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The Urn rovabi1 ty 'o Small Inconsistency

A study`'of local `and global interpretability

Albert Visser

,ABSTRACT:,, We show ,that a consistent, finitely. axiomatized, sequential theory: cannot prove, its own

inconsistency on every definable cut. A corollary its that there are at least three. degrees of global interpretability

-of theories equivalent modulo local interprelability to a consistent, finitely axiomatized, sequential theory U.

Introduction.

Ever since Gadel, we know that a consistent theory may well prove its own inconsistency.

When, however, a theory is so audacious, as to. actually offer.'a numeral as .code of its own

inconsistency proof, then, surely, the theory is inconsistent. In terms of non-standard models. it

is clear, that an-object coded by a numeral is extremely small. Thus we could summarize our

contrast by saying that a theory may very well consistently prove its own inconsistency but

cannot consistently prove. its extremely small inconsistency.

In this paper we study a situation which is, in a sense, intermediate between the two extremes.

In many arithmetical, theories we can obtain definable cuts. Such :cuts can play the role of sets

of small numbers. , For, example in theories in which exponentiation is not-provably, total, there

is a cut of numbers, x so small that we can prove that 2x does exist.; Another example: in, GB we

can;define a cut such that we can ,prove in GB, that no element of this cut.is an inconsistency

proof of ZF. Can we use cuts to provide a notion of smallness such that theories cannot
consistently prove their own small inconsistency? At first sight the answer is no. Pavel Pudlak

shows that for any, consistent arithmetical theory U and for any cut I definable in U, U does not

prove its own consistency relativized to U (see Pudlak[85]). Hence U plus the statement that

there is an inconsistency proof of U in I is consistent. So numbers on ,a fixed cut are in the

same boat w-r.t. the Godelian inconsistency phenomenon as just numbers. (This is not really

surprising, since: numbers.. on a given .cut_ can,.always be considered ass the numbers of the

theory.). Yet we can get the desired effect by quantifying over all definable cuts. Let's say that

U proves its own small inconsistency if for. every definable cut U proves, that it contains an

inconsistency proof of U. Can a consistent theory prove its own small inconsistency? For

some theories like Peano Arithmetic the answer is obviously yes. We show that for a wide

class of theories, including Robinsons's Arithmetic, GB; and ACA0 the answer is no.

The results of our paper throw some light on the contrast between local and global
interpretability. Consider the degrees of global interpretability of theories V equivalent modulo

small- inconsistency
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local interpretability `ta .a'given}theory U ordered by global interpretability. We call the degree of

V: I1V11g1eb and we call our structure degrees -Pudlak ,shows that if, for

example, U= GR then there ssd*IlUlIgl,b LOCglob(U) (see Pudlak,[85]). We will see that

Pudlak's example: (for the appropriate class of theories) is the maximum of LOCglob(U) An

immediate corollary of our result is the modest fact that if (e.g.) U=GB, then LOCglob(U) has

at-least three elements.--,

4 :11 d kontetls: Section 2 contains the necessary preliminaries, especially on. sequentiality,

restricted provability, interpretability and-cuts. Section 3 contains: various characterizations, of

local, interpretability., Moreover we, exhib t,two¢heories that are elements of the maximum of

LOCglob(U) In section 4 we' sharpen -our knives: we provide a sharpening of Lob's Theorem

which will be used in section 5. An immediate corollary of the results of section 4 is Pudlak's

theorem that if U is sequential and finitely axiornatazed, then the maximum of LOCglob(U) is

unequal to IiUliglob In -section 5 we prove-the- Tunneling Theorem, our main technical result.

The unprovability of small inconsistency is an immediate consequence of the Tunneling

Theorem. Section 6gives the promised' result on local and global interpretability: if f U is

`sequentialand finitely, axiomatized - then LOCgIOb(U) has at least three elements. r

1.2 Prer'equ'isites: The reader should know ((Paris & Wilkie[87]) or Buss[85]) and
(Pudlak[85] or Visser[90]).

R. X- Acknowledgement: The results of -this paper are the products of my attempts to
understand better what was -going on in, Pudlak[85] and Krajicek[87]. Jan Krajicek proves in

his paper a.o:the unprovab-i ty of °sma11- inconsistency for 140. The main difference between

Krajicek's` approach and ours is the fact that instead- of using a powerful result due to Wilkie

we-use the Tunneling Theorem,-.

2 Preliminaries

-2-.1 Theories and Provability: Our basic theory in this paper is I00+S21 (see Paris
&Wilkie[87]). It is (modulo some translation work) the same as Buss's theory S2 (see
Buss[85]). The language of I®o+Qt has constant 0 and function symbols S,+;x .Mostly we

will call IA0+S2t simply Q. We will also be looking at IOo+EXP and IQo+SUPEXP, which

we will call -if no confusion is possible- simply EXP, respectively SUPEXP: -

We will assume that the axiom-set of a theory T is given by a Olb-predicate (see Buss[1985]).

We take- this- predicate to be part of the identity conditions of the theory. ProofT is the Alb

proof predicate based on the predicate defining Ts axiom set.

We write par- abus Ade langage 'ProofT(u, A(xi,... xn) )'for: Proof here:

small inconsistency 2
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all free variables of 4 are among those shown.

'A(X15...,Xn)' is the "'Godelterm" for A(x1,...,xn) as defined in Smorynski[85], p43,
Here we use-instead of the, usual numerals the efficient numerals of Paris & Wilkie[87],

so.hat,
F sr -

TA(xl,...,xn) will stand for: ProvT(rA(X11...,Xn)'

Occurrences of terms inside OT should be treated with some care. Is DT(A(t/x]) intended c

(].TA(x))[t/x]? We will always use the first, i.e. the small scope reading. In cases where: U

proves that t is total and Ut--t=x->DVt=x, the scope distinction may be ignored within U w.r.t.

Dv. We :have; Ur (DVA(x))[t/x] e-* v(A[t/x]).

Some alternative notions of provability will be used in this paper. For these we will make use

of the same conventions as for ordinary provability.

2.2 The I hierarchy: We briefly repeat some facts about the 0-hierarchy and prove
some refinements of well known theorems. Since the detailed material of this section is only

relevant to theorems 3.2.4 and 3.2.5 which are concerned specifically with the Q -hierarchy the

reader may very well skip this section:,

A. slight difference with other treatements.. is. that we do not base our choice of concepts on the

binary number system but at the ordering of. strings:

P ,(the empty string), a, b, aa, ab, ba, bb, aaa, aab, .,..

This ordering is often .called the, lexicographic ordering, but 'since the designation
'lexicographic ordering' is also used for a different ordering (e.g. in Ferrante & Rackoff[79]),

I prefer to. call, it the Verschuyl Ordering (after a famous Dutch author=of dictionaries. for

crossword puzzlists), We.assign,_ 6delnumbers.to strings by. counting them along the
Verschuyl ordering, counting the empty.string, as O.

Define:

eXp(x):=2x,

Ixl.:=µySx(x<(exp(y 1)-1)) (lxI is the length of the x-th string in the Verschuyl

Ordering),

.(x):=exp(lxl)-1 (A,(x) is the number corresponding to the string of as

of lengthy lxl; 2.k(x) corresponds to the string of Us

of length IxI),

x#_ly:=x y -x#ny: xp(Ixl t,a-1lyl)-1,

Man(x) =x#nx.

The graphs of each of these functions can be represented in IAO by -a l -fornula and It proves

(under the assumption of existence) the recursion equations. We will use later that the same

small inconsistency 1 3
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holds for #(x,y,z):=x#Zy.

