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Abstract 

After introducing the concept of compressed sensing as a complementary 
measurement mode to the classical Shannon-Nyquist approach, I discuss some of 
the drivers, potential challenges and obstacles to its implementation. I end with a 
speculative attempt to embed compressed sensing as an enabling methodology 
within the emergence of data-driven discovery. As a consequence I predict the 
growth of non-nomological sciences where heuristic correlations will find 
applications but often bypass conventional pure basic and use-inspired basic 
research stages due to the lack of verifiable hypotheses. 

Introduction 

Making digital representations of physical objects has been approached with a 

pessimistic attitude demanding a very high rate of regularly-spaced 

measurements without taking into account that the object itself might have 

sparsity. In this text sparsity is used as an operational gauge of an object’s 

complexity rather than a well-defined mathematical property. In mathematics we 

define a sparse matrix in contrast to a dense one as containing mostly zeroes. 

Compressed sampling takes into account the sparsity of an object and is able to 

successfully reconstruct images even after dramatically reducing the number of 

measurements required without loss of reconstruction fidelity. If one defines 

‘sampling’ as the act of performing measurements of different objects such as 

pixels in an image, one can conservatively measure one at a time or group several 

objects and measure groupings. Compressed sensing allows us to optimize 

measurements of such groupings and thereby perform significantly fewer 

measurements. This is related to the 12-ball problem where one is tasked with 



finding 1 lighter or heavier ball out of a set of 12 balls by only 3 comparative 

weighing of groupings.1 

Compressed sampling will not replace conventional sampling but complement it 

by making measurements possible which before were prohibitively costly. Cost in 

this terminology refers to measurements that are too expensive, take too long, 

require too much energy or subject the object to damage when measuring in the 

conventional linear fashion. 

Shannon-Nyquist measurements and compressed sensing. 

Harmonic analysis has shown that signals we measure can be described as 

convolutions of mathematical basis functions with frequency and intensity as 

variables. The best known example is the Fourier series where a signal can be 

decomposed into a sum of simple oscillating functions such as sines, cosines or 

complex exponentials multiplied with a weighting function. Signals can then be 

represented by their Fourier coefficients.  Mathematics provides us a plethora of 

basis functions such as wavelets, ridgelets, curvelets and contourlets to efficiently 

approximate signals.2 The conventional approach when measuring signals such as 

sounds and images relies on Shannon’s theorem which states that the sampling 

rate with which one should record or image must be at least twice the maximum 

frequency present in the signal in order to record, transmit and reconstruct with 

high fidelity. This frequency is called the Nyquist rate3 and the Shannon-Nyquist 

theorem4 assures us that our sampling is dense enough to allow us to reconstruct 

original analog signals such as a Coltrane saxophone solo or a lake view. This 

immensely powerful theorem is used in most consumer audio and video 

electronics, in conventional analog-to-digital (ADC) converters and in medical 

imaging i.e. ultrasound and magnetic resonance imaging (MRI). The latter points 

to the importance of the quality of reconstruction since overlooking or altering 

even minute features in images might have important consequences as they are 

often the goal of such measurements. Intuitively one would think that measuring 

faster and omitting data from the reconstruction will always result in a less 

faithful reconstruction of the original signal and should therefore be avoided at all 

cost. However, as I will show below, the amount of data that needs to be 

http://en.wikipedia.org/wiki/Sine_wave
http://en.wikipedia.org/wiki/Complex_exponential


measured, stored and transmitted impacts the feasibility of a measurement and is 

often constrained by external ‘cost functions’ such as the speed with which one 

can image and reconstruct and therefore actively control a process, the time a 

patient is scanned in a computer-aided tomography (CAT) or MRI procedure or 

the amount of energy needed for a measurement, to name just a few. These cost 

functions drove the exploration of new modes of measurement to circumvent the 

shortcomings mentioned above and others discussed later. Compressed sensing 

allows measurements that optimize external cost functions by measuring faster 

and less without a commensurate loss of reconstruction fidelity. 

