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Response to:
Three Merry Roads to T-Violation by Bryan W. Roberts

Abhay Ashtekar*

Institute for Gravitation and the Cosmos & Physics Department,
Penn State, University Park, PA 16802, U.S.A.

I. PREAMBLE

Dr. Roberts has provided a lucid account of the analytical arguments that underlie the
study of T-violation [1]. His clear presentation makes my task rather easy. I will discuss
T violation in a very general setting that incorporates quantum mechanics and quantum
field theory, but is not tied to them. The focus will be on the conceptual aspects of the two
approaches that have led to experimental proofs of T-violation in weak interactions.

Since Dr. Roberts mentioned the macro-world only in passing, let me begin a brief
discussion of the manifest arrow of time we perceive in our everyday life and, more generally,
in the physics of large or macroscopic systems. For simplicity, let me discuss this issue in
the framework of classical physics because the core of the argument is not sensitive to the
distinction between classical and quantum mechanics. Consider a large box with a partition
that divides it into two parts, say, the right and the left halves. Suppose there is some gas in
the left half and vacuum in the right. Once equilibrium is reached, the macroscopic state of
this gas is described by the volume it occupies, V;; the pressure it exerts on the wall. P; and
its temperature T;, where i stands for ‘initial’. If we open the partition slowly, the gas will
fill the whole box and its macro-state in equilibrium will be described by new parameters,
Vi, Py, Ty. Thus, there has been a transition from the initial macro-state (V;, P;,T;) to a
final state (Vy, Py, Ty). Our common experience tells us that the time reverse of this process
is extremely unlikely.

However, we also know that the microscopic variables for the system are the positions
and momenta of some 10% molecules in the box. These are subject just to Newton’s laws
which are manifestly invariant under the time reversal operation T'! Therefore, if we were to
reverse the momenta pi,)(¢) of each of the molecules (labeled by a) at a late time ¢, keeping
the final positions Z')(t) the same, time evolution would indeed move the gas from its final
macroscopic state to the initial one. But it is very difficult to construct this time-reversed
initial state. Thus there is indeed a macroscopic arrow of time but its origin is not in the
failure of the microscopic laws to be invariant under T but rather in the fact that the initial
conditions we normally encounter are very special. This is reflected in the fact that there
are vastly fewer micro-states compatible with the initial macro-state (V;, P;, T;) than there
are compatible with the final macro-state (V;, Py, Ty).! Put differently, the entropy of the
initial macro-state is much lower than that in the final macro-state.

*Electronic address: ashtekar@gravity.psu.edu
! This is primarily because the volume V; allowed for each molecule in the final macro-state is twice as

large as V;, allowed in the initial macro-state.
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To summarize the fact that there is a clear arrow of time in the macro-world does not
imply that the microscopic or fundamental laws have to break T-invariance. Indeed, as Dr.
Roberts emphasized in the beginning of his article [1], it was common to assume that the
fundamental laws are invariant under the time reversal operation T'. It was a major surprise
that the weak interaction violates this premise.

II. WEAK INTERACTIONS AND THE CURIE PRINCIPLE

As Dr. Roberts has explained clearly, what the Cronin-Fitch experiment establishes
directly is that the weak interactions are not invariant under C'P, i.e., under the simultaneous
operation of charge conjugation and parity. The parity operation, as normally formulated,
is meaningful only if the underlying space-time is flat, i.e., represented by Minkowski space-
time. This means one ignores curvature and therefore gravity. One further assumes that
physics is described by a local quantum field theory on this Minkowski space, for which
individual physical fields transform covariantly under the action of the Lorentz group and
dynamics is generated by a self-adjoint Hamiltonian obtained by integration of a scalar
density constructed locally from the physical fields. Then, one has the CPT theorem that
guarantees that the product C'PT of charge conjugation, parity and time reversal is an
exact dynamical symmetry.? Therefore, as Dr. Roberts explained, if we assume that weak
interactions are described by such a theory, then the observed breakdown of CP invariance
implies that they violate T" invariance as well.

Dr. Roberts describes the mathematical underpinning of the ‘Curie Principle’ in his
section 2.4 using a linear transformation R on the Hilbert space of states, which is to play
the role of a symmetry of interest. This formulation can be significantly generalized. The
main point of my ‘response’ is to provide this formulation.

As Dr. Roberts emphasizes, his analysis has the advantage that it does not assume a
specific Hamiltonian. Let us go a step further and consider a formulation that does not use
even the mathematical structure normally used in quantum (or classical) kinematics. Both
frameworks will be special cases of this general mechanics. What it assumes is:

i) We have a set S of states;

ii) There is a 1-1, onto dynamical mapping S —the ‘S-matrix’— from S to itself. In practice
is it convenient to consider two copies S; and Sy of S, representing initial and final states,
and regard S' as a map from S; to Sy;

S:8 =Sy S(o;) =0y Vo, €8; (2.1)

and,

iii) A 1-1, onto map R from S to itself, to be thought of a potential symmetry. We will first
consider the case in which R maps S; to itself and Sy to itself. This is the case if R is, for
example, the discrete symmetry represented by C, or P or CP.

