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THE FORMALIZATION
OF INTERPRETABILITY

Albert Visser

ABSTRACT: This paper contains a careful derivation of principles of Interpretability Logic valid in extensions of
1A(+9Q,.

1 Introduction

Interpretability Logic is a generalization of Provability Logic in two senses. First its subject,
interpretability, simply is a generalization of provability. Interpretability is provability combined
with change of perspective. Secondly well known facts of Provability Logic have natural
counterparts in Interpretability Logic. For example we have arithmetical completeness theorems in
the style of Solovay for two systems of interpretability logic (see Berarducci[88], Shavrukov[88],
Hdjek & Montagna[89], Visser[88b]). The modal theorems on uniqueness and expliciteness of
modalized fixed points have an immediate generalization (see Smorynski[87] for uniqueness, De
Jongh & Visser[89] for expliciteness). Finally the closed fragment of interpretability logic
‘collapses’ to that of provability logic (see Héjek & Svejdar[89], Visser[89]).

The richer language of Interpretability Logic has several advantages: first a major metamathematical
insight, the Model Existence Lemma, can in some sense be formulated in the logic: viz. in the form
of the Interpretation Existence Lemma (J5, see below). Secondly Solovays Completeness Theorem
for Provability Logic has an amazing stability: we find that Lob's logic is the provability logic of all
>,-sound RE theories U that extend IA;+EXP.() Thus Arithmetical Completeness gives no speci-
fic information distinguishing various theories. In the case of Interpretability Logic the situation is a
bit better. Two important classes, viz. 3,-sound Essentially Reflexive Theories and X,-sound
Finitely Axiomatized Sequential Theories extending I1A,+SUPEXP, have their own distinctive
interpretability logic (resp. ILM and ILP). Moreover many individual theories not falling in one of
these classes (like 1A;+Q; IA;+EXP, PRA) have their own interpretability logics. (Not much is
known about these, except in the case of IA;+EXP.) A third point is the possibility of applications
to ordinary Provability Logic. (An example of this -the solution of Guaspari's problem by Dick de
Jongh (building on work of Visser, Montagna, Pianigiani (in temporal order))- is forthcoming.)

This paper aims to be a careful presentation of the principles of Interpretability Logic valid in any

theory extending IA+€2,. It turns out that there are more such principles than was conjectured in
Viser[88b] (see section 8).

Formalization 1



One basic obstacle in reasoning about interpretability in weak theories is the absence of the
2.,-collection Principle. Tt is difficulty is illustrated (sections 4,5) and a strategy is developped to
circumvent the difficulty (sections 4,6). This strategy differs from the one followed in Visser[88b].
(In an appendix, section 11, a metamathematical result is proved on the comparison of reasoning in
IA,+Q, using the strategy and reasoning in BX,+€; without it.)

The plan of the paper is as follows: section 3 provides the necessary preliminaries. Secting 4
introduces interpretability and contains a discussion of the problems one meets when working
without ¥, -collection. Section 5 gives a more extended treatment of BY,. Section 6 is my latest
attempt to give a good presentation of the formalization of the Henkin Construction in IA+Q,. It
supersedes the treatment in Visser[89b]. Section 7 is the heart of the paper: it contains the careful
derivation of a number of insights essential to interpretability logic in IA+£,. In section 8 the
consequences of the work in 7 in terms of arithmetically valid modal principles is spelled out.
Sections 9,10,11 are appendices. In section 9 I show how to derive versions of the Orey-Héjek
characterization using the framework of the paper. Section 10 contains an alternative proof of the
theorem by Héjek and Montagna that ILM is the logic of [],-conservativity for extensions of I%,.
In section 11 I describe a different strategy to prove the results of section 7: work in BX,+Q, and
then use a conservation result to show that what is proved is also provable in IA+€,.

2 Prerequisites

The reader should know either the discussion of systems and arithmetization in Paris & Wilkie[87]
or in Buss[85]. Moreover the reader should have some knowledge of cuts: see e.g. Paris &
Wilkie[87].

3 Conventions, Notions & Elementary Facts.

3.1 IA,+Q, and the arithmetization of Syntax

IA,+Q, is the basic theory of this paper. For an introduction see Paris & Wilkie[87]. Here we
briefly mention a few relevant facts.

IA, is PA with induction restricted to Aj-formulas. J.H. Bennett shows that there is-a Ajy-formula
exp(x)=y, such that 1A, verifies ((exp(x)=yAexp(x)=z)—y=z), exp(0)=1 and exp(Sx)=2.exp(x). It
is easy to see that IA, verities such familiar facts as ((x<yaexp(y)=z)—3u exp(x)=u), ((exp(x)=u
A exp(y)=v) — exp(x+y)=..v . (Similar remarks hold for x¥.)

Define Ixl:=the smallest y : uch that exp(Sy)>Sx. Obviously the graph of Llis A. A, shows that LI

is a total function, which is weakly monotonically: increasing. If. we consider the numbers as
coding strings of a's and b s, where 0 codes the empty string, 1 codes a, 2 codes b, 3 codes aa, 4
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codes ab, 5 codes ba, 6 codes bb, 7 codes aaa, then Ixl is the length of the string coded by x. Note
(in IA): ((x20Aexp(x)=y)- >lyl=x)

Define x*y:=x.exp(lyl)+y. 1A, proves that * is total and weakly monotonically increasing in both
arguments. x*y is the code of the concatenation of the strings coded by x and y. Note: 1A proves
Ix*yl=Ixl+lyl. Moreover 1A, proves various elementary properties of * like associativity and
x*z=y*z—x=y.

Define ml(x):=exp(lx|2). Note (in 14,): ((x¢QAexp(x)=yAa)l(y)=z)—>z=exp(x2)) and "x20—
wln(cxp(x))=exp(x°XP(n)) (if one of these exists)".

Let Q, be the axiom ", is total". As is easily seen 1A, does not prove Q,. 1A;+€, is just right for
treating syntax: e.g. {2, guarantees that substitution of a term in a formula is possible. Sometimes it
is pleasant to work with Nelson's #, which is defined by x#y:=exp(lxl.lyl). As is easily seen
1A+, proves that # is total.

Theorem (Gaifman & Dimitracopoulos[82]): If f has Ay-graph than IAj+"f is total and
weakly monotonically increasing" 1A (f).

Here Ay(f) is the class of (translations of) formulas with only bounded quantifiers, where f is
allowed to occur in the bounding terms.

It follows that IA0+QIF~IAO(031), so in IA;+€2; we can work as if ®, were a function symbol in the
language.

We code in IA;+€2, by first translating our syntactical objects into strings of a' and b's and then
do the usual formalization of syntax it is imperative that the function num(x) that assigns to x the
code of the numeral of x is total. However it is easy to see that if we use as numeral for x: S...S0
(S x times), then the code of this numeral will be exponential in x. Hence we use the following
system of numerals: assign to 0 and 1 0 and SO; if we have assigned to x#0 numeral t, assign to
2.x: §S0.t, and to 2x+1: (S50.t+S0). Num(x) can be proved total even in IA,

In the sequel we will often use that every term in x of the language of arithmetic extended with w,
can be estimated by w,"(x for some standard n, provided that x>2. Moreover for every standard
polynomial P(x), we have: for some standard n exp(P(Ixl)<w,"(x), again provided that x>2. I find
it rather tiresome to always mention the proviso x>2, so I will omit it. The reader could easily
imagine a slightly adapted definition of w, that would make the proviso superfluous.
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3.2 Languages

In this paper we consider only relational languages, i.e. languages without function symbols and
constants. So for example in the case of arithmetic, instead of + we have a ternary relation symbol,
etc. . After this is said officially we will of course often prerend that we are working in a language
with function symbols. Here one has to be careful: for example at a certain point we are working in
IA,+€2, and we consider a function from n to the Gédelnumber of 3y y=n, where n is the numeral
in the sense of section 3.1 corresponding to n. For the functional language it is easy to see that this
function is total (in IA0+QI). Inspection of the translation procedure into the corresponding
relational language shows that the formulas become only polynomially longer, so the function is
also total for the relational language.

In our languages there are only finitely many relation symbols which include identity.
3.3 Special Classes of Formulas

We refer the reader to the discussion of special classes of formulas in Buss[1985]. We will use
mainly Zlb.

3.4 Theories and Provability

We consider, unless explicitely stated otherwise, only theories with identity for which a fixed list
of formulas of their language is specified defining a set of natural numbers, 0, successor, addition
and multiplication. We assume in most cases that IA,+2, is provable for these natural numbers.
Variables x,y,z,u,v,... will be taken to range over the designated numbers. So VxA(x) means
Vx(N(x)—A(x)) if N is the formula specifying the natural numbers of our theory. Syntactical
notions will always be formralized in the designated natural numbers.

