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Abstract

Vardanyan’s Theorem states that the set of PA-valid principles of Quan-
tified Modal Logic, QML, is complete Π0

2. We generalize this result to a
wide class of theories. The crucial step in the generalization is avoiding
the use of Tennenbaum’s Theorem.
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1 Introduction

The idea of assigning structures of kind Y to structures of kind X other in order
to obtain information is a useful methodology in mathematics. The structures
of kind Y are often simpler and better understood. Provability logic is a case in
point: we assign to arithmetical theories certain propositional modal logics that
are in many respects simpler than the original theories. These modal logics
give us full information about arithmetical reasoning of a certain restricted
sort. A disadvantage of this approach is that provability logic does not yield
differential information: the modal logic assigned is the same for a wide class
of reasonable theories. The situation becomes a bit better when we expand the
modal language. One possible extension is to a propositional modal language
with a binary predicate for relative interpretability. In this case salient classes of
theories receive different but simple logics. See e.g. [JdJ98] and [Vis98]. Another
possible expansion is to a predicate logical modal language. Here we certainly do
have differential information about the original theories. Vardanyan’s theorem
concerns this situation. Vardanyan’s Theorem tells us that the set of PA-valid
principles of Quantified Modal Logic, QML, is complete Π0

2. Thus, the PA-valid
modal principles are more complicated than the theory PA itself. Clearly, the
result can be viewed as a negative result for the case of PA.

Vardanyan’s Theorem was discovered by V.A. Vardanyan in 1985. See
[Var86]. Vardanyan’s work used earlier ideas of V.E. Plisko (see [Pli77], [Pli78],
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[Pli83], [Pli93]) and S. Artemov (see [Art85]). Vardanyan’s Theorem was dis-
covered independently but slightly later by Vann McGee. The first published
version of McGee’s result is in his 1985 PhD Thesis. We will generalize Var-
danyan’s result to a wide class of arithmetical theories, containing all theo-
ries in the language of arithmetic that extend Elementary Arithmetic EA, ie.
I∆0 + Exp.1

Let me point out that if we just consider the valid schemes for (non-modal)
predicate logic, then, for a large class of theories, we get no specific information:
e.g. for Σ0

1-sound arithmetical theories you get precisely predicate logic. How-
ever, if you look at non-arithmetical theories there are many possibilities. See
[Yav97]. It has been shown that there is a Σ0

1-unsound arithmetical theory such
that the set of its predicate logical valid principles is complete Π0

2. See [Vis02].
the main theorem of the present paper extends Vardanyan’s Theorem to a

wide range of theories. Here is a first crude statement of our theorem.

Theorem 1.1 Consider a theory T in the language of arithmetic. We assume
that the axiom-set of T is simple, e.g. p-time decidable. If T is a Σ0

1-sound
extension of EA, then the set of T -valid QML-principles is complete Π0

2.

Closer inspection of the argument gives us a more refined, but less memorable
statement.

Theorem 1.2 Consider a theory T in the language of arithmetic. We assume
that the axiom-set of T is simple, e.g. p-time decidable. Suppose (i) that T is an
extension of EA such that T + Con2(T ) is consistent or (ii) that T is an finite
extension of S1

2 or I∆0+Ω1 such that T does not prove an iterated inconsistency
statement Bewn

T [⊥]. Then, the set of T -valid QML-principles is complete Π0
2.
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2 Prerequisites, Notations and Conventions

We will assume that the reader is familiar with provability logic and, in particu-
lar, with Boolos’ beautiful presentation of Vardanyan’s Theorem in the textbook
[Boo93]. We will mostly follow Boolos’ notational conventions. We will diverge
at one point. Boolos writes {A} for the translation of the arithmetical language
A to a corresponding relational language L with predicates Z, S, A, M and E
(for identity), which are resp. 1,2,3,3,2-ary. We will write (A) instead.

Section 6 requires some knowledge of weak theories. See e.g. [Bus86] or
[HP91].

1We always assume that theories are axiomatized by an axiom-set that is simple, say p-time
decidable.
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3 The Basic Form of the Argument

In this section, we present the basic scheme of the argument. As given here the
argument, and especially the soundness part of it, can still be improved. We
will do this in section 5.