2 This is a heuristic version one finds in quantum field theory text books (see, e.g. [2]). More rigorous
versions based on Weightmann axioms [3] and the algebraic approach [4] are also available in the literature.
However, one should note that we do not have a single example of a 4-dimensional, interacting quantum

field theory satisfying either the Wightmann axioms or the axioms of the algebraic quantum field theory.
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Now, in the spirit of the Curie principle, suppose that there exists some o; € S such that

Ro; = o; but Roy # oy (2.2)

Then,
R(So0;) = Roy # sy = S (Ro;) (2.3)

whence SR # RS. Thus, the dynamical map S does not commute with the candidate
symmetry R: It is not a dynamical symmetry. We therefore conclude: If there exists a state
o; such that Ro; = 0; and So;, = oy but Roy # oy then R is not a dynamical symmetry
of the system. Thus the Curie principle naturally extends to general mechanics. (It is
straightforward to alter the argument to obtain the other desired conclusion of fact 1 in
section 2.4 of [1].)

Since we assumed S to be only a set, we cannot speak of continuous evolution. But one
could achieve this trivially by endowing S with a topology and replacing S with a continuous
evolution map F(t), where ¢ is to be thought of as a time parameter. The argument given
above will then imply that E(¢) will not commute with R.

Note that in this more general formulation one does not even assume that the space
of states has a Hilbert space structure, whence, when applied to the quantum mechanical
system, the argument does not require R or S to be linear mappings. In particular, they
need not be unitary. Note also that this general framework enables one to discuss in one go
all symmetries in classical mechanics and linear symmetries in quantum mechanics. More
importantly, it should be useful also in non-linear generalizations of quantum mechanics
(discussed, e.g., in [5]).

However, we did assume that R maps the space S; of initial states to itself and the space
Sy of final states to itself. This assumption is not satisfied by the time reversal operation
T which maps initial states to final states (and vice versa): T is a 1-1 onto map from S; to
S¢. Therefore, in this case, T" is a dynamical symmetry if and only if

Soi=0; = S NTo;)=T "oy) (2.4)

i.e., the time reverse of o; (which is in Sy) is mapped by dynamics to the time reverse of
os.The generalization of the Curie principle discussed above does not have any implication
in this case. In this respect, the situation is the same as in section 2 of [1].

Remark: While R invariance of dynamics is captured by the property RS = SR of the
S-matrix S while the T invariance is captured by S~!7" = T~1S. The above argument shows
that the difference arises simply because while R preserves each of S; and Sy, T maps one
to the other. At a fundamental level, then, the difference is not because R is linear while
T is anti-linear although, in standard quantum mechanics, one can use linearity of R and
anti-linearity of T" to arrive at the difference.

IIT. THE KABIR PRINCIPLE

Can we extend the arguments from general mechanics to encompass time reversal in the
spirit of Kabir’s argument discussed in section 3 of [1]? The answer is in the affirmative.
However, to state Kabir’s formulation, one needs to introduce additional structure in general
mechanics which does not have a natural analog in classical mechanics. This is because
Kabir’s formulation refers to probabilities.
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Let us then introduce an overlap map O on the space of states S (and therefore on each
of §; and §f): O : 8 xS —[0,1] € R, such that

O(o, ') = 0(d',0), Vo,0' € 8. (3.1)

O(o,0’) is to be thought of as the overlap between states o and o', the generalization of
the absolute value of the quantum mechanical inner product between normalized states
[(¥, U')|. The overlap map is part of kinematics. Therefore, to qualify as symmetry, the
map R we discussed in section II has to satisfy

Oi(Ra;, Ro}) = Oy(o, o) (3.2)

on S; (and similarly on Sy). Similarly to qualify as symmetry, the Time reversal map which
maps S; to Sy must satisfy
O4(Toy, To}) = Oi(oy, o)) (3.3)
for all o; € S;.
The dynamical map S : S; = Sy should be compatible with this kinematical structure,
i.e., satisfy
Oi(04, 07) = Of(Sa;, Sa') = Oy(oy, o) . (3.4)
Given a dynamical map S, the transition probability between an initial state o; € S; and
any given final state o’ is defined to be

P(o}, 0i) = [O(0}, So)))* = [O(a, ap)l. (3.5)
This is the additional kinematical structure we need on our general mechanics to formulate
the Kabir principle.
Recall that T is a dynamical symmetry if and only if S™1T' = T-1S. Suppose a dynamical
map S satisfies this condition. Then,
O¢(Ta;, S(Tﬁla})) = O¢(Ta;, T(Sfla})) = O¢(To;, To}) = Oi(oy, o)) (3.6)

where in the second step we have set s; = S™'¢% and in the last step we used (3.3). On the
other hand, (3.4) and (3.1) imply

Oi(ay, 07) = Of(So;, Saj) = Oy(a}, So). (3.7)
The last two equations and the definition (3.5) of transition probability implies
P(0},0:) = P(To}, T '0}). (3.8)

Thus, we have shown that if 7" is a symmetry of the dynamical map S then the transition
probability between the states o; and ¢y must equal that between the two states obtained
by a time reversal. Therefore if the transition probability between any two states and their
time reversed versions differ observationally, then the time reversal symmetry is broken by
dynamics.?

3 Tt is worth noting that the actual transition rate is not determined solely by the transition probability. In
the leading order approximation (“Fermi’s golden rule”) the transition probability has to be multiplied
by the density of final states. But in practice one can easily take care of this issue and verify whether or

not the transition probability is symmetric under time reversal.
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As with the discussion of the generalized Curie principle of section II, this generalization
of the Kabir criterion does not refer to the Hilbert space structure of the space of states or
linearity (or anti-linearity) of various maps. In particular, in the case of quantum mechanics,
while it incorporates the standard treatment neatly summarized in section 3 of [1], the results
would hold even if, say, the S-matrix were anti-unitary. As with the Curie principle, this
generalization may be useful to non-linear generalizations of quantum mechanics. However,
in classical mechanics, there are no obvious structures corresponding to the overlap map and
the subsequent notion of transition probability. Therefore, unlike our discussion of section
II, the present discussion has no implications to classical mechanics.