In the Shannon-Nyquist measurement mode we uniformly and linearly measure 

our signal often by sequential line scans (‘raster scans’). This results in a lot of 

data points N as we all realize when confronted with the storage capacities of our 

digital cameras. Therefore, we use programs based on compression algorithms 

which extract a subset K << N that then stores our soundscape as MPEG and our 

images as JPEG files. Compression is a non-linear process and relies on the fact 

that many of the Fourier or wavelet transform coefficients with which we can 

describe our signals are small or close to zero. In the case of JPEG or JPEG-2000 

the signal is represented in a mathematical basis space different than the pixel 

basis, relying on the fact that most images have many zeroes in the discrete 

cosine (JPEG) or wavelet (JPEG-2000) basis.  The conceptual leap compression 

algorithms are based on is that we do not need to store zeroes or minute 

coefficients in order to be able to reconstruct our signal to a certain degree of 

fidelity. This shows that not all frequencies and all pixels or voxels have the same 

importance when we reconstruct the original signal. Some are more important 

than others and sparsity might provide us with an opportunity to escape the 

constraints of the Shannon-Nyquist theorem and reduce the number of 

coefficients we need to store and be able to reconstruct our original signal. In 

other words: some data sets that we measured uniformly at the Nyquist rate turn 

out to be sparse. We can therefore compress them for data transmission and 

storage purposes. Sparsity is thus a working measure of the complexity or lack 

thereof in a signal representation. Many signals are compressible by using some 

known transform coding scheme such as JPEG or JPEG-2000 which creates sparse 



representations in the transform basis. It is important to realize that a Mark 

Rothko color field painting is sparse whereas a totally random screen test image is 

not. There is a lot more information that cannot be compressed in the screen test 

image since there are significant and random pixel to pixel variations. 

With this coarse understanding we can summarize the conventional paradigm for 

digital data acquisition: 

We uniformly sample data at the Nyquist rate and obtain N data points, which we 

then compress to K data points with K<<N using some threshold value of the data 

intensity and subsequently transmit or store this sparse data set. Using 

appropriate algorithms we can decompress the reduced data sets with K data 

points back to N data points when we reconstruct the signal. This works quite 

well. There are well-known examples that show how close we get to 

reconstructing our originally sampled image after we omit 97.5% of all wavelet 

coefficients in the compression step.5  However, as Mark Rothko and John 

Coltrane aficionados will tell you there are differences in perception and quality 

when omitting wavelets coefficients with small values and subtle differences of 

hue and sounds can and will be noticed by the trained eye and ear. Humans can 

distinguish between 2.3 and 7.5 million colors 6 and about 340,000 tones.7 

Apart from desires to remain as close as possible to a uniformly sampled signal 

the question begs in particular for most commoditized images and sound 

recordings if instead of measuring lots of data and then compressing them, one 

could not attempt to measure only the data points which have significant wavelet 

coefficients above a pre-set threshold and omit the rest. The concept of 

compressed/compressive sampling/sensing 8  follows this approach and has 

proven that one can measure only a compressed data subset or something close 

to it and then find a way to reconstruct the signal N>>K. One is no longer 

measuring at or above the Nyquist rate but significantly below it since K<<N. This 

represents a radical departure from the traditional mode of measurement. While 

on first sight it appears to be audacious, it has proven to be mathematically sound 

in the sense that it is highly probable given a sparse data set that one can 

reconstruct the image based on random subsets of data. These two pillars of 



compressed sensing, namely sparsity and random measurements, are crucial for 

the method to work. In compressed sampling one thus directly measures 

compressed data M<<N and thereby drastically reduces the amount of data 

needed to measure a signal if one finds a way to reconstruct the total signal. 

More simplistically formulated: why measure the zero or below-the-threshold 

wavelet coefficients if “all” we have to do is measure the non-zero ones and then 

find a way to “add the zeroes back in”. This appears very counterintuitive: how 

can one know what the compressed subset (the JPEG or MPEG) is before 

measuring it? Isn’t the compression to a JPEG an analysis step one needs to do 

before one can omit data points with low or zero wavelet coefficients? How do I 

know which pixel is important and which is not? How do we find the “non-zero 

coefficients”? Very complex mathematical details show that random 

measurements allow the acquisition of “compressed” data followed by a recovery 

relying on a technique called the L1 minimization. This procedure will provides us 

with the sparsest solution at a very high probability. The sparser the data are the 