Let an arithmetical theory T be given. We demand that T is sufficiently
strong and sufficiently sound. The amount of strongness and soundness needed
is dependent on the further details of the proof. We will specify what is needed
later. What we are looking for is a reduction of the truth of Π0

2-sentences
P := ∀x∃y P0(x, y), for P0 ∈ ∆0, to the T -valid principles of QML. We will, in
an effective way, associate a suitable modal sentence P̃ to P such that P is true
iff P̃ is T -valid.

The modal language L2 that we will employ, extends the relational variant
L of the language of arithmetic which contains the predicates Z, S, A, M and E
(for identity), which are resp. 1,2,3,3,2-ary. There will, of course, be the modal
operator 2, but also an additional predicate X which in the usual approaches
is unary and in our approach is 0-ary. The general proof strategy is as follows:
we have to find L2-formulas A and B(x, X) with the following properties:

† A is in L. We demand that A implies (in predicate logic) (Q) . Here Q
is the single sentence axiomatization of Robinson’s Arithmetic. Let e be
the interpretation of L that sends S(x, y) to Sx = y, etc. We demand that
T + Ae is sufficiently sound. We will specify later how much soundness is
needed.

‡ Define ν0(z) := Z(z) and νn+1(z) := ∃u (νn(u) ∧ S(u, z)).2 We demand
that, for every (·)?, there is an n such that:

T + A? ` (∃z (νn(z) ∧B(z,X)))?.

£ A certain class of formulas Γ is specified, such that, for every i, there is a T -
formula C (of the arity of X) in Γ such that if (∃z(νn(z)∧B(z,X))e[X:=C]

is true, then n ≥ i. Here e[X := C] has the obvious meaning: it is e
extended to an interpretation that translates X to C.

We take as P̃ the formula: (A → ∃z (B(z,X)∧ (∀x<z ∃y P0(x, y)))). We reason
as follows.

Completeness: Suppose P is true. Consider any (·)?. By (‡), there is an n
such that (a): T ` (A → ∃z (νn(z)∧B(z)))?. Clearly, ∀x<n ∃y P0(x, y). Hence,
Q ` ∀x<n∃y P0(x, y). Using (†), we can transform the Q-proof witnessing this
last fact to a T -proof witnessing (b):

T ` (A → ∃z (νn(z) ∧ (∀x<z ∃y P0(x, y))))?.

Combining (a) and (b), we find: T ` P̃ ?.
2Note that νn(z) is equivalent over (Q) to (n = z). The reason that we explicitely use νn

is to avoid scope confusions.
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Soundness: Conversely, suppose P̃ is T -valid. Let i be an arbitrary number.
Let C be the formula in Γ promised for i by (£). Consider the interpretation
eC := e[X := C]. We find:

T ` (A → ∃z (B(z,X) ∧ (∀x<z ∃y P0(x, y))))eC .

Hence, T + Ae ` ∃z (BeC (z,X) ∧ ∀x<z ∃y P0(x, y)). We assume that T + Ae is
sound for sentences of the form ∃z (BeC (z,X)∧∀x<z ∃y P0(x, y)) for C ∈ Γ. It
follows that ∀x<i∃y P0(x, y). The number i was arbitrary, hence we find that
P is true.

4 The Magic Formulas A and B

In this section we discuss various ways of constructing A and B. In subsec-
tion 4.2, we prove theorem 1.1.

4.1 Plisko and Vardanyan

The formula A associated to Vardanyan’s work is the formula (B)∧D∧E. Here
‘B’ is the formula Boolos calls ‘T ’ and D and E are as in Boolos’ presentation.
We have: T + Con(T ) ` ((B) ∧D ∧ E)e.

Plisko used for B a formula expressing ‘X is not a truthpredicate for sen-
tences of complexity x’. Here we may take as complexity measure the one
corresponding to the arithmetical hierarchy. One nice aspect of this approach
is that B is entirely boxfree.3 The unary formulas C provided by (£) will be
truthpredicates for complexity i. To make this strategy work we need make A
so strong that modulo provable equivalence A? implies that (·)? restricted to
the arithmetical part of the language is equivalent to e. To do this, we need
to apply an arithmetized version of Tennenbaum’s Theorem. The application
of Tennenbaum’s Theorem will need at least that T contains IΣ1. A detailed
verification of this fact will be given in Maartje de Jonge’s forthcoming paper.