IV. DISCUSSION

Apart from obvious advantages of inherent to a generalization, already in the context
of quantum mechanics, the setting of general mechanics presented here serves to bring out
the elements and structures that are essential in the discussion of C'P and T violation.
In particular, neither the linear structure not the details of the Hermitian inner product
of the space of quantum mechanical states is essential. Secondly, the primary distinction
between C', P, C'P and T lies in the fact that while C', P and C'P leave the space of ‘in’
and ‘out’ states invariant, 7" maps the incoming states to the outgoing ones. In standard
quantum mechanics, this has the implication that while C, P and CP are represented by
linear, unitary maps, 7T is represented by an anti-linear, anti-unitary map. However, from
the perspective of general mechanics this difference is not primary to the distinction between
the Curie and Kabir criteria.

Finally, Ref. [1] also provides a succinct summary of ideas for testing 7" violations through
the measurement of the dipole moment of elementary particles, such as a neutron. I will
just add a phenomenological remark. The electric dipole moment is not invariant also under
the parity operation P. Therefore, even if one were to observe an electric dipole moment,
one cannot directly conclude that there is T" violation.

[1] B.W. Roberts, Three merry roads to T-violation, talk at the Worksop on Cosmologogy and
Time, held at Penn State, April 2013 (pre-print).

[2] S. Weinberg, Quantum Theory of Fields Vol 1, pp 244-246 (Cambridge University Press, Cam-
bridge, 1995).

[3] R. F. Streater and A. Wightman, PCT, Spin, Statistics and All That, Chapter 4 (Benjamin,
New York, 1964).

[4] J. Yngvason and H. J. Borchers, H. J. On the PCT-theorem in the theory of local observables,
arXiv:math-ph/0012020.

[5] A. Ashtekar and T. Schilling, Geometrical formulation of quantum mechanics, in: On FEin-
steins Path, edited by A. Harvey (Springer-Verlag, Berlin, 1998), 23-66; also available at
arXiv:gr-qc/9706069.
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Response to Pashby: Time operators and POVM observables in
quantum mechanics.

Gordon N. Fleming

Presented at the Workshop on Cosmology and Time, April 16-17, 2013,
Pennsylvania State University, Univ. Park, PA

Abstract: | argue against a general time observable in quantum mechanics
except for quantum gravity theory. Then I argue in support of case specific
arrival time and dwell time observables with a cautionary note concerning
the broad approach to POVM observables because of the wild proliferation
available.

First, a terminological idiosyncracy of mine: I follow the admonitions
(which will not be defended here) of Jean Marc Levy-Leblond [10] and
Hans Christian von Bayer [22], to drop the term particle and call the bosons
and fermions of the world, quantons.

1. Between Pashby and Hilgevoord

Back in 1998 professor Hilgevoord [9b], extensively referred to by Pashby
[15], criticised a long paper I co-authored with Jeremy Butterfield [7], in
which we discussed (among other things) Lorentz covariant 4-vector
position operators, assigned to space-like hyperplanes, and with operator
valued time components. Hilgevoord objected not only to the operator time
components, but to the requirement of Lorentz covariance for the position
operators as well! I did not then and do not now agree with these objections,
for the time components were in no sense independent or general time
operators, but supervened on the space components by being linear functions
of them and this enabled the covariant transformation property. However,
notwithstanding this episode, I think I am more sympathetic to Hilgevoord’s
objections [9c] to a general time operator in quantum mechanics (QM) than
Pashby is. I will elaborate on this below.

On the other hand, I agree with Pashby’s support of what I will call case
specific time operators in QM, tentatively interpreted, when non self adjoint,
as POVM observables. There are, however, delicate issues regarding the
POVM interpretation of observables which I want to discuss in the context
of such time operators. But first, my sympathies with Hilgevoord.
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2. Time, observables and measurement

There are two brief arguments, other than Pauli’s [16], that I would mount
against a general, canonical, time operator in QM. They are first, and most
importantly: In QM, space and time or space-time, are not, themselves,
dynamical systems. QM is a theory of temporally persistent dynamical
systems, indeed of eternal systems, which live in a fixed classical space-
time. Unlike Quantum Gravity research or Quantum Cosmology, which seek
a QM of space-time and must have general, operator valued, space - time
observables per se, standard QM has no such need. The basic observables of
standard QM, represented by self adjoint operators, are designed to answer
questions about the possible values, or probabilities for values, of possible
properties of persistent physical systems, at specified times (or, more
relativistically, on specified space-like hypersurfaces). Even so-called
unstable systems, which we normally think of as temporally transient, are
included in this construal. We need only view the final decay products, the
unstable parent quanton and the earlier formation progenitors as the final,
middle and initial configurations, respectively, of a spontaneous internal
transformation of the persistent system.

