix (Ay(X)A Yy<x=By(y)) ,
A<B & Ix (Ay(x)A Vy=x=By(y)) .

We will always apply witnessing and the Rosser-ordering to the precise forms in which
the relevant arithmetical formulas are introduced.

In connection with the NB-systems we will consider formulas of the form op,*C<S,
where S is a X;-sentence. It is easily seen that Op,*C<S is itself Z,. (This depends
crucially on the fact that S consists of just one existential quantifier followed by a
A,-formula.) On the other hand S<op,*C need not even be provably equivalent to a
Z,-sentence. (S<op,*C happens to be A,.)

55 Relative Interpretability

Let T be an RE theory (verifiably) extending PA in the language of PA. In this case T
will be essentially reflexive.

'‘A<1{B’ stands for the arithmetization of: T+A is relatively interpretable in T+B. We write
'‘A=;B’ for: A<;B and B<{A.

By a result of Orey and Hajek:
PA- A<:B & VxOp(B-O1IxA).
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We list a number of principles valid for o and <;:

11 PA- oO;(B-A) - A<B

12 PA- (A<{BAB<;C) -» A<.C

13 PA- (A<;BAA<;C) - A<14B\C)
14 PA- A<{B - (0B-<-A)

15 PA- ©;A<:B - OB-<¢A)

16 PA- A<;O4A

17 PA- A<:B - (AAO{C)<(BADO;C)

The principle 17 is due to Franco Montagna. An additional useful principle of which 14
and 16 are consequences is:

J forall Pin II;: PA- P<{B - O(B-P)
For further information see: Svejdar[1983] and Visser[1986].
6 The Modal Systems

For the record | first describe the usual Ldb's logic L.

Let L, be the language of modal propositional logic. The truthfunctional connectives
are: 1L,~,v,—,—,e . The modal operator is 0. Léb's logic L is given as the minimal
set of Ly-formulas containing the following axioms and closed under the following
rules:

LO All tautologies of propositional logic
L1 F O(¢-y) - (0o-0y)

L2 F O¢ - oo¢

L3 F O(Od—9) » 0o

L4 O and H(d-vy) = Yy

L5 —é = ~0O¢

We turn to the bimodal systems that are the subject of this paper.

Let L be the language of bimodal propositional logic. L is the result of adding the
modal operator A to L,. The logic CSM, is given as the minimal set of L-formulas
containing the following axioms and closed under the following rules:

A1 All tautologies of propositional logic
A2+ Ald-y) - (Ad—AY)

A3 F A(AG—0) - AD

A4+ O@¢-y) - (Oo-0y)

Bimodal Provability Logic, May 22, 1987 , 12:10 . 5



A5 F AG - O¢
AB F 06 - ADo
R1 o and H(d-y) = Fy
R2 FO = + Ad
Some theorems of CSM,, are :
B1 H AO - AAD
B2 + A - DOAG
B3 F oO(od—¢) - Oo

B4 oo - oo¢

The logic CSM, is given as the minimal set of L-formulas closed under R1, R2 and
containing A1-6, plus:

A7 F O(Ad—0)

The logic CSM, is given as the minimal set of L-formulas closed under R1 and
containing the following axioms:

A8 All theorems of CSM,
A9 F Ad - ¢

The logic CSM; is given as the minimal set of L-formulas closed under R1 and
containing A8 and:

A0 +~ O - ¢
Clearly A9 is derived in CSM,.

The logic NB, is given as the minimal set of L-formulas closed under R1, R2 and
containing A1-6, plus:

A1l (=AOADO9) » O(AY-Y)

Finally the logic NB, is the minimal set of L-formulas closed under R1 and containing
A10, plus:

A12  All theorems of NB,
A13 + o6 —» Ao

'CSM' stands for: Carlson-Smoryn®ski-Montagna. CSM,, is PRL, of Smoryriski[1985]
and F~ of Montagna[1984]. CSM, is PRL,r of Smoryriski[1985] and F of Montag-
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na[1984]. CSM, is PRL.+Reflection, of Smoryriski[1985] (Smoryriski writes 'Reflec-
tion', but his o0 is my A, and his A my o) and it is F, of Montagna[1984]. CSM; is
PRL-+Reflection; of Smoryriski[1985]. The NB-systems are new on the scene. NB
stands for: Non-standardly Bounded.

It is easily seen that each of the CSM and NB systems extends L.
7 Arithmetical Interpretations

An interpretation function f is a function from the propositional variables of L to the
sentences of the language of PA. We will also consider functions from the propositional
variables of L to formulas of the language of PA. In this case we will speak of open
interpretation functions.

7.1 CS-style Interpretations for the CSM theories

Let T and U be RE extensions of PA in the language of PA. We will write 'A ' for
provability in T, ‘0 for provability in U. We assume that U-AA— A, for all sentences
A of the language of arithmetic. (The restriction to the language of PA is not at all
essential here: all results of this section could be stated for RE T and U such that PRA
can be interpreted in T (say via (.)*), T can be interpreted in U (say via (.)*) and
Ur((A+A)*)*—(A)* for all sentences A in the language of T.)

7.1.1 Definition

Let f be an interpretation function. We define (.)(f,U,T) from L to the sentences of the
language of PA as follows

- (P)UF,U,T) =1p
- (.)(f,U,T) commutes with the propositional logical constants
- (@o)(FU,T) = oy(9)(FU,T)
s (A0)(F,U,T) = Ar(0)(FU,T)
7.1.2 Soundness for CSM,
CSM;-¢ = Tr()(f,U,T)
Proof: entirely routine. O
7.1.3 Soundness for CSM,

CSM,-¢ = Ur(¢)(f,U,T)

Proof: entirely routine. O
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7.1.3 Soundness for CSM,

Suppose U is true, then:
CSMz-¢ = NE(¢)(f,U,T)

Proof: entirely routine. ]

7.2 M-style Interpretations for the CSM theories

Let f be an open interpretation function. Let v be a fixed variable. We write "Ap, (A"
for: OpplVA.

We set our definition of interpretation up in a way slightly different from Montagna's
(see Montagna[1984]). We take it to be known that some finite subtheory of PA implies
(translations of) all the arithmetical axioms of PRA. (This uses the existence of a
X,-truthpredicate for X,-sentences.) We fix a number N such that N is bigger than all
the Goddelnumbers of the arithmetical axioms of this finite subtheory. Because
PRAR VAV XxOpa(OppIXA—A), we have PAINE- VAV XOpa(OpplXA—A).

7.2.1 Definition

Let t be a term in the language of PA. We define (.)(f,PA,t) from L to the sentences of the
language of PA as follows

- (p)(f,PA) :=fp[v]

- (.)(f,PA,1) commutes with the propositional logical constants

- (O6)(F,PALY) = Opa(9)(FPAY

- (A0)(f,PALY) = App (()(E.PA.Y

Note that for this definition to work it is necessary that t is substitutable for v in fp for all
atoms p.

7.2.2 Soundness for CSM,

CSM,-¢ = PAINK Yv2N($)(f,PAv)
= PAVYVv2N()(f,PAY)

Proof: One shows that {¢|PAIN Yv=N(¢)(f,PA,v)} contains the axioms of CSM, and
is closed under R1,R2. As usual we just treat a sample.

First we check R2. Clearly it is sufficient to show:
PAINEVVv2NBv = PAINE VV2NAp, Bv.
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Suppose PAIN Vv=NBv. It follows that PAIN-DOp,INYV=NBv and hence that
PAINE Vv2NOp VBV,

Next we check A7. Clearly it is sufficient to show:

PAINEVv2NOpA(Ap, BV—BV).
But this last principle is an immediate consequence of the fact that the Reflexiveness of
PA is verifiable in PATIN.

The other axioms and rules are routine. O
7.2.3 Soundness for CSM,

CSM,-0 = for all k>N PA-(0)(f,PA k)
Proof: The fact that {¢|for all k>N PA(¢)(f,PA,k)} contains A8 is an immediate
consequence of 7.2.2. . A9 is in because of the Reflexiveness of PA. Closure under R1
is trivial. O

7.2.4 Soundness for CSM,

CSM;¢ = for all k=N Ni=(¢)(f,PA,k)
e NEeVYv2N(o)(f,PA,v)

Proof: entirely routine. O
7.3 Interpretations for the NB theories

Let S be a false X;-sentence. Say S=3xSyx, where SyeA,. Define:

Clearly App gAEZ;.
We note some equivalents of App gA.

Suppose p is the Gdédelnumber of a PA-proof w. Let Ip be the supremum of the
Gddelnumbers of the arithmetical axioms occurring in & If p is not a Gédelnumber of a
PA-proof, let Ip be 0. We make the reasonable assumption that the Gédelnumbers of
formulas occurring in a proof © are smaller then the Gddelnumber p of x. Hence for
p=0: Ip<p. We have:

PAR AppagA © Ty Proofpp(y,A)A Vz<ly-Syz.

Suppose rnx is the A,-formula associated with PA. Define:
wluS(y) = mya Vz<y-S§,z.
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We have:

7.3.1 Definition

Let f be an interpretation function. We define (.)(f,PA,S) from L to the sentences of the
language of PA, as follows:

- (P)(f,PA,S) :=1p

- (.)(f,PA,S) commutes with the propositional logical constants

- (O6)(f,PA,S) == Opa(9)(f,PA,S)

- (A0)(f,PA,S) = App 5(0)(f,PA,S)

7.3.2 Soundness for NB,

NB,~¢ = for all false Z,-sentences S and for all interpretation func-
tions f: PA-(¢)(f,PA,S).

Proof: One shows that {¢€L|PAr(¢)(f,PA,S)} contains the axioms of NB, and is
closed under the rules of NB,. Most of this is routine. Closure under R2 essentially
uses the falsity of S. We check A11.

Suppose S is a false XZ;-sentence. Itis clearly sufficient to show:

Reason in PA:
Suppose -App A and OppA. It clearly follows that S<op,*A, and hence that S.
Let u be the smallest witness of S. Clearly Op(App gB <> OpaluB). Hence (by the
essential reflexiveness of PA): Opa(Aps sB—B). oPA

Note that we cannot go from S<Op*A 10 Opp(S<Opa*A), S<Op,*A not being in

general provably equivalent to a X,-sentence. If we could, the principle:
FH(=ADAOP) > A(=AOADOD),

would be valid, but it isn't: the arithmetical completeness theorem for NB, provides a

counterexample (see §10).

7.3.3 Soundness for NB,

NB,—¢ = for all false X,-sentences S and for all interpretation func-
tions f: Ni(0)(f,PA,S).

Proof: entirely routine - ]
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7.3.4 Appg and <p,

One of the reasons to be interested in Apy, ¢ is the fact that it interacts with relative
interpretability in an interesting way. Let S be a X,-sentence (not necessarily false). We
have:

PA- S - (A<ppB—0Opp(B-VpasA),
and:

PA- =S - A< PAVPA,SA'

Proof: Reason in PA:

To show the first principle assume S and A< ,B. It follows that
VxOpa(B— ©palxA). Let u be the smallest witness of S. Clearly for any C:

Opa(&pa sC < OpaluC), hence Dpp(Vpa gA e OpalUA). Conclude:

To show the second principle, assume —-S. We have: Vx-Syx. Hence by -
completeness VxOps—SpX. Thus: VXOpa(OpaIXC—App sC) for any C. It follows
that: VXOpa(Vpa sA— OpalXA) and hence A<9p,Vpp A, OPA

We can use the above principles to produce a variant of an argument due to Per
Lindstrém to show that sentences of the form A<;,B are not always provably
equivalent to a Z;-sentence. Pick by the Godel Fixed Point Lemma a X,-sentence J
such that PARJ & Ap, g—J. We claim:

PAR J<UppT < (S—0Oppl).

Proof: Reason in PA:

"—". Assume J<Ip, T and S. It follows that DpaVpa gd and hence Opp—J. On
the other hand J<, T implies by 14: & pp T = Opad. In other words:

"« ": First assume -S. It follows that J<9p,Vpp od. Hence by [1,12: J<ap,—J.
On the other hand (by 1) J<tp,J. Hence (by I13) J<pa(dv —J), i.e. (by I1,12)
J<UpaT. Secondly assume Op, L. It follows immediately that: J<tp,T. Hence
from (S—»0ppl) i.e. (-SvOp,Ll) we have J<Ip,T. oOPA

If we take e.g S:i=Op,0paL, then it is easily seen that J<I, T is not provably
equivalent to a Z,-sentence.