We consider a theory T as ziven by a formula op(x) having just x free plus the relevant information
on what the set of natural numbers of the theory is. o gives the set of codes of the (non-predicate-
logical) axioms of the theory. Different a or different natural numbers different theories; same o
and same natural numbers same theory. Unless explicitely stated otherwise we will assume that o
is a 3, P-formula.

Example: Consider GB. Different definitions of the natural numbers in GB are possible. Under
one such choice GB-PA and GB¥Con(ZF). Under another such choice: GBH1A;+Q,+Con(ZF).

We take the two different choices of the natural numbers to give us two different GB's.

The theory T+A is always ¢ xiomatized by o, o With: X€'0lp, 5 (¢ X€ aTvx=rA_1.
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Let Proof(x,y) be the Elb-formula representing the relation: x is the Gédelnumber of a T-proof of
the formula with Gédelnumber y. Proof will be built in some standard way from or. The precise
choice of the system on which Proofr is based is immaterial: any Hilbert style system or Natural
Deduction system or Genzen style sequent system will do. If we want to stress that we are looking
at the Proof-relation based on a certain specific formula B we write: ProofB.

We assume for convenience that: IA +Q, +Vx3!y Proofp(x,y) . Let Provp(y) := 3xProof(x,y).

We write par abus de langage 'ProofT(x, A(xl,...,xn) )' for: ProofT(x,r,A(Xl,...,Xn)"), here:

i) all free variables of A are among those shown.

i) rA(Xl,...,)(n)1 is the "Godelterm" for A(x,,...,x,) as defined in Smoryriski [1985], p43.
Here we use instead of the usual numerals the efficient numerals of 3.1, so that:
1A+ - VX ,.0x Ty rA()('l,...,X'n)-I =y.

O7A(X,,...,x,) will stand for: Provp('A(X,....X )").

Occurrences of terms inside O should be treated with some care. Is Or(A[t/x]) intended
(OpAX)[t/x]? We will always use the first, i.e. the small scope reading. In cases where t defin
provably in U a total function and Urt=x—D0y,t=x, the scope distinction may be ignored within U
w.r.t. Oy. We have: Uk (OyA®X))[t/x] € Oy (A[t/x]).

<>T will stand for: =0 .

Let the axiom set of T be given by a(x) then DTry stands for provability in the theory whos
axiom set is given by (a(x)AX<y).

4 Interpretations and interpretability

4.1 Interpretations

Interpretations are in this paper: one dimensional global relative interpretations without parameters.
Consider two languages Ly, and Ly. An interpretation M of Ly, in Ly, is given by (i) a function F
from the relation symbols of Ly, to formulas of the language of L, and (ii) a formula 8(a) of Ly
having just a free. The image of a relation symbol has precisely a,,...,a, free, where n is the arity
of the relation symbol. The image of = need not be a;=a,. The function F is canonically extended
in the following way: (R(l'l,...,bn))M:=A(b1,...,bn), where A=F(R). (To make substitution of the
b's possible we rename bound variables in A if necessary. In fact it would be neater to set apart
bound variables for the F() and for & that do not occur in the original Ly;.) (OM commutes with
the propositional connectives. (VbB)M:=Vb(8(b)—BM). Similarly for 3.
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We can easily extend ()M again to map proofs & (from assumptions) in L,, to proofs 7M from the
translated assumptions in L;; in the obvious way. As is easily seen for a given interpretation M the
lengths of the translated objects are given by a fixed polynomial in the lengths of the originals. The
graphs of BM (considered as a function in B and M) and of t™ (considered as a function in 7 and
M) can be arithmetized by Alb-formulas in such a way that the recursive clauses are verifiable in
IA;+€,. Using the polynomial bound on the lengths of the values it is easy to verify that IA +Q,
proves that these functions are total. (This is verified in detail in Kalsbeek[89].)

4.2 Interpretability

Consider theories U (with language L;;) and V (with language Ly, ). What does it mean to say that
V is interpretable in U via M? I think the obvious definition is this: for every Be ay, there is a proof
in U of BM, (I assume in this discussion that we are dealing with sentences, in the case of formulas
one should consider: (8[B]— BM), where §[B] is the conjunction of (b)'s, for all free variables b
of B.) Given this definitior: the next step is to show: if V is interpretable in U via M and if V proves
C, say by 7, then there is & proof ©* in U of CM. Roughly n* is nM with proofs of the translated
T'-axioms plugged in at the relevant places. Now here is the problem: in a theory like IA+Q, we
cannot exclude that the proofs of the translated V-axioms are cofinal in the natural numbers. In
other words we cannot prove that there is a bound for these proofs. The axiom that would provide
such bounds is X,-collection.

2,-collection  F Vx<udyA(x,y) — IvVx<uIy<vA(x,y) Aey,
(Note that we could equivalenty state the principle demanding: A€ A,.)

So we would get this basic property in BX,,+Q,, where B, := IAj+2, -collection. In section 5 we
elaborate the consequences of the lack of 3, -collection a bit more.

One way to evade the problem at hand is to make a definitional move. We change the definition of
interpretability in such a way that the basic properties we want are guaranteed even in IA;+Q,, but
also in such a way that our definition and the usual one collapse in the presence of BX,,+€,. In my
paper Visser[88b] I used tae notion of theorems interpretability, by now I convinced myself that

the notion of smooth interpretability introduced below is a better choice.

Define (Vx3y)*A(x,y) by Vu3dvVx<udy<vA(x,y). Similarly for more variables. Wealso write:
(Vxe a3ye B)*A(x,y) for. VudvVx<u(xe a—3y<v(ye BAA(X,Y)))

Note that if (Vx3y)*A(x,)) and (Vy3z)*B(y,z), then: 'Vx3y,z)*(A(x,y)AB(y,z)).

Define:
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K:u> Y e Vxe OLVProvU(xK).
K:UB>V e (Vxe oy 3p)*Proofy(p.xX).
KUV & Vxe SentV(ProvV(x)ﬁProvU(xK)).

Our first notion is axioms interpretability; our second notion is smooth interpretability, our third
notion is theorems interpretability.

Note that if V is finitely axiomatized and oy, is the obvious formula representing the axioms of V,
then these notions collapse in 1A;+02,.

4.2.1 Fact

i)y IA+Q, = KUP V-SKUPFYV
i) IA+Q, + KUV S KUP,V
ili) IAG#+EXPH K:UPV — KUP>V
iv) BX,+Q, - KUP V > KU>\V

Proof: The proof of (i) is simple, but is postponed till section 7 (7.4) where (i) is an immediate
consequence of more general facts. The proofs of (ii) and (iv) are trivial.

We turn to the proof of (i:i). Reason in IAj+EXP: suppose K:UP> V. Fix a bound u. Consider
B:=/X\ {A<ulAe ay ). (We need EXP to guarantee the existence of this formula!) As is easily seen
B is provable in V, hence EX is provable in U, say the proof is p. We can construct proofs q of the
AK by appending proofs of AK from BX in U to p. In the worst case the number of steps
proceeding from BX is u, the formulas ocurring in each such step are smaller than or equal to BX.
So Iq|<u.(IBKI+m)+IpI, for some standard m. So we may take our bound v for the q:
exp(u.(IBKl+m)+Ipl). (Note that IBX| is about IKl.u.lul.) o

There are two arguments tc prefer smooth interpretability over theorems interpretability. First it is
conceptually better to retain the distinction between axioms and theorems: the whole point of the
fact that interpretations preserve logical structure becomes obscured when one uses theorems
interpretability. Secondly the Orey-Hdjek characterization is more naturally formulated using
smooth interpretability (se¢ section 9).

A somewhat different perspective on the use of P> instead of & , will be given in an appendix
(section 11).

From now on we write: M: JB>V for M:Ul>sV. Define:

UV = 3IMM:UBV
M:AP> B & M:(U+A)> (U+B)
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ABB & (U+A)> (U+B)
U=sv = UBVAVEU
AEUB < (U+A)=(U+B)

4.3 Some special interpretations and some operations on interpretations
We can interpret any language in itself by ID:=<§,F>, where 8(x):=(x=x) and F(R):=R.

Let U be theory containing arithmetic. A U-cut I is given by a fomula I(x) (often written: xe I) such
that U proves that O I and that I is closed under Successor, Addition, Multiplication and w,. (We
make the assumption of closure under ®, for convenience.)

We refer the reader to the discussion of cuts in Paris & Wilkie[87]. Some further information on
cuts can be found in Pud]zik_[83a].

A cut Iinduces an interpretation <8,F> of the language of arithmetic (par abus de langage we call
this interpretation again I) by taking: 8:=I and F(R)=R.