Second: I follow Ghirardi [8], Pearle [17], Penrose [18] and others in
regarding primordial, stochastic state reduction (which we merely exploit in
our measurements) as the really serious absentee in current QM. If and when
this theoretical gap is filled, via improved versions of one or another of the
already proposed schemes, or otherwise, I see it as only enhancing the
special status of time in QM. For while state reductions (the exploited ones)
can be tailored to specific observables and can have very varied relationships
to spatial locations (think of reductions to near momentum eigenstates), they
all occur at essentially definite times, either (the exploited ones) at times of
our choosing or (the primordial ones) at wholly random times or, again, on
space-like hypersurfaces. So there would be no question of measuring when
the primordial reductions occur and trying to measure just when a
measurement exploited reduction occurs (within the exploiting
measurement) would be an instance of measuring a case specific time
observable.

This conception of the reality of apparent state reductions may be wrong. If
so, and genuine state reduction is replaced by an i//usion induced by
something like environmental decoherence [20]; well, that also is an ongoing
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temporal process which would not, I think, alter the special status of time in

QM.

The upshot is that I think Dirac, whether he miscalculated (as Pashby
suggests) or not, was either lucky or wise in not sticking to his original guns
[6a] of trying to formulate QM in the extended phase space with the
extended Hamiltonian satisfying a constraint equation and with time
emerging as an operator. For even without gravity to deal with, and
notwithstanding the invaluable contribution of Dirac’s later study of
constrained dynamical systems [6b], I suspect that such an approach to QM
in general would have encountered analogues to the kind of conceptual
problems which plague quantum gravity research today. In quantum gravity
research these conceptual problems must be faced; in the formulation of QM
they would have been and were artificial.

3. Time-energy indeterminacy

While we do not have a general time observable in quantum mechanics, we
do have a universal time-energy indeterminacy relation (TEIR) and it is
striking how exactly opposite is our traditional interpretation of that relation
from Heisenberg’s early interpretation, as described by Pashby. While
Heisenberg saw AT as an indeterminacy in a time of occurrence and AE was
an interval between precise energy values, we now have AE as the standard
deviation indeterminacy in the system energy while AT is the lower bound
on the intervals defined by AT, = AX/I< X >I for arbitrary observables, X.

Derived by Mandelstam and Tamm [12] from the Robertson [19] general
indeterminacy relations,

AXAE>(h/2)l< X >, (1)

the AT of their TEIR, ATAE >(h/2), is the time one must wait for
expectation values to change by amounts comparable to the corresponding
standard deviations. This immediately yields the stationarity of energy
eigenstates and, as Aharonov and Bohm [1] pointed out, it places no
restriction at all on how quickly one can, in principle, perform an arbitrarily
precise measurement of the energy of a physical system! However, for many
states of interest, the standard deviation, A E, can be infinite and then (1) and

the TEIR tell us nothing.
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Accordingly, stronger indeterminacy relations have been derived with new
time-energy relations among them [5]. Uffink and Hilgevoord [21a] have
obtained one of the most interesting versions which I just mention here
without further comment.

Let TI(E) be the projection valued spectral resolution of the Hamiltonian,
H= jEdf[(E) . For unit norm states let W, (y), where 0 <a <1, be the size of
the smallest energy interval, /, such that,

<yl [dIE) Iy >=a. ()

Let, 7,(y), where 0 <3 <1, be the smallest time displacement such that,

<w|exp(—%f]rﬂ(w)jly/>=ﬁ. 3)
Then it can be shown that,
T, (Y)W, (y) > 2h arccos(ﬁ—’_;T_aj . (4)

In particular, for .= 0.9 and B=+1/2, one obtains, 7 W, >0.9%[9a].

4. Case specific time observables

Now I turn to case specific time observables where I agree with Pashby
concerning both the possibility and the desirability of identifying and
examining such observables in QM for various times of occurrence or
durations.

Concepts of quantum observable times come in at least three forms: (1)
times of occurrence (arrival times) of specified events, (2) intervals of time
(dwell times) spent in specified regions or conditions or (3) (relative times)
of occurrence of one event relative to a reference event. These are of a
different nature from the ‘property’ observables for persistent systems. They
acquire their objective indeterminacy from supervening on the property
observables. They can be easily motivated within standard QM, beginning
with the definition of case specific time operators. Until comparatively
recent times such concepts have not received much attention, but are under
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intense examination now [13], and, as Pashby suggested, usually lead to
non-self adjoint operators.

Perhaps the very simplest (not to say simplistic) example, introduced by
Aharonov and Bohm [1], and one of three examples considered by Brunetti
et al [3a, c], among Pashby’s sources, is the arrival time operator,

i =_1(@;+;@j | )

2\p D

With this operator one can, supposedly, calculate the average time of arrival,
at the spatial origin of coordinates, of a free, non-relativistic quanton moving
in one dimension. The position of the quanton at parameter time, t = 0 is
represented by the operator, x, and the momentum, by the operator, p.
Because 0 belongs to the spectrum of p and the ‘inverse’ of p appears in
(5), T, , while symmetric, is not self adjoint. That ‘inverse’ restricts the
domain of definition of 7,. I think it is worth examining this toy model in
some detail.

The motivation for the time operator construction, (5), is just the time
dependence of the Heisenberg picture position operator for the free quanton,

?c(t):2+£t. (6)
m

The expectation value of position is zero at the precise time,

t,=—-m<x>/< p>,but this expectation value allows for contributing
position eigenvalues that lie far afield from zero. There is no single, precise
time for the quanton to arrive (be detected) exactly atx = 0, so the time
operator, T , that, hopefully, ‘describes’ the distribution of possible times is,
perhaps naively, taken to satisfy the equation,

0=x+2T1+7L | (7)
2m 2m

where the symmetrized product allows for momentum—time incompatibility.