Note that, with Plisko’s B, we need C of arbitrary complexity, so a rea-
sonable choice of Γ will be the set of all formulas of the arithmetical language.
Thus, if we follow the proof outlined in section 3, we will need true extensions of
IΣ1 in the arithmetical language. Closer inspection of the argument will reveal
that a slightly adapted version works for extensions T of IΣ1 such T + Con(T )
is consistent. See also Maartje de Jonge’s forthcoming paper.

The B used in Boolos’ presentation of Vardanyan’s argument is roughly ‘x
is a recursive index of the set {y | 2X(y)}’. Using the argument of section 3
this argument would work for Σ0

3-sound extensions of IΣ1. However, one can
refine the argument in such a way that the weaker demand that T + Con(T ) is
consistent, is sufficient. See also Maartje de Jonge’s forthcoming paper.

3Plisko developed his beautiful idea for the study of interpretations of intuitionistic predi-
cate logic. So he did have no boxes to play with.
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4.2 Our Choice for A and B

We want to find A and B that work for a wide range of theories. It turns
out that the wonderful idea of using an arithmetized version of Tennenbaum’s
theorem is the main obstacle to progress. In the construction below, we simply
avoid the need to use of Tennenbaum’s Theorem.

We demand that T is a Σ0
1-sound extension of elementary arithmetic EA,

also known as I∆0 + Exp. Here Exp is the axiom stating that exponentiation
is total. Later we will show how to improve this condition: the result holds
also for certain weak arithmetics and we need less soundness. Here is a brief
description of EA.

1. EA is finitely axiomatizable. We will employ a finite axiomatization of EA.

2. The provably recursive functions of EA are precisely the elementary func-
tions.

3. EA implies Σ0
1-completeness for theories extending the theory R of Tarski,

Mostowski and Robinson. In fact EA can formalize the standard argument
for Σ0

1-completeness.

4. The usual arithmetization of syntax is possible in EA. In addition, all
Rosser style arguments involving witness-comparisons of Σ0

1-sentences can
be formalized in EA.

5. EA has a Σ0
1 truthpredicate TrueΣ0

1
for Σ0

1-sentences.

6. EA does not prove cutelimination for predicate logic, which requires su-
perexponentiation.

7. EA does not prove Σ0
1-collection:

` ∀x<a∃y D0(x, y) → ∃b ∀x<a∃y<b D0(x, y),

where D0 ∈ ∆0
1.

A suitable finite axiomatization of the axioms of identity is supposed to be
incorporated in EA. We take X 0-ary. To improve readability, we write �G for
G ∧2G. Here are our A and B:

• A := �((EA) ∧ ∀y (Z(y) → 2Z(y)) ∧ ∀y∀z (S(y, z) → 2S(y, z))),

• B(x,X) := 2(2X ↔ 2(TrueΣ0
1
(x))).

To verify the satisfaction of (†), note that T ` Ae. So, all we need is that T is
sufficiently sound. Note that, for any C, ∃z (BeC (z,X) ∧ ∀x<z ∃y P0(x, y)) is
Σ0

1. Hence, we will only need that our theory is Σ0
1-sound. We will improve this

estimate in section 5.

We verify (‡). Let G := ∃xG0(x) and H := ∃y H0(y), for arbitrary G0 and H0.
We write:
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• G ≤ H :↔ ∃x (G0(x) ∧ ∀y<x¬H0(y)).

• G < H :↔ ∃x (G0(x) ∧ ∀y≤x¬H0(y)).

• (G ≤ H)⊥ :↔ H < G and (G < H)⊥ :↔ H ≤ G.

Consider any (·)?. By the Gödel Fixed Point Lemma, we may find a Σ0
1-sentence

R such that
T ` R ↔ BewT [X?] ≤ BewT [(R)

?
]. (1)

We interpolate two lemmas.

Lemma 4.1 For any Σ0
1-sentence S, we have: T + A? ` S → BewT [(S )

?
].