higher the probability that we will recover the “uncompressed data” – without 

ever measuring them! The L1 minimization is a linear process and we have thus 

turned the conventional Shannon-Nyquist measurement philosophy on its head: 

we now measure random, non-linear subsets of the data and recover the 

uncompressed data using a linear process (L1 minimization). Of course this all 

hinges on the sparsity of our data since the mathematical core concept of 

compressed measurements is based on the realization that sparse signals can be 

recovered exactly with a high probability despite the fact that we are dealing with 

underdetermined linear systems of observations due to measuring below the 

Nyquist rate. Despite its counter-intuitive nature compressed sensing is based on 

sound and uncontested mathematics. While accepted in the sciences and 

engineering communities this new measurement mode will be difficult to explain 

to a lay audience and therefore be contested in the public arena in particular 

when there are important consequences of such measurements. The early 

detection of cancer and other diseases based on measurements of only a subset 

of what can be measured will require justification and reassurances based on, as I 

will show below, non-fiscal cost functions such as radiation exposure or increased 

accuracy when imaging moving objects.  



 ‘Measure what can be measured and make measurable what cannot be 

measured’ is a quote attributed to Galileo Galilei and has become the paradigm of 

the conventional Shannon-Nyquist measurement philosophy. Generations of 

scientists have and will continue to improve measurement devices such as 

telescopes, analog and digital cameras and electron microscopes to ‘make 

measurable what cannot be measured’. Minute signals indicating new 

phenomena are being confirmed after long periods of data acquisition and careful 

analysis. This mode of measurement will not be replaced by compressed sensing. 

Rather compressed sensing will complement the Shannon-Nyquist mode of 

measurement and allow new types of measurements previously not possible to 

be done.   ”Measure what should be measured”, a phrase coined by Strohmer9 

describes the operating philosophy of compressed sensing. In the conventional 

approach all data points are measured without taking into account the sparsity of 

the signal whereas compressed sensing advocates to measure only the most 

important subset using random measurements in order to increase data flow, 

reduce storage requirements or required detector coverage. The need for 

compressed sensing and how it can be accomplished will be illustrated below 

using the paradigmatic example of the single-pixel camera. 

How sparse, how good? 

The sparsity of signals allows the freedom to set threshold values in order to 

define what the cutoff intensity of the basis function is. This brings up the 

question of who needs or wants uniform sampling above the Nyquist limit and 

who will get to listen to a Coltrane saxophone solo recorded using compressed 

sensing or looks at a Mark Rothko painting with altered hue, or has his brain 

scanned less and faster? The important word in Strohmer’s dictum is ‘should’. We 

need to remind ourselves that compressed sensing works best with sparse data. 

In the case of imaging a screen test image which does not have a high degree of 

sparsity, a conventional measurement at the Nyquist frequency should be the 

choice of measurement mode. Many natural images are quite sparse and 

standard wavelet decomposition reveals often that most coefficients are actually 

very small.  “Natural” images are highly structured and can be very efficiently 

represented using sparse representations.  



Human perception is a very complex process with its own ‘biological’ threshold 

values and in many cases the aspect of quality is difficult or even impossible to 

parameterize. The perception of color in a Mark Rothko painting serves as an 

example: the human eye’s response to light spans from about 400 to 750 nm and 

varies with age. We have a standard for colorimetry that dates back to 1931 and 

was devised by the Commission Internationale de l’Eclairage (CIE) which assigns 

two coordinates, called CIE coordinates to a particular color based on a 

photoluminescence measurement. In stark contrast the standard method of 

characterizing the quality of light is to rely on a color rendering index which 

specifies how well a light source can illuminate, or render, the true color of an 

object. The color rendering index is determined by comparing the differences in 

the CIE color coordinates of an object illuminated first with a test source and then 

separately with a black body having the same correlated color temperature10. This 

complex process reveals that the parameterization of quality often relies on 

comparison using human perception and can become a question of preference as 

in the case of the audiophile and art connoisseur, who resists the notion of a 

particular signal as being sparse. In the lighting industry lamps have different 

color rendering indices depending on if they are targeted for the US or Asian 

market as the interaction with the skin complexion is an important quality factor. 