Note that if S is false (or even just if the smallest witness of S is 'big enough'), Léb's

Logic will be valid for Ap, 5 and hence J will be provably equivalent in PAto Apy gL
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In §12 we will look at the above argument from the point of view of embedding a
countermodel to NB,-p<<T-0O(p<<T) into PA.

8 Kripke Semantics

Our aim in this section is to provide a decent semantics for the CSM- and NB-systems.
The usual treatment of CSM-style systems in the literature suffers from three disadvan-
tages: in the first place the models considered are partly specified 'syntactically’: there
should be nodes that force such and such formulas. Consequently the usual treatment
does not admit a frame-theory as opposed to a model-theory. This is surely inelegant,
but, what is more, some of the practical ease of constructing models using the
geometrical intuition is lost. The second disadvantage is that the models employed in
the literature only locally (i.e. for certain restricted classes of formulas) satisfy the
principles of the theory under consideration. Thirdly and lastly under the usual
approach Solovay-style arithmetical interpretations do not provide an embedding of
the diagonalizable algebras associated with the Kripke models into the diagonalizable
algebra of Peano Arithmetic. All three disadvantages are absent in the present
approach. One sacrifice has to be made however: our models cannot be finite
anymore. | think this is only a seeming disadvantage: the models considered are not
finite but -as will be explained in due course- compact, which means that their
'‘propositions' can be specified in a direct and simple way. Compactness guarantees
that the sentences used in the arihmetical embeddings have a particularly simple form.
Moreover we have the additional advantage that certain natural models like the Henkin
model of the closed fragments of the theory under consideration are in the relevant
class of models used in both the Kripke-model and the arithmetical completeness
theorem for that theory.

The main problem we are facing is how to deal with the Reflection Principle in
irreflexive Kripke-style frames. The constraint we want to put on solutions is that the
nodes satisfying the Reflection Principle should be precisely the nodes satisfying some
simple condition that is given in terms of structure. Our solution is to have our frames
equipped with a certain topology. The nodes satisfying Reflection will be precisely the
limit points in the sense of this topology.

First we introduce frames.

8.1 Definition

A preframe Fis a structure <K,R,S>, where:

i) K is a non empty set.

i) Rand S are binary, irreflexive relations on K.

i) R<S.
iv) Rand S are transitive, and: xSyRz = xRz.
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R is the accessibility relation for the o; S is the accessibility relation for A.

Per abus de langage we will ascribe relational properties to F while intending to
convey that S satisfies these properties. E.g. we say "F is upwards wellfounded"
meaning that S is upwards wellfounded.

8.2 Some notations

xWSy :& xSy or x=y
xWRy :< xRy or x=y
xS := {yeK]|xSy}

Sx = {yeK|ySx}
etcetera ...

8.3 Definition

i) Consider a preframe F=<K,S,R>. Define a topology Of by taking the sets of the
form xXWS and Sx as subbasis.

ii) Fisa frameif Fis treelike, i.e. xSz and ySz = xWSy or ySx, and the sets xR are
open in O The clopens of O are the propositions of the frame F.

At this point we give some information about the topology O . A.o. we characterize
what it is for a frame to be compact. Compactness is important for us because the
models we are going to embed into arithmetic will be compact models. The crucial con-
sequence of compactness is that the clopens are finite unions of finite intersections of
the elements of our subbasis.

8.4 Fact

Let Fbe a frame, then:

i) xWS, Sx and Rx are clopen.

i) Ogis Hausdorff.

i) If Kis finite, then O is discrete.

Proof: Left as an excercise. O

8.5 Definition

Let F=<K,R,S> be a frame. Consider a subset X of K. x in K is a /limit of X if for all opens
Y in O with xeY there is a 'y in K such that yzx and yeYnX. We say that x is a /imit if x
is a limit of K.
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8.6 Fact

Let F=<K,R,S> be a frame and let X<K. x is a limit of X iff for some u uSx and for every
u,v with xSu and xSv there is a ze X such that xSz, zSu and zSv.

Proof: left as an excercise to the reader. m|
8.7 Definition

Let F=<K,R,S> be a frame. u is an antidirect successor of x if xSu and xSNWSu does
not have a minimum.

8.8 Theorem

Let F=<K,R,S> be a frame. F is compact iff:

iy  For every x there is an S-minimal y with yWSx.
i) S is upwards wellfounded.

i) Every S-antichain is finite.

iv) If x has an antidirect successor, then x is a limit.

Proof: Consider a frame F.

" yn

Suppose Fis compact.

i) Consider Y:={uWSJ|ueK]}. Clearly Y is an open cover of K. Consider a finite
subcover Y,. Let y be S-minimal such that xeyWSEeY,,. It is easily seen that y is
S-minimal in K.

i) Suppose S is not upwards wellfounded. There is an ascending sequence
X1SX,8Xg... . Consider Y:={Sx_[new}u{zWS]for no n zSx_}. It is easily seen that Y'is
an open cover of K that has no finite subcover.

iy Suppose there is an infinite S-antichain. Then by Zorn's Lemma there is a
maximal infinite S-antichain, say X. Consider Y:={xWS|xeX}u{Sx|xeX]}. It is easily
seen that Y is an open cover of K that has no finite subcover.

iv) Consider an x with antidirect successor y. Suppose x is not a limit. Clearly {x} is
open. Let Y:={WSx}u{uWS|not uWSx}. Clearly Y'is an open cover of K. If Y had a
finite subcover, xSn WSy would be covered by a finite number of sets
uoWS,...,u WS for u; with xSuWS8y. Clearly the u; are linearly ordered by S, so
there is a minimum u;. It follows that ujWS covers xXSNWSy, and hence that u; is
the minimum of xSNWSy.

"
Suppose F satisfies (i), (ii), (iii) and (iv). By (i) the set of S-minimal elements is non
empty, by (iii) it is finite. So without loss of generality we may assume that F has a
bottom b.

Bimodal Provability Logic, May 22, 1987 , 12:10 . 14



Let Y be an open cover of K. To find a finite subcover we construct a finitely branching
tree as follows: the nodes of the tree will be of the form <x,0> where O€ Y. Moreover if
<y,0'> lies above <x,0> in the tree, then xSy. The O such that <x,0> is in the tree will
form a finite open subcover.

As bottom of the tree take <b,0,>, where O, is some element of Y containing b.
Suppose <x,0> is a node we already created. We choose its direct successors as
follows. Let X:={yexWS|xWSNnSy< O, yzO}. The elements of X are pairwise incompa-
rable, hence X is finite. For each ye X pick some O'e Y such that yeO' and take <y,O'>
as immediate successor of <x,0> in the tree.

Our tree is finitely branching. Moreover if <y,0'> lies above <x,0> we have xSy, hence
by the upwards wellfoundedness of S the tree has no infinite paths. Conclude by
Kénig's Lemma that the tree is finite.

Let Y,:={O]<x,0> is in the tree}. We claim: UY,=K. Suppose z is notin UY,,. Let Z:={x|for
some O <x,0> is in the tree}. Clearly for some x (e.g. b) xSz and xeZ. Pick x maximal
such that xSz and xeZ. Consider the node <x,0> in the tree. Let y be maximal such that
xWSySz and xWSNWSy< O. Suppose y is a limit. Clearly for some X;,...,x:
yeyWsSnSx;n...nSx,nSz< O,

hence there is an y' with y'zy and y'eyWSnSx;n...nSx,nSz< O. It follows that
yWSNWSy'<€O and thus that xWSNWSy'=(xWSNnWSy)u(yWSnWSy') € O. Moreover
xWS8y'Sz. But ySy', contradicting the maximality of y. Conclude that y is not a limit. By
(iv) yYSNWSz has a minimum, say, u. If u were in O, then uz#z, hence xWSuSz and
xWSNWSu=(xWSnWSy)u{u} <O, contradicting the maximality of y. So ugO. Clearly
xWSnSu=xWSNnWSy< O. By the construction of the tree u will be in Z and thus uzz
and uSz, contradicting the maximality of x.

Conclude that Y}, is a finite open cover. O
We turn to models.
8.9 Definition

Consider a preframe F=<K,R,S>.
i)  We define the following operations on P(K):

dl =0

X =X

XAY =XnY

XY =XuY

X-Y = -XVY

XY = (XoY)A(Y-X)
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AX = {XeK[xS<X}
oX ={XeK|xRE<X}

iy A preassignmentfon Fis a function from the propositional atoms py, py, Py, .. t0
the subsets of K. We define the interpretation [.] from our bimodal language and
preassignments to subsets of K as follows:
- [pIf := fp,
- [.If "commutes" with the logical constants, i.e. [pAyIf=[oIfA[y]If, etc.

If f is an preassignment on a preframe F, we say that G:=<F,f> is a premodel.
Define: xi-¢(f) :& xe[olf.
i) Suppose Fis a frame. A preassignment f on Fis an assignmenton F if fp, is clopen
for all i.
iv) A premodel G=<F,f> is a modelif Fis a frame and f is an assighment.
v) On frames we define:
xi-¢ & for all assignments f on F: xi—6¢(f)
Fi-¢ :& forallxin K: xi-¢

8.10 Fact

Let F be a frame. The propositions are closed under L, -, A, v, =, &, A and 0O.
And thus: [$]f is clopen for any assignment f on F.

Proof: We treat the cases of A and 0. Let X be any subset of X. We show that AX and
oX are clopen.

Suppose xe AX. Consider y with xSy. If ySz, then xSz and hence zeX. It follows that
yeEAX. Ergo xexWS< AX.

Suppose xZAX. For some y xSy and ygX. Clearly xeSy. Moreover if zSy, then zg AX.
Ergo xeSy< (AX)C.

Suppose xeoX. Consider y with xSy. If yRz then xSyRz, hence xRz and thus zeX. It
follows that yeoX. Ergo xexXWS < oX.

Suppose xzoX. For some y xRy and ygX. Clearly xe Ry. Moreover if zRy, then zgoX.
Ergo xeRy < (OX)°. O

8.11 Theorem

Let Fbe a frame. Fi-A(Ap—p)— Ap iff S is upwards wellfounded.
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Proof:

"

Entirely routine.

.

Let X:={x|xWS is upwards wellfounded w.r.t. S}. It is easily seen that X is clopen. Set
fp:=X. Clearly every x in K forces A(Ap-p) under f but any x not in the upwards well-
founded part would not force Ap under f. O

8.12 Theorem

Let Fbe a frame, xeK. We have:
i)  XAp-p « xisa limit point
i) xoOp-p ¢ xis a limit point of xR

Proof:

i)

.

Suppose xiAp-p. If x were not a limit point, {x} would be open and hence clopen
(because our topology is Hausdorff). Thus {x}° would be clopen. Clearly xe A{x}° and
xZ{x}°. To arrive at a contradiction set fp:={x}°.

"
Suppose x is a limit point, X is clopen and xe AX. For a reductio assume x2 X. We have

xexWSNX°® and xXWSNXC is open. x is a limit point, so there is a y with xSy and ygX.
Ergo x2 AX, contradiction.

ii)

" iy

Suppose xi—oOp-p, suppose for a reductio that x is not a limit point of xR. Then there is
an open X such that xe X and XnxR=@. Clearly for certain y,,...,y,:
X€Z:=XWSNSy,n...nSy, S X. Zis clopen by 8.4(i). If xRx', then x'£Z. Hence xeOZ°, but
xgZ°. To arrive at a contradiction put fp:=Z°.

"
Suppose x is a limit point of xR, X is clopen and xeoX. Suppose for a reductio xgX. We

have: xe X® and X° is open. x is a limit point of xR so there is a y with xRy and ygX.
Contradiction. O

We present the frames needed for our treatment of the various logics. It is pleasant to
present these frames in the kind of format discovered by Timothy Carlson.
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8.13 Definition

ii)

iv)

vi)

A set-preframe Fis a structure <K,K,,K,,S>, here:
- Kis a non empty set.

- KySK &K

- Sis transitive and treelike.

- xeK,and xSy = yeK,.

Define xRy :& xSy and (xgK, or yeK,).
It is easily verified that <K,R,S> is a preframe.
If K=K, we speak of a Carlson-preframe. We will write <K,K,,S> for <K,K;,K,S>.

A set-preframe Fis a set-frame if K, is closed (and hence clopen) in the topology
generated by the xXWS and the Sx. It is easily seen that a set-frame can be viewed
as a frame, defining R as in (i).

K, is the Kripke model counterpart of the Z,-sentence S in the arithmetical
interpretation of the NB systems. The fact that S is X, is reflected by the fact that
K, is upwards closed. The fact that K, corresponds to an arithmetical sentence is
shown by K,'s clopenness.