Proof

Reason in T + A?. Given S we can find a Q-proof π of S. The proof π can
be transformed into a T -proof π′ of (Q → S )

?
. (In fact this transformation is

p-time.) By A?, there is a T -proof τ of (Q)
?
. Combining π′ with τ , we find a

T -proof τ ′ of (S )
?
. 2

The next lemma is a minor variation on a consequence of the Friedman-Goldfarb-
Harrington Theorem. See [Vis02] for a detailed discussion of this theorem.

Lemma 4.2 We have: T + A? ` BewT [X?] ↔ BewT [(R)
?
].

Proof

Reason in T + A?. Suppose BewT [X?]. It follows, by ∆0-induction, that:

BewT [X?] ≤ BewT [(R)
?
] or BewT [(R)

?
] < BewT [X?].

In the first case, we have R. Hence, by lemma 4.1, BewT [(R)
?
]. In the second

case, we have BewT [(R)
?
] immediately.

For the converse, suppose BewT [(R)
?
]. It follows that:

BewT [X?] ≤ BewT [(R)
?
] or BewT [(R)

?
] < BewT [X?].

In the first case, we have BewT [X?]. In the second case, we have, by lemma 4.1,

BewT [ (BewT [ (R)
?
] < BewT [X?])

?
].

In other words, we have BewT [(R⊥)
?
]. In combination with our assumption

that BewT [(R)
?
], this gives us BewT [⊥]. Hence, a fortiori, BewT [X?]. 2
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Remark 4.3 One might be tempted to reason, in T +A?, as follows. Let U be
the theory axiomatized by {E∈sentL | BewT [E?]}. This is a theory in predicate
logic extending Q, hence we may apply the Friedman-Goldfarb-Harrington The-
orem to U . The fallacy in this argument is a silent application of Σ0

1-collection.
The provability predicate of U will not be verifiably Σ0

1. Of course, there are
many ways to repair the argument, however, given the fact that the proofs of
our two lemmas are quite short, why bother?

Lemma 4.2 gives us:

T + A? ` BewT [X?] ↔ BewT [(R)
?
]. (2)

Suppose r is the Gödelnumber of R. We have: EA ` R ↔ TrueΣ0
1
(r), and, hence,

EA ` R ↔ ∃z (z = r ∧ TrueΣ0
1
(z)). We can transform the witnessing EA-proof

of this last fact into a (T + A?)-proof, thus obtaining:

T + A? ` ( (R) ↔ ∃z (νr(z) ∧ (TrueΣ0
1
(z))) )?. (3)

Using the fact that T + A? ` BewT [A?], we now obtain:

T + A? ` BewT [ BewT [(R)
?
] ↔ BewT [(∃z (νr(z) ∧ (TrueΣ0

1
(z))))?] ]. (4)

We now want to ‘export’ the ∃z (ν?(z)∧ . . . to the outside of the Bew[. . .]’s. We
indicate the obvious steps. Evidently, we have:

T + A? ` (∀z∀u ((νr(z) ∧ νr(u)) → E(z, u)))?. (5)

Moreover,
T + A? ` ∀z (ν?

r (z) → BewT [ν?
r (z)]). (6)

Clearly, T+A? ` ∃z ν?(z). By equation (6) and the fact that T+A? ` BewT [A?],
we obtain: T +A? ` ∃z (ν?(z)∧BewT [BewT [ν?

r (z)] ]). Hence, using equation (5),
we find: T +A? ` ∃z (ν?(z)∧BewT [ BewT [∀v (ν?

r (v) → E?(v, z))] ]). Combining
this with equation (4), using the fact that A? implies that E? is a congruence
w.r.t. the relations of L, we find:

T + A? ` ∃z ( ν?
r (z) ∧ BewT [ BewT [X?] ↔ BewT [(TrueΣ0

1
(z))

?
)] ] ) (7)

Clearly equation (7) gives us the promised T ` (A → ∃z (νr(z) ∧B(z,X)))?.

We proceed to derive (£). We define, for any arithmetical formula G,

• Bew0
T [G] :↔ G,

• Bewn+1
T [G] :↔ BewT [Bewn

T [G]].

