
11
(9

11
1(

'1
'7

11
q

d'
(I

a

I
In

ll'
f,

1

i.
11

1

lll
ll

Jj
III

I:
III

L'
{I

 Il
iry

ii

..
l

I
II

, I
N

91
lll

l
II'

14
11

,:
I '

I
III

I
lp

nl

I,

:1
:

0
11

1 
i'

I
11

1.
1

i!I
ilu

 ,l
l

11
.1

'I!
':I

II 
I'1

f
11

,r
 l'

1
f

I
I

II
;ly

I
LI

d
III

' 1
1

f
fil

l
II

'
II

11
''1

1
ji 

11
N

'
n

Ij
'

I

'I
I'1

III
I

l
11

 l
l

II
1'

1'
'ln

!I"
ill

 Il
dl

,
(

(
1N

r
IW

'
I

I
I

I I
 h

N
P

u
l

V
4

T
I,

.
l l

p
I

I I
 I

"

II'

r
It

'
I

'
11

1
III

I
I

"' 
ll

'II
II

1 
a

I
ii 

t'!
I

'1
11

1!
 `

1
"I

III
t

1 
r 

'
,

III
''

u'
I

ly
la

ll 
Iil

hi
)

III
I

i
I'

11
1

t.l
lI

[
I,

ll'
I

9
"I

I
,

I
III

y
,I

II,
;

I
.'

'I
II 

.'1
(
:4

1 
1=

'
'1

1,
Itl

l
!

P
I

I'
I

1
i'

II,
 1

1'
'1

II
'1

I"
III

,;
,'

1
I

I
!

,I,
''

'
,

0'
ilk

'
III

I
du

i,
II'

I

N
Ill

1
.I

V
W

11
'1

11
11

'I 
lil

y,
h'

I
1`

i
l

p
II

s
III

 it
III

6'
III

IN
I

11
1!

11
 II

p1
1

II
III

`
1

u
I

1:
I'

ll
I

!
:

!
I

.
I

11
1!

1
'l

l
'

r
I

s
,1

11
11

1
II

i
u'

 I
!!1

11
'1

!
if,

I
'

14

'
1,

I
i1

l
!
Ii.

1

,1,
11

,,i
l',

Il
A

I1
1!

III

:
l

II
Ii

I

II
,

1I
.

I
,Il

i
I

II
i

'' 
II,

O
l

l'!
ll

11
11

11
,

I
'

I
t

;(
I'I

h
l

a
1

,
.1

'1
W

II
II{

1;
i.,

.:,
.

I
I

III
I

ll!
II'

Ill
ll'

N
r1

 d
IN

19
Ili

l
11

1
61

r
1l

a
4h

I;;
I

I
0

1
1
1

I
1

1
!
m

Il'
p

9E
1i

'
I'

1.
1,

11
1 

,U
1

j
a,

!I
'1

1,
11

III
II

w
ill

y
h.

.
II'

I'l
lid

f!i
11

1'
'

I
4

I
1

'I
I

,
1

ill
'''1

II'
:

1'
IIl

11
1l

ill
l'

"
i

I
,

I
I

1:
.:

1
I"

1
I'

11
I

I
'!I

II
1

I
,

61
1

,I
!

,,
rd

er
~

r1
I'

7P
'

'II
I

1
C

Y
I{

t I
P

'
1d

ll
1

1
I

u'
I,

I

1
N

II
III

;
I

I''
lii

l'I
II!

II1
 Il

hl
'

II'
11

4'
11

11
11

1
1'

,

}
x'

11
il'

il'
rii

l'I
N

II'
I

1'
u'

or
 II

I
IIl

 ll
ll

.
r

n
4 

ll'
;

'1
11

'
.

II
p

al
I

.
I

i

d
t1

11
a

'1
11

!1
%

1
''1

1'
11

1'
1"

I'
I

II
lll

lll
'

I
11

1:
1

II'
'i

I
Ii'

'
N

I
W

II'
n

i1
II'

I

I

i
l

a
1

III
II

I'
1

1
III

1

I

I

Ill
I,

I
I

11
'1

1'
1,

i
!II

'
'l'

II'
(I

III
I

I'G
`I

I

1

I
IA

'I
'd

;:
':

11
III

Il,
ll

11
1

IiI
.I'

llI
i9

lV
l I

III
III

iII
III

III
I

II
"i

I
" 

11
1

1.
al

n!
I

III
'

11
i

'
1'

11
11

1
'll

,
!d

lli
li"

I.
I',

11
!

l
,

,l
J'

'1
e

4
1

11
'I

II
!9

11
11

n
'h

11
11

8
11

1
1

1
I

I
I

III
I

1l
i'

lil
l

1
1

.
l,

:I 
Ill

'
II

Y
q'

'
lu

al
r

!
III

II'
II

III
III

11
 IM

'
I
I lo

t,
I

11
1'

1 
I:

11
"' 

.
1

11
1

.
I

.II
I

Ii
11

91
'II

I.
1'

n
N

li
'll

'I
11

11
11

=

'r
1'

b
.

I
1,

'1
1

1i
I.

1:
11

i
1

I'l
l

1
I

I,
11

1
11

1:
ll1

!
,

I
h

I'
i

v,
,l

!
II

11
,

I
ll

l
:

11
11

1
6!

!
l

'
!,k

ill
1d

W
1

4:
I'I

"'
'h

 1
1

,
',

"I
ll'

11
1

11
1

hi
ll

I'l
i

III
,

I
I

I
11

'1
1

'
iI 

1

T
T

T
I

'I 
V

bl
l

I

1

ul
 i

1:
'I

I P
 I

,
I'

1

Iq
.,l

 .I
r

,II
,,I

O
r

Iu
 u

[Ij
1

i l
l'

,II
'I

I'U
1

IU
I

11
1!

1
Ih

i
1

u
91

1
III

I

II
i 1

11
''I

.

i

I
Il,

p
1 

11
11

1:
1'

P
`

'
1

11
,1

I'1
N

r'I
i

11
1

1
.,

!
i

i
11

1
III

1
w

ill
Ii'

I
Iil

ll 
l"I

''0
'1

1!
11

1 
ur

0 
rl1

1'
l

,
A

ry
ul

Ill
!

!I
7

11
11

1"
11

6,
11

'
,l

Ill
1,

 i,
,r

j L
l

Ill
!

1
I'1

l1
l,)

l
'li

 6
1

I'
1'

11
11

1
II

I'
I

I
'

1
I

I
1

I
1

I
I

I
a

I,I
1l

'il
l

i
l'

1l
11

1!
1

Ip
l1

11
1;

I'l
"!

Ir
li

I
i

,
I

'I
11

p
1

R
'I

f
II'

11
'ri

,l
P

,Il
'1

11
I
I'l

l
I1

III
II'

I
!,I

'il
'

11
11

',1
1

II,
i

,I
'

n
I;I

ill
III

'Il
l'j

iI
11

11
1'

11
11

11
11

'1
1 

i1
Iii

 I'
l'p

ll
1

1I
r

11
1"

11
11

,
11

1
'i"

IL
.1

III
III

I
11

'1
1'

I
IN

14
I

II
M

'
'

k,
I

i
li

iii
lll

il
6

11
I

11
/1

1/
11

I,
'

III
III

7I
^'

I
I;1

IIW

'

I

I
11

1i
 1

11
'u

ll
d

II,
,II

I'
f''

'
II'

I I
', 

Ii'
ld

II
I

Iil
1

!-

1

q
I

11
III

11

!l
I'

I

1
'

11
11

11
11

.1
!,1

11
11

11
 II

II"
11

j'
lit

1
1

,Ij
1'

11
,'1

'1
1

,
' I

I6
Il'

,II
%

 P
ill

u
i

'r
16

11
11

i

'
I'°

IiI
I

14
:n

ui
l "

N
o

III
I i

 I
: T

,,
IW

IIL
11

!1
'I1

11
1

,
l

gl
'lI

I
it

I
1

I,
I

,

6y
III

U
II

iI
uu

III
, ,

'
!'

I,'
l"I

II
Ilk

,
III

I `
'l

II
Ill

ul
Y

 a
:I

iI
Ill

llI

rm
}I

ii
1

dl
W

If,
lu

ll 
Il

I
W

11

"
I

III
IIi

'IW
'

4,
i
'I

11
11

,
I',

III
!

III
1n

'll
1

"'I
I!'

'1
'

,II

,p
l

11
1

.
.

iN
III

II
'1

I
11

11
11

11
11

11
,

l
ll

y
I

1'
/1

1/
1'

 l1
.'

I'
"1

11
1

'
Ill

''1
11

1'
'1

,L
I'

N
11

II'
,

it
,1

IF
:1

IIl
lll

 o
lW

l
Ill

it
11

.
IJ

 !,
':I

'
11

11
1'

9 
,I

,
,I

I
,1

I.

l,

:I
'ti

il
r'

.I
III

°l
l

I
I

q 
N

I I
I

,
11

I
fi

i
I1

11
1I

''
d!

III
)L

 II
'

I
'

n
I

!1
lI,

11
'1

 't
ll1

lu
'.,

.1
11

16
ill

 li
11

11
41

1
I

ill
'

I'1
1

1
I

I
'

Ill
'

I.
11

/1
,/.

dl
'

'I'
1

l

I

i
I

I
II'

h°
IIP

I1
,

'1
l

16
11

1 
III

I
IIV

I
I

,,
'I

,
1

,
I

,n
'1

11
 I,

Il1
:

,,
'',

n

+
`I

 1
11

1
1

I
,,I

I
'

I
1

Ill
''

l,!
1

''
i'

:
,!

1

,!:
11

'1
I

I
I

''
I'i

'
r.

I'1
 1

1 
1r

,I t
it 

,' 
II

III
I

du
ll

i
11

'1
11

11
1

it
1

i
11

11
1.

1
11

,1
11

''
l

lu
ll

11

..
.,

14
/1

1/
11

1

':
W

II
"I

III
I

II'
'I

'1
11

III
r
1l

!I

III

I;
'I 

°I
III

;
'II

I
t

I

II
I

,
I

''
9

J,
 l'

 la
ll

=
1

,
.

U
'

1
1

I W
 !

ul
I

V
III

rv
11

1
1,

11
11

1I
I

I
'I

"
III

III
f

=
I,

.
11

11
11

1

4I
 1

11
1

!
I:

19
11

I1
A

'
r

II
11

11
1

,i
,

P
 II

I
i

!
M

1U
Y

,il
I

1

d
'

1
11

'1
$'

' y
u(

'p
1

hl
lll

lll
'

',I
1'

ll'
1'

''I
!' 

ul
I''

I,I
)1

'
'll

III
llp

I.I
,,

I
nl

'U
,,I

iF
,i

l
11

ll'
(D

I
Itl

hl
.Il

'p
l'i

I
lIi

'
,

.1
11

1 
ij

11
1!

11

]1
;'I

I, 
i

Ilj
U

lll
!

III
N

"`
!Ic

j

J
I

l
'

'
T

11
11

 I:
;'
,I 

II
11

i
n

III
IIy

'N
lld

(t
ill

Im
' I

h
i

n
4

,'I
I

I'
11

11
11

)
V

 il
l

0

N
O

 O
f

in
j 1

11
11

I
li

11
1

d
III

I 1
1,

1:
1 

,I,
ry

11

N
lll

l'
III

Ill
lg

l1
il

'
,1

II
Ir

"I
ll

I i
'

lil
il'

llY
lll

ul
 Iv

 1
1'

11
1

III
I'!

 II
III

I I
ll,

III
I

18
,

ll 
i!

11
1.

'
P

III
I''

,
I

P
I

.U
"!

'
1

I
:1

14
:1

` 
III

II
ill

 1
11

11
11

11
!1

1:
,

II1
1

I
I
I

'
'
l
,

1
1

1

l
11

1'
11

11
1

11
11

It
l

!1
11

ll
11

1
.

I
I'!

fl
.

ll
rld

'
If 

11
th

1,

IP
dl

i'I
 n

l
11

11
i.

''
IW

i
a

ill

t 1
1

1
1

!'
11

11
11

'I
ip

N
I

oI
r

11
i1

i!!
''I

IIl
j

!
'n

 1
1i

I
!I,

11
1

%
.