2.2.1 Facts: lexp(x)-1.1=x, l.A(x)l=l2.X(x)1 1x1, 7,(x)<_x_2.A(x),

x#oy= (x).X(y)+a,(x)+A(y), for n?0: x#ny=X(x)#ny=x#nk(Y)=A(x)#nx(Y),

the #n are commutative.

=Proof: Left to-the industrious reader.

2.2.2- Facts
i) The #n are associative-
.---ii)' X#ny <' 1#n+ix#n+1Y

'iii)

Proof. All, proofs are by induction on w starting at -

i) 5The cast, that n = - 4 is trivial,-,

(x#ny)#nz e'p(lexp(Ix1#n_11y1)-ll#11zl)_1;

exp((Ixl#n-11Y1)#n=11Izl)-1

= exp(Ixl#n_1(IyI#n-11z1))-1

exp(Ixl##n.1lexp(lyl#n. lzty-1 l)-1

X#n(Y#nz)1#ox#oy

= exp(I+Ixl+lyl)-1 ='2.(X(x).X(y)+X(x)+X(y))+1 2.X(x)+2. (y) x+y,

1#nx#ny = exp(1#n_1lxl#n_11y1)-1 >_ exp(Ixl#n_21y1)-1 = lxl#n_11YI.

;ii) 44 by = 2.k- (y)+1' < 2.y+1, :<

l#ny -=. exp(1#n- l l)='1 <exp(l#n-21y1#n-21Y1)-l 1#n=1IYI#n--1'lyh

The various` facts of 2.2.1 and 2.2.2 are (in appropriate formulations) verifiable in IOo. Let's

say that a set of numbers X is n-closed if: lc- X, X is closed under #n and X is downwards

closed-under <. If a theory U can verify that the set given by formula I is 1-closed, we say that

I is a U-cut.

2 e 2.-3°1L emma:-Iit IAo (extended with a unary predicate symbol X added) we can verify:

i) If X is n-closed, then X is k-closed for all k<_n.

ii) If X n-closed (n>_0), then (xlexp(x)E X } is (r}-1)-closed.

Proof: (i) Immediate by 2.2.2(ii). (ii) is left is to the reader.`

2.2.4 Construction: We construct in Ii (by a method due to Solovay) provably n-closed

sets In such that In 9-,,X, supposing that X is (-1)-closed. Suppose X is (-1)-closed. Let I.1:=X.

In+1:={xEInIV_YE In x#n+1YE In1 -Suppose In is n-closed. Consider u,vE In+1 and yE In then:

(u#n+1v)#n+1Y = u#n+1(v#n+lY)

small inconsistency 4
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Clearly (v#n+1Y)E In and hence u#n+l(d#n+lY)E In- So we may conclude that u#n+1vE In+l It

is easily seenthat `downwards closure under . is preserved. Finally since T#n+1Y !51#0#0

and for-any ye In: l#nY#nYE In, -we find` that 1 In. o

2.2.5 Estimate: For later use we estimate the number of symbols in the definition of In in

case the definitions are written down as economically as possible. Par abus de langage we

write IAI for the number of symbols in expression A. Using the fact that a uniform definition of

the ##, can be given we see. that the definition of In+1 can be brought in the form 0(n,In), where

0(v,Y) is a fixed formula in the language of arithmetic extended with unary predicate symbol

Y. As is well known we can use a trick of Ferrante & Rackoff (see Ferrante & Rackoff[791) to

rewrite 0 ,in such away that' Y occurs `,only once. =Let's assume that 4) is written in this
economical form. It follows that II(n,In)I=llnl+k.lnl+p for certain k and p, so IInI can be

estimated by m.n2+s for certain M is. (The, trick by Ferrante & Rackoff as it stands works only

if <-- is present in the language. However Solovay discovered a further trick to overcome this

restriction. -Solovay has shown how his method works to me in- correspondence. Solovay's

discovery is mentioned by Ferrante & Rackoff in their book. Recently Pudlak independently

discovered a method to eliminate the use'-of <4.)

Using our estimate for the IInI, we can estimate IN, where pn is the (code of the) proof that In

is closed under #n by m'.n3+s'. This estimate is entirely routine. (Note that we need an
estimate of e.g. the proof that #n is associative:)

23 " Sequential: Theories: We briefly repeat some essential facts about sequential
theories. ,A sequential theory can express and prove (possibly in a relational language) the

following`-facts about sequences:

a) <>, the empty sequence, exists, and Lth(<>)=O

b) VTE Seq 3iE N (Lth(6)=i A Vj<iEx aj=x)

c), V.6E SeqVx 2tE Vj<Lth((Y) 'Cj = A TLth(O =x)

Here N is a set of 'numbers' available in the theory which satisfy Q (i.e. Robinson's
Arithmetic). We write (T**x for the r guaranteed in (c).

Iris easily seen that aET :rte Ltl ( )=Lth(t) n `dx<I;th(e) aj=r , is an equivalence relation on

sequences:: By dividing in outprecisely when we treat objects as, sequences we see that we may

assume that two sequences a, are equal iff aEt. fbus we may always add:
d).,.,.. VT,TE.Seq (a=e' (WT)

We show that we may assume that our, sequences' are closed under restriction and
concatenation. Define: Res(a,i,T) :+4 Lth(T)=Min(Lth((5),i) A `dj<Lth(T) aj=Tj. It is easy to see

that Res defines a (partial) function, so we may write for Res((Y,i,T).

small inconsistency 5,
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Let X:={iE NIVoe Seq.3te Seq. alt=te{: Clearly :0 X. Suppose aril. If i<Lth(6) we have:

Otherwise uri_=o. Ergo X contains 0 and is closed under successor. Let No be

a shortening of X that,is- closed under +. Sego:={;oE=SeglLth(a)e.N0) Clearly No and Sego

satisfy {a);(b).,(c),(d) Moreover r is total on Sego and No.

Define:

Conc(a,-p t) : -Lth(z)=L;th(ta)+Lth(p) A

Vi<Lth(a) Gj---T .AYVj<Lth(p) pj=tLth(a)+ .

Since Conc is evidently a partial function we write a*p=t.

Suppose ° As is :easily seen:, *(p**x ti**x.

Let Y:={.xE N0IV.pE Segoo Lth(p)=x-- Vae Seg03tESeg6 a*p_t),

As is easily seen OE Y. Suppose XE Y. We show that x+lE Y. Consider pe Seq0 with
Lth(p)=x+1. Clearly Lth.(prx)=x and Consider any GE Sego. Let a*prx-v.
Then a*,p=a*(prx**pz)v**pX.

Let N1 be some shortening of Y such that Ni satisfies Q and let Segi:= {of SeglLth(a)E Nt ).

We see that we may. add to our list. ;

e) , Vi- NV e Seq 3 to Seq ari=T
f) V O, tE S;eq {3,p,e Seq a*'t-p

g) N .

Standing assumption: We will, only consider sequential theories with numbers satisfying .

(a)-(g).

2:. 4 Restricted Provability: In this section we treat our notion of restricted provability.

Many, of-th& details on our measure of complexity p and the satisfaction predicates Satn are not

essential for understanding the rest of the paper and could be skipped. What counts is that the

details can be filled in in some way. The main things for the reader to understand p is

depth of quantifier changes; Sat, is;a -satisfaction relation for A with p(A)<_n; Proofu,r, is a

proof-relation for proofs where one considers only axioms<n and where in the proof only

formulas A with p(A)SInI occur. The reader should at least appreciate the content of 2.4.2-

2.4.8.
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Let U be .a sequential theory in a language L with finitely many constant symbols, finitely many

relation symbols and finitely many function symbols.