If K=K, we speak of a Carlson-frame. Carlson-frames are frames for
Carlson-models as introduced in Smoryriski[1985], p196. Note that Carlson-
frames have the property: xSz, yRz = xRz. Conversely: every frame with this
property can be presented as a Carlson-frame by taking K,:=range R.

A Carlson-1-frame is a Carlson-frame, in which every x in K, is a limit point.

A Carlson-3-frame is a Carlson-1-frame with a bottom b which is a limit point of K.
A set-1-frame is a set-frame in which every element of K, is a limit point.

A set-2-frame is a set-1-frame with bottom b, which is not in K, and which is a limit
point. (The fact that bg K, reflects the falsity of the Z,-sentence S in the
interpretation of the NB systems.)

Set-premodels, set-models etc. are defined in the obvious way.

8.14 Little fact

Suppose Fis a Carlson-frame. Then x is a limit point of xR iff x is a limit point of K.
Consequently: xi-oop - p iff x is a limit point of K.

Proof: Left to the industrious reader. O
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8.15 Soundness Theorem

i) CSMy+¢ = forall upwards wellfounded frames F Fi-¢

i) CSM,+¢ = for all upwards wellfounded Carlson-1-frames F Fi-¢

i) CSM,+~¢ = for all upwards wellfounded Carlson-1-frames F=<K,K,,S>, for all x
in Ky xi-¢

iv) CSMz+~¢ = for all upwards wellfounded Carlson-3-frames F with bottom b bi-¢

v) NB; ~¢ for all upwards wellfounded set-1-frames F Fi¢

vij NB, +~¢ = forall upwards wellfounded set-2-frames F with bottom b bi—-¢

4

Proof: Mostly routine using 8.11 and 8.12. We sample two cases.

First we show that A11 is valid on upwards wellfounded set-1-frames. Suppose Fis a
upwards wellfounded set-1-frame and let f be an assignment on F. Suppose
xi--=Ap~0¢(f). Clearly xS#xR and thus xeK,. Consider y with xRy. y is in K, by the
definition of R, hence y is a limit point. It follows that xi-o(Ay—y)(f).

Secondly we show that A13 is forced at the bottom b of a set-2-frame. Suppose Fis a
set-2-frame with bottom b. Let f be an assignment on F. Suppose bi-0o¢(f). Suppose
bSy. bgK,, hence by the definition of R: bRy and thus yi-¢(f). Conclude bi—A¢(f).

O

Of course we want to reverse the arrows of 8.15. To arrive at the desired completeness
theorems we need two procedures to transform premodels into set-premodels, two
procedures to add certain limit points to set-models and the Henkin construction for
CSM,.
8.16 Definition
We define two procedures to transform premodels into set-premodels.
Let F/=<K,R,S> be a preframe and let f be a preassignment on F. Gi=<F,f>.
i)  First we transform G into a Carlson-premodel. Define XG:=G'=<F,f'>, where
F=<K',K';,S">, as follows:
- K =X Xo X > [XSX,S...8x, n=1,2,...}.
- Koy o= {<XXge X, Y>EK' X Ry}
= <Xy X X >S'<Y Yo,y > 1€ Nk and x=y; for i=1,...,n.

The resulting structure is clearly treelike and irreflexive.

Define f'p; i= {<X{,X5,....X,>EK|X Efp;}. We claim: <x;,X,,....X>=¢(f') < X, 1-0(F).
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8.17

Proof: By induction on ¢. The cases of the propositional atoms and the
truthfunctional connectives are ftrivial.

Suppose ¢=Ay. Suppose moreover: <Xy,X,,....X,>IAy(f") and x_ Sy. Clearly
<Xy XgyeenXy>S'<X g Xg0ee X Y5 8O <X4,Xo,.0, X, Y>I-Y(F). Hence by the Induction Hy-
pothesis: yi-y(f). Conversely suppose X I-Ay(f) and <X;,X,,....X,>S'<y,Ys,..., ¥, >-
By the transitivity of S clearly x Sy,, hence y,i-y(f) and so by the Induction
Hypothesis: <y,Y,,....y, > y(f').

The case that ¢=0Oy is analogous. O

We transform G into a set-model.

Consider a set of formulas I' that is closed under subformulas and such that
op€el’ = Ape€rl. Define A(GI):=G=<Ff'>, where F=<K'K,,K',,S'> and:

-~ K {<Xq:Xgeee X >[XSX,S...8x%, n=1,2,...}.

- Ky = {<XqX,,..X >€K'|for some i<n and for some OWeET: xi-0y and x; < Ay},
- Ky = {<X( X0 X Y> EK <X X, X >EK'y and xRy}

= <Xy Xgyee X >S'<Y Yo, Y > 1€ N<k and x=y; for i=1,...,N.

Clearly S' is transitive, treelike and irreflexive. Moreover K'ySK',SK' and xeK',
and xSy = yeK,.

Define fp; = {<X{,X,,....X >€K'|x Efp;}. We claim:
for all 9€I™: <X,Xo,.... X >-0(F) & x_1=¢(f).

Proof: By induction on ¢ in T'. The cases of the propositional atoms and the
truthfunctional connectives are trivial. The case of A is asin (i).

Suppose ¢=0OW. And suppose: <X{,Xp,...,X,>Oy(f') and x Ry. Clearly if
<X g, Xy X > 2Ky, then <Xy, Xo,.. X >R'<Xy, Xy, X y>) i <Xy, Xs,..0.X > €K', then
<X{, X5, X, Y>EK'gand hence <xy,X,,...,X;>R'<Xy,X,,...,x,,y>; Conclude:
<X1,Xp,.., X, Y> 1= Y(f'). Hence by the Induction Hypothesis: yiy(f). Suppose
X -0y(f) and suppose <X{,Xy,...,.X,>R'<Yy,¥s,....y,>. In case <xq,X,,....X >€K', it
follows that x - Ay(f) and hence y, i-y(f). In case <x,,X,,....x,;>EK', we have: x Ry,
and thus y,~y(f). In both cases: y,I-y(f) and so by the Induction Hypothesis:
<Y1 Yorn Y > W(F). o

Definition

We define a transformation ®g of set-frames. ®g has the effect of "expanding" the
elements of K, in such a way that the downmost element of the expansion (which will

be in the new K) is a limit point. Suppose Fis a set-frame.
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@gF = F, where F=<K',K'(,K';,S">, with:
K' = {<xi>|(xeK, and i€w) or (xgK, and i=0)}
Ko = {<x0>eK|xeK}
Ky ={<x,i>eK|xeK,}
i<j : (i=0 and j»0) or (iz0 and j<i) (here < is the usual ordering
of w)
<X,i>S'<y,j> & xSy or (x=y and i<j)

We define two functions F and G respectively from K to K' and from K' to K by:
Fx:=<x,0> if x€K,, Fx:=<x,1> if XEKj, G<X,i>:=X.

8.18 Fact

Under the conditions of 8.17:
i) F'is asetframe.
i) F and G are continuous.

Proof: Ad (i): the first four conditions of the definition of set-frame are easily verified.
The satisfaction of the fifth immediately follows from the continuity of G, seeing that
K'.=G K.

1 1

Ad (ii): it is sufficient to observe: F-1<x,i>WS'=xWS, F-1S'<x,i>=Sx, G 'xWS=<x,0>WS/,
G 1Sx=S'<x,0>. m|

8.19 Fact

Under the conditions of 8.17:
i) <x,i>isalimit pointin F e <x,i>€eK', or <x,i>=Fx and x is a limit point of F.
i) <x,i>is alimit point of <x,i>R"' & <x,i>=Fx and x is a limit point of xR.

Proof:

i)

n oy

Suppose <x,i> is a limit point. If <x,i>eK,' we are done. So suppose xgK',. Clearly if
i=2,3,... <x,i> is not a limit. Hence i is 0 or 1. Conclude <x,i>=Fx. Suppose x€O. Then
<x,i>eG10n<x,i>WS'. It follows that there is an <y,j> with <y,j>eG10n<x,i>WS' and
<y,j>#<x,i>. Clearly <x,i>S'<y,j>, hence because <x,i>=Fx: y#x. Moreover yeO.

"

The simple verification is left to the reader.
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ii)

.

Suppose <x,i> is a limit point of <x,i>R'. Suppose <x,i>#Fx. Then xeK, and i#1. Hence
S'<x,1>n<x,i>R'=8'<x,1>n<x,i>S'nK'(=@. This is impossible. So <x,i>=Fx. Suppose
x€O. Then <x,i>€G'0. Let <y,j> be in G'On<x,i>R". As is easily seen it follows that
xRy. Also yeO and we are done.

"
Suppose x is a limit point of xR and <x,i>=Fx. Suppose <x,i>€Q'. Then for some
<Zy,1> 0 <Zjp> <XI>E<X,i>WS'NS'<z, j;>N...nS'<z, j,>=:0"<O". Clearly xeF'0". Let
y be in F'O"nxR. In case xgK, we have <x,i>gK',, hence <x,i>R'Fy and FyeO". In
case xeK, we find yeK,. It follows that: <x,i>R'<y,0>. Also <y,0>S'Fy and FyeO", hence
by our choice of O": <y,0>€0". O

8.20 Fact
Suppose Fis a compact set-frame. Then ®gF is compact.

Proof: To show that compactness is preserved, it is sufficient to show that each of the
properties (i), (ii), (iii) and (iv) of 8.8 is preserved. Preservation of (i), (ii) and (iii) is easy.
We ftreat (iv). Suppose that in F every element that has an antidirect successor is a limit
point. Consider <x,i> in F and suppose <x,i> has an antidirect succesor <y,j>. Clearly
i£{2,3,...}. Moreover if i=0 and xeK, then <x,i> is a limit point and we are done. So we
may assume that <x,i>=Fx. By 8.19(i) we only need to show that x is a limit point, hence
it is sufficient to see that y is an antidirect sucessor of x. Suppose xSNWSy has a
minimum z. Clearly <z,0>€<X,i>S'nWS'<y,j>, so there is a <u,s> with <x,i>S'<u,s> and
<u,s>S'<z,0>. Because <x,i>=Fx it follows that xSu. Moreover clearly uSz. Contra-
diction. ]

8.21 Definition

We define an operation ¥'g on set-models as follows:
Yo<Fib> = <CI)SF,G‘1of>.
Let's call ¥g<F,f>: <F,f'>. Obviously <F,f'> is a set-model.

8.22 Theorem

Let ' be a set of formulas that is closed under subformulas. Let G=<F.,f> be a
set-model. <F',f'>:= W4<F,f>. Suppose that for every A¢ in T and for every x in K:
xi—Ad—-¢(f). Then for every y in T and every <y,j> in K': <y,j>i-y(f') & yiy(f).

Proof: By induction on y in I'. The cases of the atoms, L, -, A, v, » and « are
trivial. We treat A and 0.
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Suppose v is Ay. Suppose yiAy(f) and <y,j>S'<u,s>. In case ySu we have: ui-y(f)
and thus by the Induction Hypothesis: <u,s>-x(f"). In case not ySu we have: yeK, y=u
and j<s. Because yeK, it follows that yi-y(f). Hence by the Induction Hypothesis:
<y,s>Iy(f'). Conversely assume <y, j>I-Ay(f') and ySu. Clearly <y,j>S'<u,0>, hence
<u,0>1-y(f') and so by the Induction Hypothesis: ui-y(f).

Suppose vy is Oy. Suppose yi-oy(f) and <y,j>R'<u,s>. As is easily seen it follows that
yRu, hence ui-%(f). By Induction Hypothesis: <u,s>iy(f'). Conversely assume

<y,j>0oOx(f) and yRu. Clearly <y,j>R'<u,0>, hence <u,0>I-y(f'). By the Induction
Hypothesis: urx(f). O

Note that we could trivially strengthen 8.22 by replacing T by the closure of I' under
the truthfunctional connectives.

8.23 Definition
We define an operation @y on set-frames with bottom as follows:
@z F = F, where F=<K',K';,K';,S'>, with:
K' = {<x,i>|xeKand ((x=b and ie®) or (x#b and i=0))}
Ko = {<xi>eK'[(beK, and ((x=b and i#0) or (x#b and xeK))) or
(beK, and xeK,)}
Ky = {<x,j>eK|xeK,}

<x,i>S'<y,j> & xSy or (x=y=b and i<j)

We define two functions H and J respectively from K to K' and from K' to K as follows:
Hx:=<X,0> if x#b, Hb:=<b,1>, J<X,i>:=x.

8.24  Fact

Under the conditions of 8.23:

i) F is a set-frame with bottom <b,0>.

i) Hand J are continuous.