Suppose K is an interpretation of L, in L,, M is an interpretation of L, in L. Then P:=KoM, the
composition of K and M, is an interpretation of L, in L, with FP(R):=(FK(R))M and SP(x):=
(SM(x)A(SK(x))M). It is easy to show that for any sentence A: - AP (AKM,

Suppose K and M are interpretations of L, in L,. Suppose A is a sentence of L,. Then P:=K[A]M,
the A-join of K and M, is an interpretation of L, in L,, with Fp(R):=((AAFK(R))V(—AAFK(R)))
and Op(x):= ((AAdK (X))V(-1AAS)4(x))). It is easy to show that for any sentence B:

FBP& ((AABK)V(AABM)),

5 Notes on BZ1

In this section we show tnat the arrow in 4.2.1.(ii) cannot be reversed. Before doing this we
briefly mention some well known facts about BY.,.

i) If a model M of IA; has an endextension N satisfying IA, then M satisfies BX,. Suppose
MEVx<adyA(x,y), where Ae A;. Let be N\M. Then NEVx<ady<bA(x,y). By applying the
Ay-minimum princip.e in N we find the smallest b* such that N=Vx<ady<b*A(x,y). It :
follows that NEJx<avVy<b*-1-A(x,y). On the other hand if b* were in N\M we would have: -
NEVx<ady<b*-1A(>,y). Ergo b*e M and thus: MEVx<aJy<b*A(x,y).

ii) Every cutin BX, sati:fies BX,. This is immediate from (i).

iii) BX, is interpretable in IA; on a cut. An easy argument to establish this is the following. It is
shown in Visser[88b_ that 1A, interprets 1A +—EXP say by M. Let N be a model of 1Aj;: M
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induces an internally definable model of IA;+—EXP. Let's call this model again M. There is a
definable cut I in N that is isomorphic by an N-definable isomorphism F to an N-definable
external cut I* of M (see Pudldk[85] or Visser[88b]). Let J* be a (provably) M-definable (and
hence N-definable) cut of M such that for all x in M exp(x) exists in M. Then there is an
element of M above Y*:=I*"\J*, So Y* satisfies BZI. Y:=F1(Y*) is an N-definable N-cut
isomorphic to Y*. Hence Y satifies BX,. Since clearly the choice of the definitions of the cuts
involved is independent of the specific model N, it follows that Y:IA;>BX,.

Let U be the theory axiomatized by the [1,-consequences of PA. So U extends PRA. We give a
construction due to Jeff Paris of a model N of U that does not satisfy BY,.

Let M be any model of PA+Incon(PA). Let N be the submodel given by the set of 3;-definable
elements. Clearly N is non-standard and closed under S, + and . . We show that N and M satisfy
the same Zl-formulas (with parameters in N). We first show: for A(x,...) in A; and a,... in N: if
MEAC(a,...) then NE=A(a,...). This is clear for atoms and negations of atoms. The cases of
conjunction and disjuncticn are easy. Suppose A(X,...) is Vy<t(x,...)B(y,x,...) and suppose MkE
Vy<t(a,...) B(y,a,...). Clearly for every b in N with b<t(a,...): MEB(b,a,...). It is easy to see that
< has the same meaning in N, so: NEVy<t(a,...) B(y,a,...). Suppose A(x,...) is Iy<t(x,...)
B(y,x,...) and suppose MkE3y<t(a,...) B(y,a,..). Clearly Mk3y<t(a,...)(B(y,a,...)AVz<y
—B(z,a,...)). Suppose: M~b<t(a,...)AB(b,a,...)AVz<b—B(z,a,...). Clearly b is in N, so by the
IH we find: NEb<t(a,...)AB(b,a,...), hence NE=3y<t(a,...) B(y,a,...).

An immediate consequenc 2 is that for A(x,...) in Zl and a,... in N: MEA(a,...) © NEA(a,...). It
follows for B(x,...) in H2 and a,... in N: MEB(a,...) = NEB(a,...).

So N=U+Incon(PA). Let AT (x,y,z) be the predicate that expresses in U: y is a 3, -formula with
one free variable and x is 2 sequence witnessing that z satisfies y. In U (even in IAj+EXP) one can
prove that SAT(y,z):= 3xSATy(x,y,z) has the Tarskian properties of a >,-satisfaction predicate.
Let DEF(y,z) be EIW[(SATO((W)O,y,(w)l)A(w)1=z)A\7’v<w-a(SAT0((v)0,y,(v)l)/\(v)1=z)]. Let a
be non-standard in N. We have: N=Vz3y<aDEF(y,z) and hence NEVz<a+13y<aDEF(y,z) (*).
Suppose to get a contradiction that N satisfies BX,. Then (*) is equivalent to a 2,-formula, hence
MEVz<a+13y<aDEF(y,z). M is a model of PA, so we can conclude in M by the Pigeonhole
principle that two z's below a+1 share a definition. This leads immediately to a contradiction.

It follows that there is a model of U without an end-extension satisfying IA,,.
Now we have the means a\ ailable to show that U does r.ot prove: KW V— K:WPB> V

Let Mincon(p):¢>(Proofp 4 (p,L )AVz<p—Proofp 5 (z,L)). Take K:=ID, W:=]A+EXP and let V be
axiomatized by: X& ay, ¢ X€ Oy, vIz<x x=B(z), where B(z)=rElp(Mincon(p)A3y<pDEF(y,i))1_
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Finally let A:= 3p(Mincon(p)AVz<p+13y<pDEF(y,z)).

We show: NEID:WP V. Reason in N: for some p we have Mincon(p)AVz3y<pDEF(y,z)).
Hence by 2, -completeness, VzOy,(Mincon(p)A3y<pDEF(y,z)). So VzO,B(z). O(N)

We show: NEDyA. Reason in N: consider p satisfying Mincon(p). Clearly by X.,-completeness

we have some V-proof g of Mincon(p). We can find W-proofs r, with length polynomially

bounded in Ip! and Izl of ((Mincon(p)AB(z))—3y<pDEF(y,z)). Ergo we can find V-proofs s of

length polynomially bounded in Igl,Ipl,lzl of 3y<pDEF(y,z). Hence Vz<p+13s<exp(P(Igl,Ipl,lz!))

Proofy,(s,3y<pDEF(y,z)) for some standard polynomial P. Now it is easy to construct a V-proof

of Vz<p+13y<pDEF(y,z). Thus Oy,(Mincon(p)AVz<p+13y<pDEF(y,z)). It follows that OyA.
ON)

We show N#Oy,A. Suppese it did. Then we would have MEOw,A. But M is a model of PA, and
PA proves the reflection principle for W. Hence MEA. Quod non!

Soin N the axioms of V are theorems of W, but W has theorems that are not theorems of V. This
shows that it is -at least in N- not always a good idea to prove things from first principles. O

Open Problems

i) Show that IA+Q,+ K:UP> V — K:UB> V.

ii) Show that IA;+EXPr X:(U+A)> (U+B) — K:(U+A)> (U+B).
iii) Show that IA+Q, U> V = UB V.,

6 The Henkin Construction

We reason in IA+€,. Let [ be a (standard) formula that provably codes a set of sentences of a
language L. We do not pl .ce any constraints on the complexity of B, nor do we demand that L
contains the language of arithmetic. We assume that L is ZIb. Let V be the theory axiomatized by

B.
Let U be any extension of 1A,+£2,+conV. We construct formulas K, D, an extension Lt of L with

new constants C and a sub:titution function o (defined on pairs of a formula of L* and a sequence
of elements of D to sentenc 2s of L) satisfying the following claims.

Let ()X be the interpretation given by D and: R(x,...)K:=K(G(ngx,...)j,<x,...>)). Let
CIK(A(x,...)):=Vx,...e D A(x,...).

Claim 1: there is a standaid k such that:
V Ae Sent(L) 3p<w, (A) Proofy;(p,0yA—K(A))
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Claim 2: there is a standard n such that:
VAe L* 3p<o,"(A) Proofy(p.CIX(AK(x,..) K (6('AKx...)' <x,...>)).

Claim 3: there is a standard r such that:
V Ae Sent(L) 3p<w,(A) Proof;(p,0yA—AK). .

Claim 4: Let o provably define a set of sentences of L. Let W be the theory axiomatized by o,
then: (Vxe a3p)*Proofy;(p,xe B) = UBW

Define L* as follows: L* is the smallest extension of L such that if A is in LY, containing at most x

free, then there are constants c[3xA] and c[VxA] in L*. L* is again 3,>. We use the coding of

section 3.1, but consider it as coding strings of 0 and 1's. Let < be the 'initial sequence' ordering.

Par abus de langage we write x0 for the concatenation of x with 0 etc. Ixl is the length of sequence

x. Define:

ue T[x] :& uis a T*-sentznce; (x),=0 or (u =NEG(v) and (x),=1) or ( there is a w of the form
JzA(z) such that (x),,=0 and u codes A(c[3zA]) ) or ( there is a w of the form VzA(z)
such that (x),,=1 and u codes =A(c[VzA]) ).