T, of (5) is the solution to (7) and, indeed, it fails to commute with the
quanton momentum and its position at 7 = 0.
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[p.T,]1=itmp", [X,T,1=(ihm | 2)(p7X+%p7) ®)

The right hand commutator gives rise to the curious indeterminacy relation,
in which the indeterminacy of the time of arrival at the spatial origin of
coordinates, x = 0, competes with the indeterminacy of the quanton position
at the parameter time, ¢ = 0. Furthermore, the lower bound on the product of
the standard deviations is governed by the expectation value of a function of
position and momentum that could well diverge for many states!

From the left hand entry in (8), the momentum-time commutator, we do
obtain the expected time-energy commutator,

(p* /2m,T,]=ih, 9)

but this does not conflict with Pauli’s argument since the time operator is not
self adjoint.

5. The POVM perspective

But just how shall we work with 7, in detail, given that it’s not self adjoint?

Brunetti et al tell us it is maximally symmetric with deficiency indices of 2
and 0. A more familiar account of the non-self adjoint character of 7, is

provided by examining its continuous spectrum, generalized eigenstates. In
the momentum representation they are given by,

_ | P
E(p)= - exp{h . t} , (10)

for the eigenvalue, 7 (that square root has to be handled carefully!).
Notwithstanding the symmetry of 7,, they are non-orthogonal, with the inner

products,

<EIE >=6-1)+ L (11)
Tt—t

where Pv denotes principal value. So 7, is not subject to a projection valued

spectral analysis employing a projection valued measure (PVM). In its place
a positive operator valued spectral analysis employing a positive operator
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valued measure (POVM) is available. Why is this fact useful in physics and
how much difference does it make?

There have been three main sources of the idea that POVMs comprise a
valuable generalization of the standard concept of quantum observable. The
earliest lies in the work of the physicist-philosopher, Gunther Ludwig [11],
who anticipated the utility of POVMSs in accounting for the probability
distributions that could arise from innovative experimental procedures. Next
came the recognition of POVMs as more adequately describing actual
laboratory probability distributions due to technological limitations in
attempts to implement ideal measurements of standard observables. The
book, “Quantum Measurement” by Braginsky and Kahlili [2] is a good
introduction to this source. Finally, there is a community of theorists who
see in POVMs a vast source of valuable generalized observables that greatly
extend our capacity for examining quantum systems. Paul Busch is a leader
in this field and the books, “Operational Quantum Physics” [4a], which he
co-edited, and “Time in Quantum Mechanics”, to which he contributed [4b],
are representative. The subject of POVM observables met with severe
criticism in early days [21b] and calls for caution still occur [7b] (I will add
to them shortly), but the field has weathered the criticism and is very active.
The original mathematical work on POVMs is primarily due to Naimark
[14].

A POVM for a single observable, X, is defined by a family of bounded, non-
decreasing, positive operators, P(x), where, —oo < x < o0, satisfying the
following conditions: for any, x, <x,,

0= P(~e) < P(x,) < P(x,) < P(eo) = 1 . (12)

From these operators one can build the positive operator associated with any
given member of a sigma field of Borel sets of the real line.

A PVM is the special case in which the P(x) are projection operators, Il(x),
satisfying the further condition that,

TT(x )TT(x, ) = TT(x,)(x,) = TI(x,) - (13)
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If such a PVM comprises the spectral resolution for a standard observable,
X, then the self adjoint operator, X, for that observable, is just the first
moment of the spectral resolution, i.e.,

X:= jxdﬁ(x). (14)
It follows from (13) that for any function, f(x),
FX)= [ f(x) dli). (15)
In particular, for a unit step function,
O(x—X)=T(x), (16)

and the PVM spectral resolution is recoverable from the first moment
operator. Also any PVM provides the spectral resolution for some self
adjoint operator.

Nothing of the kind holds for POVMs that are not PVMs! For such POVMs
there is no condition analogous to (13). The positive operators in such a
POVM need not even commute among themselves! Consequently, the
POVM spectral resolution is usually not recoverable from the first moment
operator!

Suppose we have a POVM, P,(r), which provides a generalized spectral
resolution for our time operator, 7, . The mathematical meaning of this
statement entails that two conditions must be satisfied. The first is that 7,
and the first moment operator, Jt dP,(r) , have the same ‘matrix elements’,
1e.,

<z9,f0y/>:_[td<19,130(t)y/>, (17)

for all © and any y in the domain of definition for 7, . The second condition

for the POVM is that the squared norm of the action of 7, equals the
expectation value of the second moment operator of the POVM, i.e.,

[T = [ra<v.Row>. (18)
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In the QM application of POVMs , the probability for a measurement of 7,
to yield a time lying between ¢, and #, would be given by,

9, <1<6)=< [dB(1)>= < (By(1,) = B(1,) > (19)

h

The broadest use of POVMs in QM is not to provide generalized spectral
resolutions for observables identified with non-self adjoint operators, as we
are now considering, but to define generalized observables in terms of a
POVM directly via (19) alone.