Most of .our. notations for syntactical operations are self evident. Var(u) is the u-the variable.

We assume- that the variables_ are coded with} their indices .in- binary such that we have

Mar(u)1:5tn.lul+l :for. standard m,k. Exqu(-u,v) is the. code- of the result adding existential

quantification with the u-th variable to the formula coded by v. More formally: Exqu(u,v)

a*Var(u)*v (here we use *,,fr the arithmetization of concatenation of strings)-. We code total

functions with range almost- everywhere 0 in some suitable ways To express that x codes a

function in this, sense we write: IFunc(x). [x]u- means the result of application of the function

coded by. X to u., x[u:z]- neans 'the code:ofthe:faunction, that gives the same -values as the

function: coded by x except on :.u where it gives. z We can, arrange it so.,that [x]u and xju:z]

,represent, rovablytotal, functions:. -:(We c-annot.use. sequences to code our functions (in the

naive way) precisely because this would make x[u:z] grow to fast, since we would have to "fill

in" ,'expiicitely all the ;vanes below u. E.g. < >[u:1] would be <0,O,...0,1> a sequence, of

length u+1, so <>[u 1would be exponential in u.)

We define p on p counts the, "depth of quantifierchanges". The first
component is 0 when the formula under consideration. is stipulated to be on a positive place, 1

when the place is considered negative. <The-,second,component is O -when we are in the

existential mode, i.e. the last quantifier counted is supposed to be existential, and thus when

the next quantifier we meet is:again ;existential it need not be counted. Similarly when the

second component is 1, we are in the universal mode..

p(i,j,x)=0 if x is an atom,

p(i,j,Conj(x,y)) =p(i,j,I),isj(x,y))=Max{ p(i,j,x),p(i,j,y) },-

p(i,j,Neg(x))=p(l-i.,1-j,x) .

p(O,j,Impl(x,y))=Max{-p(1,1-j;x);p(0,j;y))., p(1 j,Im- pl(x,y))=Max{ p(1,j,x),p(O,1-j,y)),

p(i,j,Eq(x,y))=Max{p(l ii,1_-j,x),p(i,j,x),p(l-i 1-j,y),p,(i,j,y))r

p(i,0,Exqu(x,y))=p(i;0,y), p(i,1 Exqu(x,y))=p(i,0,y)+1,-
p(i,O,Unqu(x,y))=p(i 1,y)+l, p(i,1,Exqu(x;y))=p(i,1,y)

p(x):=p(0,0,x), _ , .

XE En :H (FOR(x)np(x)<_n). xE Un a--+. (FQR(x)np(O, I,x)<_n).

ProofU,n(p,x) :H ProofU(P;x) A di<Lth(P)'{-(P) E°Elnl^((P)iEaU (P);<n).

Note that in restricted provability we ask p((p)i)<_InI, this is because in 0 for any existing

formula A: p(A)E SN=:=.{x12X exists). The present formulation will simplify the statement of

several theorems.

2.4.1 Examples
p(O,O,Neg(Exqu(x,Neg(y)))) =

small inconsistency
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p(1,0,Neg(y))+1 = p(0,1,y)+1 = p(0,0,Unqu(x,y)),

p (0,0,Conj(Irnpl(x,y),lmpl(y,x)))d= ..: .

Max { p(O,O,lrnpl(x,y)),p(O,O,Imppl(Y x)) )

Max{Max{p(1,1.,.x),p(0,0,y)],Max( p(0,0,x),p(1,1,y))) _

Max{p(1,1,x),p(O,O,y),p(O,O,x),p(l,l,y){ = p(O,O,Eq(x,y))

In our definition of Sat we will assume (for, the sake of readability) that the language has only

one binary relation symbol R, one, unary function symbol F, tine binary functionsymbol G and

one constant c. Of course the general case is completely analogous. The definition of Satn+i

will- call on Satr, as soon as we swich from the existential made to the universal mode. The first

component of the elements of our witnessing sequences will be the first component u of the

p(u,v,x) under consideration. If we evaluate a term the first component 2. _ :.

Satn(r,x) ;t4 Func(r) A xE,E A

3w (Seq(w)A(w)1t}i(W)-1=<O,r,x>A Vi<L.th(w) 3s,y<w

((w)i=<0,s,y> A 3u,v:5y (

(At(y)Ay=Comp(R,u,v)A j,k<i 3p,q<w,

((w)j=<2,s,u,p>n:(w)k=<2,s,v,q>AR(p,q)) v

(y=Conj(u,v) A 3j,k<i ((w)j.=<O,s,u>A(w)k=<O,s,v>)) v

(y-l3 sj(u,y) n Sj<i ((w)j=<Os u>v(w)j=<O,s,v>)) v

(y=lmpl(u,v) A,j<i ((w)j=<l,s,u>v(w)j=<O,s,v>)) Y

(y=Neg(u) A 3j<i ((w)j=<l,s,u>) v,

(y=Exqu.(u,v) A 3z3j<i (w)j=<O,s[u:z],v> v

(y=Unqu(u,v) n -,Sat,-i(s,Neg(y)))) v

((w)i=<1,s,y> A,3u,v<y ( ,a

(At(y)Ay=App(R,u,v)A 3j,k<i 3p,q<w

((w)j=<2,s,u,p>A(w)k=<2,s,v,q>A-,R(p,q)) v

(y=Conj(uv) n 3j<i .((w)j=<l,s,u>v(w)j=<l,s,v>)) v

(y=Disj.(u,v),,A 3j,k<i ((w)j=<l,s,u>A(w)k=<l,s,v>)) v

(y=lmpl(u,v) A 3j,k<i ((w)j=<O,s,u>n(w)k=<1,s,v ),) v

(y=Neg(u). A 3j<i ((w)j=<0,s,u>) v

(y=Exqu(u,y) A -,Sat,.. (s,y)) v .

,w(y=YJnqu(u,v).n 3zBj<i (w)j;=:<l,s[_uz],v>))) v 3.p'5

((w)i=<2,s,y,p> A 3u,v:5y (

(y=Var(u)A[s]u=p) v

(y= & p=c) v

(y=App(E,u)A,Bj<i 3q<w ((w)j=<2,s,u,q>np=F(q))) v
(y=AppQ,u,v) A 3j,k<i 3q,r<w

((w)j=<2,s,u,q>A(w)k=<2,sv,r>Ap=G(q,r))) )

small inconsistency 8
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Val(r,x)_z`: -a' Func(r) ^-TER(x) A

3w (Seq(w)A(w)ltli(w)-1= 2,r,x,z>AVi<lth(w)

3y<w Sp<w ((vi)i=<2.,r,Y,p> A 3u,v5y

(y=Var(u)A[r]u=p) v

(y=c A-pi=C) v

(y=App(E,u) A 3'<i 3q<w ((w)j=<2,r,u q>Ap=F(q))) v

(Y=APp(,u,v)A 3j k<i 3q,t w

((w))=<2,T,u;q> (w)k=<2,r,v,t>Ap u(q,t))) ),

Sat `n(r,x) :cam .

We use the trick of Ferrante & Rackoff (see 12.5)to-rewrite the definition of Satn+i in such a

way that 'Sate occurs only once. It follows that IS at (u.vI't=k.n to for certain standard k and

in, so Sat u v' is of order for standard p,k.