,I
II'

Ir
llj

ll'
lli

!1
16

1'
I
lrh

l

',I
,

I^
,1

11
Ir

III
I''

III
1'

`'
1,

11
.'

l
" 

:1
 ll

''
,

ll
;I

1'
1'

N
11

11
1'

ll
!1

11
1,

III
I

i "
I

10
11

l1
1

I

! i
t

I'
1

,
Y

i
ti 

I I
ii

l,t
ill

11
tiI

d
91

N
IS

N
U

N
ili

,i
ijl

tlg
l

IU
lli

lii
tU

1F
 l

dN
ri

ill
l1

;,`
L

,&
H

,il
l

III
II

I'i
"ll

'

1,
/1

1/
.I

11

I
,

i
un

 1
1r

v
I

1

u
11

11
1I

N
%

'1
{i

Il 
llh

1'
{'

ld
'Ii

ll 
11

11
i

I

i l
r 

l
1N

11
ilI

6i
E

1N
17

1i
rP

fR
+

,F

iI
1

1

I
.I

li
a

I
1

l
I

,

1
i

III
1

" 
11

11
'

P
III

'
h

d1
1i

u'
I I

! I
 I'

;II
1u

il"
'II

l'1
IIN

'

iit
(

III
I

IIl
lll

li!
, I

I
M

al
i

i
t

I'
I

I

'
1

lll
lh

lil
11

I

Ip
''

II
I

m

91
'!1

 N
1

II'
I'

I.'
i"

,i,
1

I,I
I

II'
I:1

11
1u

 l,
N

lir
:,.

V
11

11
'I

1
I

p,
bl

I'I
.'

11
1

Id
 1

11
'

II
11

1
'

V
'
ll

I:

'''{
i

'
'

IiI
I'

Ill
lli

'll
lli

lu
llI

'
'V

III
'"

.V
;"

IiI
Iil

I
hi

ll'
Ii'

Iy
III

P
I''

rC
''t

:

Ih
llI

:
III

lII
Itl

1V
I

'I
II;

11
11

!I
II'

I,
I

P
l,l

1
x

''I

11
10

 1
,1

i1

'
I

I
I

L.

L
.

'!I
'

I
1

III
'l"

I
III

I'
I`

I

it

III
II

t
itl

d+
III

B

m
un

,l
II'

III
,1

,:1
1

11
1:

:I
1

P
I; 

III
I 1

'l
'

''
Il

'I 
:

I:
1,

,
I

II
III

III
I

II
Ii

,
'"

r
II

11
11

'+
I

lil
t

11
'

N

,,'
i

nI
l

III
II

III
I

IW
I

11
1,

11
1'

1
I'l

l:
I

°'
I

I
I

I
I'

,
,

I,
,ll

 IW
P

11
1

n,
iil

ji9
11

N
j

Ij

Ill
pl

i
I

I
'

!ii
11

11
11

1 
I9

16
W

I1
,1

 I1
11

19
11

jll
ili

lJ

!1
1'

1
t

11
6C

k 
IN

11
11

11
, 1

1!
11

11
LN

I
I1

'I'
ad

Ii1
,1

11
11

1,
bl

llu
li!

'II
III

Iil

rf
l"u

d
u'

'V
IiI

II

II
I

1.
'4

1
11

'
11

11
1 

dl
 II

I.

'
'

I
Ill

'
1.

11
1

I
i1

', 
"

II
11

,
I I

ilI
II'

+
1

11
1

Ih
lll

:
I

11

II1
'II

N
I

1
'I

'
11

''
I',

^
11

1
1

II
'il

l,'
I

1
1,

11

11
1,

11
11

 II
I

I.
.

1

11
'1

:'
,

11
11

I
P

II 
III

"
I

III
.

,
11

7
I'(

1
I

III
I

1

I
,,

I.
III

ll.
I

'I'
IIW

l,l
i

iIi
IP

1
I1

"'
.1

,
,.I

,
lji

i
Iil

[
III

II
Ill

,P
'II

11
11

"
11

1'

I
I

16
1"

I'l
l

III
II

"I
11

I'"
11

11
1

III
I

'1
,,

61
1

i
I

1
'll

II

I1
, 1

1,
gI

iI1
11

1
Ill

'I'
 h

 I'
I'

1'
I

'IN
llr

yr
yl

III
11

1
r

ll
if

:1
1

rn
1

d

,
i'

ill
I:d

,1
1

1
i'

.
"i

11
l'

u'
I

V
 II

I
,

tl
: n

(I
1P

'li
l'l

l
III

I"
lll

lla
'

11
1

II
h!

.I
II

11
'

II1
 il

dl
I I

l1
1i

,
I

d'
II.

I
11

,
11

1
I

1
1

1.

1

I
1'

'II
.

IIl
lll

''
'I

I'I
'

,P
'

11
1

I
I

..
1

II
1

1

'
1

'1
11

III
II,

11
1:

''
'I'

11
41

11
11

11
1i

iI'
"6

l I
II

III
 II

{I
I"

,
r,

l:
1

'1
11

1

'
'

11
..1

!!I
I

'1
11

1!
;'

l''
1

tl,
 .:

1'
11

:!1
11

III
I

In
,

.
II 

'i
,,!

ill
'

a
iII

11
11

1 
lrl

l
bl

1:
61

11
II

,I

Ili
r

P
O

T
 I

'=
I

"
.

I
III

' I
(I

I
'I'

II
I1

'
l d

q,
ui

l.
Ill

lh
i

I

1
1.

,
f
. I

IiU
l

ta
t.

,
ll

'II
I

III
I.

III
I

N
I

1

I'f
 '

II
il'

''q
'

I
,

h
11

11
W

,
I!

:,
I

Ij,
..^

I
III

11
1

II
In

 `
!i'

"i'
'l"

II'
'

11
ill

lil
lll

N
,il

"I
III

III
'1

Ij,
I

,1
11

1
W

"
I

,
I 1

1 
1

'
,

11
(I

1
I1

 1
4(

1P
i

I
,

ll
hi

11
11

''l
l,

I
III

ill
"

'
11

11
U

 6
I'i

 II
i

III

a

a%
%

,
I

III
:

11
1'

11
'

III
,II

i,^
I'

III
III

I
i1

14
1I

I 1
"I

 li
t

'
lll

l
III

1,
'I

III
,

;I
11

11
11

:
III

I'
1

.:1
1

I
It

1
I

II'
1

I
I

III
11

11
1

'
, I

I
II

'
1{

I

+
'''

I
"''

la
I

I'
yl

fII
I I

iI
Ii.

.
"I

Itr
1d

l{1
11

1!
1'

11
Ii

I'J
V

"
Ilr

IIL
''

'Il
l

i1
I

11
Ill

I
II'

'
11

'
'

II!
4'

F
1t

{I
I
:'

11
",

III
'

r
+

:
.,

ui
 d

III
I

III
':

I
,

'I
f N

l'1
I u

l
i

1Y
l

IW

I

Iln
l

''' 
1

II
=

1'
'1

I1
11

IIP
11

11
19

P
P

II
III

I
,1

'1
11

II
''l

(I
III

P
I1

1 
lu

ni
u'

01
11

6 
0l

/1
1/

1'
 B

l
i

"I
'

11
11

1
,II

II
IP

 1
14

I!

U
1

III
I ,

'1
P

I 1

,ii
'I

'1
l%

11
''1

11
11

!II
I:'

'I%
!il

 II
i

ili
'II

 II
III

II'
III

II!
III

I+
6

N
'

'.'
Ib

'
11

11
1

u,
l

11
6

p
1

'
1,

It.
11

1'
'

M
ill

 1
11

I'l
l'I

I
I

W
',,

lli
ill

II
I

I'
,1

1
i.

IIl
lll

9
h1

11
1

:II
II

,ll
ll'

III
II

I
I

I
11

1
j.;

'd
,: 

:,'
i

III
II

,
III

I
I

d'
' I

I
jfl

11
III

a
11

1 
I

1
III

11
1

%
' i

IG
I

I
I

Q
14

:1
1

II
^I

III
1

I
11

;
I

II
I.

lu
ll

,
p

,j
11

1
4

Il
II;

1
.1

'I
W

'I
11

iii
ll

it
91

I1
61

I
I'1

11
11

11
!il

ll
Ill

:
11

11
D

'
11

11

I
I

Iiq
 IC

I l
il

1'
I

.C
h'

11
1

'l1
.

IIN
!I

'1
I

.II
,

i!1
,

I'I
II

I
'

'j
I:I

I
V

 1
I I

p
I

I I
I

r'
pl

l
'

I
11

1
ill

ii,
ilh

l l
'

''I
I

I

I
I

III
'

u'
1!

'i
I'

III
lu

au
,

I
II

11
'1

'1
'I

r 
1,

11
1

II
i
l I

II
,:

1
11

P
I'

' I
:

III
ql

I.I
I

.
I,

Ill
16

u1
III

I
I

r
9f

'

i
11

P
l

:Il
l I

dl
',

IIl
lll

,.
I' 

11
1

,1
h

.I
I'I

 'I
'll

,
'I

1
1

41
'N

lr'
'

II
III

' U
I

!
l

'

;

I
l

hv
III

III
I

I:
nl

1'
,

lh
,W

I,i
III

IiI
III

I'
Ilk

III
I:P

,'l
lla

'
11

/1
,/'

1
'

1
:

II
,

1n
 P

,
I

I:
III

11
,

rr
j!

11
a

al
1

11
I.

III
I

III
I

11
/1

1/
II

I
1

1

iii
11

1
I'

1

Ii"
'i

III
II

Ilv

i
1,

ul
 il

l
i

IIW
I

I
Iu

'
'9

'
I

I,
I"

1
'il

ill
tll

'l 
lll

l1
N

llb
lh

11
1l

'
,

'
'II

III
II'

'

N
N

II,
'I

II
Iii

 1
11

1'
III

'il
l

'lt
II

1
I

I'

III
''

uu
1

,1
'1

'll
1l

l'
11

1I
I'l

'
Ill

ll'
'I

p,
 ll

 lp
lll

l
tlI

I'
'I:

'I
i1

I
,n

lid
l

i
.

11
11

,1

II
1

''1
11

1
'tl

'1
11

1
',

IN
lil

y
11

nl

n,
i I

1,
11

:4
1Y

o

1
1

I'
fi'

I
I°

I"
+

'II
II

IW
!Il

llp
ul

1,
1

I r
6'

I
11

III
I

I
u'

W
n

Iif

ul

I' 
W

,. 
III

II'
1i

11
1^

III
'1

11
11

4
of

III
II

';:
I

ul
u'

1'
ll

II

1'
I

i

1,
1,

11
16

11
1

I"
II

6,
1'

1
'

II.
III

N
II'

il!
I

11
I

''
I

I
I

I

Ili
l

1

I'
ill

,
Il'

I

!II
'

11
'11

11
11

i
;,

I
I

:1
'

III
I

1

11
.

i"I
'

I'I
i,

''I
t'l

l
oI

II 
11

61
11

,,
1,

III
II'

I
I'1

I
,1

Ilg
ii,

l
II,

 t'
L

';'
,

j'
'1

1'

I
I

II
III

III
II

III

h1

91
11

1
III

11
11

!1
III

U
!

li'
It

li
I"

II

IIN
" 

91
9,

1
IIP

I
lu

u6
IP

I
I

III
',

iI
.':

'I
IIl

lll
';

II
I'

,I
!!

III
;u

li0
1!

II
I

'
I

I
I

,I
r

'
.1

.1
,1

11
III

 II
II1

11
'll

 II
III

W
III

I
Il

!
+

' n
l I

r 
'i

d
I

;
'

IP
1

I
,

I'
'"I

'I
II'

,
I

I
,:

4
-,

i
'f

1P
t

,,f
'

"I
1

II
1

I

I

1

1
l

1
i

I

i
1,

I

I
"

lI
S

ih
iI

ti(
,s

dj
,r

;
+

lli
lr

tr
ln

!

9'
'1

1
it

.'I
.:.

51
II

i
.