Consider any natural number i. Suppose that for every C there would be an
n < i such that (∃z (νn(z) ∧ B(z,X))e[X:=C] is true. It would follow, by the
Pidgeon Hole Principle, that for some n, m and k with m > k > 0, we would
have:

T ` Bewm
T [⊥] ↔ BewT [TrueΣ0

1
(n)] and T ` Bewk

T [⊥] ↔ BewT [TrueΣ0
1
(n)].

Ergo, T ` Bewm
T [⊥] ↔ Bewk

T [⊥]. Hence, by Löb’s Principle, T ` Bewk
T [⊥].

Quod non, by Σ0
1-soundness.
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5 Sharpening the Soundness Condition

How sound should our theories T be? We will look into the matter by refining
the completeness part of the argument in section 3 a bit.

It seems fair to me to demand that the theories we consider satisfy the
demand that T + Con(T ) is consistent. If it is not, the modal part of the
language trivializes and we are really looking at the non-modal predicate logics
of theories.

Let’s briefly look at the excluded case that T +Con(T ) is inconsistent, i.o.w.
that T ` BewT [⊥]. Clearly, the question of complexity reduces to the question
whether the ordinary, non-modal, predicate logic of T is complete Π0

2. Well,
anything is possible. For example, if T is finitely axiomatized, the logic of
T + BewT [⊥] is precisely predicate logic plus the axioms 2A for all A. This
is an immediate consequence of the results of [Vis02]. On the other hand, the
results of [Vis02] show that there is a consistent arithmetical extension of, say,
IΣ1+BewIΣ1 [⊥] such that the set of valid predicate logical principles is complete
Π0

1.
As will be shown in Maartje de Jonge’s forthcoming paper, a refinement

of the original Vardanyan argument works for extensions T of IΣ1 such that
T + Con(T ) is consistent. Thus, w.r.t. soundness the original result is, in a
sense, optimal. The result of this paper asks for less strength. However, we will
need a bit more soundness: T + Con2(T ) has to be consistent.

Suppose T is a theory in the language of arithmetic, extending EA. Suppose
further that T+ := T + Con2(T ) is consistent. We will show that the set of
T -valid QML-sentences is complete Π0

2. This proves (i) of theorem 1.2.
Consider P := ∀x∃y P0(x, y), where P0 ∈ ∆0

1. Let P1(x) := ∃y P0(x, y). By
the Gödel Fixed Point Lemma we may find Q1(x) ∈ ∆0

1 such that

Q ` Q1(x) ↔ P1(x) ≤ BewT+ [Q1(x)].

By the FGH theorem (see[Vis02]; see also lemma 4.2), we have, for any n,
P1(n) ⇔ T+ ` Q1(n). Suppose Q1(x) := ∃y Q0(x, y), where Q0(x, y) ∈ ∆0

1. Let
Q := ∀x∃y Q0(x, y). Again, by the FGH theorem, we have that P is true iff Q
is true.

Now we repeat the argument of section 3 for T with Q in the role of P . The
completeness part remains the same. We sharpen the soundness part as follows.
Suppose that Q̃ is T -valid. Specializing this to the eC , we obtain, for any C:

T ` ∃z ( BewT [BewT [C] ↔ BewT [TrueΣ0
1
(z)] ] ∧ ∀x<z ∃y Q0(x, y) ).

Consider some number N . We have:

T + ∃x<N∀y ¬Q0(x, y) ` ∃z<NBewT [BewT [C] ↔ BewT [TrueΣ0
1
(z)] ].

Hence:

T + ∃x<N∀y ¬Q0(x, y) `
∨

k<N

BewT [BewT [C] ↔ BewT [TrueΣ0
1
(k)] ].

8



Consider ω∪{∞} with the obvious ordering. We construct the following Kripke
frame F on ω ∪ {∞}:

n ≺ m ⇔ (m ≤ N and n = m + N + 1) or (n > 2N + 1 and m < n).

The frame specified is the frame of a tail-model (see [Vis84]). By the result
of [Vis84], we can embed the algebra of propositions given by the finite and
the co-finite sets of nodes into T using a Solovay function h.4 The statements
Sn :↔ ∃u hu = n for n ≤ N represent the propositions pn := {n}. Clearly, for
n, m ≤ N with n 6= m, we have F |= 2(2pn ↔ 2pm) → 22⊥. Hence, by the
embedding lemma,

T ` BewT [BewT [Sn] ↔ BewT [Sm] ] → Bew2
T [⊥].