2.C2 Fact
ia) Ul- VrE FuncVx,ye FOR ( Satn(r,Conj(x,y)) t-> (Satn(r,x)ASatn(r,y)) ),

ib) Ul-VrE FuncVx,yE FOR ( Sat*n(r,Conj(x,y)) t-3 (Sat*n(r,x)ASat*n(r,y)) ),

iia) U ' VrE FunCVx,yE'FOR ( Satn(t,Impl(x,y)) H (Sat*n(r,x)_*Satn(r,y)) ),

iib) Ut- } v're FuncVX,yE FOR (Sat*n(r,Impl(x;y) -+ (Satn(r,x)- Sat*n(r,Y)) ),

iiia) Uf- VrE FuncVxE VARVyE FOR ( Satn(r,Exqu(x,y)) H 3z Satn(r[x:z],y) ),

iub)- ` Uf- ere FuncV'xE VARVye FOR ('Sat*n(r,Exqu(x,y)) +4 3z Satn-1(r[x:z],y) ),

iv)' -V[VrE`FuncVx",yE TER ( Satn(r,App(R,x,y))

(Val(r,x) i Val(r,y)..AR(Val(r,x),Val(r,y)))

v) Ul- VrE FuncVx,YE TER ( Va1(r,App6E,x))=y ) H 3z (Val(r,x)=zAF(z)=y) )

etc.

Proof: The proofs are 'routine and boring. We treat four cases. Reason in U.

ia) Consider rE Func and x,yE FOR. Suppose Satn(r,Conj(x,y)). Let w be the witnessing se-

quence. Since ,(w)Lth(w)..1=<O,r,Conj(x,y)>,- there are i,j<Lth(w)-1 with (w)i=<O,r,x> and

(w)j=<O,r,y>. It is easily seen that wri+l and wrj+1 are witnesses for respectively Satn(r,x),

Satn(r,y). Conversely `assume wo, w1 are witnessing sequences for respectively Satn(r,x),

Satn(r,y). As is easily seen wo*w1**<O,r,Conj(x,y)> is a witnessing sequence for
Satn(r,Conj(x,Y)).

iia) Consider rE Func and x,yE FOR. Suppose Satn(r,Impl(x,y)). Let w be the witnessing se-

quence. Since (w)Lth(w)-1=<O,r,Impl(x,y)>, there is an i<Lth(w)-1 with (w)i=<l,r,x> or

('w)i=<O,r,y>. Suppose (w)i=<l,r,x>. Since wr(i+l)**<O,r,Neg(x)> witnesses
Satn(r,Neg(x))', we find Satn*(r,x). Suppose (w)i=<O,r,y>. Clearly wr(i+l) witnesses
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Satn(r,y). Converses y assume, _ Sate*(r,x)=.:or Satn(r,y). In the first case we have
Satn(r,Neg(x)). Let -u be a witnessing sequence. Since (u)LU,(u)-1=<O,r,Neg(x)>, for some

i"<]Lth(u)-1 (u) witnesses S'atg,(r;Irnp1(x;y)). The

case of Satn(r,y) is left to the reader.

iiia) Consider rE Func, xE VAR, ye FOR and suppose Satn(r,Exqu(x,y)). Let w be a witness

of Satn(r l xqu(x,y)). Then for some, z artd>sorne;i<1th(r)-1 ` (w); -<O,r[x:z],y>. It follows that

wF(i+l) witnesses Satn(r[x:z),y). conversely suppose Satn(r[x:z],y). Let v=be a witness. Then

v**<1,r,Exqu(x,y)> witnesses Satn(r,Exqu(x,y)).

iiib Consider re ]Func,,xEVAR, y e FOR. ]B uaa it is sufficient to show:

Sat*n(r,E, qu(x,y)) .Satn_1(r,E-xqu(x;y)).

First suppose --,Sat*n(r,Exqu(x,y)), i.e. Satn(r,Neg(Exqu(x,y))). For some i<]Lth(r)-1 we
Have: (r),'=-ct1,r;Exqu(x;y)> and =Sate-t (r,Exqu(x,y))..

Conversely s_uppose_ Satn- (r; xqu(x,y)).:,Then <l;r,Exqu(x,y)>;<O,r,Neg(Exq r(x°,Y))>'>

y>))) hence Sat*n(r,Exqu(x,y)). n

2.4.3 Fact
i)- For some U-cut I:<Ul V-uE TERr,IVrE Funcdy,z`((Val(r,u)EyAVal(r,u)_z) =a y=z°)

ii) For some U-cut I: U1-- VuE TERnI byre-Func Val(r,u)

Proof: (i.) Let X:= f uE TER I Vre FuncVy,z ((Val(r,u)=yAVa1(r,u)-z) - y=z }. Let X':=

[ uE XIb'v<_u vE X) and suppose ue X. Consider v:=u+1. Suppose vE TER, re Func,
Val(°,v)_y and Val(r,v)=z. If v=Var(x), then y=z=[r]x. If v=c, the y=z=c. Suppose
v=App(G;s t). Let w witness '- Val(r,u)' y, let w xwitness Val(r,u)_z. For some i,j<Lth(w)-1

we have . (w);=<2 r,s,p>,, (w)P=<2 r,t q->, y=G(p,q) For some r'<,j`d<g.th(w')-1 we have

(w'),,=<2,r;s,p'>, (w) -<2,r,t,q'>, z=G(p',q').. Clearly rand t are -in X`.r Moreover w F(i+-1)

witnesses 'Val(r,s)=p we-(j+1) witnesses Val(r,s)-q, ,w'F(i'+`) witnesses
Val(r,s) q'; ergo-<p=p', q=q' and thus y=z. We conclude that X is closed

under successor. We find I by shortening K.

(ii) The proof is similar to that of (i). 11

]Let -SN:={'xlexp(x)exists). Let for r in _Func A[r] stand for the result of substituting the

numeral of [r]i for Var(i) in A for all i.such<that Var(i) occurs in A -`

2.4.4 Fit
i)- ' O - `VxE SN the formula Sat, exists",
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ii) DH VXE SNV AE EXDUVrE ]Func(A[r]< Satx(r,A)).

Proof: (i) By the trick; of Ferrante & Rackoff= (ii) By,carefully formalizing the proof of
Tar ski's Theorem using 2.4.3. An estimate on the proofs is used to justify the induction. One

readily finds that the number of symbols of the proofs can be estimated by P(x) for some
standard polynomial P. (Here it is most convenient to assume that H is a defined symbol of

the. language. If - is primitive the naive way of proceeding,.-M. akesthe-number of symbols of

the proofs exponential in x. However°by a trick one can circumvent the'problem ).

2.4.5 Fact
m EXPF,- Vx3IE U-cuts-13UVAE FORT I (a , A- *Vr Func Satit(r,A)),

ii) EXPF- Vx3Ie U-cuts VAe FOR DU(DIU, A-*VrE Func A[r]).

Proof: (ii) follows from (i) by'2.4.4(ii) We sketch the proof of (i). Reason in EXP. Let a be

the axiom set of U. a[x] {ASxiAE (X).. Note that: A!5-x° - p(A)s1AISlx-1. We first show: for all

x: a{ ]drE Func Satixl(r,A). By a: well known y=zlz5x } (*).

Note that in the statement of (*).y is -'internai4to 13 and x.and&the z are 'external' or'relatively

standard'. (The code of the disjunction involved in the statement of (*) has size exponential in

x. The proof of (*) is by induction on x using an exponential bound of the form exp(P(x)) for a

suitable standard: polynomial P for the ° U-proof of Vy<_x W { y=z1z5x) From (*) it is

immediate that it is sufficient to show: a[x]-+VrEeFunc= Satlx,(r,A)). Since a is

obi this is equivalent to VAE which is immediate from 2.4.4

(ii).

For the main argument fix X. Let:

X:= f pl p is an U,x-proof such that b'rE Func-Sat1,1(r,Con-cl(p)) ).