11
1

,'
11

11
1'

lll
lll

' i
l!1

11
11

1
'''

,
r' 

m
l'1

!1
11

 "
,I;

F
 Y

I
1 

1

1

1 
1

1
1

1

I n
 '

I
1 

6 
0 

1
I

p'
ll,

jlr
 I'

li.
'n

l'N
''l

l't
 N

'll
!'n

11
11

1'

fil
l

I'
1

'+
11

!1
I

1

',-
+

III
,r

 n
, I

ll,
11

l
l

u

I
I'I

{
it

61
'

'
'

1

,I
11

I
III

I J
I1

1
l.

.
I

II'
I

I
d

III
I

1.

I,,
I

I'
I

1
ill

ll
l:i

''l
ll!

Ir
'1

'
,1

1'
'I'

11
1'

Il
''

III
N

Ip
I

LI
ild

III
Jl

il
I

°
;i:

,
lil

iti
11

90
1

I
'il

l
41

1

..1
11

11
1 

III
N

ih
d

i

'1
1!

11

'
l''

1'
I'I

'
'

hT
'I 

til
'

n
I

I
'

:
11

1
11

1
I

1i
1

,
1

1
IIl

lll
I

i
l

V
II

III
,'

d:
.

I
II

1

I'
IN

N
.I'

L 
Il

I
1

I
r,

i 1
11

11
it

,Ii
i,

li
,V

!
I

+
'

l
11

11
; i

lll
llh

l'l
il"

''
I'

Ill
. l

Il
Ill

'
yI

 "
h!

''
11

1
,1

!l;
ih

l,l
',1

lu
,ll

,:
Iil

iN
r'I

iII
IIp

IIp
,IU

lli
I'

I,

r

"'
lr

,,
1

11
.,

'II
IU

;
i't

l'
I

ill
III

I
11

1
1'

I
1'

11
1

lli
 1

"1
11

'I'
II

11
'1

+
1'

q
'

1i
i1

'll
''l

l'I
di

 1
1

'I
1

'h
1

..
u1

I.

''
II

I''
9

I
ll

II

I.
11

'''4
,1

.',
'.1

,
Ii1

I

[I1
1i

ii,
r1

1
,

,:!
Ill

'II
I!"

'I
11

1
uj

jj1

'l,
11

1
11

6
i1

'
I

I'
I'

I
I

I'I

:II
I

I°
IIl

lll

(I
lu

 ll
l1

1 
Ill

s
1

I

1
1
1
1
r

r
I'

V
III

11
91

1'

1'
11

11

Ir

to

L
og

ic
 G

ro
up

-

Pr
ep

ri
nt

 S
er

ie
s

N
o.

 4
7

A
ug

us
t 1

98
9

ko

D
ep

ar
tm

en
t o

f 
Ph

ilo
so

ph
y

U
ni

ve
rs

ity
 o

f 
U

tr
ec

ht
H

ei
de

lb
er

gl
aa

n 
2

35
84

 C
S 

U
tr

ec
ht

T
he

 N
et

he
rl

an
ds



THE FORMALIZATION OF INTERPRETABILITY

Albert Visser

Department of Philosophy

University of Utrecht

August 1989

Department of Philosophy

University of Utrecht

MSC-1980 classification 03B 15/03F30 Heidelberglaan 2

Key words and phrases: Pro, ability Logic, 3584CS Utrecht

interpretability, fragments of arithmetic The Netherlands



E

INTI-

Albert Visser

ABSTRACT. This; paper contains a careful derivation of principles of Interpretability `'Logic -valid inextensions' of

Interpretability Logic is a generalization of Pro ability--logic in two senses. First its subject,
interpretability, simply is a generalization of provability. In-terpretability is 'provability, combined

with- change of perspective. Secondly well known facts of ` Provability-Logic have- natural
counterparts in Interpretability Logic. For example we have arithmetical completeness theorems in

the style of Solovay for two systems of interpretabiiity logic (see Berarducci[88], Shavrukov[88J,

Hajek & Montagna[89], Visser[88b]) -The -modal, theorems on uniqueness and,expliciteness of

modalized fixed points have an immediate generalization (see Smorynski[87] for uniqueness, De

Jongh & Visser[89] for expliciteness). Finally the closed fragment of interpretability 'logic
'collapses' to that of provability logic (see Hajek & Svejdar[89], Visser[89]).

The. richer language of Interpretability Logic has several, advantages: first a major metarnathematical

insight, the Model Existence Lemma, can in some sense be formulated in the logic: viz. in the form

of the Interpretation Existence Lemma (J5, see below). Secondly Solovays Completeness Theorem

for Provability Logic has an amazing stability: we--findthat Lob's-logic'is-the provability`logic of all

11-sound RE theories U that extend IAO+EXP.(1) Thus Arithmetical Completeness gives no speci-

fic information distinguishing various theories. In the case of Interpretability Logic the situation is a

bit better. Two important --lasses, viz. Y-1-sound Essentially Reflexive Theories and 11-sound

Finitely ,Axiomatited Sequential- Theories- extending o-wn distinctive`

interpretability logic (resp. ILM and ILP). Moreover many individual theories not falling in one of

these classes (like IDO+521 IA.O+EXP, PRA) have their own interpretability logics. (Not much is

known about these, except'in the case of IAO+EXP:`)'A third point-

to ordinary- Provability Logic. (An exam- ple of-this -the solution ofGuaspari's-problem-by Dick de

Jon -h.(building.on work of Visser,.Montagna,Pianigiani (ternporal order))- is forthcoming.)
rfV

This paper aims to be a careful presentation of the principles of Interpretability Logic valid in any

theory extending IQo±-521. It turns out that there are more such principles than was conjectured in

Viser[88b] (see section 8). .. r

MALHZAT ,O

R RIE 11 L 11B11'liJJ1 .
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One basic obstacle in reasoning about interpretability, in weak theories is the absence of the
11-collection Principle. Tl is difficulty is illustrated (sections4,5) strategy is developped to

circumvent the difficulty (sections 4,6) This strategy differs from the one followed in Visser[88b].

(In an appendix, section 11, a metamathematical result is proved on the comparison of reasoning in

IA0+S21 using the strategy and reasoning in BY1+S21 without it.)

The plan of the paper is as follows: section 3 provides the necessary preliminaries. Secting 4
introduces interpretability and contains a -discussionofaheaproblems one meets when working

without Y1-collection. Section 5 gives a more extended treatment of BY-,. Section 6 is my latest

attempt to give a good presentation of the formalization of the Henkin Construction in Ii +S21. It

supersedes the treatment in Visser[89b]. Section 7 is the heart of the paper: it contains the careful

derivation of a number of insights essential to interpretability logic in IAo+S21. In section 8 the

consequences of the work, in _ 7 in terms of arithmetically yalnd: modal_ principles is spelled out.

Sections 9, 10,11 are appendices,., In section, 9 I show how, to;derive versions of the Orey-Hajek

characterization using the; framework of the,paper, Section 1Q;oontains-an; alternative proof of the

theorem by Hdjek and Montagna that.ILM-isthe logic. of rjl-cotiservativity-for-extensions of I.

In section 1.1 I,describe a.different strategy,torprove the results of section 7-1 work in BE1+521 and

then use aaconservation result to show; that ;what is, proved is also provable in Ido+Q!,

2 Prerequisites

The reader should know either the discussion of systems and arithmetization in Paris & Wilkie[87]

or In Buss[85]. Moreover the ;reader should have some knowledge of cuts: see e.g. Paris &d
Wilkie[87].

Conventions, Notions i Elementary Facts.

3.1,. IQo+S21 and the =of- Syntax.

IA +n- is, the basic theory of this paper. ,.For see Paris &, Wilkie[&.7]. Here weµo 1,

briefly mention a few relevant facts..-, w

IA is PA with induction rz;stricted to,,A0-formulas.,Tj-i..Bennlett,°show&that there i&. a°8o-formulta=

exp(x)=y, such that Ido verifies ((exp(x)=ynexp(x)=z)-y=z), expa=1 and exp(Sx)=2 exp(x). It

is easy to see that; IQo verities such familiar facts as (( yaexp(y)=z) +2u exp(x ); ((exp(x)n
n exp(y)=v) -+ exp(x+y)=.r.v . (Similar remarks hold for )cy.)

Define Ixl:=the smallest y>-. uch that exp(Sy)>Sx. Obviously the , graph.; of 1.1 is A0. Id shows l at l,!-

is a total function, which is weakly monotonically=increasing.:If we con;sider-the.-nutnbers .as__»':

coding strings of as and b s, where 0 codes the empty string, 1 codes a, 2 codes 1b t:3 4'. , `.

Formalization 2
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codes ab, 5 codes ba, 6 codes bb, 7 codes aaa, then Ixl is the length of the string coded by x. Note

(in I00): ((x#Onexp(x)=y)- 4lyl=x)

De ine,x*y:=x-.exp(lyl)+y.IA0 proves that * is total and weakly monot- tally increasingin both

x*y is the code. of the, concatenation of the strings coded by x and y. Note: ISO proves

Ix*yl,=lxl+lyl Moreover proves various elementary properties of *`-like associativity arid'
x*z=y*zx=y.

Define.coi (x)-:.=exp(Ixl2)...Note (in Iao) ((c *z=exp(x2)) and
wln(exp(x))=exp(xexp(n)),(if.one of these exists)". f. `.

Let S21 be the axiom "col is total". As is easily seen IO0 does not prove 521. Id0+521 is just right for

treating syntax: e.g. 'guarantees:that substitution of a terrn<in a is it
is pleasant to work with Nelson's #, which is defined by x#y:=exp(lxl.lyl). As is easily seen
IO0+521 proves that # is total.

Theorem ((paifrrn tirf D rni racopoulos[82:]s): If f °l .as a0-grap'h -than IO0+-"f is total and

weakly monotonically increasing" F-IAO(f).

Here a0(f) is the class of (translations of) formulas with only bounded- quantifiers, wheref is

allowed to occur in the boL.nding terms.

It follows that IL10+521 IA0(co1), so ins Iao+F we can work: as if coo were.afunction-symbol in the

language...

We code, in °IO0+Q by first translating- our syntactical strings of a' and Vs and -then-

translate e.g. aabab into 1 *.j *2* 1 *2. Here *.= a definable function concatenation. To

do the usual formalization of syntax it is imperative that the function num(x) that assigns to x the

code of the numeral of x is to see that if we use as numeral for x: S...SO--

(S x-times),,then the code of this -numeral will be -exponential in x. Hence we use the following

system of numerals:. assign to -Q and 1 0` and if we have assigned t =-assign>to--

2.x:: to 2x+1: (SSO t+-SO) Nutn(x) can be proved. Ir

In the sequel we will often use that every term in x of the language of arithmetic extended with col

can be estimated byyen1 (x" -for some>sstandard n, provided that x>2. Mo eove for 'every-standard

polynomial we-have: for some standard n exp(P(lxl)<c l1 (x),-again-provided'.that x>>2. I find

it rather tiresome:. to °alwa-ys°smention. the proviso x>2, soszI it. The reader could easily`

imagine a slightly adapted definition of cot that would make the proviso superfluous.

Formalization 3
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3.2 Languages

In this paper we consider only relational languages, i.e. languages without function symbols and

constants;: So-for example in the case of arithmetic;. instead of * weshave a ternary relation symbol,

etc.. After this is said, officially we will of course- Often pretend that -we :are :working; in a language

with function .symbols: Here one has to be careful: for example at a certaii point we are working in°

I0o+Q1 and we consider a function from n to the Godelnumber of 3y y=n, where n is the numeral.-

in the sense of section 3.1 corresponding to n. For the functional language it is easy to see that this

function; is total; (ins Id(,±Q1). 'Inspection, of the translation into: the. corresponding

relational language shows that the formulas iomially'lbnger,`sothe=function is

also total for the relational language.

In our languages there are only, finitely many relation symbol s,whit- hincludeidentity..

.4 k

3.3 Special Classes of Formulas

We ,the reader to, the discussion of special c1:asses. 1985] : We will use=

mainly 11b.

3.4- Theories

We consider, unless explicitely stated otherwise, only theories with identity for which a fixed list

of formulas :of their, language is specified defining a .set of natural numbers°, 0 successor, addition.

and multiplication. We assume in most cases that IAo+S21 is provable for these natural numbers..'