Proof: a trivial variation on the proof of 8.18. O

8.25 Fact

Under the conditions of 8.23:

i) <x,i>is a limit pointin F & <X,i>=<b,0> or <x,i>=Hx and x is a limitpoint of F.

ii) <x,i>is alimit point of <x,i>R" & <x,i>=<b,0> or <x,i>=Hx and x is a limit point of
xR.
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Proof: trivial. O

8.26 Fact

Suppose Fis a compact set-frame with bottom. Then ®5F is compact with bottom.
Proof: easy. O

8.27 Definition

We define an operation ¥ on set-models with bottom as follows:
Yo<Ff> = <(I>RF,J'1of>.
Obviously ¥g<F,f> is a set-model with bottom.

8.28 Theorem

Let <Ff> be a set-model with bottom; let <F.f'>:= Wr<F,f>. Let T be a set of formulas
that is closed under subformulas. Suppose that for every 0¢ in I': bi-o¢—-¢(f) and that
for every A¢ in T': bi-Ad—¢. Then for every yinI' and for every <y,j> in K

<Y,>y(f) < yiy(f).

Proof: Trivially for y=b: <y,0>1-y(f') & yi-y(f). So it is sufficient to show: <b,i>-y(f")
& b y(f). This is done by an easy induction on y which we leave to the reader.
m]

Note that we could strengthen 8.28 by replacing I' by the closure of I' under the
truthfunctional connectives.

We turn to the Henkin construction. This construction is essentially the same as the one
in Smoryriki[1985] and as the one in Montagna[1984].

8.29 The Henkin Construction

Let X be a set of formulas of L. We write Xi-¢ for: there is a finite X,< X such that
CSMy- (/A Xg) = 6.

Fix a set T of formulas that is closed under subformulas. A set X is I'-saturated iff
XCT, XL and for all ¢ and vy in I': Xrévy = ¢eX or yeX. Note that if X is
I-saturated then: X+¢ = ¢€X.

By an entirely routine argument one may show: for every YCST such that Y+ there is a
I'-saturated X such that Y <X and Xi<¢.
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We define a premodel Gr:=<F,f>, where F=<K,R,S>, as follows:
- K:={X<T|Xis I'-saturated} (Note that K is non-empty.)
- XRY & (O¢eX = ¢,0¢€Y) and
(AdeEX = ¢,A0€Y) and
for some y: (Ay€eY and AygX) or (OyeY and OygX).
- XSY & (OoeX = oéeY) and
(A0EX = ¢,AP€EY) and
for some y: (AyeY and AygX) or (OyeY and Oyg X).

Clearly R and S are irreflexive and transitive. Moreover XSYRZ = XRZ, and R<S.
Define fp; := {XeK]|p,eX}. Clearly G- is a premodel.
We have for ¢ in T and X in K: Xi-¢(f) & ¢eX.

Proof: By induction on ¢ inT. The cases of atoms and the truth functional connectives
are trivial.

Suppose ¢=0y.
Suppose oyeX and XRY. Clearly weY so by the Induction Hypothesis: Yi—(f).

Conversely suppose that oygX. Define:
Xy = {x.0xloxexXju{x,AxlaxeXiu{oy.

We claim: X_by. If it did we would have:

{eoxlogeXpuiy, Ax|AXEX} - Dy-y,
and hence: Xr-oO(Ooy- ). Thus it would follow that: X0y, quod non.

LetY be I'saturated such that X €Y and Y. It is easily seen that XRY and ygY. By
the Induction Hypothesis: Y i< y(f).

Suppose ¢= Ay,
Suppose AyeX and XSY. Clearly yweY. Thus by the Induction Hypothesis: Yiy(f).
Conversely suppose AygX. Define:
X, = {ox|loxeXpu{x,Axlax e Xu{ay}.
We claim: X, k<. If it did we would have:

{oxloxeX}u{x.Ax|AXEX} = Ay-y,
and hence X+A(Ay- ). Thus it would follow that XAy, quod non.

Bimodal Provability Logic, May 22, 1987 , 12:10 . 25



Let Y be saturated such that X, €Y and Y. It is easily seen that XSY and ygY. By
the Induction Hypothesis: Y < y(f). O

8.30 Completeness for CSM,
Suppose CSM,<¢. Then there is a compact Carlson-frame F, such that F_ 1~ ¢.

Proof: Let I''=the set of subformulas of ¢. Construct G,:=XG. Say G,=<F_,,f,> and
F=<K,,K,0,S,>. Because T is finite, G, is finite, O, trivializes to the discrete topology
and G, is compact. Hence G, is a model. There is a I'saturated set X such that Xi<¢.
By 8.29 and 8.16 we have <X> < ¢(f,). It follows that F, 1< 6. i

8.31 Definition

Let F=<K,R,S> be a frame and let xeK. Define F[x]:=<K',R",S'>, where K':={yeK|xWSy},
R"=RIK', S =S[K'. If G=<Ff> is a model, define G[x]:=<Fx],f[x]>, where f[x]p,:=fp,nK". It
is easily seen that F[x] and G[x] are again frame respectively model. Clearly for xeK':
xi-0(f) < xi-(f[x]). This definition is trivially adapted to Carlson-frames, etc. .

8.32 Completeness for CSM,

Suppose CSM, <¢. Then there is an compact Carlson-1-frame F such that Fi~ ¢.

Proof: Suppose CSM,<¢. Define:

x=(MAN{o(Ay-y)|Ay is a subformula of ¢} - ¢).
Clearly CSMy<x. Let I':={y|y is a subformula of x}. Consider the treeification of the
Henkin premodel for T, i.e. consider G, with G,:=XG-.(see 8.29 and 8.16(i)). G, is finite
so Og,is discrete. Thus G, is a compact model. There is a node x of K, such that:
xi-O(Ay-y)(f,), for all subformulas Ay of ¢, and: xi ¢(f,). We may assume that x is of
the form <X>, so that xg K.

Consider G,[x]. Say G,:=G,[x]. Clearly G, is compact. Let 'y be the set of subformulas
of ¢. Trivially for all yeK_, and for all Ay in T, : yi-Ay—-y(f, ). We change the elements
of K, into limits by transforming G, into G with G:=¥gG,. Let bi=<x,0>. Clearly b is the
bottom of G. Say G=<F,f>. By 8.19 and 8.20 G is a compact Carlson-1-model and by
8.22 and the fact that ¢ is in I'y: b= ¢(f). O

8.33 Definition
Let F=<K,K,,S> be a Carlson-frame and let xeK. Define F<x>:=<K',K';,S'>, where
K':={yeK|xWSy}, K's:=(K,nK')U{x}, §"=SIK'. If G=<Ff> is a Carlson-model we define:

G<x>=<F<x>,f<x>>, where f<x>p;:=fp,nK". Clearly F<x> and G<x> are a Carlson-frame
respectively a Carlson-model. For yeK' we have: yi-¢(f) & yi-d(f<x>).
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8.34 Completeness for CSM,

Suppose CSM,<f. Then there is a compact Carlson-1-frame F=<K,K,,S> and an xeK,
such that x = ¢.

Proof: Suppose CSM,<4. Let I'y:={yly is a subformula of ¢}. Define:
x=(M{ay->y,0(Ay->y)|AyeT - ¢)

and I':={y|y is a subformula of x}. Clearly CSM,<x. Let G,:=XG. G, is a compact

Carlson-model. There is an x in K, such that: xi-Ay-wy(f,) and xi-o(Ay- y)(f,) for all

Ay inTyand x i ¢(f,).

Consider Gy<x>. Say G_ :=Gy<x>. Clearly for all yeK_ 4 and Ay€eT,: yi-Ay— y(f,).
Define G:=¥4G, and b:=<x,0>. Say G=<F.f>. G is a compact Carlson-1-model, beK,
and by 8.22 : b= ¢(f). O

8.35 Completeness for CSM,
Suppose CSM,<¢. Then there is a Carlson-3-frame F with bottom b such that b~ ¢.

Proof: Suppose CSMg<¢. Let I'y:={y|y is a subformula of ¢}. Define:

x=AN{Oy- yOyeTJU{Ay- y,0(Ay-y)|AYET} - 0.
Let I':={y|y is a subformula of x}. Clearly CSM,<). Consider G,:=XG;. Clearly G, is a
compact Carlson-model. There is an x such that xi-oy—y(f,) for oOyeT,, Xi-Ay—y(f,)
and xi-o(Ay - y)(f,) for AyeT, and xi< o(fy).

Consider Gy[x]. Say G, :=G,[x]. Clearly for all yeK_, and all Ay€eTy: yi- Ay - y(f,).
Moreover: xi-Ay—y(f,) for all AyeT; and xi-Oy—-y(f,) for all OyeT,. Let G:=¥Y¥rG,
and b:=<<x,0>,0>. Say G=<F,f>. By 8.19 and 8.20 we find that G is is a compact
Carlson-3-model. By 8.22, 8.28 and the fact that ¢€T’, we find that b= ¢(f). |

8.36 Completeness of NB,
Suppose NB,<¢. Then there is a compact set-1-frame F with Fi< ¢.

Proof: Suppose NB,¢. Let I'y:={y|y is a subformula of ¢}. Define: A*p:=p~Ap.
x:=((A*M{(-Ac~DO06)—»O(Ay- y)|Oc,AYET}) - ¢) and I'={y|y is a subformula of x}.
Clearly CSM<x. Take G4:=Gr. There is an xe K with:

X-AY((-AcADo) - O(A Y- y))(fy)
for all oo and Ay in Ty and x < ¢(fy). Let I'y:=IyU{Ap|Op€ET,} and let G,:=A(G4.I'y). G, is
a compact set-model. Let x_:=<x>. Clearly x  ¢(f,). Suppose y €K, and x WS _y.. We
have: y =<yy,...y,>, where y,=x, y, Ry, and there is an i with 1<i<k and there is a
Oo€T, such that y-0o(fy) and y;i< Ac(fy). XWSy; and thus y;i-0O(A y— y)(fy) for all
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AYET,. Finally y;R,y, so y, I-Ay-y(fy) for all Ayer,,. Conclude: y I-Ay—y(f,) for all
AYET,.

Construct G,:=G_[x]. By the above: for all y €Ky ,: y - Ay—y(f,) for all AyeT,. Let
G:=¥3G,, say G=<F,f>. Clearly G is a compact set-1-model and <x.,0> i ¢(f).
O

8.37 Completeness of NB,
Suppose NB,<¢. Then there is a compact set-2-frame F with bottom b such that b« ¢.

Proof: Suppose NB,<¢. Let T'y:={y|y is a subformula of ¢}. Define:
x=((M{AT((-~AcADOOC) > O(AY->V)),AY- y,006 6,06 Ac|O6,AWET }) > 0).
I:={yl|y is a subformula of x}. Clearly CSM.

Take G,:=Gr. There is an xeK_ with xi-A*((=AcADG) - O(A Y- y))(f,), Xi-Ay-y(f,),
xi-Oo-o(f.), xi-Oo- Ac(f,) for all oo and Ay in Ty and x# (f,).

Let T';:=I'yU{Ac|OcET} and let G,:=A(G,.I'y). G, is a compact set-model. Let x, :=<x>.
Clearly x 1~ ¢(f,). By the same reasoning as in 8.36 we have that for y € K, with
XeWS,Yp: YA y-y(f,) for all AyeT,. Moreover x -06- Ac(fy) for all oc€er’; and
hence xgK;.

Construct G,:=G,[x,]. By the above: for all y, €K ,: y - Ay—y(f,) for all AyeT, and
X =-Ay-y(f,), xi-Oo—-o(f,) for all Ay,00€l,. Let G:=¥¥RrG,, say G=<Ff>. Clearly G
is a compact set-2-model and <<x,0>,0> = ¢(f).

o

8.38 Corollary

The following facts are rather obvious using completeness for the appropriate
arithmetical interpretations. They have however also purely Kripke model proofs.

i) CSM,-¢ & CSM A}
CSM,-Ad
CSMg+-A¢
CSM,+o¢
CSM,+-o¢
CSM,4+-o¢
NB,-AQ
NB;~0O6
NB,-Ad
NB,-0O6

i) CSM,6

ii) NB, ¢

t st CCTEO
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iv) Letwyel,, then:
Ly & CSM vy
& CSM,+y
< NB -y

Proof: Left as an excercise to the reader.
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9 The closed fragment of CSM,

Let CL be the set of closed formulas (i.e. of formulas not containing propositional
variables) of L. We describe the behaviour of the CL formulas in CSL,.