By elementary reasoning involving the Pigheon Hole Principle we find:

T + ∃x<N∀y ¬Q0(x, y) `
∨

m,n≤N, m 6=n

BewT [BewT [Sn] ↔ BewT [Sm] ].

Ergo: T + ∃x<N∀y ¬Q0(x, y) ` Bew2
T [⊥]. Contraposing, we find:

T + Con2(T ) ` ∀x<N∃y Q0(x, y).

Since N was arbitrary, we may conclude that, for any n, T+ ` Q1(n). By the
FGH property, it follows that P is true. Hence, P is true iff Q is true iff Q̃ is
T -valid.

Open Question 5.1 Is there a theory T in the language of arithmetic that
extends EA such that T +Con(T ) is consistent, for which Vardanyan’s Theorem
does not hold?

A curious aspect of our argument is that I do not know how to produce the
analogues of the Si for S1

2. See [BV93] for an extensive discussion of the prob-
lems involved. However, if we use the sentences Bewi

T [⊥], we still get a minor
improvement. By the above considerations and by the discussion in section 6,
we find that Vardanyan’s Theorem holds when T is a finite extension of either
S1

2 or I∆0 +Ω1 such that T does not prove any iterated inconsistency statement
Bewn

T [⊥].

6 Adapting the Argument to Weak Theories

We show how to adapt our argument to certain extensions of Buss’ theory S1
2.

Regretably the full description of the reasoning is rather long, so we will just
sketch the main ingredients of the adaptation.

4Alternatively, we could have used the much stronger embedding theorem due to V.
Shavrukov. See [Sha93]. For a simplified proof, see [Zam94]. Using this result we could
even have produced infinitely many Si with the desired property.
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The results of this section in combination with the considerations of the
previous section will give us (ii) of theorem 1.2. Here is a brief description of
S1

2. For a detailed discussion, see [Bus86] or [HP91].

1. S1
2 is finitely axiomatizable. We employ a finite axiomatization of S1

2 in
our argument.

2. The provably recursive functions of S1
2 are precisely the p-time computable

functions.

3. Arithmetization of syntax can be executed without any problems in S1
2.

4. We do not know how to formalize Rosser style arguments in S1
2. However,

some Rosser style theorems, such as Rosser’s original theorem, can be
formalized using a different argument. See subsection 6.3.

The theories for which we can also prove Vardanyan’s Theorem are the theories
in the arithmetical language that are either finite extensions of S1

2 or finite
extensions of the stronger theory I∆0 + Ω1. We will describe below the points
where we have to change the argument. We will aim at adapting our argument,
replacing EA by S1

2 everywhere.

6.1 Efficient Numerals

The definition of quantifying in involves the num-function which sends a number
to the Gödelnumber of its numeral. This function will, when naively formalized,
be of exponential growth. However, we do not have exponentiation in weak
theories. The usual way to solve this problem is to employ dyadic numerals
given by the mapping BNUM:

• BNUM(0) := 0,

• BNUM(2n + 1) := S(BNUM(n)× SS0),

• BNUM(2n + 2) := SS(BNUM(n)× SS0).

Let bnum be the function sending n to the Gödel number of BNUM(n). Under
a reasonable coding scheme the bnum function is polynomial. We replace the
use of num, by the use of bnum.

We might wish also to replace the predicates νn with predicates βn corre-
sponding to efficient numerals. For our specific argument this is not necessary,
since we are only using νn for standard n.

6.2 Truth Predicate

A somewhat more serious business is the fact that S1
2 cannot verify the properties

of the Σ0
1-truth predicate. There are two ways to get around thus restriction.

The first is by noting that our sentences RC have the specific form:

BewT [C] ≤ BewT [RC ].
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Now take as measure of complexity ρ which counts just depth of quantifier
changes. Note that all sentences of the form RC have complexity below K,
for some standard K. We can build a truth predicate True such that, for all
sentences H of complexity ≤ K, we have: S1

2 ` H ↔ True(h), where h is the
Gödel number of H. (See fact 2.4.4 of [Vis93].) Now we can use True instead of
TrueΣ0

1
in our argument.