Variables x,y,z,u,v,... will be taken to range over the designated numbers. So VxA(x) means

Vx(N(x),- A(x)) if N is the formula the natural numbers -,of Dhrjheory. Syntactical

notions -will always be four alize, d ins the; designated natural 6Y

We consider a--theory T as given by a formula aT(x) having plus the relevant; information

on what the'set.ofsnatural n urt hers of the theory is. a ' .gives=thee set, of codes _of the. (non-predicates

logical) axiomsofrthexheo Different a numbers different theories; same-a

and same natural numbers same theory: Unless exliicitely stated otherwise ,we w ll,assume that a ~

is a Ilb-formula.

Example Consider GB,RDifferent._definitions, of the=natural- GB are,>pddsible:Under

one such choice GB k PA,arid. GB LGoh(ZF). Under another such. choiee fBF-IQO+Q1+Cen(ZF)..

We take the: two different choices of the, natural numbers, togiveit two-different Gl "s

The theory T+A is always .xiomatized by aT+A with::xE:-aT+ `r=
ocTvx=rA-i.

Formalization 4
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Let ProofT(x,y). bethe alb-formula: representing he relation: x is the Giodelnumber=of a;-proof of

the formula with Godelnumber y. ;ProofT will be ..built ayafrom 0T The precise
choice of the system :on which ProofT is based is immaterial: any-Hilbert style system or Natural

Deduction: system or Genzen style -do. If we wait to stress .that e, are looking

at the Proof-relation based on a certain specific formula (3 we: write: zPrdofR:.

We assume for convenience that: IA- +0 -VxB!y ProofT(x;y) Let 1?rovT(y) := BxProofT(x,y).

We write par abus de langage 'ProofT(x, A(x1,...,xn) ProofT(x,rA(X .here :

i) all free variables of A are among those shown.

ii) A(x is, the " Gddelterm for A(x1,.... xn);.as defined .in. Smory- ri ski [19:851 i p43.

Here we use-,instead of, the usual numerals the .efficient of -3,'1= 'so °-that:

Ia +S21,i-dx1,.y;,xnB.y rA( 1 .,Xn), .y, ; ..

TA,(xl.,.'.z,xn) will stand for, ProyT(A.(X1,.. ;x.n)

Occurrences of inside T should, be .;treated -with some<:cate Is- DT(A[t/x] ), intended

(DTA(x))[t/x],? We will always use the i e: the small: scope reading. tdefin
provably. in U a total function, and VI--t=X7 ,+.P ;the cope may be within-U,'

w.r.t. v. We have: U- (0A(x))[t/x] <--> ,(A[t/x]).

O T will stand for:

Let the axiom set of T bt. given,-by,,a(x-). then

axiom set is given by ((x(x)nx<_y).

4 Interpretations interpretability-,-

4. Inte1pretations.

y standds for-, in the theory =who:

Interpretations are in this, p:.per:Tone:dirnensional global relative interpretations without parameters..

Consider two languages Li,. An -nterpretation<1 of LV in is:..givenmby (i)'=a function F

from the relation symbols of LV to formulas of the language of I,-,,U and (ii) a formula S(a) of LU w

having just a free. The ima ge of a relation symbol has precisely al,...,an free, where n is the arity

of the relation symbol Tl ;image, of =need not be a1=a2: function - is extended>

in the following way: (R(1.1,...,bn):)M =A(blbn);x vhere:A=F(IB) .(To make° of :the

possible we rename bound variables in A if necessary. In fact it would be neater to set apart

bound variables forythe,F(= ,) and for S that do not occur in the original LVI.) (.) commutes with

the propositional connectiN es. (VbB)M:=b'b(S(b)_BM). Similarly for 3.
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We cad: easily-;extend()M again to map proofs n (from assumptions) in LV 7EM from'the

translated assumptions in the obvious way. As is easily' seen' for a-given interpretation M the j

lengths: of `the translated objects: are given by a fixed in the lengths of the originals. The"'
(considered as a function in Band M) and of as9ja functionin 7t

M) can be arithmetized by such--'aa way `that'the are verifiable in

ID0+S21. Using the polynomial bound on the lengths of the values it is easy to verify that IA0+S

proves .that these functions ;are total. (This verified irrXdetail in -Kalsbeek[89]

4.2 Interpretability

Consider U (with -What doesait mean to say that

V is interpretable in U via M? I thinktit obvious definition is this: for every is a proof

in U of BM. (I assume in this discussion that we are dealing-,with,,sentences, in the case"offormulas

one should consider: (S[B]--> BM), where S[B] is the conjunction of S(b)'s, for all free variables b

of B.) Given this definition the next step is to show: if V is£interprefable£in Uvia M and if V proves

C, say by n, then there is a proof tt* in U of CM. Roughly n* is nM with proofs of the translated

T'-axiom, s',plugged in at' the relevant places. Now here is theproblem: in" a l'beory'like'IA" I'-we

cannot exclude that -the-proofs,of the translated V-axioms pare cofinal`.n' the natural numbers. In

other words we cannot there is ,a bound for these axiom that would`provide

such bounds is E1-collection.

El-collection F- Vx<uEyA(x,y) ---> 3vVx<u3y<vA(x,y) AE 11,

(Note, equivalenty state..the principle AE'6o )

So we would get this basic property in BE1+S21, where BE1:= IA6+E1-collection. In section 5 we

elaborate the consequences of the lack of E1-collection aa`bit mote.-

One way to evade the problem at hand is to make a definitional move. We changethe'definitiori of

interpretability in such a way that. the basic properties we want are guaranteed even in Id0+S21, but

also in such a way :that our definition and theUsualone collapse in the presence of

paper Visser[88b]. I used tze not, -,ion-, of

the notion. of smooth interpretability introduced below"is a better`clrioice

Define by° 1dir3v'x<u3y<A(x,y) for'more=variables:`

.3yE f3 )*A(x..,y) for:'`du vV <u(kc uc- By'<v(ye f3AA(x,y)))'

*'

Note that_ ,f.(b u and' (Vy z)*B(Y z), then- 'VkBy,z)*(A(X )A (y"'2))

Define:
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K:U>aV :a VxE avProvu(xK).
K:U>SV :a (VxE- av3p)*ProofU(p,xK).

K:U>tV :a VXE Sentv(Provv(x)-*ProvU(xK)).

Our first notion is axioms; i terpretability; our second notion smooth interpretability, our third

notion is theorems interpretability.

Note that if V is finitely axiomatized and (xv is the obvious formula representing the axioms of V,

then, these notions collapse in=IAo+*I

4.2.1 Fact

i) .,140+01 F K:U>r:sV K:U tV
ii) IAo+S21 K:U>,V -* K:U > aV

iii) IAo+EXP f- K:U>.V -* K:UiSV
iv) B11.+S1: 1- K:UP % V --* K:U i SV

Proof: The proof of (i) is simple, but is postponed till section 7 (7.4) where (i) is an immediate

consequence of more general facts. The proofs of (ii) and (iv) are trivial.

We turn to the proof of: (i i). Reason--in IA- XP: -suppose K:UdtV. Fix a bound .u. Consider
B:=/X\ {A<uIAE av}. (We need EXP to guarantee the existence of this formula!) As is easily seen

B is provable in V, hence E K is provable in U, say the proof is',p. We can construct proofs- q of the

AK by appending proofs of AK from BK in U to p. =:ln. the worst .case :the' number, of steps
proceeding from BK; is u, ,the.formulas ocurring in each such step are-smal=ler than or equal to BK.

So lql<u.(IBKI+m)+Ipl, for some standard m. So we may take >rr bound v for the q:
exp(u.(IBKI+m)+Ipl). (Note that IBKI is about IKL.u.lul.)

There are two arguments tc: prefer smooth interpretability over theorems interpretability. First it is

conceptually better-,- to retain the distinction between axioms and theorems: the whole point -'of the

fact that interpretations preserve logical structure -becomes obscured, when one uses theorems=

interpretability. Secondly the Orey-Hajek characterization is more naturally formulated using

smooth interpretability section 9).

A ,somewhat' different ~on the use of ; S instead of P a will. be given in :an appendix

(section

From now on we write: M:.1> V for M:UPSV. Define:

UPV 3MM:U®V1,'{

. M:APUB t -M (U A)P U B)

Formalization 7
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AtUB :a (U+A)t>(U+B)
U-V :p UtV A VtU
A=_UB (U+A)-(U+B)'".

4.3 Some special interpretations and some operations ton- interpretations

We can interpret any language in itself by ID:=<8,F>, where S(x):=(x=x) and F(R):=R.

Let U be theory containing arithmetic. A U-cut I is given by a fomula I(x) (often written: xE I) such

that U proves that OE I and that I is closed under Successor, Addition, Multiplication and Col. (We

make the assumption of closure under col for convenience.)

We refer the reader to the discussion of cuts in Paris & Wilkie[87]. Some fuzTher-information on

cuts can be found in Pudlak[83a].

A cut I induces an interpretation <S,F> of the language of arithmetic- (par abus de langage we call

this interpretation again I) by taking: S:=I and F(R)=R.

Suppose K is an interpretation of L1 in L2, M > is an interpretation of L2 in L3 Then P:=KoM, the

composition of K and M, is an interpretation of L1 in L3, with Fp(R):=(FK(R))M and Sp(x):=

(8M(x)n(5K(x))M). It is easy to show that for any senteneerA= F- AP<-4 (AK)M.,

Suppose K and M are: interpretations of Lt in L2. Suppose A is a sentence of L2. Then P:=K[A]M;-

the A-join of =K and M. is ,an interpretation of L1 in=L2,with,

and Sp(x).= (.(AASK.(x))v" (-,AABM(x));).:Itas easytowshow that_,foranysentence. B:

1--.BPS AABK) v AABM"

5 Notes on B11

In ,this section .we, show -tnat.-the l arrow in, 4t2 =1..(ii) e`annot ,be reversed.- Before doing this -we

briefly mention, some well known facts zbout',B11..

i) If a model M of IA0 ;gas an endextension N satisfying I4o -then.-,M- satisfies=Bj ° Suppose

ME-b`x<a3yA(x,y), v, here AE 00. Let bE N\M. Then NE Vx<aBy<bA(x,y). By applying the

Abrminimu m.princip e in N" we" find .the. smallest .such that, N Vx<a3,y<b*A(x,'y). It
follows that On the other hand if b* were in N\M wewould=have. "

NE-b'x<a2y<b*-IA(a,y). Ergo b*E M and thus: ME-Vx<aBy.<b*A(x,y).

ii) Every cut in BY-, This is immediate (i)rt

iii) BY-1 is interpretable in IA on a cut. An easy `to. establish this is the following: It is

shown in Visser[88b- that IA interprets I00+- EKP,say by. M. Let N be a-model',offIso RBI

Formalization 8
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induces an internally definable model of IA += EXP...Let's call this model again M. There is a

definable cut I in N that is isomorphic by an N-definable isomorphism F to an N-definable

external cut I*: of M °(see Pudlak[85] orfVisser[88b]) Let J* be a (provably)'M-definable (and

hence N-definable) 'cat of "M such that for call x in-, M exp(x). exists in M. Then there is an

element of M above Y*:=I*rJ*. So Y* satisfies BE1. Y:=F-1(Y*) is an N-definable N-cut

isomorphic to Y* Hence Y satifies BY,,. Since' clearly the choice of the definitions of=the cuts

involved is independent of the specific model 'N it follows that,Y:J B11°=.

Let'U be the theory axiomatized by the T12-consequences of.PA. So U, extends PRA: We givela-

construction due to Jeff Paris of a tinodel''N of U that does not satisfy BY,,. °

Let M be any model of PA+Incon(PA). Let N be the submodel given by the set of 11-definable

elements. Clearly N is non-standard and closed under S, + and .. We show that N and M satisfy

the same 11 formulas (wir ;parameters in N)-3We first'show= for A(x,...) in, and ir% N: if

then N =A(a,...). This is -clear for atoms and negations "ofatoms.- The cases of
conjunction and disjunction are easy. Suppose A(x,...) is Vy<t(x,...)B(y,x,...) and suppose

Vy<t(a,...) B.(y a,..), Clearly for every b in N with b<t(a,'. ): MIB(b,a ..). It is easy to see that

< has the`- same meaning in N so.':Nl Vy<t(a;:: ) B(y a . °Suppose A(x,...) is By<t(x,...)