Note that ue T[x] is T,. Moreover: OV x,y(x<y —T[x] < T[y]) and O T[0]=0.

Define further: xe TREE :& Con(V+T[x]). Clearly DUVx,y( (x<y A ye TREE) — xe TREE).
Moreover: O(;0e TREE. We show that DUVx( xe TREE —( x0e TREE v xle TREE )). Reason in
U: Suppose xe TREE, i.e. Con(V+T[x]). Let u:=Ixl+1. In case u does not code an L*-sentence we
have: T[x0]=T[x1]=T[x], so we are done. We treat the case that u codes a sentence of the form
dzA(z), the other cases are analogous or easier. So suppose u codes 3zA(z). Then T[x0] = T[x]+
{3zA(2),A(c[3zA(2)])} (nte that the existence of A(c[IzA(z)]) requires ;) and T[x1] = T[x]+
{—3zA(z)}. The constan' ¢[dzA(z)] does not occur in V+T[x] (because we used a natural
Godelnumbering), hence v e can convert a proof of falsity in V+T[x]+{3zA(z),A(c[3zA(z)])} into
a proof of falsity in V+T[x]+{3zA(z)}. Thus if both V+T[x0] and V+T[x1] were inconsistent, we
could convert the proofs of inconsistency in a proof of inconsistency of V+T[x] in the usual way.
(All these conversions are ¢.vailable in m0+Ql.) o)

Define PATH:={xe TREE ihere is no y in TREE to the left of x}. As is easily seen: OyVxe PATH
(x0e PATH v x1€ PATH) and Oy;0e PATH. Also Oy;Vx,ye PATH(x<yvy<xvx=y).

Let X:={x! for some y in PATH x=lyl}. By the above U proves that 0 is in X and that O is closed
under successor. By Solovay's methods we can shorten X to a U-cut 1. For purposes of presen-
tation we will define our interpretation for L with just one unary relation symbol R. The general
case is, of course, preciselr the same. Define:
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xe L0

1< xeland x is a code of an L-sentence.

xe Ll :e> xeland x is a code of an L*-sentence.

xe Fl(y) :e x.velandy is a code of a variable, x is a code of an L*-formula with at
most the variable coded by y free.

xeD & x is of the form c[A] for Ac L1 and A is a sentence of the form JuB(u) or
YaB(u).

K(x) :¢> xe L! and there is an ye PATH with lyl<x and xe T[y].

o(A,<x,...>) := the result of substituting x,... for the variables corresponding to the places

in the sequence <x,...> in A. Any remaining variables in A are to be re-
placed by, say, c[3u u=u]. It is intended that Ae L* and x,...e D.
(So e.g. 6(R(xoY,<x>)=R([AL) if x="c[AT")

RK(x) i xe DAK(o(R(x,)',<x>)).
i)  Wehave: OyVxe Lt (Provy(x) — K(x)).

Reason in U: Suppose xe L% and Provy(x). Since x is in I there is a y in PATH with lyl=x. Say x
codes B. V+T[y] is consistent, and either B or —B is in T[y]. Clearly —B cannot be in T[y], so B
is. o)

Note that given the fact thet B is standard the U-proof constructed above is standard. Moreover for
some standard s we find: %7 x3p<mls(A) Proof;(p,xe 1), also, L being Zlb, for some standard r:
Vxe L3p<w,’(x) Proofy;ip,xeL). We find that Vxe L3p<w,9(x) Proofy;(p,xe LY for some
standard q. Combining we¢ get claim 1: VAe Sent(L) 3p<colk(A) Proofy;(p,0yA—K(A)), for
some standard k.

ii) K 'commutes' provab.y in U with the logical constants on L1,

We first show (a): O;Vxe L! K(x)VK(NEG(x)) and (b) Oy;Vxe LI-(K(x)AK(NEG(x))). Reason
in U:

a) Consider x in L1, x is in I so there is an y in PATH with lyl=x. In case (v),=0 we have
xe T[y], hence K(x). In case (y),=1 we have NEG(x)e T[y], hence K(NEG(x)).

b) Suppose K(x) and K(*NEG(x)). There are y and y' in'PATH with x in T[y] and NEG(x) in
T[y']. We have y=y' 0o y<y'or y'<y. Let z be the <-maximum of y, y'. Clearly both x and
NEG(x) are in T[z]. B t T[z] is consistent. Contradiction. - O(U)

We treat the cases of negation, conjunction and universal quantification: we show -
(¢) OyVxeL! KM EG(x))—K(x)
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(d) OyVx,ye L K(CONJI(x,y))<> (K(x)AK(y))

(e) DUVyeI (VAE(y) = Vxe Fl(y) (K(UQ(y,x)) & Vze D K(o(x,y,z)))
Here if z codes ¢[B], x codes A(u) and y codes u: 0‘(x,y,z)=rA(c[B])1. Note that by Q,
both UQ(y,x) and o(x,y,z) are in L1.

(c) is immediate from (a) and (b). For (d) and (e) reason in U:

d) Consider x, y in L! and suppose K(x) and K(y). Let zz=CONJ(x,y). As is easily seen z isin I
and hence in L1. The-e is a w in PATH with Iwl=z. Either z or NEG(z) are in T[w]. As is
easily seen x and y are in T[w], so by the consistency of T[w] z must be in T[w], so K[z]. In
case e.g. =K (x) we have K(NEG(x)) and reasoning as before we find KINEG(CONIJ(x,y))),
so =mK(CONIJ(x,y)).

e) Consider yeI with VAR(y) and xe Fl(y). First suppose K(UQ(y,x)). Clearly UQ(u,x) is in
L!. Consider z in D. As is easily seen 6(x,y,z) is in L1. Let v be the maximum of UQ(y,x) and
o(x,y,z). There is a w in PATH with Iwl=v. We have UQ(y,x) in T[w] and either o(x,y,z) or
NEG(o(x,y,z)). By the consistency of T[w] we must have o(x,y,z) in T[w] and hence
K(o(x,y,z)). Suppose for the converse that =K(UQ(y,x)). Let v:=UQ(y,x) and let w be in
PATH with Iwl=v. Reasoning as before we find that (v),,=1 and thus that
NEG(o(x,y,z))e T[v]. Clearly a:=rg[1*v* r]1 is in D and we have —=K(o(x,y,a)). O

Note that all the proofs we provided are standard.

At this point we know enoi gh to employ a slightly more convenient notation. We use variables d,e
to range over D and write 'K(A(d,...))' for: K(G(FA!)(O,...)1,<d,...>)).

ili) We prove claim 2: for some standard n:
V Ae Sent(L*)3p<a P(A)Proofyy(p,Vd,...e D (K(A®,..))=Ad,..)K)).

Let's call the statement following Oy; in claim 2: E{A}. To prove claim 2 we use A(,)-induction
on A, which is available in IA0+Ql. This induction is trivial using (ii). It is sufficient to provide the
bound on the proofs. Equivalently we must provide a standard polynomial P such that the length Ipl
of p is bounded by P(IAl). Let's call the length of the proof of E{A}: A(A). I consider a specific
example: say A=(BAC) an1 suppose we have proofs of E{B} and E{C}. To construct a proof of
E{A} we give proofs of: A=CONJ(B,C), and Vx K(CONIJ(x,y))<(K(x)AK(y)). The length of
the first proof is polynomially bounded in IAl and the length of the second one is standard. Now the
proofs of E{B}, E{C}, A=CONIJ(B,C), and Vx K(CONJ(x,y))«<> (K(x)AK(y)) can be combined
to a proof of E{A} of lergth bounded by: A(B)+A(C)+Q(lAl), where Q is a suitable standard
polynomial.. For each connective we find such a polynomial. Let Q* be a polynomial that
majorizes all polonomials -orresponding to the connectives. Noting that IBI+ICI<IAl it is now easy
to show that: A(A)<IALQ*/1Al), e.g. in the case considered we have e.g:
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A(A)A(B)+A(C)+QUAN<IBIQ*(IBN+ICIQ*(ICH+Q*(ANS(BI+ICI+1)Q*(IAN<IAIQ*(IAl). O

NOTE: If B is 2, thenbya result of Wilkie IA ;+Q,+con(V) is interpretable on a cut in Q+con(V).
So in this case we can reduce our assumption that 1A,+€Q,+con(V) is contained in U to the
assumption that Q+conV is contained in U. In fact we may assume that U contains Q and proves
con(V) on a cut.

iv) Claim 3 is a direct consequence of claims 1 and 2.

v)  Suppose a provably defines a set of sentences of L. Let W be the theory axiomatized by o.
Suppose (Vxe adp)*Proofy;(p,xe B). We show: UP>W (claim 4).