Define for ¢ in L: o%:=¢, o™'¢:=00"¢ and A%:=9, A" 1p:=A AN¢. Define further:
Lomen=A"TO0ML and 1..:=T.Let"o" and "B" range over @?u{oo}. We stipulate that for
all o o9, that o0+a=0+0=2 and that: ©2.0=0.22=2° for o0.

9.1 Fact

osp & CSMy-L,> 1,
Proof:
"=>|l

The only interesting subcase is:
CSM,+AMo™L - akgly, for m<l,

We have:
CSM;- A"O0ML » oA"O™L
= Dm+1J_
- oL
- AkglL
e

Suppose o> we have:
CSMi L1, 15=CSM-14,4- 14
= CSM1|—lB (L6b's Rule for A)
But by an easy Kripke model argument: CSM, L4 (B being below ©2). O

9.2 Convention

f¥y,.... ¥, are forms for formulas in certain variables (e.g. ¥;=1,—~ Do), we write:
W[¥,,....,7,] for a finite disjunction of formulas, where any of these formulas is of one
of the forms '¥,,....,%,,. If n=1 we drop "[* and "]". Similarly for /X\.

9.3 Lemma

Let ¢ be a Boolean combination of L 's, then for some f§: CSM;+-A¢ < L 5. Moreover
B=y+1 and CSM,-(pAAD) & L

Proof: note that CSMy (L~ L5) & Loy @nd CSMyH(LaLg) e L

min(y,8)

Consider a Boolean combination of L 's ¢. Clearly ¢ can be brought in the form
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/X\\X/[_Ly,—-LB]. In the disjunction we can contract (modulo CSM;-provable equiva-
lence) the Lysto L, where ¥" is the maximum of the y's, and we can contract the L4's
to L, where 8" is the minimum of the &'s. Hence CSM ¢ A\ (Lgs— L) and so
CSM FAd e AM(Lg— _LY*) and thus CSMy-AG & MA(Lg- L.). In case 's
CSM;-A(Lg—>Ly) e L. Incase §">y":
CSMik A(lg—Ly) = A(lp,—>Ly)

- Al (Ldb's Principle for A)

- A(lg—Ly)
Hence CSM FA(Lg— L) L,y SO CSMi-AG e L, 4, Where ¥ is the minimum
of the y*'s.

The second claim is an easy consequence of the above. O

9.4 Lemma
Let ¢ be a Boolean combination of L ;'s, then for some pEwu{>o}: CSM+O¢ & L, 4.

Proof: the proof is essentially similar to the proof of 9.3 using CSM,o(Akc & o).
O

9.5 Theorem

Consider any ye CL. We have: y is provably equivalent in CSM, to a Boolean
combination of L s.

Proof: By a simple induction on yin CL using 9.3 and 9.4. o

Consider the following Carlson-frame: Fy:=<{0},9,0>. Consider: ® P F,. We claim that
this last frame corresponds precisely with the closed fragment of CSM,, i.e.: (i) for
every proposition X of ®s®zF, there is a ¢ CL such that X=[¢If, where fp,=@ for all i,
and (i) for all € CL: CSM,-¢ & D DpF ¢ (thus: for all y,ceCL CSM -y o «
[ylt=[cT).

Before we verify this claim it seems appropriate to replace the frame ® ®gF, by an
isomorphic one. Define: Q2:=<(w?\{0})U{e°},{®.n|n€ ®},Z>, where aZf & o>P. It is
easily seen that Q2 is isomorphic to D PR f, . Note that ocn—_LB(f) & o<p. We prove our
claim for Q2.

Proof: To see that the first part of our claim is correct it is sufficient to note that our
frame is compact and that aWS=[ L ,If and So=[ -1 ]f.

We turn to the second part. the "=" side is immediate, because Q2 is a Carlson-2-
frame.
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For the "«<" side Suppose ¢€ CL and CSM,<¢. Let X,:={y€ CL|ICSM,-y}. Clearly X,»6.

Let X be CL-saturated such that X,< X and X¢. Clearly 1 €X. Let O(X) be the
smallest element a. of (@?\{0})u{=} such that L is in X. We have: LBEX if B=O(X) and

(=Lp)eXif B<O(X). By 9.5 X is uniquely determined by O(X) (among the CS-saturated
extensions of X;). Let a:=0(X). Consider Y:={ye CL|ou—y(f)}. Clearly X <Y, Y is CS-

saturated and O(Y)=ca. Conclude X=Y,62Y and thus o i< ¢(f). O

9.6 Remarks

i) The above reasoning could be elaborated by showing that Q2 with the empty
assignment is precisely the Henkin model of CSM, w.r.t. CL.
ii) Asis easily seen for € CL:
CSM,+¢ <« forall n @.ni-¢(f),
CSMy-¢ & oo-¢(f).

9.7 Question

Clearly NB, does not have such a well behaved closed fragment. This is plausible also
from the arithmatical point of view: NB, is 'about' a number of different arithmetical
interpretations of A at the same time. Many (all?) of these interpretations taken by
themselves would yield a different provability logic and thus a different closed frag-
ment. Is there some interesting description of the closed fragment of NB,?

10 Arithmetical Completeness Results

Our aim in this section is to embed certain frames employed in the various modal
completeness theorems into arithmetic. The precise nature of these embeddings will
depend on the chosen interpretation of the bimodal logic involved. All embeddings
map the propositions of the frames on equivalence classes of the relevant sort (e.g.
w.r.t. provable equivalence in PA) of arithmetical sentences and 'commute' with the
corresponding connectives and operators.

The neatest way to build the embeddings is in two stages. The first stage is common to
all embeddings: we go from clopens to (equivalence classes of) arithmetical formulas
in one variable that represent the clopens as sets of numbers in a canonical way. In the
second stage we go from these formulas to sentences by something like substituting a
term for the one free variable. We proceed to describe the first stage.

The frames we are going to embed all have the form ® @, F,, where F, is a finite
set-frame. We assume that the domain K, of F, consists of numbers 0,...,n and that
'<...>" is a standard numerical coding of sequences. Thus the elements of the domain
of Fi=0 g F, will be numbers and simple arithmetical descriptions of K, K;, S (and
hence of R) can be read of from our definitions of ®g and ®. In arithmetical contexts we
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will simply confuse K, K, etc. with their arithmetical descriptions. All kind of simple facts
about K, K, etc. can be formalized in PA -like: S is transitive, treelike, upwards well-
founded. The facts we need will be collected along the way.

Let A be an arithmetical formula with just x free. Instead of the usual notation 'Ax' to
exhibit the free occurrence of x in A, we will use 'xeA' to show our intention that A
stands for a set.

Let A and B be arithmetical formulas with just x free. Define:
A=B :© PAr Yx(xe A x€B)

What we are going to do is map the propositions X of frames of the form & ®gF,, where
F, is a finite set-frame with bottom, on =-equivalence classes in such a way that each
element of the equivalence class assigned to X represents X as a set. (Clearly there
are also inequivalent formulas that represent X as a set.) Even if it not strictly necessary
the most pleasant way to give the representation is via a normal form theorem for
clopens in compact frames. A normal form for a clopen X is going to be a designated
finite set of clopens Ny such that X=UNy,.

10.1 Normal forms for clopens

Consider a compact frame F=<K,R,S>. Let x,y be elements of K. We call X\WSNWSy an
interval just in case xWSy and y is not a limit. If xX\WSNnWSy is an interval we use the
notation: [x,y].

As is easily seen intervals are clopen.

Let X be clopen (and thus compact).

10.1.1 Prenormal forms for clopens

There is a finite collection of intervals M such that X=UM.

Proof: By compactness it is sufficient to produce a collection of intervals P such that
X=UP. If xéX is not a limit put |,:=[x,x]. Suppose x is a limit. xWSnX is open, hence
there is a y such that y=x and yexXWSnX. Pick a maximal such y, say y,. y, cannot be a
limit, otherwise there would be a z with zzy and zey,WSnX, hence y,Sz and
zexWSnX, contradicting the maximality of y,. Put |:=[x,y,]. Define P:={l |xeX}. O

10.1.2 Normal form theorem

There is a unique finite collection of intervals Ny such that:
i) X=UNy.
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i) [xyl€Ny, [uvleNy and [x,y1<[u,v] = [x,yl=[u,v].
i) [zZw]l<X = J[x,ylENy [z,W]<[x,y].

Proof: It is easily verified that conditions (i),(ii),(iii) imply uniqueness. To prove
existence, consider a finite set of intervals M such that X=UM. We convert M into Ny.

Clearly by compactness and treelikeness every x in K which is not a bottom element
has an S-predecessor. We write 'y=pd(x)', for: y is the S-predecessor of x. We define a
relation between pairs <[x,y],q>, where ge[x,y], as follows:

<[x,y1,9>Q<[u,v],r> & pd(r)€[q,y].
We collect two simple facts about Q:
a)  <[xyl,ag>Q<[uv]r> = [x,v]is an interval and [x,vl=[x,pd(nulr,v] < [x,y]ulu,vl].
b)  <[xy],a>Q<[u,v],r>Q<[z,w],s> = <[x,v],r>Q<[z,W],s>.

Define:
P:={[x,y]| there is a Q-chain <[x,,y,1,9;>Q...Q<[x,,y,],9,>, such that: [x,y,]€M,
X=Xy, y=Y,}.

Clearly P is finite and by (a),(b) P is a set of intervals satisfying UP=X.

Let Ny be the set of <-maximal elements of P. It is immediate that Ny as defined
satisfies (i) and (ii). We verify (iii): consider [z,w]<X. It is sufficient to produce [x,y]€P
with [z,w] S[x,y]. We produce a Q-chain of pairs <[x,y,],q;> with q;€[z,w] as follows:
step 1)  Pick [x,,y;]EM such that z€[x,,y,]. Let q, be z.
step i+1) Suppose we have produced <[x;y;],q;>. Let p; be the maximum of
[x,y]n[z,w]. As is easily seen p; is not a limit. If p,=w we stop and put
n:=i. If pw, let q;,, be the immediate S-successor of p, in [z,w] and
pick [x;, 4,¥;,1]EM such that q;_ 4 is in [, 1,¥;,4]-
It is immediate that <[x;,y;],0>Q<I[xi, 1.¥;,1].9;,1>- Moreover q;Sq,, {, hence our procedure
stops by the upwards wellfoundedness of S. Finally define [x,y]:=[x,,y,]. Clearly
x,WSzWSwWSy, so [z,w]<[x,y]. o

Consider a frame F of the form ®g®zF,, where F, is a finite set-model with bottom. Let

X be a proposition of F. We represent X by X' in the language of arithmetic with just x
free, where:

xeX =W {xe[m,n]|[m,n]eN,}.
Note that:

meX = PAFmeX

mgX = PAr--meX

It follows that if X2Y, then PA- Ay((ye X' Aye YY) (yg X Aye'Y")), hence not X='Y'.
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Define for arithmetical formulas A with just x free, AA and OA by:
XEAA = Yy xSy = yeA.
XeEOA := Yy xRy = yeA.

10.2 Lemma

Let X be a proposition of F. Suppose M is a prenormal form for X. Then:
W {x€[m,n]|[m,n]e M} = X'.

Proof: If [m,n]€M, then there is a [p,q]€Ny such that [m,n]<[p,q]. The (formalization of

the) fact that [m,n]<[p,q] can easily be verified in PA. Conversely for [p,q] in Ny there is

a Q-chain <[my,n,1,r;>Q...Q<[m,,n,],r,> in M such that [p,q]=[m,,n,]. The facts about

Q-chains can be verified in PA and hence also the fact that [p,q]< UM.
O

10.3 First Commutation Theorem

. T commutes with the propositional constants, A and o modulo =.
Proof: The proof is long, boring and trivial. We just sketch it.

Let X,Y be propositions of F.

We show: "L'=1L. This one is easy: "1'=_1!

We show: "T'=T. N_={[b,i]t is a top element of F}. The formalization of the fact that
UN_ =K is easily verified in PA.

We show: X Y'=X' Y. Clearly X'vY'=W {xe[m.n]|[m,n]e Ny UN}. Ny UN, is a
prenormal form for X\ Y. The desired result follows from 10.2.

We show: '=X'=-'X". Consider [m,n]JeN, and [p,qleN_y. The fact that [m,n]n[p,q]=D is
easily verified in PA. Consequently X' A"™=-X'=1 On the other hand X+ -X=T, thus by
the above X' '=X'=T'=T. Conclude -X'=-X.