B(y,x,...) and suppose B(y,a,...). Clearly MlBy<t(a.... )(B(y,a,...)AVZ<y
-,B(z,a.... )). Suppose: M=b<t(a,...)AB(b,a,...)AVz<b-iB(z,a,...). Clearly b is by the
IH we find: Nlb<t(a,...)/\B(b,a,...), hence NlBy<t(a,.:.) B(y,a,..:) "

An immediate consequence is that for A(x,...) in E1 and a;... in_N: It

follows for B(x,...) in r12 and a,... in N: MIB(a,...) NlB(a,...).

So NIU+Incon(PA). Let S:AT0(x,y,z) be the predicate that expresses in U: y is a 11-formula with

one free variable and x is- a:-sequence-.witnessing, that z satisfies U (ever n:IA0+EXP) one can

prove, that: SAT(y,z)-:=.3x&ATo(x,y,z) has, the Tarskian properties of a 11--satisfaction, predicate.

Let. DEF(y;z)-beg-w[(SAT((vv)o,y,(w)i.)X-(w)1=z)AVv<w=,(SATo((v)o;y,(v). )n(v)-=z)] Let a

be non-standard in N. We have: NIVzBy<aDEF(y,z) and hence NIVz<a+lBy<aDEF(y,z) (*).
Suppose to get a contradiction that N satisfies B11. Then (*) is equivalent to a 11-formula,

hence

Ml /z<a+12y<aDEF(y z).. M is a.<rriodel ofyPA-, .so we can conclude in M by the Pigeonhole

principle °thavtwo °z's belvvr --a+1=` share a'defrni-tion: "This leads immediately to a contr-adictiotn.

It follows that there is a model of U without an end-extension satisfying IA.-

Now we have the means aN iilable to show that U does r_ot prove: K:W aV YK:Wt>tV

Let Mincon(p):H(Proofpp (p,-L)AVz<p-ProofpA(z, L)). Take--k:=ID , =W -IO0+EXP_ and let N be

axiomatized by: xE av:F > xE aWv3z<x x=B(z), =wher 3(z) = p(Mir

Formalization 9
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Finally, let A: 3p(Mincon(p)rVz<p+1 ypDEF.(y;z));

We show: ,_N ID;:W> V. Reason in N:. for some p=,,we have ;Mincon(p:) y<pDEF(y z)).
Hence by Y_1-completeness, VZQ (M ncon`(p)n3y.<pDEF(y;z)).So_b'zC] ,B(z)':4 (N)

We show: N.l_o vA,.. Reason in N ,consider p satisfying Mjncon(p). Clearly by y1-completeness

we have some V-proof q of Minconm(p.)., We can find, Wproofs r, with; length polynomially

bounded in IpI and Izl of ((Mincon(p)AB(z))-43y<pDEF(y,z)). Ergo we can find V-proofs s of

length polyriom ally ;.boupded =in .Igl,lpl;lzl of y<pDEF(y,z). hence Vzip+l-9.s<exp,(P(Iq;l,lpl,lzl)),

Proofv(s,3y<pDEF(y,z)) for some standard, polynomial-°P Now it is easy to construct a,: V-pro:Qf

of Vz<p+13y<pDEF(y,z). Thus ov(Mincon(p)AVz<p+13y<pDEF(y,z)). It follows that ovA.

We show NVWA. Suppose it did. Then we would have MAP ,B.ut.M isl a model of PA, and

PA proves:,the-reflectionprinciple; for W Hence MBA. Quod non!,

So in N the axioms of V are=theorems of W, but Wshas'theorems;that theorems of V. This

shows that it is -at least in N- not,,, always a good idea to prove things from first principles. -o

Open. Problems
i) Show that IAo+f21V K: -J> tV Y

ii) Show that IAo+EXPV K:(U+A)ta(U+B) -) K:(U+A)>t(U+B).
iii) Show that I O+l 21V U> tV,

6 The Henkin Construction

We reason rn::;I Let ,be a (standard),.formu1 that3provabi-y codes asset of sentences, of a

language.L:, We do not .pi ice any, constraints on the'complexityof, (3, .,non do -we, demand that L-,

contains the language of arithmetic. We assume that L is alb Let V be the theory axiomatized by,,,,

R.

Let U be anyextensiori.of -0+ 21:+eon.V,;, We construct for rivlas,.K, D ap-extension L+ of L .with

new constants C and a pairs of a formula of L and.asequence>

of elements of D to sentenc .s of L+) satisfying the following claims.

Let (.)K be the interpretation given by D and: R(x...)K =K{6(rR x ..

Claim,1 .there is a-standai d k .such that: ,: .

`dAE,.Sent(L) g<all '(A)-ProofuGp oVA-=-K(A))
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Claim 2: there is a standard n such that:

VA= L+ 3p<oo1n(A) ProofU(p,C1K(AK(x,...):HK(6(.'

Claim 3: there is a standard r such that:

VAE Sent(L) ProofU(.p,OVA

Claim 4: Let a provably define a sset of sentences of L. Let -be the., theory axiomatized- by a,

then: (VxE a3p)*ProofU(p,x (3) - UPW

Define L+ as follows:, L+ is the smallest extension of :L such. that if A is in L+, containing at most x

free, then there are constants c[3xA] and c[VxA],inL+ L+ is -again b We use the coding of
section 3. 1, but consider it as coding strings of 0 and 1's. Let -< be the 'initial sequence' ordering.

Par abus de langage we write x0 for the concatenation of x with 0 etc::IxI is the length of sequence

x. Define:

uE T[x] :p u is a T+-sent--nce; (x)U=O or (u =NEG(.v) and-(x)V=1), or ( there is a w-of the form

3zA(z) such that (x)W=O and u codes A(c[3 zA]) ) or (there is a w of the form VzA(z)

such that (x)W=1 and u codes -,A(c[Vz

Note that uE T[x] is Y-1b. Moreover: UVx,y(x-< y -4T[x] 9 T[y]) and UT[O]=Q .

Define further.: xE TREE :a Con(V+T[x]). Clearly DUVx y( (x7< y A yE TREE) : xe,TREE).

Moreover: []UOE.TREE _ 'e show that UVx( TREE = (xOE TREE vxlE TREE)). Reason in

U: Suppose xE TREE, r e Let u: Ixl+;l. In case u does not code an L±-sentence we

have: T[XO]=T[xl]=T[x], so we are done We, treat the case that u codes a sentenceof the form

3zA(z), the other cases are analogous or easier. So suppose u codes 3zA(z). Then T[x0] T[x]+,

{3zA(z),A(c[3zA(z)])} (note that the existence of A(c[BzA(z)]) requires S21) and T[xl] = T[x]+

{ -,3 zA(z) 1. The constan, c[3 zA(z)] does not- occur in , V+T4x]=. (because. we used a ,natural

Godelnumbering), hence v.e can convert a proof of falsity in V+T[x]+{3ZA(z),A(c[3ZA(z)])} into

a proof of falsity in V+T[x]±{3zA(z),}. Thus if both V+T[x0] and V+T[xl] were inconsistent, we

could convert the proofs of inconsistency in a proof of inconsistency of V+T[x] in the usual way,

(All these conversions are .vailable in IA0+S21.) (U)

Define PATH:={xE TREE. there is no y in TREE to the left of x). As is easily seen: JUVXE;PATH

(xOE PATH v xljE PATH) and IR,UOE PATH. Also 00Vx,yEPATH(x-<.y-v y~Gx-v. ---y,),.

Let X:={ xl for some y rn PATH x=lyl }, By the above U ;proves that 0 is in, X arid-that-0 is closed

under successor. By Solovay's methods we can shorten X to a U-cut I. For purposes of presen-

tation we will define our interpketation for L with just one unary; relation symbol R. The general

case is., of course, precisel:, the same. Define:
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xE L° :a xE I and x is a code of an L-sentence: -

xE L1 :> -.xe.I'and x is a:code of=an L+-sentence. `

xE F1(y) :t* x,VE I and y is a code of a variable, x is a code of an L+-formula with at

most the variable coded by y free.

XE D :b x is of the form c[A] for AE L andA.is the form 3uB'(u) or

VuB(u).

K(x) q., xE Lt and there is an ye PATH -With ' iyl_x and xe T[y].

a(A,<x,...>) := the result of substituting x,... for the variables

in the sequence <x,...> in A. Any remaining variables, in A are to be re-

placed by say,°c[ u u=u]: It is nteided'thatrAE`L,and x,...E D
-I r -I

,,(So e.g. a((rR x . ° <x>)=R c A if x- cLA

RK(x) :eat xe DAK((T(rLx-0) ,<x>)).

We have: DUVxe_%L (Provv(x) -+'K(x)),.-

Reason in U: Suppose xe LO and Provv(x). Since x:is'in`I there is a yin PATH with lyl=x. Say x

codes B. V+T[y] is consistent, and either B or -nB is in T[y]. Clearly -nB cannot be in T[y], so B
is.'..

Note-that' given the fact`thEt (3 is standard the U-proof constructed above-is-standard: Moreover for

some standard s4we find: VxBp<w1S(A) ProofU(p, e I);q`a1so, I 'being .b, for"some standard r:

b'xE,L3p<c,)1r(x)" Pr'oofUtp,x(tL). We find that'-=VxeL3p<co1 (x) P oofU(p,kt L°) for some
standard q. Combining 'we get claim 1: 3p<6) -k(A) Prooftj.(p,ovA---)K(A)),' for

some standard k. 1"

ii) -, K'camrnutesprovab_y U=-with the'logical constants onLl`:`

Wecfirst:_show- (a):' UVxC L1° K(x)VK(NEG(x)) and (b) DuVxe L1-,(K(x)AK(NEG(x))). Reason

in U:

a) Consider x in L1. x is in I so there is an y in PATH with lyl=x. In case (y)X=0 we,,have
xE

aT[y],yhence
K(x), In: case (y)--=l we have `NEG(x)E}'I'jy] =hence K(NEG(x))

b) Suppose I (x). and K(*1EG(x)).-There'arez y'and y' n PATH with x in T[y] and NEG(x): i;

T[y]. We have y=y' o' y -<y' or y'-<y. Let z-bbe tht. < maximum of y, y'. Clearly both x iand

NEG(x) are inT[z] Bs t T[z] as consistent. Contradieti`fin

We treat the cases of negat(on, conjunction and:universal°uantifreanon we show

(c) UVxE L1 K(NEG(x))H--,K(x)`-Y
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(d) DU`dx;yE.L1 K(CONJ(x,Y))H(K(x)AK(y))

(e) UdyE I (VAE(y) -4`dxE F1(y) (K(UQ(y,x)) H VzE D K(a(x,y,z)) )
Here if z.codes c[B]. x`nodes A(u) and y codes u: 6 y,z)=rA(c[B])1.-Note tharby 52

,$both UQ(y,x) and 6(ity;z) are;in L.

(c) is immediate from (a) and (b). For (d) and (e) reason in U:

d) Consider x, y in Ll and suppose K(x) and K(y) Lei z: CONJ(x y). As is -easily seen z is in I

and hence in L. There is a w in PATH with Iwl=z. Either z or NEG(z) are in T[w]. As is
easily seen x and y are in T[w], so by the consistency of T[w] ;z must be in T[w], so K[z]. In

case e.g. -,K(x) we have K NEG(e)) and reasoriing'as befoie, we finddK(NEC (2ONJ(x y))),

so -K(CONJ(x,y)).
e) Consider ye I -with VAR(y)sand-xeF(y)'First suppose°K(UQ`(y;)) Clearly UQ(,x) isin

:Li Consider z in D; As is easily seen6(x,y,z) is in L Let v be the-maximum of UQ(y;x) and

6(z,y,z)`. There is a `w- in PATH with Iwl=v.. We, haveUQ(y=;x) in T[w] and either d(x,y,z) or

NEG(o(x,y,z)). By the consistency of T[w] we must' have d(x;y,z) in° T[w]' and hence
K(6(x,y,z)). Suppose for the converse that -K(UQ(y,x)). Let v:=UQ(y,x) and let w be in
PATH with Iwl=v. Reasoning as before we "find that (v)W =1° V and` ihus that
NEG((T(x,y,z))E T[v]. Clearly a:= c[1*v*r], is in D and we have -,K(6(x,y,a)).