Fix u. Let A<u, Ae a. For some w depending only on u there is a U-proof p<w of Ae B. We have
for some standard r: VBe Sent(L) Elq<0)1r(B) ProofU(q,DVB—)BK). Hence, as is easily seen for
siome standard r': VBe Sent(L) 3q'<w1r'(B) ProofU(q',B(B)—>BK). Ergo for some standard r*:
3q*<o, (max(u,w)) Proofi;(q,AK).Take v:=0,™ (max(u,w)). O

6.1 Corollary: (in IA;+2Q,) let B,U,V be as before. Suppose [ is Zlb, then UB V.

Proof: take in claim 4 a:=B (and thus W:=V). As is well known Vxe BIp<w,’(x)
Proofy;(p,xe B) for some s*andard r. So for given u, we may take vi=w,"(u). O

6.2 Corollary: (in IA,+Q,) suppose W is axiomatized by o and a is Zlb. We have:
VxOyConlx(W) —» UB>W

Proof: Suppose VxDUCor-T x(W). Let B(x):¢>(a(x)AConlx(V)). Let V be axiomatized by B. We
have: Oy;Con(V). To apply claim 4 we need only show: (Vxe a3p)*Proofy;(p,xe B). Fix u. We
have for some standard n: Vxe a3p<w,"(x) Proofy;(p,xe o). Moreover EIUConfu(W) and
Oy(Conlu(W)—Vy<u Conly(W)). Hence for some q: Proofy;(q,Vy<u Conly(W)). For some
standard k: Vx<u3p<(01k(x) Proofy;(p,x<u). Hence we can construct a U-proof r of Conlx(W)
with Irl<igl+Ix1€*P&)+mix|~s, with m and s standard. So for some standard a: r<w,3(max(x,q)).
Combining we find a U-proof d of xe a*y; and standard b such that d<w1b(max(x,q)). Take
v:=(x)1b(max(u,q)). O

7 Facta Selecta

In this section we verify various interpretability principles in IA+Q;.
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7.1 Weakening

We have in IA;+Q,: if oy S Q. 0 S 04y and XP>W, then UP V.

7.2 Addition

We verify in IA;+Q;: (K:UPV A OyAK) - UB (V+A). (Here oy,  (X):=(0ty(X)vx="A").)
Suppose K:UP>V and ProofU(p,AK). Fix u. We have a w such that for all x<u, xe ay; there is a
q<w ProofU(q,xK). Take v :=max(w,p+1). As is easily seen for any x with x<u, x€ 0.y, 5 there is
aqg<v ProofU(q,xK).

An immediate consequence of 7.2 is: DUA — UPU+A. (Take V:=U, K:=ID.)

7.3 Transitivity

We verify in IAj+Q,: (UB> VAVEW) - UBW.

Suppose K:UPV and M:VEW. We show that MoK:UP> W. Fix u. Let v be such that for any x<u
in oy, there is a p<v with Proofv(p,xM). Let w be such that for any y<v in a.y; there is a g<w with
ProofU(q,yK). Consider any x<u in o.y,. We have a p<v with Proofv(p,xM). Now we can produce
a proof p* from the axioms {yKly is a V-axiom ocurring in p) of xMeK_ |p*|, the length of p*, is
linear in Ip! and IKI. Now add U-proofs r of the yX to p*. Call the result q. Clearly the V-axioms y
ocurring in p satisfy y<p<w. So the proofs r satisfy r<w. It follows that Iql<ip*I|.Iwl<cIKl.Ipl.Iwl<
clKLIvl.lwl, where c is standard. So for a sufficiently large standard n: g<®®(max(K,v,w)). We
may conclude (Vxe awiq)*ProofU(q,xM"K).

7.4 Smooth interpretzbility implies theorems interpretability

We verify in IA+Q,: (K:UP>VADyA) - OjAK,

Suppose K:UPV and Oy,A. We have ID:V®> (V+A), and hence IDoK:UP (V+A), so EIUAK.

7.5 The principle M,

By 6.1 we have in IA;+Q, [U+Con(V))®> V. We can strengthen this to (in IA;+Q,): for S a HEIb-
sentence: VEW — (U+Con(V)+S)> (W+S).

Suppose M:VEW. Let Q be the single axiom of Robinson's Arithmetic. We have DVQM and
hence Oy0yQM. Also O (S— DS) and hence: Oyy(S— OySM). Ergo: Oy, coneyy+sBySM and
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hence: Oy +Con(V)+SC°“(V+SM)- We may conclude:
(U+Con(V)+8)> (U+Con(V+SM)) B> (V+SM) > (W+S).

7.6 Disjunction Elimination Property

We verify in 1A +Q,: (U+A)> VA(U+B)> V) — (U+(AVB))> V.

Suppose K:(U+A)B>V and M:(U+B)> V. We leave it to the reader to check that:
K[AIM:(U+(AvB))> V.

(K[A]M is introduced in 4.3.)

7.7 A theorem of Feferman

Let S be 33,b. We verify in IAj+Q, that: (U+S)> (U+S+Incon(U)).

We have Oy +Con@Con(U+Incon(U)). Hence (U+Con(U))> (U+Con(U+Incon(U))), so by 7.3

and 7.4: (U+Con(U))> (U+Incon(U)). Moreover trivially: (U+Incon(U))> (U+Incon(U)). Hence

by 7.6: U> (U+Incon(U)).

We leave it to the reader to prove the following trivial sharpening of Feferman's result: let S be
33,P. Then (in IA;+Q,): (U+S)> (U+S+Incon(U)).

Similarly we have for any U-cut I: (U+ST)>> (U+S!+Incon!(U)). (Again this sharpening is really
nothing but a different cho:ce of the natural numbers of U.)

7.8 A generalization of Ldob's Principle

We prove in IA(+Q,: KiUP VD40 0 (04O KA-A)-OyA).
(Here O KA:=(0,A)X, 0%, B:=(BADy,B).)

Suppose: KiUP V.,

Find A such that D+1A0+Q:(7»<->(DUKK—>A)). We also have: DVDU(lH(DUKK—)A)) and hence
DV(DUKHDU(DUKA—)A)). We claim: DV(DUKHDUDUKK). This is true because we have:
DyQ¥ (here Q is the single axiom of Robinson's Arithmetic) and hence Oy 0;Q¥. Also:
Oy(OyA—OgOyh). It folows that Oy(OyA—Dy(QX—0KL)).

We find Oy (OyA—DOyA ;. We may conclude DU(DUKK—>DUKA). Assume ‘D‘U(DUKA—>A).

Hence DU(DUKK-——)A) anc thus OgyA. By the same reasoning as before: DUDUK).. Hence OyA.
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This gives us L6b's Rule outside the O. Note however that we get by 3% ,P-completeness:

l:]IA0+QII:IU(I:]UI<7‘_’DUKA) and hence DIAo+Ql(Du(DUKA—>A) - DU(DUKX—>A)), ergo:

Oipo +Q1(DU(DUKA—>A) — OpA). Also Oppg.0,(0ph = DUDUKK), SO:
Ora0ei(Bu@yFA—A) = DyA). =

7.9 The principle W#*

Let Se 33,°. We verify in [A+Q,: UPV — (V+S)P> (V+S+Incon(U)).

We provide two different proofs.

First proof: Our first proc{ has two variants: one that uses sequentiality and one that does not.

First variant: Suppose U is sequential and K:UP> V. There is a U-cut I such that U proves that
"there is an isomorphism oetween I and an external cut of the natural numbers of K". We find:
(V+S+Con(U)) > (V+Con(U+Sh) B> (U+S) B> (U+SI+Inconl(U)). Now U+SI+Incon!(U) proves
(SAIncon(U))K, so by 7.2: K:(U+SI+Incon!(U))> (V+S+Incon(U)).

Ergo (V+S+Con(U)) & (V+S+Incon(U)). Clearly (V+S+Incon(U)) & (V+S+Incon(U)). Hence:
(V+S)> (V+S+Incon(U)). O

Second variant: Suppose K:UP> V. We have by 7.8: DV(Con(U)—)Con(U+InconK(U))).
Hence: Oy,((SACon(U ))=Con(U+SK+InconK(U))). So we may conclude:

(V+S+Con(U))> (V+Con(U+SK+Incon¥(U))) > (U+SK+InconK(U)) > (V+S+Incon(U)).
Also (V+S+Incon(U))> (V+S+Incon(U)) and we are done. o

Second proof: We reaso.. in IA)+Q2;: define conj(x,O):=rT1, conj(x,y+1):=r(1*conj(x,y)*r/\1*
x*")'. One can produce a Alb-formula representing the graph of conj such that 1A +£2; proves the
recursive clauses of the definition (assuming existence of the righthand side of the second clause).
Moreover IA;+£2, proves: if exp(y) exists then conj(x,y) exists.

Let the interpretation K be given. To fit the proof into our framework we use a variant of Craig's
Trick. Define oy x:={yl3> ,p<y (y=conj(x,Ipl)axe avAProofU(p,xK))}. Clearly oLy« is EIb. We
call V* the U,K-associate cf V.