The alternative strategy is as follows. We can find an S1
2-definable cut I

and a predicate TRUEΣ0
1

such that, for any Σ0
1-sentence S, we have S1

2 ` SI ↔
True∗Σ0

1
(s), where s is the Gödel number of S. Now we use the alternative fixed

point ZC such that Q ` ZC ↔ BewT [C] ≤ BewT [(ZI
C )

?
].

6.3 Adapting the FGH Theorem

We have to find an alternative proof for: T + A? ` BewT [C] ↔ BewT [(R)
?
].

This is one of the corollaries of the FGH theorem. Our earlier proof used the
principles

T + A? ` R → BewT [(R)
?
] and T ` R⊥ → BewT [(R⊥)

?
].

However, we only know how to prove these facts in the presence of Exp as part
of T . Also we used:

T + A? ` (BewT [C] ∨ BewT [(R)
?
]) → (R ∨R⊥).

This fact can only be verified if T extends I∆0 + Ω1 (as far as we know).
Fortunately, for a number of theories, there is another road. We use Švejdar’s
Principle.5 Inspecting the main proof of [VV94], one can show, for any finitely
axiomatized theory U extending S1

2 (or even a weaker theory like Q), or for any
extension U by finitely many axioms of I∆0 + Ω1, that:

Švejdar’s Principle: S1
2 ` BewU [G] → BewU [BewU [H]≤BewU [G] → H ].

The argument uses the fact that inside BewU in the consequent, we will have a
U -proof of G in any definable U -cut and, hence, a U -proof of H in any definable
U -cut. We can adapt the proof of the Švejdar’s Principle to our context to
obtain:

• T + A? ` BewT [G] → BewT [ (BewT [H]≤BewT [G])
? → H ]

The reason that this adaptation works is that for the original argument it is irrel-
evant what the interpretation of number theory employed for the formalization
of syntax inside U is. Also we have:

• T + A? ` BewT [C] → BewT [(R ∨R⊥)
?
].

The argument for this fact is similar to the proof of fact 2.7 of [Vis02].

5First formulated in [Šve83].
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Using Švejdar’s Principle, we cannot recover the full FGH principle, but we
can get the principle we need. We reproduce the argument for the case we are
interested in. We have:

T + A? ` BewT [(R)
?
] → BewT [(R)

?
] ∧

BewT [ (BewT [C]≤BewT [(R)
?
])

?
→ C ]

→ BewT [(R)
?
] ∧ BewT [(R)

? → C]
→ BewT [C]

T + A? ` BewT [C] → BewT [C] ∧
BewT [ (BewT [(R)

?
]<BewT [C])

?
→ (R)

?
]

→ BewT [(R ∨R⊥)
?
] ∧ BewT [(R⊥ → R)

?
]

→ BewT [(R)
?
]

The argument for the adapted version of Švejdar’s Principle also yields, for any
S1

2-cut I,

T + A? ` BewT [G] → BewT [ ((BewT [H]≤BewT [G])I )
? → H ].

Using this variant we can easily get the desired facts for Z of subsection 6.2.

7 Variations

The result above is remarkably robust against all kinds of variations. The
first possible variation is to consider relative interpretations in the definition
of schematic validity instead of unrelativized interpretations as we did. Every-
thing simply goes through. We might wish to move in the other direction, e.g.
restricting ourselves to interpretations where identity translates only to identity.
Again there are no poblems.

A somewhat more interesting variation is to consider as our theories pairs
〈T ,N〉, where T is a theory in some arbitrary language and N is a relative
interpretation of EA in T . We redefine our notion of validity for the modal
language in such a way that the quantifiers of the modal language are interpreted
as ranging over δN , the domain associated with N . Again Vardanyan’s Theorem
will work for this notion of validity. Under this interpretation, we can extend
Vardanyan’s Theorem to such theories as ZFC and GB.

It is unknown to me whether our result can be sharpened —as Vardanyan
improved his original theorem— to a predicate logical language with just one
unary predicate symbol. It could very well be that Vardanyan’s argument can
be copied here, but I did not try.
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