Note that all the proofs we'provided-}are 'standard.

At this point we-know enoi°gh-to employ a slightly more `convenient notation We use variables d,e

to range over D and write 'K A d ))'for: K 6 rA(xO....h <d

iii) We prove claim-2.," for some standard n:

VAe Sennt(L+)'3p<tz`nA)ProofU(P,Vd;..'.e (K(A(d, `.) HA(ci,...)K}).

Let's call the statement following; .U ins claim 2:`E { A).' To prove claim 2 we use A (6j,) induction

on A. which-is-,wail-able in I0o+521. This induction is tnvial-using (ii). It is sufficient to providethe°

bound on the proofs Equivalently we must provide a nialPsuch that e length Ipl.

of p is bounded by P(IAI) Let's call the length of the proof of E3{ A } : ` (A) I consider a'-specific

example: say A=(BAC) aii suppose we have proofs of E{B} and E{C}. To construct "d proof of

E{A} we give proofs of: A=CONJ(B,C), and Vx K(CONJ(x,y))t-4(K(x)AK(y)). The length of

the first proof is polynomially bounded in IAI and the length of the second one is standard. Now the

proofs of E{B}, E{C}, A=-CONJ(B,C), and Vx K(CONJ(x,y)H(K(x)AK(y))-can-be combined

to a proof of E{A} of length bounded by: ?(B)+X(C)+Q(IAI), where Q is a suitable standard

polynomial.. For each connective we find such a polynomial. Let Q* bt"a polynomial that
majorizes all polonomials :-.orresponding to the connectives. Noting that IBI+ICI<IAI it is now easy

to show that: a.(A)<_IAI.Q*,;!AI), e.g. in the case considered we have e.g:
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(A) (B)+X(C)+Q(IAI)<_IBIQ*(IBI)+ICIQ*(ICI)+Q*(IAI)<_(IB1+,fCl+;1)Q*(tA1)<_fAIQ*(IAI).

NOTE: If.(i is El then by a result of con V) is interpretable on acut in Q+con(V).

So in this case we can reduce our assumption that vl40±S2 -con(V) is contained in, U to the
assumption that Q+conV is contained in U. In fact we may assume that U contains Q and proves

con(V) on a cut.

iv) Claim 3 is a direct consequence of claims 1 and 2.-

Suppose a provably defines a: set .of sentences-.,of .be the theory a-iornatized by a.
Suppose (dxEr:ap)*I?rggfU.(p-xE (3). _We show W W,(elarrri 4).,F

Fix u. Let A<u, AE, a. For some w depending only on u,there-is.aU-proof.p<w of AE f- We have

for some standard r: VBE.Sent(L)3q<t1?(B) ;Fence, as: is easily seen, for

siome standard r^:= `dB,E Sent(L) qq'< 1r (B) ?oorf YErgo;for some, standard ,r*:

3q*<wlr*(max(u;w))Proofu(q:,AK).Take v:= 1r*(max(u,w))., : ,,.o

6.1 Corollary: (in Il+S01) let F(3,U,V be as before.. Suppose, then U©V.

Proof: take in claim 4 a:=(3 (and thus W:=V). As is well known `dxE (33p<w1r(x)
ProofU(p,xE (3) for some standard r. So forgiven u, we may take v =(01r(u), U

6.2 Corollary: (in-,IOo- O ,) suppose W is axiomati,zed. by a and a is alb: We have:,

-4 U > W,

Proof: Suppose V be axiomatized by P. We

have: UCon(V). To apply claim 4 werneedtonly show: (, xE3p)*ProofU(p,xE (3). Fix u. We
have for some standard rr: VxE a3p<w1n(x) ProofU(p,xe a). Moreover UConru(W) and
U(Confu(W). _ Vy<u_.,Confy(W)). Hence for some q_ Proofe(q''y<u:ConT(W)) For some
standard k: `dx<u3.pwlk(x) ProofU(p,x<u). Hence we can construct a U-proof :r; of, Conf x(W)

with IrI<Iql±ixeXP±mlxl, s, with rn and s standard. So for some standard a: r<c,1s_(max(xq.)).

Combining. we find, a U- pr of d of xE a* and standard b such hat d<(urpax( ,q)). ; vTake

v:=w1b(max(u,q)).s

In this. section we verify various interp ;tabrli=ty principles in IAo+g2j
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7.1 Weakening

We have in IA0+S21: if av c aw,, ax aU and 'X t> W, then U t> V.

7.2 Addition

We verify in IAO+521: (K:Ut V A UAK) - Ut> (V+A). (Here aV+A(x):=(C V(x)vx=W).)

Suppose K:Ut V and Proofu(p,AK). Fix u. We have a w such that for all x<u 'xE av there'is a

q<w ProofU(q,xK). Take .:=max(w,p+l). As is easily seen for any x with x<u, xE'aw+A there is

a q<v ProofU(q,xK).

An immediate consequence of 7.2 is: ITA -+ UtU+A. (Take V:=U, K:=ID.)

7.3 Transitivity

We verify in IAo+921: (U p VAVT>W)' U`t? W:.7

Suppose K:U t V and M: V t> W. We show that MoK:U t> W. Fix u. Let v be such that for any x<u

in a' - there is a <v with Proof . xM y y V q`P v(p, ) Let w be such that for an y <v in o there is a <w with
ProofU(q,yK). Consider any x<u in aw. We have a p<v with Proofv(p,xM). Now we can"produce

a proof p* from the axioms {yKly is a V-axiom ocurring in p) of xMoK. Ip*I, the length of p*, is

linear in Ipl -and, IKI..Now; add U-proofs r of the y"K t0=p-*-.-Call the esult'q. `Clearly the -V-a5 dms y

ocurring in p satisfy So the proofs r satisfy r<w; It lq lp*I:IwI<cIKI.Ipl Iwl-c`-`

clKl.lvl.lwl, where c is standard. So for a sufficiently large standard n: q<ccn(max(K,v,w)). We

may conclude (IxE (xw3q)*ProofU(q,xMOK)

7.4 Smooth interprets bility implies ,theorems. -int.erpretabi1'ity

We verify in IAO+S21: (K:L-t>

V and VA. We have ID:V t (V+A), and hence IDoK:Ut (V+A), so UAK.

7.S; The. principle

By 6.1 we have in IA0+5221 ,,U+Con(V)) V.-Wel canstreng--thgn this to (in IB0+S2'):'for-S`a 3

sentence: VtW -+ (U+Con(V)+S)t>(W+S).

Suppose M.VP.;W Let Q be the single axiom of have DVQM and

hence Also 1 (S-- QS) and hence: U(S_ vSM). Ergo: U+Con(v)+SQVSM and
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hence: U+Con(V)+SCon(V+SM). We may conclude:

(U+Con(V)+S)d (U+Con(V+SM))> (V+SM)> (W+S).

7.6 Disjunction Elimination Property

We verify in IDO+S21: ((U+A) > Vn(U+B)> V) -4 (U+(AvB)) > V.

Suppose K:(U+A) > V and M:(U+B) E> V. We leave it to the reader to check that:

<K[A]M:(U+(AvB)) L V.

(K[A]M is introduced in 4.3.)

7.7 A theorem of Feferman
ell,

Let S be 311b. We verify in IDo+f21 that: (U+S) > (U+S+Incon(U)).

We have U+Con(UCon(U+Incon(U)). Hence (U+Con(U))> (U+Con(U+Incon(U))), so by 7.3

and 7.4: (U+Con(U)) > (U+Incon(U)). Moreover trivially:-. (U+Incon(U))> (U+Incon(U)).-Hence

by 7.6: U > (U+Incon (U) ).

We leave it to the reader to proverthe following trivial sharpening.,of: result: let °S.,be

31lb. Then (in I-O+S 1): (U+S) F?(U+S;+Incon(U)).

i

Similarly- ;we. have for any U-cut JI (U+S1) i (U±S1+InGonl(U)). (Again this sharpening Is really

nothing but a different choice of tbe, natural numbers of U

7.8 A generalization of Lob's Principle

We prove in IAO+f21:

(Here IK,

Suppose: K:UI> V.

JU,

Find such that +IOO+Q,.(X <_4 (11 UKa,-4A)). We also have: *A)) and hence

We claim: This is t ie°wbe attse we have:

UQK (here Q is the single axiom of Robinson's Arithmetic) and hence Also:

_*DQ;OUP; It fo'.ows thax (U --> ?U( K-a K ))

We find We may conclude Assume A):.

Hence u(4UK - *A) anc thus UX. By the same;reasoning.as.befQre: PUO u Hence A
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This gives us Lob's Rule. outside the -. Note however that we'get-by 31-lb=completeness:
and hence A)--= A)),

Also so:

d`

7.9 Thie- principle; W*-

Let SE, 3 alb. -We verify in` (go+9-21 UP,V -=a (V+S) r?,(V+S+Incon(U)).

We provide two different proofs.

First proof: Our first has two variants: one that uses sequentiality and one that does not.

First Suppose U is sequential and, a U-cut-I such` that, U proves

"there. is an isomorphism oetweenI.andan external cut of the natural numbers of K. We find`

(U) proves

(SAIncon(U))K, so by 7.2: K:(U+SI+Incon1(U))> (V+S+Incon,(U)):

Ergo (V+S+Con(U)) E> (V+S+Incon(U)). Clearly (V+S+Incon(U)) t (V+S+Incon(U)). Hence:

(V+S) > (V+S+Incon(U)).

Second variant: Suppose K:U> V. We have by 7.8: V(Con(U)_ Con(U+InconK(U))).
Hence: So we may-conclude:

(V+S+Con(U))> (V+Con(U+SK+InconK(U)))> (U+SK+InconK(U))i (V+S+Incon(U)).

Also (V+S+Jncon(U))> (V+S+Incon(U)) and we are done:

Second proof: We reasol_ in IA define conj(x,y):=rT1, t *
x* r),. One can produce a 1b-formula representing the graph of conj such that I00+S21 proves the

recursive clauses of the definition (assuming existence of the side of the second clause).-

Moreover IDo+S21 proves: if exp(y) exists then conj(x,y) exists.

Let the interpretation K be given. To fit the proof into our framework we use a variant of Craig's

Trick. Define aV*:={yl3> ,p<y (y=conj(x,Ipi)AXE (XVAProofU(p,xK))). Clearly -(xv'*- is 1,1b. We

call V* the U,K-associate cf V.

Step 1: we show ID:V> V*.

Fix u. Consider any y<u i -, aV*. There are x and p below y, such that y=conj( Ipl) and xE aV.

Let q be the obvious proof in propositional logic of y from x. Evidently q has Ipl steps in' which at

most two formulas occur c smaller then lyl (which is about Ipl.lxl). So Iqi can be estimated
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by 2.lyl.lpl+klpl, forsorrte standard k. Moreovers Ipl,<lyl<lul, so Iql can be estimated by 2lul2+kluL

for suitably large standard n: q<co :.(u) Choose y =. i n(u).nl

Fix u. Consider y<u, yE av*. There are x and p below y, such that y=con-j.(x Ipl) -and
ProofU(p,xK). We transform p into a proof q of yK by appending to p the proof in propositional

logic of yK from XK. By reasoning=essentially: the same as in step h we,find a standard n such that

q<wln(u). Take v:=coln(u).

Step 3: we show: K:UL>V -4 ID:V*L>V.