The US initial response to fluorescent lighting was that it was “seen as cold” in 

comparison to the more energy inefficient incandescent light. There are thus 

external factors to a measurement that can play an important role in the decision 

which mode to use. These factors can often be best understood as external cost 

functions. In order to describe some of them and understand why they play such 

an important role in the implementation and use of compressed sensing I will 

now describe the single pixel camera which is a paradigmatic compressed sensing 

device. 

The single pixel camera – a compressed sensing device 

An important aspect in the future design of sensing and measurement devices will 

be the hybridization of hard ware and reconstruction algorithm as epitomized in 

the so-called single pixel camera developed by Richard Baraniuk from Rice 

University.11  



 

 

Figure 1: Operation of a single pixel camera:  An image is projected onto a digital micro mirror (DMD), 
half of whose mirrors are switched randomly off. This image is then directed towards a second lens 
behind which a single photo detector (PD) registers the measurement. The mirrors are switched 
randomly and each time the PD measures one pixel. The single-pixel camera thus creates a picture by 
measuring just one pixel over and over again which allows the recovery of the image. 

Image from http://phys.org/news143210026.html 

The mathematical concept of random measurements needed for compressed 

sensing is incorporated in this new type of measurement device as follows: the 

light making up an image is focused from an array of mirrors and from there into 

a single detector. This arrangement resembles a projector running backwards. 

The mirror array consists of over 7000 little mirrors the size of a sand grain that 

can each be addressed in less than 10 microseconds either to reflect light into the 

detector or not. If one now randomly addresses groupings of half of the mirrors to 

reflect light into the mirror and the other half not and measures the intensity in 

the single detector a few hundred thousand times one is able to reconstruct the 

image from which the light comes. Each measurement contains information 

coming from half of the mirrors. A one megapixel image would therefore require 

approximately 100,000 single pixel measurements representing only about 100 



kilobytes of memory – a reduction of 90% in the number of measurements and 

with that measurement time as well as storage space. 

 

The ‘cost function’ driving the use of compressed sensing 

Compressed sensing has become the way to record data when an external ‘cost 

function’ prevents or severely limits measurements in the classic Nyquist-Shannon 

mode. One way this ‘cost function’ manifests itself is by the fact that certain 

detectors can cost upwards of a million dollar. To measure i.e. infrared images 

using compressed sensing one can thus use only a very small single pixel camera 

which enables measurements that would have prohibitive costs if measured in 

the Nyquist-Shannon mode where one would use a large detector to record as 

much signal as possible. Another way a cost function can promote this new type 

of measurement mode is due to the fact that in medical imaging one needs to 

minimize exposing patients to harmful ionizing radiation such as electrons and x-

rays. Current estimates suggest that 3-5% of all new cancers diagnosed in the US 

are due to CAT scans.12 Drivers for this extensive use are the need to pay for these 

expensive instruments and the still prevalent philosophy of “measure what can be 

measured” endorsed by doctors and patients alike. Less exposure also reduces 

the data collection time and can thereby enable certain measurements: reducing 

the time patients need to hold their breath or remain still during an MRI scan. 

Compressed sensing will provide less perturbed images and is therefore already 

being used in pediatric medicine since it significantly reduces artifacts due to 

uncontrolled patient movement.13 The amount of data reduction in MRI imaging 

by a factor of 2-10 comes with little or no impact of the quality of images. 14 In the 

case of brain imaging 3D images can be obtained in as little as 32 milliseconds.15 

Measuring only 10% or less of the signal will consume less energy, an issue 

important in space exploration and the deployment of autonomous sensor arrays 

for environmental or nuclear non-proliferation monitoring since it will increase 

the time period a probe can operate and send signals. In the short term many 

new applications in the design of active and autonomous sensing devices will 

drive the implementation of this new mode of measurement. Less energy use 



allows for significant further miniaturization and cost reductions. The ‘SeeChange’ 

technology described in Dave Egger’s novel16 The Circle is technologically plausible 

using compressed sensing as a measurement mode.  