Step 1: we show ID:VEV*,

Fix u. Consider any y<u i+ oty «. There are x and p below y, such that y=conj(x,Ipl) and xe a.y,.

Let q be the obvious proof in propositional logic of y from x. Evidently q has Ipl steps in which at
most two formulas occur ¢ length smaller then lyl (which is about Ipl.Ixl). So Igl can be estimated
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by 2.lyl.Ipl+kIpl, for some standard k. Moreover: Ipi<lyl<lul, so Igl can be estimated by 2lul2+klul. So
for suitably large standard n: q<w,"(u). Choose v:= ®,"(u).

Step 2: We show K:UB V*,

Fix u. Consider y<u, y€ t.y«. There are x and p below y, such that y=conj(x,lpl) and
Proofy(p,xX). We transform p into a proof g of yX by appending to p the proof in propositional
logic of yX from xK. By reasoning essentially the same as in step 1 we find a standard n such that
q<w,"(u). Take v:=0,"(u).

Step 3: we show: KIUPV — ID:V*BV,

Fix u. Suppose K:UPV, so there is a w, such that for any x in oy, with x<u there is a p<w with
ProofU(p,xK). Consider any x in oy, with x<u. Let p<w be a U-proof of xK. Then y:=conj(x, pl) is
a V*-axiom. Let q be a proof of x from y. One easily sees that Iql is estimated by m.IxLIpl+n.Ipl, for
standard m and n. also. m.IxlIpl+n.lpl<m.lul.lwl+n.lul. So for suitably large standard k:
q<c01k(max(u,w)). Pick v:=m1k(max(u,w)).

Step 4: Oy« (OyxL—0pL)

Step 2 gives: Oy« (U V*), hence: Oy«(OyxL—0OL).
Step 5: UV — (V4S§)B> V+S+0;1).

Suppose UP V. We find: (V+8)B> (V*+5)B> (V*+S+0,, L)> (V*+5+0;L)> (V+S8+0y;1). O
8 Modal Principles

The system IL is given by tne following principles:

Ll FA=FOA

L2 + 0O(A-B)— (0A—0OB)

L3 +D0OA-—>OO0A

14 +0O(@A—>A)—> OA

J1 +0O(A-B)—> APB

J2 + (APBABPC)— ABC

J3  +(ABCABP>C) - (AVB)>C

J4 +APB - (CA—-<B)
I5 FHOAPA
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From the materials of section 7 we easily see that the following three principles are also
arithmetically valid:

M, +APB - (CAADC)>(BAOC)
W + APB —> AB(BAO-A)
W* = ABB — (BAOC)B>(BAOCAO-A)

Note that M, immediatetely implies J5 and that W* immediately implies W. We show that:

ILWM=ILW*,

First we derive M, in ILW*. Suppose A> B. It follows that AP> (Bv<{ A). Ergo by W:
(BvOAAOC) B ((Bv<O A)ADCAO-A)> (BAOC). We may conclude: (O AAOC)> (BAOC).

We derive W* in ILWM,, (the argument is due to Dick de Jongh). As is easily seen we have:
(BAOC)> (BAOCACO A)v( BAOCADO=A)) (*). Suppose AP B. We want to derive: (BAOC)>
(BAOCAO=A). By (*) it s ifficient to show: (BAOCACA)B> (BAOCAO—=A) (**). By W we have:
AD> (BAO=A), so by M: (O AADOC)> (BAO-AADOC). Reshuffling this a bit and strengthening
the 'premiss’ we find (**). O

Concluding we may say that the system ILWM, or equivalently ILW* is arithmetically valid in any
Zlb-axiomatized theory wih designated natural numbers satisfying 1A +€,.

It is easy to see that ILW M, corresponds precisely to the ILW-frames with the extra property
RSR&R. Hence ILW does not prove M,. This refutes the conjecture of Visser[88b] that ILW is

precisely the interpretability logic of all reasonable arithmetics. So it is time for a new conjecture!

Conjecture: The principles of ILWM,, are precisely the principles valid in all Zlb-axiomatized
theories with designated natural numbers satisfying 1A+€2,.

9 Appendix: the Orey-Hajek Characterization

It has often gone unnot:ced that there are two quite different proofs of the Orey-Hdjek
characterization. When we restrict ourselves to, say, extensions of PA in the language of PA the
difference between the proofs is immaterial. In our context, however, the two proofs lead to

different statements and to a different range of validity.

Remember that by 6.2: IA. +Q,+ VxOy;Conlx(V) = UV,
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9.1 Orey-Hijek 1
IA+EXPH VxOy;Conlx(U) = (UP Ve VxOy;Conlx(V)).

Proof: Reason in IA+EXP: Suppose VxOy;Conlx(U) and K:UB V. Consider any x. There is a
v such that Vz<x(av(z)—)3p<vProofV(p,xK)). By El-completeness it follows that:

O Vz<x(0ly(2)—>3p<vProofy, (p,xX)).
Also we have: Og;Conlv(U).

Reason inside Oyy: suppose Proofy, Ix(q,-L). The V-axioms z used in q are all smaller than x, and
hence their translations zX have U-proofs p smaller than v. Consider the translated proof qK. By
plugging in the proofs p of the zK we obtain a U-proof q* of .L. g* will certainly exist, because its
length can be bounded by P(Ivl,Iql,IKl) for some standard polynomial P. Clearly g* is a Ul'v-proof.
This contradicts Conlv(U) We may conclude: Confx(V). O

9.2 Open Question: Is the dependence of 9.1 on EXP necessary?
9.3 Orey-Hajek 2
IA,+Q; + Tle V-cutsVxOyConlfx(V) — (U Ve 3Je U-cutsVxOy;Conl Ix(V)).

Proof: Reason in IA+€,: suppose for some V-cut I: VxEIVConIFx(V ). We show:

(U V>3 Je U-cuts VxO;Con Ix(V)).
The "«"part is just 6.2 for a different choice of the natural numbers in U. We treat the "—" part.
Suppose K:UP> V. We cau find a U-cut J* such that U proves: J* is isomorphic by, say F, to an
external cut of the natural sumbers of K. Suppose the isomorphic image of J* on the K-side is I*.
'In K' take the intersection H of I and I* and let J be the set of F-originals of H. So J=J*F-1(IK).
As is easily seen J is a U-cut and (using that VxOyyxe J): ‘v’xC!UConJ [x(V). O

9.4 Remark: The difference between Orey Héjek 1 and 2 becomes nearly invisible if U and V
are both essentially reflexive.

There is a characterization parallel to the Orey-Héjek characterization for [1,-conservativity. Define:
UB*V :¢ VPe[],-sentences (OyP — OyP).
We have:

9.5 Orey-Héjek for [I,-conservativity

Suppose U extends IA,+E.<P. Then:
1Ay+Q,F VxOyConlx(V) — (U *V& VxO;Conlx(V)).
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Proof: Reason in IA,+£:;: Suppose VxO VConfx(V). "—" Trivial. "«" Consider PeIl;-
sentences. Suppose Oy/P. Then for some x DUDfoP. Ergo: Oy;Conlx(V+P). We may assume
that x is large enough, so that the axioms of Robinson's Arithmetic occur below x. So we have by
2.,-completeness: Du(—ﬁp—)DVrX(ﬁP)). In other words O;(Con Ix(V+P)—P). We may conclude
OyP. O

The dependence on EXP can be avoided if we consider ‘v’Hlb-conservativity instead of [I,-conser-
vativity.

10 Appendix: on a result of Hijek & Montagna

We sketch an alternative proof of a beautiful result of Hdjek and Montagna: suppose U is an
extension of IZ, that is ¥,-sound®. Define:

(.)* is an U-J]Con-interpre:ation of the language of interpretability logic if:

1) (.)* maps propositional atoms to sentences of the language of U,

i)  (.)* commutes with the propositional connectives,

i) (OA)*:=0yA*

iv) (AP B)*:= A*D* P*,

10.1 Theorem (Hajek & Montagna)

ILMtA & for all U-T]Con-interpretations (.)*: UFA*,

10.1 generalizes the result of Berarducci-Shavrukov, because, as is well known, in essentially
reflexive theories U P> ; ar.d B *; are provably extensionally equal. Our proof of Hdjek-Montagna
follows Berarducci's proof of Berarducci-Shavrukov as closely as possible. For the details on the
model-theoretic side (and its formalization) the reader is referred to the papers Berarducci[88] and

Héjek-Montagna[89].

We work towards the proo. of Completeness via a series of lemmas and definitions. We start with
a theorem of Héjek.