Fix u. Suppose K:UL> V, so there is a w, such that for any x in aV with x<u there is a p<w with

Proof (p,xK);,Consider any x intoi with x<u. Let p<w be a U-proof of x.K. Tbeny.;=conj(-x lpl) is :_

a V* axiom. Let q be a proof of x from, y. One easily sees that_ Iql is:estimated,bym .Ixl.lpl+n.Ipl, for

standard m : and -_n-.also, m Ixt.lpl+n.lpl<m.lul.Iwl+n Jul.So "for suitably large standard k:-
q<colk(max(u,w)). Pick v:=colk(rrtax(u,w)):-

Step.*- qV*,(OV*1 oU1)

Step 2 gives: ov*(Ut V*), hence: ov*(ov*-L--40 U1).

Step 5: UL>V - (V+S)> ;V+S+DU1): _,

Suppose U> V. We find: (V+S)L>(V*+S)l?.(V*+-S+ov.;k1).L>(V*+S+a -L)L>(V+S+o°.U1).-o

8 Modal. Principles

The system.IL is given by the following

Ll F-A = F- DA

L2 F- D:(A-- B) - (DA- 4B)
L3 :jl- flA

IA F- o(DA-A) --- DA
J1 F- o(A-+B) -4 A>B
J2 rF- (AL>BABL>C) -* AL>C

J3 F- (A > CAB > C) - (AvB)L>C

J4 ,F- At :B.- -(OA-*< B): .

J5 H OAdA-
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From the materials of section 7 we easily see that the following three principles are also
arithmetically valid:

MO F- A>B --
W F- A>B .A>(Bno-,A)-
W* H ALB >(BApCAo=,A)

Note that MO immediatetely implies J5 and that W* immediately implies W. We show that:
ILWMO=ILW *.

First- we derive MO in ILW*. ;Suppose AP ;B :It follows that `Ar->, (BvO A).: Ergo by W:*

((Bv*A)ADC)-®((BvO,=,)A=ECAD-,A) (Bn4C). We may conclude: (OAA4C)P>(BADC).

We derive W* in ILWMo_ (the argument is due to Dick. ac.. Jongh). As is easily teen ,"wt-'have:,,

(BAD C)> ((BADCAOA)v( Suppose A> B. We want to derive: (BAD C)t

By (*) it s efficient to show. s(BAOCnOA) (BnPCA0---,A),, (**) B-y W we have:

A> so by Mo: Reshuffling this a bit and strengthening

the 'premiss' we find (**). _ y= a

Concluding we may say that the system ILWMo or equivalently ILW* is arithmetically valid in, any

Y-1b-axiomatized theory wi*.h designated natural numbers satisfying IDo+Q1.

It is easy to see that ILWM0 corresponds precisely to thel ILW-frames with the extra property
RSR C R. Hence ILW does not prove.M0. This refutes the conjecture of Visser[88b]that ILW is

precisely the interpretabilitN logic of all reasdnable.-arithtnetics -Sa it is. time for a new conjecture! $T:.

Conjecture The principles. of ILWMo are precisely the principles valid in, et I -b-axiomatized.
theories with designated natural numbers satisfying L +Q,i

9 the Orey-Hajek Characterization

It has often gone unnoticed that there are two quite different proofs of the Orey-Hajek
characterization-:. When we restrict

Aurselvesto,
say, extensions of PA. in the :language ofrPA. the

difference between the proofs is immaterial. In your context, however; the two proofs lead to

different statements and to a different range of validity.

Remember that by 6.2:
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9. 1; 'Grey-HAje.k 1

IAo+EXPF-

Proof: Reason in IAo+EXP: Suppose V Consider anyx There is a
v such that Vz<x(av(z)-43p<vProofv(p,xK)). By Ji-completeness it ollows'that:

uVz<x(av(z)--.>3p<vProofv(p,xK)).
Also we have: EUConPv(LT).:

Reason inside U: suppose Proofvfx(q,1). The V-axioms z used in q are all smaller than x, and
hence their translations` zK have U-proofs-p-smaller-than v. ' Consider the translated proof qK:' By

plugging in the proofs py=of the,zK we obtain a°'U-proof q* of ..L. q* will`certainiy exist, because its

length can be bounded by P(Ivl,lgl,IKI) for some standard polynomial P. Clearly q* is a Urv-proof.

This contradicts Corifv(U) We rnay.conclude Cohf (V).

9.2 Open Question: Is the dependence of 9.4 on EXP necessary?

9.3 Orey-Hajek 2

IAo±S2iH 3I V-cutsbxovCont'Px(V)=-- JE -eitts` D ConJrx(V)).

Proof: Reason in IAo+S21: suppose for some V-cut I: We show:

(U- Vr=
The "part is just 62 -for a.different-choice of the natural -tin begs it ` U. We treat the-part:
Suppose: K:UP V. We cai.. find a"U=cut,'J* =such,?that:U proves. J* is "isomorphic by, say- F, to an '"

external cut of the natural _:umbers of K. Suppose the isomorphic image of J* on the K-side is I*.

In K:take the intersection H ,of I and i= : and'lev, -be,thei ser-of F-originals of "H: So J=J*r: F'1(IK)

As is easily seen J is a U-cut and (using jxE J):- [a ` - `

9.4 Remark: The difference between Orey-,Hajek,1land-2`becotnes-neariy invisible if U and V
are both essentially reflexive.

There is a characterization parallel to theQrey-Hajek characterization for j =conservativity: Define:

U *V : `dPEI,l:.sentertces (VP -4 UP)

We have:

9.5 Orey-Hajek for j(i-conservativity `

Suppose U extends IAo+E. _P. Then:

IAo+S21t- -4
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Proof: Reason "in IAo+S : Suppose `dxo`uCo`n f x(V). -4'"`Trivial. "E-'`` Consider fPE II1-
sentences. Suppose D P: fherif r somex D rxP.'l go0UConrx(V+P). ale may assume
that x is large enough, so that the axioms ofRobinson s'Arithmetic occur below x. So we `have by

11-completeness: other words --U(Conrx(V+P) P):"We'may conclude

UP.

The dependence on EXP-car be avoided if-we consider of r11-conser-

vativity.

10 Appendix: on a result of Hajek & Montagna

We sketch an alternative proof of a beautiful result of Hajek and Montagna: suppose U is an
extension of II1 that is 11-sound Define:

A>* UB :tom b'PE rj,-sentences (DU+BP - , DU+AP)

(.)* is an U-rjCon-interpretation of the language of interpretability logic if:

maps propositional atoms to sentences of the language of U,

ii) (.)* commutes with the propositional connectives,

iii) (DA)*:=DUA*,

iv) (A>B)*:= A*>*UP*.

10.1 Theorem (Hajek & Montagna)

ILME-A for all U-r[Con-interpretations (.)*: USA*.

10.1 generalizes the result°of Berarducci-Shavrukov, be'cause,° as is well`known `in essentially

reflexive theories U >U ard- P'`*U are'provably extensionally equal. Our proof oflajek-Moniagna

follows'Berarducci's proof of B6-arducci-Shavrukov'as closely 'as possible.- For the details on the

model-theoretic side (and its formal nation) the reader is referred to papers Berarducci[88] and

Hajek-Montagna[89].

We work towards the pi- of Completenessvia a series of lemmas and definitions. We start with

a theorem of

10.2 Theorem (Hajek)

Il1 VAE Y-3Vx

Proof (sketch): Reason -i II1: let A be given. We allow free variables in A, so a moment's
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reflection will convince the reader that it is sufficient to prove the result for A in rj2. Note that
inside x occurs as a (coded) numeral Fix x Let-A(X) be Vu3vAo(u,v), where A6 is .

The assumption of A(X). in I-Y, can be replaced by the introduction of a new function symbol F ..

with defining equation. F(u)=v :E > (Ao(u,v)nVw<v"Ao(u,w)),. Let's call_IY- in the.extended
language plus the defining equation, of, F: IY-1+. Clearly it is- sufficient to prove:y I, -t

Con(Q+`duA0(u,F(u))). Note that VuAo(u,F(u)) is 111 fl. As is well known IT-,+ Proves II1(F)

(*). Moreover in Ill(F) we have a Y-1(F)-truthpredicate TR (**). Finally IY-I proves
cut-elimination for predicate logic (***}. Using (**.*) one easily shows:

IEl+'VBE E1(F)(cQB--->TR(B))
From this the desired result is immediate.

10.3 Definition

Let X be the set of too' e(E2)-sentences. Let conj(y,v) be the result of taking the v-fold
0-1

conjunction of y. Clearly: it 2`' exists, then conj(y,v) exists. Define;,

P(x):=3p,y<x( (YE Xnx=conj(y,Ipl), ProofU(p,y))

Evidently 3 is 1Ib. Let U* be the theory axiomatized by f3.ProofU*(x,y) will be _1b

III* is similarly defined.

The intended analogy here is: U is to U* as GB is to ZF.

10.4 Lemma

I0o+f21l- VyE X(ProvU(y)HProvU*(y)).

Proof: Reason. in ID0,+S1: First suppose ,Prooff*(p,y) .Let x.be_.a (3-axiom used in p. There are

y,q<x such that x .conj(y Iql), and ProofU(q,y). So insert into p before the x's the proofs q of. yc -
followed by the obvious proofs w of xfrom y. Call the result p*. It is easy to see that Iwl will be

estimated by P(Igl,ixl) for some standard, polynomial P. ,The, number of insertions will be at most

Ipl. Note Ix1<Ip1, lql<IpI. Hence lp*I<Ip1.(Ipl+P(1pl,1pl)).

Next suppose yE X and Proff(p,y) ,Itfo11ows that conj(y,lpl) is in P. We leave it to-the reader to

show that the length of th° proof of y from conj(y,lpl) is estimated by Q(Ipl) fQr-,spme% standard

polynomial Q.

10.5 Lemma

IZ1*F-VAE X IE1*(A--)(_on(Q+A))

Formalization 22

IY-1+.

(*), (**),



Proof: immediate from 10.2 and 10.4..

10.6 Lemma,

IY,1*F- b'AEXVxOU*+AConfx(U*+A).

Proof: Reason in -fez A and x_ be, given,. Take- the: conjunction, of the axioms of U*+A
below x. (B exists because we" have EXP) ClearlyB- is in>X By 10.5 B=4Con(Q±B)); By

elementary reasoning it follows that oizt*(B_*Conrx(U*+A)).So U*(B.--+,ContX(U*+A)). Also

U*+AB. Hence U*+AConfx(U*+A).

10.7 Lemma

F- dA,BE X:(A *UB At> *U*B At-U*

Proof: Reason in IY-1*. The first equivalence is easy: for A,BE X and PE f1-sentences, we have:

(A-->P),(B-P)EX. Hence. U(A-->P) H U*(A_P), and U(B _P)a Ru*(B-gyp) s

For the second equivalence note that by 10.5 and respectively 9.5 and 9.1 both A t>r *U*B._and

At>U*B are equivalent to `dxDU*+AContx(U*+B).

10.8 Definition

We call (.)* an U*,X-OH-interpretation if:

i) (.)* maps propositional atoms to X,

ii) (.)* commutes with the propositional connectives,

iii) (oA)* "=qU*A*,.A

iv) (A> B)*:= VXDU*+AContx(U*+B).

Note that if (.)* is an U*,X-OH-interpretation, then A*E X.

10.9 Theorem

ILMF-A r for all U*,X-OH-interpretations (.)*: U*F-A*.

Before proving 10.9, ;we s.-.ow that 10.9 implies 10.1.

Proof of 1®.l from IV: Suppose ILMV A, then there is an. U*,X-OBI.-interpretation, (.);*
such that U*VA*. Define an U-Ilcon-interpretation by stipulating that for any atom p: p°:=p.*.

By induction on A one eas-ly shows,,using" 10. and 10..6 ,U*F.7 A°<->A*,.;Hence U*VA°. We may
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conclude by 10.4: UVA°.

The proof of 10.9 is an adaptation of Berarducci's proof. The trick here is to use only the-
Orey-Hajek equivalent in the argument. So we must eliminate all 'model-theoretical' reasoning in

favour of syntactical arguments.

Sketch of the= proof` of 10 9: Thhe -Soundness -side-4is' routine:,'Suppose, to prove Comple=

teness, that there is a simplified ILM-model Kwith,bottom node-b'sucl that b A`.'

Say the3domau of K is V. arrange it so that (provably.ii $J*)'thee is a°jk>0'sich that every

x in V forces k1. We attach a new R-bottom 0 below K.