Challenges to compressed sensing 

With these examples of cost functions in mind we can now discuss some 

challenges to the use of compressed sensing. Initially the counterintuitive nature 

of compressed sensing can lead to a technically unfounded but very strong 

dismissal of this new mode of measurement. In the February 2010 edition of 

Wired Magazine compressive sampling was introduced under the title Fill in the “

Blanks: Using Math to Turn Lo-Res Datasets into Hi-Res Samples”.17 Certain reader 

comments on the website display a lack of understanding of the general concept 

by assuming that common interpolation and not sophisticated and well 

established mathematical principles as outlined above are the basis of this 

method. This rejection is not so much a concern for the general public if one is 

imaging objects in intergalactic space or storing pictures of a birthday party. 

However, when using MRI which is now the premier diagnostic tool to detect 

cancer and vascular disease the ‘measure what can be measured’ attitude is 

passionately evoked. Two quotes from the “Wired” website express this 

sentiment: 

“Can you believe that someone would have such a fundamental 

misunderstanding of basic mathematics and information theory that they 

would base a medical diagnosis on features produced by data 

interpolation? I hope it's not my doctor doing it. Prettying up pictures is 

great. Looking for tumors, etc. is insane. By definition, you're looking for an 

aberration, which, by definition, this algorithm would not produce.“ 

(Iamorpa) 

“Would you be willing to gamble your life on interpolated data where 

the shortcoming would be missing clinical pathology? A MRI image contains 

many subtle shades of gray in abstract shapes. For an artistic image clear, 

sharp edges and vivid colors may enhance, but to render a line on a 



diagnostic image that appears to abruptly end and restart may draw a 

complete artery where there is really an occlusion or to smooth out faint 

variations representing a brain tumor can be deadly. I’ll pay for the long 

scan please" (Grego) 

It is important to recognize that compressed sensing can be rejected even by 

highly trained specialists who will not immediately take advantage of better or 

faster measurements available. As an example take a radiologist’s unique skill set 

that allows him to scan huge amounts of data very fast and recognize and identify 

minute deviations. When varying the contrast in order to measure faster and 

expose the patient to less radiation such a highly trained specialist will no longer 

be able to identify anomalies and will insist on looking at the images with the 

same contrast settings they were used when he was trained – faster imaging and 

less radiation exposure is not always better when a significant amount of training 

and tacit knowledge to identify anomalous features relies on a specific contrast or 

image quality. 

Clearly there will be early and late adopters of compressed sensing. The cost 

function be it money, radiation damage or speed with which one can measure will 

incentivize many to use this transformative imaging mode. In medical imaging 

using MRI, CAT or ultrasound devices this shift to taking advantage of compressed 

sensing is currently in progress. In the future this new mode of imaging will 

become the new standard in particular when it is also used to train the tacit skills 

of medical specialists. 

 ‘Big Data Science’ 

As highlighted when describing the “single pixel camera” a significant reduction in 

measurements required to reconstruct an image by combining measurement and 

analysis modes will enable us to continue to cope with large data flows and 

storage requirements which do not increase commensurately with the data flow. 

Using compressed sensing we are able to measure a larger portion of the 

information content available by pushing back the limits of Shannon-Nyquist 

measurements. 



In large scale, complex scientific experiments which produce enormous amounts 

of data compressed sensing is already the mode of choice due to the need to 

“pre-select” events. The bottleneck in many measurements used to be at the 

detector level; now the commoditization of detectors which can be assembled 

into large arrays has moved the bottleneck to the 

processing/transmission/storage part of the measurement. The compact muon 

solenoid (CMS) detector at the Large Hadron Collider at CERN, the European 

nuclear science laboratory, produces 320 terabits per second of data.18 Using a 

hardware-based triage, “triggers” select only about 800 gigabytes per second 

which will be characterized as “interesting events” and subsequently analyzed.  

Due to the appealing conceptual simplicity of compressed sensing’s ‘second 

pillar’, random measurement capabilities can directly be implemented in the 

design of the detector as described above for the single-pixel camera. This 

hybridization of measurement and analysis is needed to be able to measure the 

gargantuan amounts of data without ending up with data flow bottlenecks and 

not enough storage space. Integrating sensing and data processing this way is “to 

bring mathematics into the lens” as Candes and Tao point out.19 An example 

highlighting the tremendous advances being made in data flow is the Sloan Digital 

Sky Survey20, which started in the year 2000 and in its first few weeks collected 

more data than had been amassed during the entire history of astronomy. It will 

be surpassed by the Large Synoptic Survey Telescope21  in Chile which will 

measure 140 terabytes of data every 5 days.  