Let XIVg5p qE X}. Using the above insight, about the axioms of U it is .easy to verify

that X' is closed under successor. _(The argument will,..of'course,,vary, with the system
adopted. If we.wor-k, in:natural deduction the statement of the theorem should be made slightly

general to handle proofs from assumptions.) Finally we shorten X to a cut I. D

Note that 2.4.5 could be improved by. just demanding that the number of steps of p is in I

instead of p itself.

2.4;i 6 Fact: Suppose that U is finitely axiomatized then:

i) \'/x3IE U-cuts DUVAE FORT I Func SatIxft,A)),

ii) fl\x3 e U-cuts FOR U(DIrj xA-- VrE Func A[r.]).

Apply the-forgetful functor to the proof of 2.4.6 and note that the remaining proof does

not use EXP.
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2. 4..7 1 ema C: The- improvement of 2.4.6 over' 2.4.5 works in several other cases, where.

the -theory'in-question is infinitely axiomatized, but where the set of, axioms is =very neat..

Examples are .PA and 12. We will not prove. this :fact here. For the case of D. one uses the

techniques of Verbrugge[89].-

Define: exp(x):=2X, itexp(x,O):=x, itexp(x,y+l);=exp(itexp(x,y)). Let Tproof stand for:
Tableaux-proof (in the. sense-sof --Paris Wilkie.[871) or for=: some other suitable notion of

eutfree-proof. Let for a proof p: p(p). max{:p((p)i)li<]Lth(p)} .

2.4,1 -I em °k: We. would like to-apply the cut-elimination theorem in the following form: for

some,standard k,k': a

F- Vp,A,y (Ek'rapfgl(P,A)nitexp(p,k p(P)+k`)"=y) - 3q_y Tproofu(p,A) M

Since- however the usual estimate :tries as measure depth of logical connectives (say: =v) -rather

than our depth of quantifierchanges (p) we cannot apply that estimate. I am convinced that (*)

must be true, but I did not verify this in detail. There is however a quick trick to prove the

special case where-U is sequential andfinitelyaxiomatized and where A is standard. Suppose

U is sequential .and finitely axiomatiized and let A be given.

Reason; in 0. Consider p, with ProofU(p,A). Let a:=p(p). Note that v(Satu(r,x))=m.u+n for

certain standard m and n. We transform p to q by replacing B occurring in p by
B where r is the function assigning xi to:i for. variables xi occurring.in B. We

add some extra steps, using the equivalences of 2.4.2 to-make the steps of. q valid. Now q is not

yet &U-proof since it starts from translations C* of U-axiom s C. We repair this by adding to q

the (standard) U- -proofs of C* .guaranteed by 2.4.4. Similarly we add after the conclusion A*

of q a standard proof of A from A* again ;as guaranteed by -2.4.4. In this way way obtain a

new U-proof of A, say s. Now v(s)=m'. a+n where m ',n' are standard and- .depend only on

U and A. Moreover Isl<_P(Ipl), where P is a suitable standard polynomial only depending -on U

and, A. Now we apply the usual cutelimination theorem to- s.°

Thus we get: for }any A there are standard k,k' such that: = . ..

Vp,y ( (ProofU(p,A)nitexp(p -3g5y TproofU(P,A) ).

2.5 <; ; Ilnterpret bnlity: Forthe: moment we consider two languages LU and LV that are

relational, i.e.,LU and LV contain no function-symbols or constants.

Interpretations are in this paper: one dimensional, global, relative interpretations without

parameters (for a discussion see Pudlak[83] or Visser[90]). An interpretation M of Lv in LU

is given by (i) a-function:-Pfrom-the relation symbols of LV to formulas of the language of LU

and (ii) a formula:-&(a) of LU having just a-free. The image of a relation symbol has precisely
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a1,...,an free, where n is the arity of the relation symbol. The image of = need not be a1=a2.

The function lF is canonically extended in the following way: (R(b1,...,bn))M:=A(b1,...,bn),

where A=F(R). (To make substitution of the b's possible we rename bound variables in A if

necessary. In fact. it would be neater to set apart bound variables for the F(R) and for 8 that do

not occur in the original LV.) (.)M commutes with the propositional connectives. (VbB)M:=

Vb(S(b)--*BM). Similarly for

We can easily extend (,)M again :to trap proofs n (from assumptions) in Ly to proofs nM from

the translated assumptions in Lv in the obvious way. As is easily seen for a given interpretation

M. the lengths of the translated objects. are given by .,a fixed polynomial in the lengths of the

originals. The graphs of M:(consic red as, a unction in B and M) and of nM (considered as a

function in it and M) can be arithmetized by Alb-formulas in such a way that the recursive

clauses are verifiable in IAo+921. Using the polynomial bound on the lengths of the values it is

easy to verify that. A0+Q1 proves that these functions are total. (This is verified in detail in

Kalsbeek[89].)

Of course., the restriction to relational language is, unnecessary. To extend the notion of
interpretation we employ certain standard translations from the language with function symbols

to an. associated relational language and, back., 'he main problem is to see, whether the obvious

properties, of these translations can be verified in IAo+f21.

Consider theories U,(with language Lu) and V (with language LV ). What does it mean to say

that V. is globally interpretable in U via M? I think the obvious definition is this: for every

BE ecv there is a proof in U of BM. (I assume in this discussion that we are dealing with
sentences, in the case of formulas one should consider: (S[B]-* BM), where 8[B] is the
conjunction of, S(b)'s, for all free ;variables b of B.) Given this definition the next step is to

show: if V is interpretable in U via M and if V proves C, say by 71, then there is a proof 7t* in

U of CM. Roughly i* is nM with proofs of the translated T'-axioms plugged in at the relevant

places. Now here is a problem: in a theory like IA0+S21 we cannot exclude that the proofs of

the translated V-axioms are cofinal in the natural numbers. In other words we cannot prove that

there is a bound for these proofs. The axiom that would provide such bounds is 11- collection.

(So we would get this basic property in BE1+S21, where BY,1:=IAo+Y-1- collection.)

We evade the problem by making a definitional move. We change the definition of
interpretability in such a way that the basic properties we want are guaranteed even in IA0+S21,

but also in such a way that our definition and the usual one collapse in the presence of
BY11+01.

Define (`d-x3y)*A(x,y) by. VuBvVx<u3y<vA(x,y). Similarly for more variables. We also

write: °(Vxe a3yE P)*A(x,y), for: b'u3.vVx<u(xe a-- 3y<v(yE PAA(x,y)))-.
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._{(Vx3y)*Al, Ao j:``

Note that if (Vx3y)*A(x,y) and (V93 )'*B(y, then:

Define:

K:UL>aV :> VxE avProvU(xK).

K:U-®V :K, (VxE av3p)*ProofU(p,xK)

Our first notion is axioms interpretability our second notion is smooth interpretability. Our

definitional moveisto`us'e'smooth interpretability instead of axioms interpretability. In BY, the

two notions collapse.

Let U[z] be the theory am- oniatized`by ct (y)ny5z. '

Note that (in IAp+C21):

K:UL> V[z] a 3yVxE aV[Z]3p<yProofU(p,xK), and hence:

K:UL>V Vz K:UL>V[z]. Also:

K:UL>V[z] < 3y3uVxE aV[Z]3p<uProofU[y](p,xK), and thus:

K U V" Vz3y K:U[y]LV[z].