We show: 'AX'=AX'. Clearly -by the above- it is sufficient to show:
PA- Vxxe'-=AX & Jy(xSyaye—=X).
Consider M:={[b,pd(n)]|[m,n]eN_y}. M is a prenormal form for =AX. By 10.2:
W {x€[m,n]|[m,n]eM}="-AX'. It is easily verified that:
PA- Vx W{xe[m,n]|[m,n]eM} « Jy(xSy~ye'-X).

Finally we show: 'mX'=0'X'. Clearly -by the above- it is sufficient to show:
PA- Vx xe'-=oOX < Jy(xRyaye'=X).
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First note that for every interval [p.q]: [p,q]NK,° is also an interval. Define:
A(m,n):=max(K,n[m,n]).
Consider:
M:={[b,pd(n)]nK,°|[m,n]€ N_y}U{[b,pd(A(m,n))|A(m,n) exists, [m,n]EN_}.
M is a prenormal form for —oX, so by 10.2: W {x€[m,n]|[m,n]eM}="-0OX'. We show:
PA- Vx Wi{xe[m,n]][mnleM} « 3Iy(xRyaye'-X).

Reason in PA (We will insert remarks that are best viewed as coming from outside
PA; these will be in italics):

Suppose xelb,n], for [b,n]eM. Clearly for some k in —=X : nRk, hence xRk. Say
ke[l,sJeEN_,. Then:kell,s]. It follows that Jy (xRy and ye '-X).

Conversely suppose xRy and y€[l,s], for [l,s] in N_ . Suppose xgKj. In this case
x€[b,pd(s)InK,°=[b,r] for some r. (The reader should convince him/herself by

inspecting the coding that PA indeed proves the identity: [B,pd(s)INK,°=[b.1])

Clearly [b,r]eM. Suppose x€K,. In case [I,s]nK,=Q this is verifiable in PA and

hence: 1. In case [l,s]nK,#3, A(l,s) exists and hence: A(l,s)=q for some q. (The

reader should convince him/herself that PA verifies this last identity.) Hence
yWSgq and thus x€[b,pd(q)l=[b,pd(q)]. Clearly [b,pd(q)]EM. oPA

The other cases follow from the cases treated thus far. O

10.4 Fact

i) Remember that par abus de langage we write "xeK," for the arithmetization of
"xeK," that can be read off from a description of F, and the definitions of @ and
®@g. We have: PA- xeK; o xe K.

ii) PAR (xeKya VyexSye'X) -» xe'X

Proof: Left to the industrious reader. O

We proceed to the second stage. This stage splits into cases depending on the chosen
interpretation of the logic involved. In all cases a primitive recursive function h will be
introduced, with the property: PA- V xVy(x<y—-hxWShy). Let Lx:=(3yVz>y hz=x). We
have: PA+ J3!xLx. We use L as a semiterm for the unique x such that Lx. Define
[X]:=(LeX). [X] is the arithmetical image of X that we are after (modulo an equivalence
relation like provable equivalence). Note that:

PA- [X] « W({Le[m,n]|[[m,n]€N}.
And that:

PA- Le[m,n] < ((Ix mWShx)A(Yy hyWSn)).
It follows that [X] is provably equivalent in PA to a Boolean combination of Z,-formulas.
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10.5 The NB Theotries

Consider a set-2-frame F of the form ®g®gF,, where F, is a set-frame with bottom b,
with b 2K, ;.

Remember that if x is the Gédel number of a proof &, then I(x) is the largest of the Gédel
numbers of arithmetical axioms occurring in ©. We plausibly assume: I(x)<x.

Define both by the Recursion Theorem and by Course of Values Recursion:

hO:=b

y  if hxRy and Proofp,(x,Ly)
h(x+1) = y  if hxSy and Proofp,(x,Ly) and Vy<I(x) hygK,

hx otherwise

L :=the unique x such that Jy Vz>y hz=x
S :=3dyhyekK,
X] :=LeX

(Note that " Vy<l(x) hygK," could even be simplified to: h(lx)£K,.)
10.5.1 Lemma

i) PAr x<y - hxWShy
i) PAr "L exists"

Proof: Entirely routine. O

10.5.2 Second Commutation Theorem

[.] commutes with the propositional logical constants (modulo provability in PA) and:
a) PAR [AX] & AppglX],

b) PAL [OX] e OpplXI-

Proof: The cases of the propositional logical constants are trivial by 10.5.1 and the
First Commutation Theorem (10.3).

Case (a) "—-". Reason in PA:

Suppose [AX]. Say L=xe 'AX' and hence L=xeA'X'.
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First suppose x=b. /f b is indeed in AX, we have AX=X=T and hence: AppLeX. If
b is not in AX we have: L, and hence: AppLEX.

Suppose x#R. Let u be the smallest number such that hu=x. Clearly u is a succes-
sor, say u=v+1. By the definition of h: Proofp,(v,L#x). We distinguish two cases:

Case I: Suppose hvgK,. Surely lv<v, hence for all y<lv hygK,. Thus we have
both Proofpa(v,L#x) and for all y<lv hygK;, hence Apj sL#x. By Z-completeness
we have: Ap, ghu=x. Ergo Ap, ¢xSL and so (by the fact that xe 'AX', so by
z-completeness: App gx€'AX', thus by the First Commutation Theorem:
AppsXEAX): Apy gLeX.

Case II: Suppose hveK,. We distinguish two subcases.

Subcase li(i): Suppose xeK,. By Z-completeness we have Ap, shu=x and so
App sXWSL. Also we have: App sXEK, App gX€'AX and hence: Apy XEAX' It
follows by 10.4(ii) that: Ap, s Vy(xWSy—ye'X'). Ergo: Ap, gLe'X.

Subcase lI(ii): Suppose xgK,. We have: Ap, gL#x (how else could h move up
from hv, which is in K;, to x, which is not in K,?). Also App shu=x. Ergo Ap, ¢xSL
and hence: Ap, gL€'X. oPA

Case (a) "« ". Reason in PA:

Suppose Ap, g[X]. Suppose for a reductio: L=xg 'AX'. Clearly by 10.3: xgA'X
and hence for some y xSy and y#'X'. By Z-completeness: Ap, sy£'X'. Hence
App sly. It follows that for some u Proofp,(u,Ly) and Vv<lu =Sy, i.e. Vv<lu
hveK,. Because L=x, we have: huWSxSy, hence huSy. By the definition of h:
h(u+1)=y. Contradiction.

Conclude: Le'AX, i.e. [AX]. oPA
Case (b) "> ". Reason in PA:

Suppose [OX], say L=xe mX and hence xeo'X'. In case x=Db, it is easily seen (by

the same reasoning as under case (a) "—") that: op,Le X'. Suppose x#b. Say

hu=x. We have Op,L#x (how else could h move up to x?) and by =-complete-

ness: Opphu=x. Hence OppxSL. If xgK, it follows that: op,xRL, hence op,LeX

and thus Op,[X]. Suppose xeK,. We have: Jy hyeK,, i.e. S. Hence for any A:
OpalApasA—A)

We claim: OpaLeK,.
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Reason inside Op,:

Suppose L=y£K,. We have xSy and xeK;. Thus Ap, L=y (how else could
h move up from an element of K, to y, y not being in K,?). By Ap, g-reflec-
tion: Lzy. Contradiction. Conclude: LeK,,. 0(Opa)

We have: Op,xSL and Op,LeK,. Hence: Op,xRL and thus: op,Le X, i.e. mp,[X].
oPA

Case (b) "< ". Reason in PA:

Suppose DOp,[X]. Suppose for a reductio: L=xg TX'. By 10.3 there is a y with xRy
and y# 'X'. By Z-completeness: Op,y#'X'. Hence from op,Le X': Op,Ly. Say
Proofp,(u,Lzy). From L=x: huWSxRy. Hence: huRy. Thus by the definition of h:
h(u+1)=y. Contradiction. Conclude: Le mX, i.e. [OX]. oPA

This ends our proof. O

Note that [.] really has the character of an embedding: it is injective modulo provable
equivalence in PA. For suppose X#Y. Inspection of the frame shows that: for some k
(X Y)AA(X e Y))»OKL)=T. Hence:

PA- (X & [Y)Adpp s(X] & [Y])) = DOppfL.
Suppose PA-[X] < [Y]. It follows that:

PA- (Xl [YD)AApy s(IX1 [Y]),

hence: PA-Op kL. Quod non.

10.5.3 Definition

Consider a set-2-model G=<F.f>. Suppose G is of the form ¥g¥RG,, where G, =<F_,f >
and G, is a finite set-model (also finite in the sense that f_(p)=@ for all but finitely many
p), with bottom b_#K_,. Define for ¢€L:

[0] :=[LoIf].
Let f*p:=[p], and define:

<¢> = (9)(f",PA,S),
where S is defined as in the beginning of 10.5.
10.5.4 Theorem

PA- <0> > [0]

Proof: By a trivial induction on ¢ using 10.5.2. O
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10.5.5 Arithmetical Completeness for NB,

Suppose NB,<¢. Then there is an interpretation function f* and a Z,-sentence S such
that PAK()(f*,PA,S).

Proof: Suppose NB,¢. Consider the finite set-model G constructed in the proof of
8.36. The bottom, say z of G, forces —¢ (under f, ). Pick a b with beK,. Define G, as
follows: K, :=K,U{b}; K,0:=Kii Ka1:=Kpe; Spi=S,u{<b,y>lyeKy}; fy:=fy, if yeK,; fb=f, z.
Clearly bgK,,. Consider G,:=¥¥RrG,. Let u=<<z,0>,0>. Clearly the submodel with
domain uWS, will be isomorphic to G of the proof of 8.36. Hence, because uWS, is
upwards closed G, the forcing relations of G, and G of 8.36 will coincide on the nodes
connected by the isomorphism. Ergo uw< ¢(f,).

It follows that [¢]f =T, and hence that PAw[¢] (where [.] is based on G,). Thus: PAk<¢>.
a

10.5.6 Arithmetical Completeness for NB,

Suppose NB,¢. Then there is an interpretation function f* and a Z,-sentence S such
that Ne= (¢)(f*,PA,S).

Proof: Suppose NB,<¢. Consider the model G of the proof of 8.37. Let b be the
bottom of G. We have: b ¢(f). Consider h, [.], etc. based on G. Clearly N=L=b, hence
NE-[¢]. Thus Nx<¢>. ]

10.6 The CSM Theories under the CS-Interpretation
Consider a Carlson-2-frame F of the form @ ®pF,, where F, is a Carlson-frame with
bottom b,. Let U and T be RE theories in the language of PA, extending PA, such that

for all sentences A of the language of PA: U-A;A-A.

Define by the Recursion Theorem:

hO:=b

y  if hxRy and Proof(x,L=y)
h(x+1) = y  if hxSy and Proof(x,Lzy)

hx otherwise

L :=the unique x such that dy Yz>y hz=x
[X] :=LeX
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10.6.1 Lemma

i) PAR x<y - hxWShy
i) PAr~ "L exists"

Proof: Entirely routine. |
10.6.2 Second Commutation Theorem
[.] commutes with the propositional logical constants (modulo provability in PA) and:

a) PA- [AX] < AL[X],

b) PA [O0X] & OylX].
Proof: The cases of the propositional logical constants are trivial by 10.6.1 and the
First Commutation Theorem (10.3). The cases of A and o are very much like the
corresponding cases in 10.5.2:
Case (a) "—". Reason in PA:

Suppose [AX]. Say L=xe'AX' and hence L=xeA'X'.

The case that x=b is easy.

Suppose xzb. Let u be the smallest number such that hu=x. Clearly u is a
successor, say u=v+1. We distinguish two cases:

Case I: Suppose xeK,. By Z-completeness we have A;hu=x and so A xWSL.
Also we have: AtxeK,, Axe'AX and hence: AtxeAX'. It follows by 10.4(ii) that:
ALVY(xWSy-ye'X'). Ergo: A;Le'X.

Case II: Suppose xgK,. We have: Proof(v,L#x) (how else could h move up
from hv to x, which is not in K;?). Hence A{L#x. Also Athu=x. Ergo AxSL and
hence: A;LeX. oPA

Case (a) "« ". Reason in PA:
Suppose A[X]. Suppose for a reductio: L=xg 'AX'. Clearly by 10.3: x¢ A'X' and
hence for some y xSy and yg'X'. By =-completeness: Aryg 'X'. Hence A Lzy. It
follows that for some u Proof(u,L=y). Because L=x, we have: huWSxSy, hence

huSy. By the definition of h: h(u+1)=y. Contradiction.