Building on the advances and lessons learned in high energy and astronomy 

experiments compressed sensing will be employed in many other areas where the 

cost function is driven by the size of the already existing and growing data 

avalanche. The use of compressed sensing is growing rapidly and new devices are 

being designed and built. In analog-to-digital (ADC) conversion technology a 

receiver/ADC chip, the “Random Modulator Pre-Integrator” (RMPI) has been built 

as one of the first electronic hardware devices based on the compressed sensing 

paradigm which will replace the conventional ADC in appropriate applications.22 



A consequence of this new mode of measurement is that data are no longer 

autonomous and complete because compressed sensing measurements rely on 

the premises of sparsity and measure only random subsets of all possible 

measurements. This will rekindle important discussions in the epistemology of 

measurement and change our view of what a discovery is. Discovery is no longer a 

‘eureka moment’ but a statistical war of attrition and the unease about 

increasingly theory-laden experiments will require a modification of what it 

means to discover something new. Serendipitous discoveries from very large data 

sets will in many cases be almost impossible since these particular events might 

be excluded from analysis precisely due to the fact that they do not exist within 

the current framework of knowledge at the time of measurement. One such 

framework of knowledge is the Standard Model in Physics describing the 

occurrence and relationships of elementary particles. This model predicted the 

existence of the Higgs boson in order to explain the particular masses of 

elementary particles. Its discovery was based on looking for certain decay pattern 

allowed with the Standard Model of Physics and serves as a paradigm changing 

example of a theory-laden, large dataflow discovery. This type of measurement 

will become dominant in high energy physics and astronomy where data intensive 

experiments rely on a library of known and simulated processes to trigger further 

data analysis.  

The continuous sampling of physical objects will amass enormous amounts of 

digital data as representations which can be re-analyzed at later stages using new 

algorithms and methodologies. We can learn something new using existing data 

and new algorithms. Antonioni’s 1966 movie Blowup portrays the discovery of a 

body and a person with a gun after progressive enlargements of an existing 

picture. We need to be mindful, however, that there is a difference between 

having compressed data or used Shannon-Nyquist based measurements and 

simple experiments with PhotoshopTM using raw and JPEG representations reveal 

striking differences when subsequently manipulating contrast or other image 

parameters. Software epistemology will need to be better understood as it can 

redefine what discovery means in such a context.  

Compressed Sensing and Data-Driven Discovery – A New Mode of Inquiry 



Stored data and information are now almost completely digitized: in 2013 the 

amount of globally stored information is estimated to be about 1,200 exabytes, of 

which 98% is in digital form. In 2007 the amount of data generated worldwide 

was larger than what we could store and transmit. In 2011 we measured twice as 

much data as we could store. The amount of data generated globally is growing 

by about 58% a year. 23 

At the same time a new strand of scientific inquiry, data-driven discovery, is 

establishing itself next to the traditional hypothesis-based mode. The 

measurement mode used to collect data is an important meta-property that 

needs to be taken into account when discussing results of such data-driven 

discoveries. There are reasons to suggest that this data-driven discovery mode 

will in the long run lead to fundamental changes in the daily practices and 

philosophical grounding of many sciences. This type of ‘big data’ analysis will be, 

at least initially based on the discovery of correlations which in many cases cannot 

be established unequivocally as causalities. A phenomenon identified by 

correlations might be a useful proxy for a highly probable prediction (i.e. flu 

tracking by Google) but shed no light on the reason for its existence or inner 

workings. A resurgence of devising heuristic rules and proxies in the physical 

sciences to correlate with desired physical (i.e. superconductivity, 

thermoelectricity) or chemical (i.e. catalytic) properties to explore vast parts of 

parameter space in chemical compound space are used in materials science 

(‘materials genome initiative’). Simple proxies for properties are sought that can 

circumvent the traditional first-principles route using density functional theory or 

molecular dynamics in order to accelerate and enable new discoveries. 