10.2 Theorem (Hajek)
IT,F VAe 3,Vx Ojs (A(x)=Con(Q+A(x)))
Proof (sketch): Reason n 1212 let A be given. We allow free variables in A, so a moment's
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reflection will convince the reader that it is sufficient to prove the result for A in IT,. Note that
inside the Dyy, X occurs as a (coded) numeral. Fix x. Let A(X) be VuElvAO(u,v), where A 1s A,.
The assumption of A(X) in IZ, can be replaced by the introduction of a new function symbol F
with defining equation F(u)=v 1> (A (u,v)AVwW<v=A,(u,w)). Let's call IZl in the extended
language plus the defining equation of F: IX,*. Clearly it is sufficient to prove: Ogy+
Con(Q+VuA, (u,F(u))). Note that VuA (u,F(u)) is HI(F). As is well known IX,* proves IZ, (F)
(*). Moreover in IX,(F) we have a X,(F)-truthpredicate TR (**). Finally IX, proves
cut-elimination for predica:e logic (¥**). Using (*), (**), (***) one easily shows:
Opy,+VBe EI(F)(E:QB-%TR(B)).
From this the desired result is immediate. O

10.3 Definition

Let X be the set of Boo‘_e(Ez)-semenccs. Let conj(y,v) be the result of taking the v-fold
conjunction of y. Clearly: ii' 2V exists, then conj(y,v) exists. Define:

B(x):=3p,y<x( (ye XAx=conj(y,Ip/)AProofy;(p,y)).
Evidently B is X,. Let U* be the theory axiomatized by B. Proofy+(x,y) will be X.P.
I3, * is similarly defined.
The intended analogy here is: U is to U* as GB is to ZF.
10.4 Lemma

IA)+Q,F Vye X(Provy(y,<>Provy«(y)).

Proof: Reason in IA)+€; First suppose Proofi;«(p,y). Let x be a B-axiom used in p. There are
y,q<x such that x=conj(y Iq!) and Proofy;(q,y). So insert into p before the x's the proofs q of y
followed by the obvious p-oofs w of x from y. Call the result p*. It is easy to see that Iwl will be
estimated by P(Igl,Ix!) for come standard polynomial P. The number of insertions will be at most
Ipl. Note Ixl<Ipl, Igl<Ipl. Hence Ip*I<Ipl.(Ipl+P(lpl,Ipl)).

Next suppose ye X and Proofy;(p,y). It follows that conj(y,Ipl) is in B. We leave it to the reader to
show that the length of the proof of y from conj(y,Ip!) is estimated by Q(lp!) for some standard
polynomial Q. O

10.5 Lemma

2 *-VAeX DIZI*(A—>(_on(Q+A))
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Proof: immediate from 10.2 and 10.4. . D

10.6 Lemma

IZ * VAe XVxOyu, 5 Conlx(U*+A).

Proof: Reason in I3 *: let A and x be given. Take the conjunction B of the axioms of U*+A
below x. (B exists because we have EXP.) Clearly B is in X. By 10.5 Dlzl*(B-aCon(Q+B)). By
elementary reasoning it follows that DIEI,..(B—-)Confx(U*+A)). So DU*(B—>ConTx(U *+A)). Also
Oy, oB- Hence Oyjs, s Conlx(U*+A). O

10.7 Lemma

IS, *F VA,BeX (AP *B ¢> A>*/,B & AP ,B).

Proof: Reason in 121*. The first equivalence is easy: for A,Be X and Pe Hl-sentences, we have:
(A—P),(B—P)e X. Hence O (A—P) ¢ Oy«(A—P), and O(B—P) & Oy=(B—P).

For the second equivalence note that by 10.5 and respectively 9.5 and 9.1 both AP *;,,B and
AP ;4B are equivalent to VxOyj, , Conlx(U*+B). O

10.8 Definition

We call (.)* an U* ,X-OH-interpretation if:

1) (.)* maps propositional atoms to X,

i1) (.)* commutes with the propositional connectives,
iii) (OA)Y*:=0y A%,

iv) (AP B)*:i=VxOys, ,Conlx(U*+B).

Note that if (.)* is an U*,X-OH-interpretation, then A*e X.
10.9 Theorem

ILMFA & for all U* X-GH-interpretations (.)*: U¥H—A*,
Before proving 10.9, we s.;ow that 10.9 implies 10.1.
Proof of 10.1 from 10.¢: Suppose ILM A, then there is an U*,X-OH-interpretation (.)*

such that U** A*, Define an U-[]con-interpretation (.)* by stipulating that for any atom p: p*:=p*.
By induction on A one eas ly shows using 10.4 and 10.6: U*— A*<A*. Hence U*A°. We may
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conclude by 10.4: UFA". o

The proof of 10.9 is an adaptation of Berarducci's proof. The trick here is to use only the
Orey-Héjek equivalent in the argument. So we must eliminate all 'model-theoretical' reasoning in
favour of syntactical arguments.

Sketch of the proof of 10.9: The Soundness side is routine. Suppose, to prove Comple-
teness, that ILM& A. Then there is a simplified ILM-model K with bottom node b, such that b A.
Say the domain of K is V. We can arrange it so that (provably in U*) there is a k>0 such that every
x in V forces OK L. We attach a new R-bottom 0 below K.

We define a primitive recursive function F satisfying the following conditions. Let L:=Lim(F), i.e.
L=z : 3x (F(x)=z A Vy>x F(y)=z). Note that L=z is 2,2 (One can show that L=z is even A,.)
As we will see: U*H3z L=z, for the moment we will simply assume this fact. We will use L as a
term: it should always been given the small scope reading.

10.9.1 Berarducci's conditions

In U* we have:

R) Vx,ye VU{0} (L=xAxRy) = Oy«L=y

-R) Vxe VNRange(F) J«xRL

S) Vxe V L=x = Yul.Vy,ze V(L=yAxRzAySz)— Oy« fuL=2z)
=S) x<y — F(x)SFE(y)

We will verify these conditions later on.

Define a U*,X-OH-interpretation (.)* by: p*=3z (L=zAzlp). We show first that (.)* is the
counterexample we are looking for.

10.9.2 The proof from the conditions

We show in U*: for all x in V:

1) (xt+CAL=x) — C*

(ii) (x CAL=x) — —C*

We treat the case of C=EP G. Reason in U*: Suppose (i) and (ii) hold for E an G.

(i) Suppose xeV, x=EE- G, L=x. To show: VxDU*+E*ConTx(U*+G*). Let u be any large

enough number. Reason in O:

Suppose E*. Let y be as guaranteed by condition —=R: xRy and L=y. By the IH: y=E. We -
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have: xt-EP> G (by Z-completeness), xRy, y+E. So for some z: ySz, xRz, zi—-G. By
condition S: Oyj«lul=z. So by IH: Oy luG*.

(ii) Suppose xe V, x¥ EF>G, L=x. To show: =VxOy, g+Conlx(U*+G*). Let y be such that
xRy, yE, for all z with xRz, ySz: z# G. By R: ¢ jxL=y. Assume to get a contradiction:
Vxﬂu*+E*Conrx(U*+G*). Let u be big enough. We have by —R: Oj3z xRzAL=z, so provided
that u is sufficiently large: Oyj«Oj«lu3z xRzAL=z. Reason inside Oy
Suppose L=y. By Z-completeness: yi-E, so by IH: E*. Our assumption gives: OUJUG*.
Suppose F(v)=y, then Dy« luF(v)=y, so DUJu ySL. Moreover we have: Oy« luxRL By
applying X-completeness twice we see: EIU,Ju(xIr‘ E>G), DU,,I'u xRy. Conclude
Oy«luL¥ G, so by IH: Oyyufu—~G*. Contradiction: so Lzy.
Contradiction, so =VxOj.,pxConlx(U*+G*). o

Now be V and by assump:ion b A. Hence U*-L=b——A*. Suppose U*FA¥*, then U*-L#b
and hence by the definition of F: U*L=0. It follows U*H DU*k.L, quod non by X,-soundness.

10.9.3 Definition of F

Let A(x) be the largest U*-axiom ocurring in X, if there is such. A(x):=0 otherwise. We define F
simultaneously with an auxiliary function primitive recursive G.

Stage O:
F(0):=0, G(0):=°°.

Stage x+1:
F(x+1):=u, G(x+1):=A(x) if

[Proofy«(x,L#u , F(x)Ru] or [Proofy«(x,L#u), F(x)Su, F(A(x))Ru, A(x)<G(x)] ;
F(x+1):=F(x), G(x+1):=G" x) otherwise.