But now consider the following three parameter family of POVMs, built
upon some hypothetical P(r), where 0<a<1, A>a and 7, a time, is
arbitrary,

P, (1):=aPAt+1)+(-a) ﬁ(W) (20)
—da
If the P, (1) are all arrival time candidate POVMs, they must be time
translationally covariant, i.e.,
expl(i/WHT] P, , .(t) exp[-(i / W)HT]=P,, (1 +7) (21)

This can hold only if A = 1. But both dwell time and relative time observables
would be invariant under parameter time translation. Still, for dwell times

we would want to require T = 0.

Regardless of the kind of time observable the POVM family, (20), is
considered for, the first moment operators for a/l those POVMs are equal,

tdP,, (t)=|tdP(). (22)
[rap,; =]

Consequently, if P (r) belongs to the family (20), they all have first moment
operators with the same matrix elements as our 7,! For any given quantum

state, they all give the same answer to the question, ‘When is the average
time of arrival at the origin?’.

The second moment operators of the various POVMs in (20) are not the
same and their expectation values vary from the smallest, provided by P(r),
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to larger values that increase without bound as @ 2 1. So under our
assumption about P,(r), that it belongs to the family in (20), at most a few
members of the family will satisfy (18) while all members satisfy (17). In
fact, since our time operator is maximally symmetric, it is known that only
the one member of (20), P,(r), will satisfy (18). While this is good news for
our time operator, because of uniqueness, it also means that all the other
POVMs in the family can not provide generalized spectral resolutions for
any symmetric operator, whatsoever!

To see that, let the state vectors, 7, be an orthonormal basis in the state
space. Then satisfying both (17) and (18) requires,

— 2 —~
S f<nJrdbow s =<y.[F B>, (23)

All the members of (20) yield the same left hand side. Only P,(r), among
them, yields the correct right hand side. So only P,(¢) provides a spectral
resolution of the time operator, 7,, or of any symmetric operator. Note that if
P,(r) was a PVM instead of just a POVM, (23) would not be a requirement
at all, it would be an identity!

Notwithstanding the fact that within the family, (20), only P,(¢) can, satisfy
(23), we can still, tentatively, regard the POVMs as defining time
observables, T,, ., in the broad sense. The squared standard deviation for
these observables would be defined by,

(AT, ) =< [1’dP

a,A,T

(t)>—<jtd13

a,A,T

(t)>* (24)

Setting A = 1 for an arrival time observable, detailed examination of (20)
results in,
(AT,,.) 2(AT,,,)* +at’ /(1-a). (25)

The POVM, P

a,l,t

(1), yields no eigenstates at all for the observable, 7, .

unless a=0 or T= 0! Since 7, does have continuous spectrum eigenstates
(see (10)) it follows that P,(r), belonging to (20), must equal

P, o(t)=P,, (t)=P(). (26)

10
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Regarding the others, P, .(1); is it physically reasonable to admit, as

observables, POVMs that have no (generalized) eigenstates throughout the
state space? For the affirmative, see three paragraphs below.

The dwell time case, in which A may vary but T = 0, leads to a similar result
in which T,, o can only have an eigenstate for the eigenvalue, 0, unless a =0
or A = 1. The relative time case is more nuanced.

Before dismissing these examples as merely bizarre curiosities, bear in mind
that I just cobbled (20) together for this workshop and, very probably, it just
scratches the surface of ways in which one can build POVMs, all of which
share the same first moment operator. If there are much more varied ways of
doing that, it seems likely to lead to instances of the query, “Which one?”.
The definition of 7, via (7) was tentative, after all.

From PVM observables one can extract everything from the first moment
operator, even the eigenstates. From a POVM observable, interpreted
broadly, one can not even know, from the first moment operator, if there are
eigenstates! This makes me wary of the broad approach to POVM
observables. The POVM theoretical community, however, regards a
particular subclass of POVMs devoid of eigenstates as very important.
Called informationally complete, these POVMs yield probability
distributions that distinguish between any two distinct quantum states [4a].
No PVM can do that.

Returning to Pashby and Brunetti et al: the latter, as indicated by Pashby,
explicitly construct the POVM that corresponds to 7,, according to
(17,18)[3a], and their construction, while natural and physically plausible,
would not be uniquely compelling, if they hadn’t known what operator, 7,
they were after (see Pashby’s footnote 11 for differing interpretations of the
POVM construction). Elsewhere they show [3b] that time translationally
covariant POVMs lead to an indeterminacy relation for arrival time
observables alone! Not a time-energy indeterminacy relation, but a time
indeterminacy relation. The standard deviations of their time observables are
never less than a universal constant divided by the expectation value of the
system energy! Accordingly, the 7, generalized eigenstates, mentioned
above, (10), are the limits of finite norm states with energy expectation
values that grow without bound in the limit.

11
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As case specific time observables gain importance from the POVM
approach to time in QM, issues of the sort considered here will have to be
further clarified. An approach to these issues may have recourse to
Naimark’s theorem [14] , which Brunetti et al exploit in their constructions,
and Pashby mentioned. Naimark showed that every POVM is the projection
from a larger Hilbert space of a PVM. This PVM would be the spectral
resolution of a self adjoint operator in the larger Hilbert space which is then
projected down to our first moment operator. Usually the larger Hilbert
space is regarded as having mathematical significance only, but it can take
the form of an Hilbert space for a supersystem containing the system of
interest as a subsystem. I suspect that it would be advantageous to be able
to interpret the supersystem and the larger Hilbert space, physically. Still,
each of my P,, .(r) POVMs would lead to different PVMs in (different?)
larger Hilbert spaces and different, self adjoint, ‘time’ operators, all of
which would project down to a first moment operator with the same matrix
elements as our 7,, . . So again the question looms: “Which one?”.