We can e arrangeit so that °K occurs 'in t1ie arithmetiation as a number, so it is possible to

quantify over K in the theory. Define:

K:U=V:M : K UpV A M VL>U =

"U®globV` : 3K K: UL>V

UL>1ocV :a Vx3K K: UL>V[x]

U=globV :b U> globV n V I globU

U=jCCV :b UL>1ocV°:A VL>1bcU

JlUllglob {VI U-globV }

IIVIIglob < IlUllglob U>
glob

V

LOCgiob(U) := <{ IIVIIgiob= I U=1ocV },<_>

Note (in IA +Q2t) if w<xy and K: U®V[x], then: K: U t? V[w]. So:

° Uc>,OcV' =(Vx3K)*, K U, V[V -

Similarly: UL>1&V. (Vx3K,y)*VuE=aV[X]3p<y.PrpofU(p,uK). Thus UL>1ocV is modulo

provable equivalence in rI*2. Finally clearly: 92I- UL>globV U>locV

sm-91 inconsistency 14
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2.5.1 Pudlak°s theorem on cuts: Let U be any sequential theory and let K be an
interpretation of a theory -V extending Q in U. Then there is a U-cut I and a definable
isomorphism F between I and an 'external-cut'.of the K-numbers, To spell this out let's call the

numbers of the interpretation NK, ;the K-successor relation SuccK, K-addition plusK, etc. The

claim is that there is a formula F(x,y): in the language of U (where III and IFI are polynomial in

IKI) such that:

i) ° UF- 1Vxe'T3yE NK`1F(x,y).

ii)

iii)

Ul- `dxe:I`dy,z ((F(x,y) -- (F(x,z)'; y=z ) ,

Ua- VxE IVu,v ( (F(x,u),F(Sx,v)) -4 SuCCK(u,v)).

iv) Ut- 'dx,ye Ib'u ,vi ((F4 t?) plusK(u,v,w)).
v) UI- `dx,yE IVu,v,w ( (F(x,u)tF(y,v)tF(xxy,w)). -4 TimesK(u,v,w)).
vi) UF- Vxe IVu,v ((F(x,u) Cwt(x),v)) rnega1K(u,vj)

vii) Ut-.'dx,y RTE( (x<K y^SzeI,lF( 3WEI F(w,x)).

Pudlak's Theorem is, verifiable in S2.

Proof: .See; Pudl[S5] or Visser[90].

General Facts concerning Local 19 Global Interpretability

3.11 =r Characterizations of Local ,l<nterprgtability: We open this section by giving two

characterizations of local interpretability. The first is a generalization of the usual Orey-Hajek

characterization of global intepretability for essentially reflexive theories, the second one

generalizes the 'identification' of global intepretability for essentially reflexive theories with

11-conservati-vity. No characterizations. of comparable generality. are known for global
interpretability: curiously we only have characterizations of global interpretability for classes of

theories (viz. essential reflexive and finitely axiomatized) where local and global interpretability

coincide!

3.11.1 Definition: DUcA 31c -U-cuts UTA.

3.12 Theorem: let U and V be sequential theories, then:

) :., E 'F- °UC>locV c-4-.Vxo fCon,r(V).i

ii) V is finitely axiorttatixi, tthen:

92F- UcglobV H

Proof: (i) Reason in EXP. "-4" By 2.4.6: VxovcConX(V). The desired result is immediate

by combining this With Pudlak's theorem on cuts 2.5.1.. For every x use to

construct a Henkin-interpretation of V[x] (see Visser[90] for details). The proof of (ii) is
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.similar. o

3.11.3 Theorem: let U and V be sequential theories, them

i)> EXPI- Ur iocV Q> VPE ][!t(OVcP_+®UcP).

ii) If V vis finitely axiomnatized, then:

t U>.giobV +4 VPE 1l[1(3VcP-`+[DUcP).

Proof: (i) Reason in EXP,. _".! mmediate by Pudlak's Theorem on Cuts. "¢-" This is a
direct consequence of 3.1.2. The proof of (ii) is similar.

3.2 . LOCglob (U)-,,has a >maximaum

3.2.2 Lemma: Let U and V be sequential theories and let I be an U-cut. Then there is an M

such that: 9 a- Vx 4 'OI T l:UU J,x

Proof: This .is a :variant of Feferman's argument. Reason ins=; 2: suppose: Vx O-UOIV,,XT. I,et

E3 *VA :ate xE I(O!V AA<d1V, T). We have' QUO*VT. We can find using the Henkincon-

struction an interpretation M based on D*V, such that for all A and

PU(M(A)--+AM) (see e.:g..Visser[9Q1) Suppose OVA, then for some x OU(o V,XAAO V XT )t,
I Ithence OUO*VA. We may conclude OuAM.

Define for sequential U RCon(U):=(:OU,nTInE co}

3.2.2 Claim: Let sequential theories U and V be given. We have:

EXPE-J, >6c1 V (52+RCon(U))>globV

Clearly this tells us (in EXP) that IIS2+RCon(U)Ilglob is the maximum of LOCgiob(U).

Proof: Reason in EXP. Let W:= S2+RCon(U).

"_+ .Suppose Ur->IOcV. By 3.2.1 "iris. sufficient to-show=that: V. V XT, As is easily seen

this follows in its turn from: Vx3yDs(OU,XT-*OV XT).

Consider x. Suppose K:Uf V[x] and find v such that VAE aV[Xl3p__vProofU(p,AK). Clearly

(by EXP): OQVAE aV[X]3pSvProofU(p,AK). Let u be such that for any C p(CK)=p(C)+u.

Take y:=-max(exp(Ixl+u),v),., Reason in OD: Let q be an V,x-proof of --L. It is easy to see that

using K q can be transformed into an U,y-proof of >.J..:. End of reasoning in o0.

" =" It is sufficient to :show-UP-loc (L2+RCon(U)), which His immediate from 2.4.5. o

Note that it is immediate from 3.2.2 and 2.5.1 that V is in the maximum among the degrees of

global': interpretabili.ty'iff for some V-cut I V proves RCon(U)I.
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3.2 is somewhat unsatisfactory because of its dependence on EX So it is of, some interest to

see in how far this defect can be repaired. The next the only a,first- step in this direction.

3.2. 3 Claim: Let sequential theories U and V be given.

i) V.= there is an:MeQF.AR:-( +RCon(U))>V

ii) Suppose U is finitely axiomatized (or i or PA) then: OF- Ut>t. (.9)+RCon(U))

tn) s r, Suppose U is finitely axiomatized (or 52 of PA=) then:

Q _ UI> loCV .Qw- (i +RCon(U)) ®gio V

Proof: =Let W:= Q+RCon(U)... , ...

i): oppose ni- U>locV, then by Parikh's-'l aeorem:there are n and k and there is a A1(co1)-
definable function. F such that:

OF- VxJ co1n(x+k)VAE OEylX.,3p ln(x+k)ProofU(P;AK).- (*)

Reason in.-,°Q Q. By, 3.2.1 it is sufficient to.show,that: Vxo-W O v,XT. As is easily seen this

follows in its turn from: VxJyoj)(OU,YT->Ov,XT).

Consider x and take y:=x.ko1n(x+k)I. (*) gives:

ElQ3K_<co1n.(x+k)VAE aylx13p4o1n(x+k) Proofu(p,AK).

Reason in ®Q:.. consider a K as=promised. Evidently p(CK)<p(C)+Iw1n(x+k)I. Let .q be an

V,x-proof of : .`It is easy to see that using K q can be transformed into an U,y-proof of 1.

End of reasoning in on

Note that we couldn't have chosen K first and then have moved into DO, since we have
}acking;full= ,;-cor pleteness- no guaruantee that, the desired property of K is preserved going

iota C] !

(it) is immediate from, 2.4.6 and 2.4.7. (iii) from (i) and (ii). o

We exhibit a different theory in the maximum of LOCglob(U) for finitely axiomatized U (or for

Define:,- 0:= +{ Ine ,T'ableaux-con-sistency. Remember that

exp(x)=2X, -SN=[-xlexp(x) exists]. and: itexp(x,0)=x, itexp(x,y+1)=exp(itexp(x,y)).