Filling Peterson’s Quadrant – the growth of non-nomological science 

This increased use of heuristics might result in the emergence of new non-

nomological research in various disciplines in particular the social sciences and 

economics. A convenient way to categorize types of scientific knowledge employs 

the scheme developed by Stokes24 which assigns individual quadrants for pure 

basic (Bohr), use-inspired (Pasteur) and pure applied (Edison) research. The first 



quadrant contains research with little considerations for use and fundamental 

understanding.  As Stokes writes: 

‘This quadrant includes research that systematically explores particular 

phenomena without having in view either general explanatory objectives or 

any applied use to which the results will be put…’(Stokes21) 

Stokes named this quadrant Peterson’s quadrant to point out that Peterson’s 

Guide to the Birds of North America exemplifies such systematic research. 

 

Figure 2: Stokes’ Quadrants (18) 

Within the framework of this classification scheme one can describe dynamic 

pathways in which research progresses from one quadrant to the next. The 

progression from Bohr’s over Pasteur’s to Edison’s quadrant can be used in retro 

perspective to describe various phases in the evolution of modern electronics 

from quantum mechanics to the modern computer chip. An important transition 

from Peterson’s to Bohr’s quadrant is typified by Charles Darwin’s theory of 

evolution described in The Origin of Species. Darwin relied on a vast amount of 

not understood correlations as well as many disparate observations. These 

collations of observations in Peterson’s quadrant can thus lead to important pre-

cursors of theories, proxies and correlations that can find applications in pure 

applied research (Edison’s quadrant). Another important role of this quadrant as 



pointed out by Stokes is education and the development of skills. The availability 

of large amounts of digitized data triggered the development of Google’s page 

ranking algorithm, unstructured data bases and many other problems needed to 

be solved to correlate observations using large heterogeneous data sets. These 

methodological problems are in themselves worth pursuing as they can sharpen 

our tools to “dig deeper” into certain types of data. In analogy to the above 

mentioned scenario from the film Blowup the existence of large data bases will 

allow us to develop new algorithms and methodologies that could lead to the 

discovery of new features and correlations in already existing data and allow their 

benchmarking. 

 Subsequently a complementary hypothesis-driven inquiry mode might be able to 

devise measurements to verify whether the heuristic rules and proxies developed 

in Peterson’s quadrant are useful and can be reduced to causal chains. While 

large data correlations might point towards some new, unforeseen and 

unexpected hypotheses many such correlations are likely not to be reducible to 

discipline-specific models and causation chains. Nevertheless, these correlations 

might still be useful as rules and become test cases for meta-theories used for 

instance in complexity science where strong causality is often suspended in favor 

of a more heuristic and empirical view of the sciences.  

Some correlations might be used to develop ‘toy models’ rather than complex 

and very detailed models with too many parameters. An example for a ‘toy 

model’ theory is the theory of ‘self-organized criticality’ developed by Per Bak.25 

The power of these oversimplified models lies not in the prediction of individual 

events but in the description of complex systems such as financial markets, forest 

fires, earthquakes and the size of avalanches in a sand pile. These types of 

theories might undergo a renaissance as our data bases grow. As Peter Norvig26 

writes: ‘Simple models and a lot of data trump more elaborate models based on 

less data’.  

Understanding the world without relying on hypotheses will become a new type 

of exploration based on probabilities and correlations. Non-causal analyses will 

help us see the world within a context of   ‘what’ and not   ‘why’. While we have 



an intuitive desire for causal connections many fields of exploration in particular 

in the ‘soft’ and idiographic sciences will be driven by the discovery of 

correlations. It is too early to assess how the shift from causation to correlation 

will change the operational pragmatism in different scientific fields.  

In conclusion, compressive sensing allows us to keep up with the in the 

foreseeable future continuing massive flow of data and enables, as a 

complementary tool the measurement of sparse data when an external cost 

function (i.e. price, speed, stability)  makes measurement, transmission and data 

storage in the classical Shannon-Nyquist mode no longer feasible. It will therefore 

make a significant contribution to our digital universe and provide ample research 

data for Peterson’s quadrant which can fuel Bohr’s, Pasteur’s or Edison’s quadrant 

by classical hypothesis-driven inquiries or use heuristic rules and proxies to enable 

pure applied research where correlation can be enough to predict the behavior of 

large complex systems without an underlying causal model.  
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