For both case specific time observables and others, many theorists are
enamored of POVMs because of the panoramic garden of delights they
seem to offer. While delights there may be, the garden is not without
weeds!
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In his presentation, Alexis de Saint Ours often appeals to the writings of Carlo Ro
and Julian Barbour, examining their relational, empirical, referential accounts of time. In
Barbour’s essay, “Relational Aspects of Time and Space,” Barbour urges us to pay attention tc
“the discrepency between theory, in which change of variety is referred to a uniform standard,
and actual practice, in which change and variety are in fact referred, not to space and tin
remain invisible, but to othefariety...Ultimately, the reason why perfect uniformity cannot
serve as the practical basis of a quantitative science is that perfect uniformity is nothing.
Leibniz said, ‘Things which are uniform and contain no variety are never anything but
abstractios, like time, space, and the other entities of pure mathematics.” You cannot measure
change of variety against uniformity, because that is trying to compare something with nc
whereas it is only possible to compare one thing with another thing.” (p. 253) Here, however,
Barbour is too severe. The abstractions of pure mathematics are constantly brought into
relation with the referential discourse of mechanics concerned with clocks, atoms and lar
astronomical systems, despite the fact that the uniformities of pure mathematics are not
empirically grounded. The issue, I think, is how scientists bring these two kinds of discou
relation; good science needs them both. So Barbour is wrong to demand that referential

do the work of analytic discourse.
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The parameter time, t, has haunted physical theories since Newton defined it, at t
beginning of the Principias “absolute, true, and mathematical time, [which] of itself, and 1
its own nature, flows equably without relation to anything extérimainediately distinguishing
it from “duration: relative, apparent, and common timesome sensible and external (whett
accurate or unequable) measure of duration by the means of motion, which is commonly
instead of true time; such as leour, a day, a month, a year.” Thus it seems that there are two
ways to investigate time: a priori as a condition of the intelligibility of things, and a poster
terms of the empirically determinable periodicity of things. (Another feature of time is its
unidirectionality, apparent in the irrevocability of things; notably, Newton locates its asym
in his description of a priori time.)

In science as in ordinary life, in order to think well we must be able to refer succes
so that we can show publicly and clearly what we are talking about. And we must analyz:
(here I invoke Leibniz’s definition of analysis as the search for conditions of intelligibility): we
must discover productive and explanatory conditions of intelligibility for the things we are
thinking about. In order to evaluate whether our means of analysis are really productive ¢
explanatory, we need to be able to dengbeblicly and clearly-what we are considering. An
in order to check whether our ways of referring are really public and clear, we must set tt
of investigation in a more abstract discursive context where we can study it deeply and b
Sometimes one task is more difficult, sometimes the other, sometimes both. The tasks
themselves are very different, so it is not surprising that they generate different kinds of
discourse. In referential discourse, we do our best to honor the extra-discursive world as
is, with the best empirical means at our disposal; in analytic discourse, we treat the worlc

abstractly, and totalize, simplify, idealize or infinitize it in the many ways that discourse a
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The advantage of analytic discourse is that it is great for systematization and explanatio
tends to unfocus the specificity of things, to make them ghostly. The advantage of refere
discourse is that it does better justice to the rich, specific variety of things, but it often los
way in the forest of observation because of all those trees. In sum, science does its worl
when we refer and analyze in tandem.

The kinds of representations that make successful reference possible and those 1
successful analysis possible are not the same, so that significant scientific work typically
proceeds by means of heterogeneous discourses that must be rationally reconciled with
collapsing into the other. The growth of scientific knowledge often stems from the work
reconciliation, whose fine structure has not received the attention it deserves. It has esc.
notice of many philosophers of science, perhaps because they are so deeply influenced
which must impose homogeneity on the arguments it formalizes, so that they neglect the
opportunities offered by, and the constraints imposed by, discursive heterogeneity in his
central reasoning. Philosophers need to pay more attention to this aspect of scientific pr
how scientists bring disparate discourses (and modes of representation) into rational, ar
productive, relation.

But what about the scientific investigation of titiReferential discourses about time
includeLeibniz’s account of time as following upon—as posterior te-the relations of existing
things, an account which (given his characterization of monads) guarantees the causal
connectedness, continuity and lawfulness of physical processes, as well as their tempor
asymmetryln Leibniz’s universe, everything strives, headed towards the future. Conversely,
there is Boltzmann’s referential definition of time, used in his argumtrgt the apparent

asymmetry of physical processes in time, suggested by the principles of thermodynamic
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explained away if the macroscopic description of the situation is replaced by a molecular
description: heat phenomena (the unidirectionality of the increase of entropy) can be red
and redescribed as the collisions of large numbers of particles, governed by the laws of

Newtonian mechanics. The second law of thermodynamics is a statistical regularity, not

universal and necessary law like the laws of Newtonian mechanics. We are misled by th
that we apprehend events at the macroscopic level via the approximations provided by ¢
organs. In the first case, the insistence on defining time referentially results in an accoun
asasymmetrical; in the second case, an equally referential account leads to the conclusi
the asymmetry of time is only apparent.