3.2.4 Claim: Let U be sequential and finitely axiomatized, we have:

lit= (t +Tcon(U))=gio'i(U+RCon(U:))

By 3.2.3 is, sufficient toshow W. Reason in S . Since
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U is finitely axiomatized we.cann find a standard U cut l such that U proves Tcon(U) on It (see

e.g. Visser[90]). We construct for yE SN the cuts Iy of 2.2 starting from 11 such that U proves

closure of Iy under the estimates sketched in 2.2.5 to verify that the construction is

possible in 0. Clearly the Iy interpret IAo+Tcon(U)+Q11+...+Dy.

Reason in Q. Let Xy:= f ulitexp(u,y) exists). Note that Xo=co. Define:

and Xy is a cut)--

It, is easy,t i. see that 3 is a Let 1:= +Tcon(U). We claim that for any

WE SN: V(VxE 3 itexp(x,w) exists). Fix WE SN. Clearly it is sufficient to show that Xw is a

V-cut (and hence .Dv(Z w))-anddthat DV(VXEXw itexp(x,w) We prove both claims

simultaneously using -2.2.3. Remember that Z is z-closed if Z is closed under is #Z (or
equivalently: Z is closed under cuz), 1e Z and Z is downwards closed under <. Let's say:

Z is w,y-s:tr-ongif y<_w, Z is (*-y)closed and Vxe Z.itexp(x,y) exists

So we want to prove that X , is w+1,w-strong. From 2.2.3 we see how to construct a proof of

':'Xytl is w+1,y+17strong" from "-Xy is w+1,y-strong". For any w trivially V proves: Xo is

w+1,0-strong. The V-proof, say n, we want looks roughly as follows:

Xo is w+1,0-strong, hence

X1 is w+1,1.-°strong, hence

Xw is w+1 w-strong.

Now, many, symbols does z contain? The number of symbols in each of the steps can be
estimated by m.lwl+n for standard m and n. So the number of symbols in n will be smaller

than, m'.Iwl w+n': Since we SN n '-will exist in Q. We prove`the existence of trby induction on

y<w, showing that there is a proof ny of "Xy is w+1,y-strong" with Iteyl_m'.Iwl.y+n'.

We verify that $:V > (!2+RCon,(U)). Consider any z. Note that for standard k,k'
(k.izl+k'°)e SN. Reason in y: suppose for some y in 3: ProofU,Z(y,1). Then there is an
x:5itexp(y,k.1zl+k') (for some standard k and k') such that Tproofu(x,J-) (see 2.4.8). Quod

non. Ergo: OU,w3T. It is easy to find suitable bounds on the V-proofs of OUwJT, so we are

done. o

3.2.5 Theorem: EXPF- 52,E=glob(S2+RCon(S2)).

Proof: For some (standard) m: cVx ((itexp(x,m) exists)-- ;Tprooff2(x,1)). Clearly Xm

!2.r->(S2,+Tcon(2)) and>.hence-f2 ,=-( ;,+Tcon(!Q)). leis not difficult to see that 3.2.4 also

works for S2 instead of afinitely axiomatized, sequential U.

3.1.6 Open is it possible that for some A (S2+A).=g1ob(D+RRCon(S2)).

Note: if S is finitely axiomatizable, i.e if for some finitely axiomatized U ID:S2=U:ID, then the

small inconsistency is
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answer is tab. So the only `asoonable-hope is to find the answer yes.

4 Ld b °s Theorem

All the reasoning of this section-can be executed in 0.

':- Lemma: Suppose U is finitely axiomatized and k is large compared to the ranks of the

axioms of U and -to-,the- rank of A, then`: t3UA -. QDUIkA.

Prod. Suppose UA. We construct an interpretation M with M (IQ+OU It

follows that: M: (Q 0-U A=,A)-t> , Thence 0°U A. t

4.2 A generaiiMtinn of Lob's Theorem: Let U be finitely axiomatized. Let N:U> V
and M: V d W, K=MoN. Let k be large compared to the degrees of K, A and the axioms of U.

Suppose [7'V AN_A . Them VA"(oMiJ,k)

'Proof., ,By the Godel Fixed Point Theorem there is an m and a B such that
DQ,m(B<-->(DMU,kBN-+A)). Note that m depends only on p(A), p(M) and on the p of the
arithmetization -of the graph of the -?tx.xN. Moreover note that these p''s do not' depend on k

even if B does depend on k. Let p be the U-proof of QK. Pick k large compared to p(p), m,

p(K) and the ranks of the axioms of U:

C l e a r l y O V i.e: oW(oUkB -4o
Also: BN). Moreover: DWDU,kQK. We find:

kBN)K).
Hence: kAN) and thus 8N-*DMU,kAN). From our assumption

we BN_4A). We May conclude vB Hence DUBN and thus BN and

So OVA.

4.3. Definition: 1 theory UWis nearly} nite if (i) there is a finitely axiom atized X and there

is an X-cut I such- that ID:U-X:I. (ii) (i) is verifiable in Q. Note that S2 is nearly finite.

4.4 - Cor clllary Let> U be nearly finite. Say X is our finitely axiomatized theory and
Ig7:U=X:I*. Suppose i is a:U-cut and4.-U l3V. Let J be a V-cut and let S be a

11-formula. We

can find -k (large-compare& to the ranks of 1,J j* S and the axioms of X), such that:

VS.

Proof: Let J*:=I*oI. Note that J*:Xt V, J:Vl>0. Let K:=JoJ*. Choose k large compared to

the degrees of complexity of S, the acioms$of-X and K. Reason in-

small inconsistency 19
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an, Suppose OJX SJ*. Since J* is Fa cut, we have: JX , S. Hence oJ j,icS and so S.

So outside of V, we find: Dv(DJx,kSJ`-+S). Apply 4.2 to get VS. o

4: S Corollary: Let U be consistent, sequential and nearly finite, then

i) Q+RCon(U, ),is not globally interpretable in U,

ii) 1L+Tabcon(U) is riot globally interpretable in U.

Moreover.

iii) :Q is not globally interpretable in 9:

Proof: i) Suppose U,_ is nearly finite and Q+RCon(U) is globally interpretable in U. Then by

Pudlak's theorem on cuts 2.5.1 and the downwards persistence of F11-sentences: S +RCon(U)

is interpretable -in U on acut.=] ut then 4.4 implies that I U, is inconsistent. (ii) follows from (i)

by -3.4.2. (iii) follows by 3.2.5. o

4:5(i) is-due to Pudl- k using essentially the same methods. (iii) is due to Paris & Wilkie by a

quite different argument. Note that 4.5 tells us that for nearly finite U LOCglob(U) has at least

two elements,-

4 i 6- Discussion: Note that by minimal modifications of the proof of 4.2 we get:

4.6.1 ]Fact: Let N:U-C-y. and M:V W, K=MoN. Suppose DV(DMUAN-*A). Then VA.

The easiness of the adaptation of the usual. proof of Lob's Theorem may well give the
impression that any generalization along these lines will work. However this is not so. Note

that 4.2 and 4.6.1 satisfy a kind of dimension analysis: even if the languages of the theories

considered differ the sentence3 A is always considered in the right language. 4.4 violates the

dimension analysis, but this is explained by the fact that only sentences of a special class are

considered and the fact that a very specific property of these sentences is used.