We define a primitive recursive function F satisfying the following conditions. Let L:=L m(F) i.e.

L=z :H Ex (F(x)=z A Vy>x F(y)=z). Note that L=z is 12. (One can show that L=z is even 02.)

As we will see: U*f-3z L--z, for the momentkwe will simply=assume this`faet. We ,Oifl'use'L as a

term: it should always been given the small scope reading.

10.9.1 Berarducci°-s' 6onnitions_-

In U* we have:

R) V x,yE V u (0) (L=xAxRy) -4 O U*L=y

-R) VxE VnRange(F) ]U*xRL

S) VxE V L=x -4 V((L=ynxRZAySz)_OU*ruL=z)

-S) x<y - F(x)SF(y)

We will verify these conditions later on.

Define a U*,X-OH-interpretation (.)* by: p*=3z
counterexample we are looking for.

10.9.2 The proof from the conditions

We show in U*: for all x in V:

(i) (xll-CAL=x) -> C*

(ii) (x fib` CAL=x) --3 -,C*

L=znzlf-p). We show-fist that (.)* is the

We treat the case of C=EC G. Reason in U*: Suppose`(i)'and (ii) hofd for ..an G.

(i) `Su ose E V, E Ci L= ..To show: V c * * "pp` v*+E*Contxc(U °+G Let. tr be, any

enough number. Reason in atl: ...

'Suppose E*. Let y be as guaranteed by condition =,R=: xRy and L=y. Bythe i
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have: xl1-E>G (by 1-completeness), xRy,:.y.l-1; So for. some (xRz3 zii-G-.:By'

condition S: OU*fuL=z. So by IH: OU*fuG*.

(ii) Suppose xE V, xV Ec°G, L=x. To show: Let y be such that

E, all z with.xRz;...ySz zIV G. By R. ;O U*L=y..Assume to get a contradictionxRy, -
Let u be big enough. We have by -R: U*3z xRztL=z,.so;provided

that, a is sufficiently large:. U* z xRztL=z ,Reason inside U*

Suppose L=y. By completeness.: y so,by,I I: E*. Our assumption giuesf OU*[uG*.

.Suppose -F(v)=y, ,then; o U* fuuF(v)=y, .so. Q U- f-u ySL. -Moreover;we have: U* f uxRL :By

applying, Ecompleteness twice. We, see u(x_V E fu xRy " Conclude

U f uLe G, so-by IR o.U* f u-=G*. Contradiction: so y:_

Contradiction, so _

V and by assumption blV A. Hence U*F-L=b*1A*. Suppose U*t-A*, then U*1-L*-b

and hence by, the definition of F: LT*t-LSO. It follows U?F k1,quod non by 11,-soundness.

10.x.3; effinition of

Let %(x) be the largest U*=axiom :ocurringin x,,if there is such. 2.(x):=0 otherwise; We, define F

simultaneously with an auxiliary function prirfiti e,recursive G,

Stage O:

F(O):=O, G(0):=°°.

Stage x+1:

F(x+l):=u, G(x+l):=k(x) =f
[ProofU*(x,L-Au. , F(x)Ru] or [ProofU*(x,L#u), F(x)Su, F(%(x))Ru,t-2(xx)<G()()] ;

F(x+l):=F(x), otherwise.

L is lim(F). One can show in IY,-1 that L exists. An immediate =consequence.iszthatU# proves that L

exists, the statement "L exi its" being 12. Define on Vu { 0 }

R-rank(x):=sup( 1+R-rank(y)IxRy)

We can arrange it so that 2,x.R-rank(x) is primitive recursive and that for some MY-1 proves that

for all xe Vu[0}R-rank(x)<K. One can also show in Ill: x<y -+ R-rank(F(x))<_R-rank(F(y)). It

is now easy to show (even -without induction because K is standard!) that ?,x',R--r (F(x)) will
assume a minimum m. Say at u this minimum is assumed. It is easily seen that from u on-only the

second clause in the definition of F is operative, so whenever the value of F changes (after u) G

will decrease. So it is sufficient to show that G assumes a minimum. This uses :the "Y-1 Least,

Number Principle. It is well known that the 11 Least Number Principle is derivable in Ill.
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10.9.4 Proof of Berarducci's conditions

R and -1S are trivial. To prove -,R reason in U*:

Let xE V, F(u)=x. Clearly U*F(u)=x, hence U*xSL. We must have: U*L#x by the definition

of F. Reason inside U*:

Say L=y. Suppose that not xRy. For some v_u and some w: w#y, F(v)=w, F(v+l)=y. (This

uses the Ot least number principle: v+1 is the smallest number above u such that F(v+l)=y.)

Evidently not wRy. Hence: Proofu*(v,L#y), X(v)<G(v) and F(A.(v))Ry. Is it possible that

xSF(?(v))? No, or else xSF(A.(v))Ry and thus xRy; quod non. So A(v)<u. Ergo U*rUL#y. u

is an "external" number, so by reflection Lay, contradiction. Conclude xRy, i.e. XRL.

To prove S: reason in U*:

Suppose xE V and L=x. Consider any number u that is large enough. Say F(u)=a. Clearly aSx,

and hence U*aSx. Reason inside U*:
Suppose: y,zE V, L=y, xRz, ySz and (to get a contradiction:) U*ru Liz. u is "external" so

by reflection Liz, so z#y. Suppose for all v_w F(v)=y. It is easy to see that for all v_w
G(v)>u: suppose not, then it would follow that U*ru Lay, and thus (u being "external")
Lay, quod non. Let p be a U*-proof of L#z with A(p)=u and p>w. (It is easily seen that such

a p should exist!. We have: ProofU*(p,L#z), F(p)=y, ySz, .(p)=u<G(p),
F(.(p))SF(u)=aSxRz and thus F(A.(p))Rz. Conclude: F(p+l)=z. Contradiction! Ergo OU*Pu

Liz.

As it were accidentally we proved two extra theorems.

10.10 Definition

We call (.)* a U*-interpretLtion if:

i) (.)* maps propositior al atoms to sentences of the language of U,

ii) (.)* commutes with the propositional connectives,

iii)

iv) (A>B)*:= A*>U

We call (.)* an U*,X-interpretation if (.) is a U*-interpretation and (.)* maps propositional, atoms:

to elements of X.

10.11 Theorem

i) ILMf-A a for !ill U*,X-interpretations (.)*: U*fA*.
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ii) (For all U*-interpretations'(:)t: U*F A*)- ILMF-` .

Proof: Left to the industrious reader.

10.12 - Exarnples'°

The following example shows that the interpretability logic of J* is strictly weaker than ILM.
From the arithmetical completeness of ILP (see Visser[88b]) for interpretations in we know

that there are sentences A,B,C such -'that IY,°1F- A>IE1B
,

IY-1 is

finitely axiomatizable (and this fact is verifiable in 1IY1). Let D be a single- axiom for -IE1. It is

easily seen that I11*V (DAA)PI,1*(DAB) -4 ((DnA)rio4f 1* (D C))>-=I 1*((DiB)no`IE1*

(D-*C)). Hence we have found A',B',C' such that IY-1*b'` A'> IEt*B' - Izt*
(B'n0

The following example shows that the interpretab l tyflogic'of CT's for any U` extending I11 is not' a

sublogic of ILP by 1`0.11(i)`: H OAS OB (OAADC) is valid for U*-interpreta-

tions. On the other hand one shows by an easy Kripke model argument that ILP does not imply

this-principle

11 Appendix: conse vat'ion results for

I think the-readerwill agree. thatworkm `with smoothened -riot-ions togr g' ' ` compensate the absence of

Y'1-collection, is rather tiresome. Also perhaps, comparison of certainarguments in BY, +K21 about

axioms interpretability with their counterparts in ' IAo+S2 about smooth interpretability will `have

suggested to the reader tha. there is a . systerhatical telatior -between these arguments. Ideally-what

one would like is a methcd to convert B11+Q1-proofs (of some interesting class) leading to a

conclusion about-axioms i ^terp'r-etability into 10-- proofs leading tdsimilar conclusions about

smooth interpretability:

In this section I will formi.late a result that brings us halfway to the ideal: namely a conservation

result proved-bymodel theoretical"methods. So we_will just know that there is art IA0+S21=proof "of

the sortwe are looking for,' but we have no interesting= method -to=find it

To find our result we° just have to-take a closer, look at arnodel`construction that is well known

from the literature.

Let M be any model of IA.. Wecan by C-ompaethe 'always find an-`extentsion-N of M such that

(M, { mlmE M }) is element iry equivalent to (N, { mlmE M }) and such that there is an n*E N with

M<n* (i.e. for all me M r i<Nn*). Consider any such model N. Let M* be the model given by

{nENIBmEM n<m}. L,_t A(x,...) be any arithmetical formula. We say that A(x,...) is
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(M,N)-preserved if for all tn,... in M: M 1(m,...,) , M* =A(m,...),

11.1 Lemma

i) The II1 formulas are (M,N)-preserved. Moreover if M* is closed under wi or EXP. then this

can be strengthened to II1(col), resp. 111(EXP).

ii) The (M,N)-preserved formulas are: closed under -conjunction, disjunction and existential,,,

,quantification

iii); Suppose A(x,y,..), is (M,N)-preserved and for all

M*= (A(m,r,...)An<m) A(n,r,...),

then dxA(x,y,...) is, (.M,N)rpreserved.

Proof: completely trivial. 11

From 11..1 it is immediate -chat M* is a model of IDo and hence of Bit. Moreover as is easily seen

S21 and EXP are (M,N) -preserved. Soi#'yM is e.g. a<model of IA0+Q1, then so is- MM.

Remember that (Vx3y)*A(x,y,z.... ) means f/u3vVx<u3y<vA(x,y,z,...). If A is t0 it is easily
seen by 11.1(i),(ii) that B(u,z.... ):=3vdx<u3y<vA(x,y,z,...) is (M,N) -preserved. B(u,z,...)
satisfies the condition of 11.1(iii) in ui So it follows that is-.(M,N) preserved.

A is,, 3.*rformulaif A is of the form where.;Aois:;O0 Note that 2

(modulo prova(I-e.equivalence);.a,subclass; of, Note also that.* is, closed provable

equivalence) under,conjunction We similarly define *(co) Clearly, *-formulas. are(M,N)-;

preserved; if M satisfies ,S2.then *(wl) formulas,are (M,N)-preserve

The .interpretability princ iples s we .have-ibeon considering in section 7 are. all of the form:
du(A-- )B), where A is a (possibly empty) conjunction of Y,3*(co1)-for,,tnulas .and B is a

13*(col)-formula. Clearly we may assume that A is a single *(cw1)-formula.

Let Pa be the of Ps. We want to show: Bbl+ ~
a= o+ 1~Ps -

Evidently it is sufficient to provea,BT_1+Q11-Ps I44+IF-Yp ;since
1 1I- Ps In this

form, however, the problem does not seem to be solvable: we need an extra observation. The

observation is prov'ng,a principle Pa in B 1+S21;-we acc rnplish, a bit mare than stated: -we

explicitely provide the transformation of interpretations involved. This means that we. really prove

something of the form: where :f is an :I 0+S21-provably recursive,

function. (If C is 3z2O(z);_ then z.witC,is just our principle in this stronger forn

P+s
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11.2 Theorem

Proof: We reason by contraposition. Suppose M is amodel af,IBo±1+-,P±S Construct N and
M* as above. Clearly M* satisfies BY1±S21, Hence it is sufficient to show M* -,P . P+S has

the form: 3z((t'/x3y)*Ao(x,y,z)n3u'dv3a<uVbw--,Bo(a;b,f(z) By 1111 it is immediate that
-,P+s is (M,N) -preserved (using that M* is closed under_wr),: soave are done.

11.3 Open Problem

Let's write i-Ido+S21 for the constructiv stic version- of IA0+ etc. Show by purely syntactical

methods: for A,B in *: i-B

Footnotes:,

1) The. restriction :to.; -sound-,.,theories is a., convenient :understatement of, the =stabi1Yit

phenomenon. For amore accurate treatment see Artempv

2) The attentive reader will note that what we , really need is. .the much weaker condition: for all

k>O UVout` L.
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