Conclude: Le'aAX, i.e. [AX]. oPA
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Case (b) "—-". Reason in PA:

Suppose [OX], say L=xe 'mX' and hence xeo'X'. The case x=p is easy. Suppose
xzb. Say hu=x. We have o L#x (how else could h move up to x?) and by
Z-completeness: Oyhu=x. Hence O xSL. We claim: ojLeK,,.

Reason inside Oy:

Suppose L=y£K,. We have xSy. Thus A;Lzy (how else could h move up to
y, ¥ not being in K,?). By A-reflection: Ly. Contradiction. Conclude: LK.

o(dy)

We have: o xSL and oyLeK,. Hence: o xRL and thus: oLe'X, i.e. O [X].
au

Case (b) "< ". Reason in PA:

Suppose Oy[X]. Suppose for a reductio: L=xg 'mX'. By 10.3 there is a y with xRy
and yg'X'. By Z-completeness: o,yg'X'. Hence from oyLe'X': o L=y. Say
Proofy(u,Ly). From L=x: huWSxRy. Hence: huRy. Thus by the definition of h:
h(u+1)=y. Contradiction. Conclude: Le 'mX, i.e. [OX].

oPA

This ends our proof. |
10.6.3 Definition
Consider a Carlson-2-model G=<F,f>. Suppose G is of the form ¥g¥zG,, where

G,=<F,,f,> and G, is a finite Carlson-model (also finite in the sense that f,(p)=2 for all
but finitely many p), with bottom b_. Define for ¢ L:

[0] :=I[Tolf.

Let f*p:=[p], and define:
<¢> = (9)(f",U,T),

10.6.4 Theorem
PAF <> [¢]

Proof: By a trivial induction on ¢ using 10.6.2. O
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10.6.5 Definition
Let Fbe a compact set-frame. Define d from K to the ordinals by:
dx := 1+sup{dy|xSy}.
Note that if x is a top element, dx=1.
10.6.6 Fact
Let Fbe of the form @ @ F,, where F, is a finite Carlson-frame with bottom. Let d*x:=dx
if dx<w?, d*x:=c0 otherwise. We have for a.€ @?U{co}
d'x<o. & Xi-L,,.

Proof: Left to the reader. m|

10.6.7 Definition

i) L,(U,T) = {¢lfor all interpretation functions f Tr(¢)(f,U,T)}
L,(U,T) = {¢|for all interpretation functions f U-(¢)(f,U,T)}
ii) CSM (o) :=CSM,+1 (€ @2U{e<})

CSM,(B) = CSM2+.L(D_[5 (Bewu{eo})
10.6.6 Theorem

L,(U,T)=CSM,(a.) and L,(U,T)=CSM,(B) for some o with a.e ®®u{eo} and some
Bewu{oo}, such that: o.p<a<w.(f+1). (Note that if either ¢ or B are oo then
L,(U,T)=CSM, and L,(U,T)=CSM,.)

Proof: First we show: L,(U,T)=CSM,(a) for some a.e ®?u{eo}. If % is in the closed
fragment (y)(f,U,T) is independent of f, so let's write "(x)(U,T)" instead. Evidently
T(L . )(U,T). Let o be the smallest element of ®?u{oo} such that TH=(LH(U,T). Clearly
CSM, (o) SL,(U,T).

Suppose yeL,(U,T) and CSM,(a)+y. It follows that CSM,1<1  — y. Consider the
Carlson-model G, constructed in 8.32 for ¢:=(L - y) with bottom x. Construct
G, =¥ ¥RG,. Let zi=<<x,1>,0>. Clearly the restriction of G, to ZWS, is isomorphic to G
of 8.32. Hence, because zZWS, is upwards closed, the forcing relations of G, and G will
coincide on the nodes connected by the isomorphism. Consequently zi< ¢(f,), hence
zi- 1 ,(f,) and z = y(f,). We claim that for some B<o and for all ueK,:

U (YAAY) - J‘B(fe)
Inspection of the model shows that below z there just is a long tail, so vi-(yAAy)(f,)

implies zS,v. Let vy,...,v, be the minimal elements of [yAAyIf, (these exist e.g. by the
normal form theorem). We have d*z<a and hence d*vi<a (i=1,...,n). Let B be the
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maximum of the d*v;. We have <o and vii- Lg(f) (i=1,...,n). Conclude:
[(w~ry) = LI(f)=T.

Let [.] and <.> be based on G,. We have: PAF <(yAAvy)- 1g> and hence
TE<(YAAy)—> Lg>, s0: T (<y>AAq<y>)-><Lg>. On the other hand T<y>, and
hence Tk<y>AA<y>. Ergo T<14>, i.e. TH(Lg)(U,T). Quod non.

Conclude L,(U,T)=CSM,(a).

Secondly we show: L,(U,T)=CSM,(B) for some Bewu{ee}. Evidently Ur(L ,..)(U,T).
Let p be the smallest element of @y {e2} such that U+ (L m.B)(U’T)' Note that, by
A+-Reflection, for no y<o.p: Ul——(_LY)(U,T). Clearly CSM,(B)SL,(U,T).

Suppose yeL,(U,T) and CSM,(B)ry. It follows that CSM, L , 5— y. Consider the
Carlson-model G, constructed in 8.34 for ¢:=(L - ) with bottom x. Construct
G, =Y ¥RG,. Let z:=<<x,1>,0>. Note that zeK,. Clearly the restriction of G, to zZWS, is
isomorphic to G of 8.34. Hence, because zZWS, is upwards closed, the forcing relations
of G, and G coincide on the nodes connected by the isomorphism. Consequently
zw §(f,), hence zi- L, o(f,) and zi< y(f,). We claim that for some y<w.p and for all ueK,:

Uk (yADy) - _LY(fe)

Below z there just is a long tail, so, because zeK,,: vi-(yAOy)(f,) implies zS_v. Let
V...,V be the minimal elements of [yAoylf,. We have d*z<w.p and hence d*vi<o.p
(i=1,...,n). Let y be the maximum of the d*v,. We have y<®.p and v;i- _L,Y(fe) (i=1,...,n).
Conclude: [(yAOvy) - _LY]](fe)=T.

Let [.] and <.> be based on G,. We have: PA-<(yAOVy)- Ly and hence
Ur<(yAOy)- L, s0: U}—(<W>/\Du<\v>)—)<.1_,f. On the other hand Ur<y>, and
hence Ur<y>ADy<y>. Ergo U-<1 >, i.e. Ur—(_LY)(U,T). Quod non.

Conclude L,(U,T)=CSM,(B).

Suppose L,(U,T)=CSM,(a) and L,(U,T)=CSM,(B). Clearly T+_L(U,T), and hence by
Z-completeness UrA (L (U,T)). By A-reflection: UL (U,T). Thus @.p<o. Also
UI—_L(D'B(U,T), hence by X-completeness: TroOyL,g(UT). In other words:
T 1 yp.1)(UsT). Ergo oL.(B+1) O

10.6.7 Theorem

Let o be in @?u{eo} and let B be in ®U{eo}. Suppose w.p<o<m.(B+1). Then there are RE
extensions T and U of PA such that L,(U,T)=CSM,(a) and L,(U,T)=CSM,(B).

Proof: Let's write "RT for:
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T+{A;A—AlA a sentence of the language of PA}.

Suppose o.f<o<n.(B+1). Let T:=PA+L (RPA,PA) and U:=RPA+1 (RPA,PA). By
Z,-completeness: T-AppA< AA and hence also THOgppA < OyA. Also U-AA-A.
We find: T+1,(U,T) and UL (U,T). By Aq-reflection it follows that UL , o(U,T).

Suppose y<o. and T+ J_Y(U,T), then PA- J_Q(RPA,PA)—u_Y(RPA,PA). Quod non.

Suppose y<o.p and U+ J_,Y(U,T), then T~ DU_L,Y(U,T), i.e. T|—J_Y+1(U,T). But y+1<o.p<o.
Quod non.

Let a=w.(B+1). Take T:=PA and U:=RPA+J_m_B(RPA,PA). By X,-completeness
Ut-OpppA < OyA. Hence UL 5(U,T). Clearly THoOy L, 5(U,T), S0 T L, 3,4y

We leave it to the reader to verify that for no y<m.p8 UI—_LY(U,T) and for no é<w.(B+1)
T=15(U,T). |

10.6.8 Consequence
L,(RPA,PA)=CSM,, L,(RPA,PA)=CSM,.
10.6.9 An Arithmetical Completeness Result for CSM,

Suppose CSM,<¢. Then there is an interpretation function f* such that:
N (¢)(f*,RPA,PA).

Proof: Suppose CSM,<¢. Consider the model G constructed in 8.35. G is of the form

Ys¥RG,, where G, is finite. We have bg[¢]f. Clearly N=L=b. Consider h, [.], <.> based
on G, RPA and PA. We find N&[¢], and so by 10.6.4 N&=<¢>. O

10.7 The CSM Theories under the M-Interpretation

Consider a Carlson-2-frame F of the form & ®zF,, where F, is a Carlson-frame with
bottom b,

Define by the Recursion Theorem:

h(O,v) =b

y if hxRy and Proofp, (x,Lvzy)
h(x+1,v) = y if xSy and Proofpy,, (x,Lv2y)

hx otherwise
Lv = the unique x such that JyVz>y h(z,v)=x
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Xlv =LveX
10.7.1 Lemma

i) PAINF x<y - h(x,v)WSh(y,v)
i) PAIN~ "Lv exists"

Proof: Entirely routine. O
10.7.2 Second Commutation Theorem

[.]v commutes with the propositional logical constants modulo provability in PATN and:
a) PAINE Vv2N ([AX]V < Apy [X]V),
b) PAINF Vv2N ([OX]v & Opa[X]v).

Proof: The proof is completely analogous to the one of 10.6.2. Note that we need to
verify that 10.3 even holds for PATN. m}

10.7.3 Definition

Consider a Carlson-2-model G=<F,f>. Suppose G is of the form ¥g¥,G,, where
G,=<F,.f,> and G, is a finite Carlson-model (also finite in the sense that f (p)=0 for all
but finitely many p), with bottom b,. Define for ¢€ L:

[olv = [[oIfv.

Let f*p:=[p]v, and define:
<dp>v = (0)(f*,PA,v),

10.7.4 Theorem

PAINE Vv2N (<¢>v e [9]v)
Proof: By a trivial induction on ¢ using 10.7.2. O
10.7.5 Arithmetical Completeness for CSM,

Suppose CSM,<¢. Then there is an open interpretation function f* such that:
PAx YVv2N (0)(f*,PA,v).

Proof: Suppose CSM,<¢. Consider the finite set-model G, constructed in the proof of
8.32. The bottom, say z of G, forces —¢ (under f, ). Consider G =¥ ¥zG,. Let
u=<<z,0>,0>. Clearly the submodel with domain uWS_ will be isomorphic to G of the
proof of 8.32 Hence, because uUWS, is upwards closed G, the forcing relations of G,
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and G of 8.32 will coincide on the nodes connected by the isomorphism. Ergo u i< ¢(f,).
Hence for some o< and for all WEK ;: Wi-(OAAp)— L.

Let h, [.]v, <.>v be based on G.. We have: PA-VYVv2N [(¢~A$)— L ]v and thus by
10.7.2: PAEVV2N ([¢]vAaApp [0]v) = [L,]v. Let 7 be a proof of this fact.

Suppose PA+ Vv>N <¢>v. Then by 10.7.4: PA- Yv2N [¢]v. Let ©* be a proof of this fact.
Let M be bigger than both N and the codes of the arithmetical axioms in & and =*. It
follows that:

PAIMi ([1MAAp y[01M) - [L M,
and:

PAIM- [$IMAApp y[01M.
Ergo PAIM~[L M, quod non. O

10.7.6 Arithmetical Completeness for CSM,

Suppose CSM,¢. Then there is an open interpretation function f* such that for some
k>N PA(d)(f*,PA,k).

Proof: In fact we have for all k=N PAw(0)(f*,PA,k). The proof for the pair PA, PATk is
fully the same as the proof for the pair RPA, PA. O

10.7.7 Arithmetical Completeness for CSM,

Suppose CSM,+¢. Then there is an interpretation function f* and a k=N such that:
Ne= (¢)(f*,PA,K).

Proof: Again this holds for all k=N. The proof is the same as the proof of 10.6.9.
m|

10.7.8 Montagna's Uniformization Theorem

Let Cx be a formula of the language of PA. Define fC by: pri:= Ci. There is a
A,-formula Bx with just x free such that for all ¢:

) CSM,6 & PA- YvaN (6)(fB,PAv),

i) CSM,—¢ & forall k=N PA(0)(fB,PA k).