We give two'anti-Lob' (or: 'fake reflection) examples. First the reader may amuse him/herself

by proving the following:

there_ is a GB-cut I such that` GBH -(0GB-,SUPFXP - -,SUPFXP)I

The results of the next section imply:

there is a GB-cut I such that: GBF- DGBDGBII -- DGB1.

Note that both our examples violate 'dimension analysis'.

Tunneling 7--formulas through

S. Il Tunneling IT eoreun:; -Let U be finitely axiomatized. Suppose for some U-cut Io

Ip:U >Y. Let. K:V Q U and let S, be any I-formula. `hen there is a U-cut J (without further
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parameters) such that: Qf- K: V t> (U+SJ) -+ VS.

Proof-, Let. 1.be a V-cut isomorphic with an initial segment of, the K=numbers. Say the K-image

of I is I*. Choose k _large compared to the ranks of, I and S; .choose J such that we have
reflection in U for JUk for formulas of sufficiently large rank. Let R be such that:

CD- Rs

Reason in Q: suppose K: Vt> (U+SJ). Reason inside V: in K we have SJ. Thus: U,kR<S or

$<QU;kR. In the first case we find.CPUkFt (because SJ) and hence R. But this, contradicts

®UR<S. So we find S<oUR,i.e. R. Go outside of K.

Suppose YU#R. When in K: QI*U;kR and thus Rl*.RI*.,,IH[ence
outside K we have:;-R1. Leave

the O V

Ergo v(gtU,kR.-+R) and hence because k is large compared to I and S: VR, so VS. o

5.2 Corollary: 5.1 also holds for U nearly finite..

Proof: Trivial.. 11

We, write A for tableaux-provability.

54 Corollary: Let U be finitely- axiom-zed. Let S be Et. Then there is a U-cut J such
that:

i) F USJ * °12+Tcon

ii), EXP1 DUSJ ". 6EXP(Tcon(U)---)S).

iii) SUPEXP17= CUSJ (Con(U)-+S).

Proof: (i) First note that S +Tcon(U) is interpretable in U via a cut. Let K: (S +Tcon(U)) t> U.

Pick J such that:

M K.( ±Tcon(LJ,)) (U+SJ) -= DS+Te`on(Lt)S

Then clearly: _QE- P'USJ -4 0S
+Tcon(U)S. Evidently we may choose: J so small that St-

J:U > (S2+Tcon(U)), hence: St-- USJ H u+Tcon(U)S

(ii) and (iii) are immediate from (1) using the results of Visser[90] and the fact that Tcon(U)-+S

is in 11.

5.4 Corollary: Let U be nearly finite. Then there is a U-cut. J such that:
i) -§) -- QU0UJA

ii) SUPEXPF- UOUJA H UA.

small inconsistency 11,
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IProof: (i) ;Let X witness the nearly finiteness of U. Inspecting the proof of 5.3. we find for

any Y-1-sentence a U-cut J such that OF- DUSJ DQ+Tcon(X)S Taking S:=OUA and noting

that Tincon(x) U we: get the desired result. (ii) is immediate from (i). D

Note that if U extends SUPEXP, we find (taking A:=I): UH UDUJ-L 4a DU-L. Remember

that also UH tU-iDuJ L [U-L. So DUJ L has the Rosser Property.

5.5 Corollary: Let U be nearly finite. Let I be a U-cut. Then there is a U-cut J such that:

.DU(°uu_- %1--) +4 D0ouiL.

Proof: Reason in Let 3 witness the -nearly finiteness of U. Let l :U C> (U+DUI: ) and11

P:Q+Tcon(X)-C-U. Take K .PQM : Let f be given by 5. i with, Q+Tcon(X) in the role of U

and D0 L in the role of S. Suppose DQ(0g)11--->13QJ1), We have:

K:(L +Tcon(X))C>(U+OUJ,L)

and hence DQ+Tcon(x)DU-1- By the usual reasoning: Q. +Tcon(x)DU-I

5.6 Corollary: Let J bean O -cut such that S F--VxE J 2X L. Then:

Proof: 5.5 guarantees us an S2-cut J* with Q2 - 00(0Q1-+0jJ*1) H DcDQ1.. Inspection
of the proof shows- that . .any J* such that for some sufficiently large k Sgt- VXE J*

will do. (This uses the act that for any u -there :is a k such that:

Sgt- Vx(itexp(x,k).L-*-,Proofo,m(x,1).)

Let J be an fl-cut such that, »F-VxE J 214. Define J[0];=III, J[n+1} =J[n)pJ. Clearly SF-

VxE J[k] itexp(x,k)I.=also

Q - DQ(_-DJ[O101-40 7- O (DJ{1) 1:-

Du(DJ[2]oj__4ooJ[3]-L)

E ence F-_<D D J, );,- © J11c11),,so. by our earlier remarks the

desired result follows.

In our previous theorems the cut chosen was always dependent on U and on S. As a last point

we show that the dependence on S can -be; eliminated.

5.7 Uniform Tunneling Theorem: Let U be finitely axiomatized. Suppose for some
U-cut Io 10:UCV. Let K:VP:U. Then there is a U-cut J (without further parameters) such that

F- `d,SE 1 K:V-t> (U+S ). - VS.
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Proof: Reason in fl. Let True be the usual !t truth-predicate for !1-sentences.

We have for

any Y,1-formu1a S (applying the conventions for formulas inside the aalso to True):

(True(s) S),

for a fixed standard cut I* d(SI -*True(S)).
Let J* be the cut provided by the Tunneling Theorem for the formula True(x). Take J:=I*oJ*.

Consider-any S in !1. SupposeA. K:V> (U+SJ). Then K:V® (U+(SI*)J*). Ergo
Iii:V =(U+True(S)J*). Hence by the Tunneling Theorem lv.True(S), so VS.

Intermediate Degree

We show that if U is consistent, sequential and finitely axiomatized, then LOCglob(U) has at

least three elements. All results in this section are in f etc.

Suppose U is f niteiy- axiom atrzed 'Uinc:=U+ { Cut(.A)- Al IAC FO`RL, FV(A)={x)) is

focally interpretable in U. if '-f VDL,=-then-U;t,c is not globally interpretable in U. Moreover if

U is consistent, W:= U+RCon(U) is not globally interpretable in Uinc.

Proof: Let Ct(A): {xlCut(A)-*A(x)). Note U -Cut(A)-*Ct(A)=A, UE-Cut(Ct(A)) and
-(Cut(A)_*I3: L) -oCt(A)1:

To show that Uinc is locally interpretable, consider Al :..-,A, 'in FORL with FV(A)={x) Let

J:=fl{Ct(Ai)l1<_i<_m) >We have Ut?(U+DJ L) and-henceU' Ll1<_i<_m))

Suppose, 'Uinc is globally interpretable in U-, say by KO. Let'` M:(f2+Tcon(U))r> U and

K:=MoKO -Let J be the cut our theorem. Clearly: fl+Tcon(U)F-(Cut(J))K and l+Tcon(U)}--

(Cut(J)_*D.JL-)K, ergo f2+Tcon(U)F-oJOK-L. The theorem gives: f2+Tcon(U)F-D-L and hence

f cLL

cut I such that for all n:Suppose Wis globally interpretable `in zUinc then -there is a fixed Uinc

Uincl-Con'1,(U) it m be large compared to I. We have for some cut J: m(U).

Hence Ul- and so: UF- By Lob's Principle:

We may conclude =UI-Conim(U) Hence'U'is inconsistent.

It is easily seen that our result also works for nearly finite theories (like f2). I end with the

obvious conjecture:

6. Il Conjecture: Suppose U is sequential and nearly finite. Then there are infinitely many

incomparable elements in LOCglob(U)

small inconsistency 2 3
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