L is lim(F). One can show in I, that L exists. An immediate consequence is that U* proves that L
exists, the statement "L exists" being 22 Define on VU{0}:
R-rank(x):=sup{ 1+R-rank(y)IxRy}

We can arrange it so that 7.x.R-rank(x) is primitive recursive and that for some K I, proves that
for all xe VU{Q}R-rank(x)<K. One can also show in I¥,: x<y — R-rank(F(x))<R-rank(F(y)). It
is now easy to show (ever without induction because K is standard!) that Ax.R-rank(F(x)) will
assume a minimum m. Say at u this minimum is assumed. It is easily seen that from u on only the
second clause in the definition of F is operative, so whenever the value of F changes (after u) G
will decrease. So it is sufficient to show that G assumes a minimum. This uses the ¥, Least
Number Principle. It is weli known that the ¥, Least Number Principle is derivable in I2;.
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10.9.4 Proof of Berarducci's conditions
R and =S are trivial. To prove —R reason in U*:

Let xe V, F(u)=x. Clearly Oyj«F(u)=x, hence Du*xSL. We must have: Oy«L#x by the definition
of F. Reason inside DOy
Say L=y. Suppose that not xRy. For some v2u and some w: wzy, F(v)=w, F(v+1)=y. (This
uses the A, least number principle: v+1 is the smallest number above u such that F(v+1)=y.)
Evidently not wRy. Hence: Proofyj«(v,L=y), A(V)<G(v) and F(A(v))Ry. Is it possible that
xSF(A(v))? No, or else xSF(A(v))Ry and thus xRy; quod non. So A(v)<u. Ergo DUJuL:ty. u
is an "external” number, so by reflection Ly, contradiction. Conclude xRy, i.e. xRL. O

To prove S: reason in U*:

Suppose xe V and L=x. Consider any number u that is large enough. Say F(u)=a. Clearly aSx,

and hence Oyj.aSx. Reasor inside Oyjx: ,
Suppose: y,ze V, L=y, xRz, ySz and (to get a contradiction:) D« lu L#z. u is "external” so
by reflection L#z, so z#y. Suppose for all v2w F(v)=y. It is easy to see that for all v2w
G(v)>u: suppose not, then it would follow that DU*fu L=y, and thus (u being “external")
Ly, quod non. Let p be a U*-proof of L#z with A(p)=u and p>w. (It is easily seen that such
a p should exist!, We have: Proofy«(p,L#z), F(p)=y, ySgz, A(p)=u<G(p),
F(\L(p))SF(u)=aSxRz and thus F(A(p))Rz. Conclude: F(p+1)=z. Contradiction! Ergo Oy fu
IL#z. O

As it were accidentally we proved two extra theorems.

10.10  Definition

We call (.)* a U*-interpretction if:

1) (.)* maps propositior al atoms to sentences of the language of U,
i)  (.)* commutes with the propositional connectives,

iii) (OA)*:=0(A%,

iv) (AP B)*:= A¥P . B*

We call (.)* an U* ,X-inter pretation if (.) is a U*-interpretation and (.)* maps propositional atoms
to elements of X.

10.11 Theorem

1) ILMFA & for all U* X-interpretations (.)*: U¥H=A*,
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ii) (For all U*-interpretations (.)*: U¥*HA*) = ILMHA.
Proof: Left to the industrious reader. O
10.12 Examples

The following example shows that the interpretability logic of IX, * is strictly weaker than ILM.
From the arithmetical completeness of ILP (see Visser[88b]) for interpretations in IEI, we know
that there are sentences A,B,C such that IY AP 5B = (AAO[y,O)B 15, (BAOy, O). 1Y, is
finitely axiomatizable (and this fact is verifiable in IX,). Let D be a single axiom for I2,. Itis
easily seen that I¥,*i* (DAA)P [3,4(DAB) = ((DAA)AD 5 4(D—C))P 15, 4((DAB)AD s«
(D—C)). Hence we have found A',B',C' such that I3, *+ A'D> IZI*B' — (A'ADIZI*C’)DIZI*
(B'AO 5 14C").

The following example shows that the interpretability logic of U* for any U extending I%, is not a
sublogic of ILP: by 10.11(1): - CAB> OB — (CAAOC)B> (OBADOC), is valid for U*-interpreta-
tions. On the other hand one shows by an easy Kripke model argument that ILP does not imply
this principle.

11 Appendix: conservation results for BY, over IA;

I think the reader will agree that working with 'smoothened' notions to compensate the absence of
2.,-collection is rather tiresome. Also, perhaps, comparison of certain arguments in BY, +, about
axioms interpretability with their counterparts in IA;+£2, about smooth interpretability will have
suggested to the reader tha. there is a systematical relation between these arguments. Ideally what
one would like is a methcd to convert BX,+Q,-proofs (of some interesting class) leading to a
conclusion about axioms i~terpretability into IA+£2,-proofs leading to similar conclusions about
smooth interpretability.

In this section I will formi.late a result that brings us halfway to the ideal: namely a conservation
result proved by model the oretical methods. So we will just know that there is an 1A+€2,-proof of
the sort we are looking for, but we have no interesting method to find it.

To find our result we just have to take a closer look at a model construction that is well known
from the literature.

Let M be any model of IA . We can, by Compactness, always find an extension N of M such that
(M,{mlme M}) is elemen:iry equivalent to (N,{m!me M}) and such that there is an n*e N with
M<n* (i.e. for all me M ri<yn*). Consider any such model N. Let M* be the model given by
{neNIldmeM n<m}. L.t A(x,...) be any arithmetical formula. We say that A(x,...) is
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(M,N)-preserved if for all m,... in M: MFA(m,...) = M*EA(m,...).
11.1 Lemma

i) The [I, formulas are (M,N)-preserved. Moreover if M* is closed under ®,; or EXP then this
can be strengthened to 1, (w,), resp. I1,(EXP).
ii) The (M,N)-preserved formulas are closed under conjunction, disjunction and existential
quantification.
iii) Suppose A(x,y,...) is (M,N)-preserved and for all m,k,r...e M*:
M*E (A(m,r,...)An<m) — A(n,t,...),
then VxA(x,y,...) is (M,N)-preserved.

Proof: completely trivial. O

From 11.1 it is immediate that M* is a model of IA; and hence of BY.,. Moreover as is easily seen
Q, and EXP are (M,N)-preserved. So if M is e.g. a model of IA;+£2,, then so is M*.

Remember that (Vx3y)*A(X,y,z,...) means VudvVx<udy<vA(x,y,z,...). If A is A, it is easily
seen by 11.1(i),(ii) that B(u,z,...):=3vVx<u3dy<vA(x,y,z,...) is (M,N)-preserved. B(u,z,...)
satisfies the condition of 11.1(iii) in u. So it follows that (Vx3y)*A(x,y,z,...) is (M,N)-preserved.

A is a X *-formula if A is of the form 3z(Vx3y)*A,(x,y,z), where A is A,. Note that ¥, is
(modulo provable equivalence) a subclass of 3;*. Note also that 3;* is closed (modulo provable
equivalence) under conjunction. We similarly define 2,*(w,). Clearly >;*-formulas are (M,N)-
preserved; if M satisfies 2 then &*(ml)-formulas are (M,N)-preserved.

The interpretability principles Py we have been considering in section 7 are all of the form:
Yu(A—B), where A is a (possibly empty) conjunction of 23*(m1)-formu1as and B is a
2,3*(w,)-formula. Clearly we may assume that A is a single 2.,*(,)-formula.

Let P, be the axioms-interoretability variant of P.. We want to show: BX,+Q,~P, = IA+Q,-P,.
Evidently it is sufficient tv prove: BX,+Q P = IA;+Q, P, since BX,+Q,-P,—P_. In this
form, however, the problem does not seem to be solvable: we need an extra observation. The
observation is this: in proving a principle P, in BX, +£;, we accomplish a bit more than stated: we
explicitely provide the trar:sformation of interpretations involved. This means that we really prove
something of the form: Yu,z(z-wit-A —f(z)-wit-B), where f is an IA0+Ql-provab1y recursive
function. (If C is 3zC,(z), then z-wit-C is just C,(z).) Let's call our principle in this stronger form

+
P,
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11.2 Theorem
BY, +Q,FPT = IA+Q FPF

Proof: We reason by contraposition. Suppose M is a model of IA0+Q1+"P+S- Construct N and
M* as above. Clearly M* satisfies BX,+€2,. Hence it is sufficient to show M*I=—1P+S. —1P+S has
the form: 3z((Vx3y)*A,(x,y,z)AJuVvda<uVb<v-B,(a,b,f(z))). By 11.1 it is immediate that
—.P+S is (M,N)-preserved (using that M* is closed under ®,), so we are done. O

11.3 Open Problem

Let's write i-IA+€2, for the constructivistic version of IA;+£2,, etc. Show by purely syntactical
methods: for A,B in £;*:i-BX,+Q ,-Vu(A—B) = i-IA+Q, - Vu(A—B).

Footnotes:

1) The restriction to X,-sound theories is a convenient understatement of the stability
phenomenon. For a more accurate treatment see Artemov[86] or Visser[84]

2) The attentive reader will note that what we really need is the much weaker condition: for all
k>0 UrogkL.
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