Note that we do not only obtain uniformization in this way but also cl/osed counter-
examples.

Proof: We first give a sketch of the proof of (ii). This part of the proof is taken from
Montagna[1984].

Let for ¢ such that CSM, <0, f¢ stand for the counterexample function constructed from
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an appropriate countermodel.

Let TR be a A, truthpredicate for Boolean combinations of Z,-formulas with just v free.
This means that if Dv is such a Boolean combination we have:
PA- Yv(TR(DV,v) < Dv).

Consider Bx such that:
PA~ Vx(Bx « if for any <y,v,¢>, which is the first (coded) tripel such that
CSM,¢, v=N, Proofy A(y,(q>)(fB,PA,v)) we have: TF{(fq)pX,v) )-
It is easily seen that Bx is A,.

Suppose CSM,<¢, but for some k=N PA|—(¢)(fB,PA,5). It follows that there is a <q,m,y>
such that:
PA- <g.m,"y'> is the first triple such that CSM, <y, m>N and ProofPA(g,(q))(fB,PA,_m))
Hence:
PA- VX(Bx & TR(prx,m)).
Because PAl—(q;)(fB,PA,_r_n), we find: PAn-(w)(f\V,PA,m). Quod non.

Finally we prove (i): remember that by a Kripke model argument:
CSM,¢ & CSM,~A¢.

We have:
CSM, -6 = PAINK YvaN (9)(fB,PA.v)
= for all k=N PA-Apa (0)(B,PAK)
= CSM,+Ad
= CSM,+¢.
O
11 The essentially ~-formulas of L,

A formula ¢ of L is called essentially X w.r.t. T if for all interpretations f ¢(f,T) is prova-
bly equivalent in T to a X,-sentence.

In this section we want to characterize the essentially Z-formula's of L, w.r.t. PA. The
first conjecture that comes to mind turns turns out to be correct: such ¢ are provably
equivalent in L to T orto L or to a finite disjunction of sentences of the form bo.

How to prove this conjecture? A first idea is to look at those y in L, such that L-y— oOy.
Perhaps they are precisely the essentially =-formulas w.r.t. PA? This idea however
does not work. Consider e.g. p~op. Clearly L (pA~oOp)- o(pAOp), but there is an
arithmetical sentence A such that (A~Op,A) is not provably equivalent to a Z,-senten-
ce in PA. (This well known result is due to Kent, see Kent[1973].) A second idea is to
use an operator A standing for provability in a theory U which is weaker than PA (e.g.
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PRA) and to consider those vy such that y— Ay is arithmetically valid. This idea does
not quite work yet: one only gets a characterization of the ¢ such that for all interpre-
tations f ¢(f,PA) is provably equivalent to a Z,-sentence in U. The way in which the

second attempt fails suggests that one should look at a theory or theories that is/are in
some sense weaker than PA, in some other sense equal to PA. This third idea works. |
found two ways to implement it. The first one is to use Montagna's interpretation of
CSM, plus his uniformized completeness theorem. The growing sequence of finite
subtheories is as it were in the limit (extensionally) equal to PA. A disadvantage of this
approach compared with the one elaborated below is that the counterexamples it
produces tend to be A, rather than Boole(Z,). The second way to work out the third

idea is to consider the interpretation associated with NB,. This way will be pursued
here. (Both succesful strategies use -in different senses- infinitely many interpretations
of A; whether this is a necessary feature | don't know.)

11.1 Theorem
Suppose ¢eL, and ¢ is essentially = w.r.t. PA. Then NB,-¢— A¢.

Proof: Let be an essentially =-formula w.r.t. PA of L,. Consider any false Z,-sentence
S and any interpretation function f. Clearly: (¢)(f,PA)=(¢)(f,PA,S). Ex hypothesi there is a
Z,-sentence A such that PA-(9)(f,PA) & A. It follows that PA-Ap, ((9)(f,PA) < A) and
hence PA-Apy 5(9)(f,PA) & App gA. Thus:
PA~ (¢)(f,PA,S) - A

— Appgh

- (AQ)(f,PA,S)
By the arithmetical completeness theorem for NB, we may conclude: NB,-¢— A¢.

O

11.2 Fact
Suppose ¢€L,. Then: NB, ¢ < Li-o.
Proof: The proof is surprisingly trivial. The "<" side is as usual. For the "=" side note

that substituting "o" for "A" in NB, axioms and rules yields theorems and rules of L.
O

11.3 Theorem
Suppose ¢€L, and NB,-6—> A9, then Li-¢ & W Oo.

(We use convention 9.2 here. Note that the disjunction may be empty, in which case it
reduces to L, or one of the ¢ may be T, in which case the disjunction reduces to T.)

Bimodal Provability Logic, May 25, 1987 , 10:16 . 49



Proof: Let €L, and suppose NB;-¢— A¢. Clearly ¢ can be written in the form
W X\ [Oy,-Oy,p,—ql, where y,x € L,. Consider any disjunct C=/\[Oy,-0%,p,—q]. We
may assume that L»/X\ Oy - 0Oy, otherwise C would reduce to L and could be dropped
from our disjunction. Similarly we may assume that the p in C and the q in C are
disjoint. Clearly NB,+~/\[Oy,-0O%,p,—-q]— A¢. We claim: Li- A\ Dy— ¢. Suppose not.
There is a finite L-model K¢=<<K¢,R¢>,f¢> with bottom b, such that: by, b« A\ Oy— ¢(f,).
Moreover for each of the ¢ occurring in C there is a finite L-model Kx=<<Kx’Rx>’fx> with
bottom bx such that bxv MNoy- ux(fx). Let "p" range over ¢ and the % in C. Without
loss of generality we may assume that the Kp are pairwise disjoint and do not contain
0.

We "glue" the Kp together to a Carlson-model (and hence a set-model) G in the
following way: G:=<F.f>, where F=<K,K,,S> and:

K ={0}uUK/

Ko =U(K)b,)

xSy :& (x=0 and y=0) or (for some p: x,y€ K, and xpr)

fo, = Ufppiu{0|pi isapinC}

Clearly if xer and c€Ly: xi-o(f) & xi=o(f,). byi- Ow(f) for each of the y in C. Moreover:
ORx & (prx for some p). It follows that Or-owy(f). For each x of C bxv oy(f), so there is
an x in K, \b, with xi<x(f). Hence for each y in C: 0w Oy(f). Also Oi-p(f) forthe pin C
and O~ q(f) for the g in C. Conclude O\ [oy,-D0%,p,—-q](f). Finally bq, b O(f).

Now consider G"=¥4G. Say G=<F'f'>. G' is a Carlson-1-model (and hence a set-1-
model). By 8.22 <0,0>1-C(f'), because Ce L, and no formulas of the form Ac occur in
L,. Also <by,0> 1 o(f') (because ¢€ Ly). Hence <0,0> 1< A¢(f'). Contradiction!

It follows that L+ (\W XA\ Owy)— ¢. On the other hand clearly L-6— W A Owy. Finally:
L-/\ Oy e oo for some o (which may be taken T if the conjunction is empty). Hence
Lo WDOo. o

11.4 Theorem

Suppose ¢ is in L,. The following are equivalent:

i) ¢ is essentially Zw.r.t. PA

i) NB;-¢—AG

i) L-¢e Woo.

Proof: "(i)=(ii)" is 11.1; "(ii)=(iii)" is 11.3; "(iii)=(i)" is trivial. O

11.5 Kent's Theorem revisited

Clearly if ¢€ L, is not essentially = w.r.t. PA our method should provide us with counter-
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examples to that effect. Let's by way of example show that pAOp is not essentially =
w.r.t. PA.

First we show that NB,»(pA0Op)— A(p~Op). This is easily verified by considering the
following Carlson-1-model: G:=<<{1,2},9,S>,f>, where 1S2 and fp={1}.

To find the desired arithmetical counterexample we must change G into a set-2-model
and embed this into arithmetic.

Let G'=<<{0,1,2},0,{1,2},S'>,f'>, where 0S1S2 and f'p={0,1}. Let G"be WRG" Clearly
G" is set-2-model of the desired sort. Let [.] be the interpretation function associated
with NB, PA and G" . B:=[p] is clearly a counterexample as desired. Note that f'p is
downwards closed in G", so B is (provably equivalent in PA to) a IT,-sentence.

Inspection of the model G" shows that B itself has the property: PA-B— Op,B, but B is
not provably equivalent in PA to a Z,-sentence.

11.6 Open problems

i)  Our proof of theorem 11.4 uses the essential reflexiveness of PA. The proof would
also work if we substituted any essentially reflexive extension of PRA for PA. What
is the situation for PRA? Do we still have the equivalence between (i) and (iii) of
11.4 for PRA? (Conjecture: yes!).

ii) What are the essentially =-formulas w.r.t., say, PA in L, extended with the Rosser
orderings, i.e. the language of the theory R of Solovay & Guaspari under the usual
interpretation. (This problem was first posed by D. Guaspari, see Guaspari[1983].)

11.7 Remark

Let's extend the language L, to Ly(Z) by adding new propositional variables s. An
interpretation function for the extended language assigns to the old variables p
arithmetical sentences and to the new variables s Z,-sentences. Let Ly:=L+-s—0Os. It
is easily seen that Ly is arithmetically sound and complete (interpreting 0 as dp,). The
argument of this § can be extended to show that the essentially Z-formulas of L,(X) are
precisely those ¢ that are provably equivalent in Ly to formulas of the form W /X\[s,0].

12 A reduction theorem for Relative Interpretability
Consider a set-2-frame F, of the form ®4®gF_, where F, is a finite set-frame. Let [.] be
the embedding of the propositions of F into arithmetic defined in 10.5. S:=3x hxeK,. Let

X be a proposition. Finally we write "V *5, C" for: CvVpp sC, and "o +p,C" for:
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We have:
12.1 Reduction Theorem
PAR [X]<paB © ((=SAOpa(B=V*pa X)) (SADpA(B—= O +palXD))
Proof: Reason in PA:
Suppose -S. We have: [X]<ppVpp g[X]. Hence by 1,13 [X]=p,V *pp g[X]. By

10.5.2: Opa(V*pa s[XIe [V*X]), hence, because V*X is downwards closed,
Opa(V *pa s[X] & Vx hxe 'V*X). Hence:

[XI<9paB < (VFpas[X])<paB 2
o (VX hxeT*+X)<tp,B 11,12
o Opa(B- Vx hxe V+X)

Suppose S. By 16: [X]<pp O palX]. Hence by 11,13: [X]=p, O *palX]. By 10.5.2:
Opa(© tpalX] < [©+X]). By the reasoning of 10.5.2 (case (b) "—"): OpLeK,. We
claim: Op,([OFX] & Vx hxe'o X ).

Reason in oPA:

The "« " side is trivial. For the "—" side, suppose L=z€'¢*X'. zeK,, hence
for every y with yWSz we have yWRz and thus ye ¢ *X.

HOpa
It follows that: Op,([© TX] & Vx hxe"©*X'). Hence:
[XI<9paB & (0¥ palX])<IppB 12
o (Yxhxeo+X)<p,B 11,12
o DOpp(B- Vx hxe'o+X) J
< Opa(B= O pa[X])
oPA

Translating the above result back to the frame we define:
XY = (=KADY > VX)) v (K, AO(Y - O FX)).

Alternatively define:
X€(X<1Y) :« for every y with xRy and yeY there is a z with xRz, yWSz and ze X.

As is easily seen both definitions amount to the same thing. The Reduction Theorem
implies: PA- [X<Y] & [X]<pa[Y].

The Reduction Theorem can be used to produce arithmetical counterexamples to
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various principles for Op, and <p,. For example consider the following countermodel

to p< T O(p<T): first define G, by: K,:=(1,2,3,4}, K ,:=(2,3,4}, K ,:={3}, 1528354,

fp={4}. G:=¥g¥RG,. Clearly <<1,0>,0>-p<aT(f), but <<1,0>,0> 1k O(p < T)(f). Hence:
PAWK [p]<NppT — Opa([P]1<paT)-

Note that [p] is provably equivalent to a =,-sentence. So our present counterexample is
as good as the one produced in 7.3.4.

Excercise (De Jongh): Show that there are A,B,C in the language of PA such that:
~=C) v(CA-AA~A-B))) - (BQPAAVC<PAA) .

Our present reduction theorem is to poor to produce counterexamples to all
arithmetically non-valid principles for <p,, €.9. Fp<<T - =(-p<T) is arithmetically
non-valid, but in no set-2-frame is there a clopen X with (X<<TA=X<1T)=T.
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