Another example is the standardization of clocks in terms of ephermeris time (recl
in terms of the movements of the sun, moon and planets, to avoid the unpredictable irreg
of the mean solar time scale), adjusted both with respect to standards developed in relat
cesium atomic clock, and with respect to relativistic considerations. (Julian Barbour sugg
we could move from defining ephemeris time in terms of our solar system, up to the who
cosmos—at the least the whole observable cosmos.) Conversely, other modern cosmolot
suggest that we use the curvature of the universe as an observable that can stand in for
the first case, again, the insistence on defining time referentially results in a definition of
terms of a clock that is essentially periodic; in the second case, it results in a definition o
that is asymmetrical and unidirectional.

What if we treat time analytically, as a condition of intelligibility of everything? Unli
his opponent Leibniz, Newton invokes analytic time instead of referential time. In Newtor
mechanics time is geometrized first of all as a line. In the diagrams of the Principia, the |

inertial motion (a virtual motion un-deflected by a center of force, nowhere realized in the
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universe) represents both the spatial displacement of a particle upon which no forces aci
‘equable’ unrolling of time. Because Newton presupposes that time is uniform and linear, an
given prior to the creation of bodies and forces, he can let it play the role of independent
with respect to which other physical parameters are differentiated and integrated. By ass
an origin and axes to the geometry of space, Newton also (as we would say now) identifi
Euclidean line with the real numbers; this convention guarantees the directionality of the
it seems as if Newtonian time is unidirectional. However, all the laws of Newtonian mech
are time reversal invariant. That is, if there is an initial event A that must lead by the laws
Newtonian mechanics to another event B, then it is also the case that the event B” (in which all
particles are in the same configuration as in event B, but the velocities of all the particles
reversed) must lead to A" (in which all particles are in the same configuration as in event A, but
the velocities of all the particles are revers8d)Newton’s formal treatment of time is
ambiguous.

By contrast, Sadi Carnot treated time analytically in his Réflexions sur la puissanc
motrice du feu, and formulated his second law of thermodynamics to assert that the entrc
isolated system not in equilibrium will tend to increase ovee tithus in Newton’s analytical
treatment of time, the temporality of mechanical systems seems to have no intrinsic direc
in Carnot’s treatment it does.

Recall that Boltzmann claimed that his referential reduction of (macroscopic) heat
phenomena to (microscopic) Newtonian systems explained away the illusion of the arrov
time. But Leibniz’s referential reduction of Newtonian absolute time to relational time asse
and indeed explained the arrow of time. In the theorizing of contemporary cosmologists,

referential reduction of the parameter time to the measurement of the changing curvature
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universe, or to the ephemeris time of the great clock of the universe, is similarly non-corr
in the first case we get a unidirectional time, in the second case we do not. In sum, we fit
scientists who wish to define time analytically do not agree about its fundamental nature,
neither do scientists who wish to define time referentially. The arguments of scientists wt
define time referentially (like Barbour and Rovelli) in order to clear up the confusions of
scientists who wish to define it analytically do not in fact settle the disputes, and the conf
among scientists who define time referentially are also not settled by their abstracter coll
who deploy analytical definitions.

However, the philosopher of science need not counsel skepticism. Our best hope
understanding time may lie in looking at what happens when referential and analytical di:
fail to be wholly reconciled: to what extent are they unified (and how is that unification po
and where and why does that unification fail? Thus we may learn something important al
time by studying the debates between Leibniz and Newton, or the current attempts of sci
integrate quantum mechanics and general relativity. Scientific language used in the stud
elaborate and systematize abstract thought is, clearly, very different from language used
scientists working in the laboratory, field and observatory. Texts that announce importan
bringing two or more spheres of activity into intelligible relation, are therefore typically
heterogeneous and multivalent, a fact that has been missed or misunderstood by philosc
who equate rationality with the kind of discursive homogeneity required by formal logic.

Philosophers of science need to ask new questions that bring the work of combin:
itself into focus. Is there a useful taxonomy of strategies of combination among heteroge
scientific discourse about the nature of time? How does it contribute to the growth of

knowledge? If the tasks of analysis and reference are often disparate, we may expect thi
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example, the records kept by astronomers (even when their work is informed by theory)
differ from the theorizing of physicists and natural philosophers (even when they are con
primarily with celestial systems). The modes of representation and the idioms of mathen
and scientific expression will differ; and the explication and organization required of natu
language will differ from one task to the other. What we can then expect are composite t
both kinds of endeavor; and the nature of this composition can suggest a preliminary tax
of ‘strategies of integration.” We need a better account of these strategies. The kinds of
representations that make successful reference possible and those that make successfu
possible are not the same, so that significant scientific (and mathematical) work typically
proceeds by means of heterogeneous discourses that must be rationally reconciled with
collapsing into the other. The growth of scientific knowledge often stems from the work «
reconciliation, whose fine structure has not received the attention it deserves.

So let us return once more to Julian Barbour. In his papke, Development of Machian
Themes in the Twentieth Century,” Barbour identifies three main strands in Mach’s thought: a
criticism of Newton’s concepts of absolute space and time; a conviction that the task of science
is not to set up theories about the world; and the suggestion that the universe can only b
understood properly if it is treated as a whole. Thus Mach urges scientists to reformulate
mechanics on a relational basis and to stay ‘grounded,’ establishing empirical connections
among directly observable phenomena. These convictions go along with, oddly, a rather
commitment to hom This combination led to Mach’s principle (as Einstein called it) that
locally observed inertial propertie$ particles arise not from absolute space but from “the

combined effect of all the dynamically significant masses in the universe.”



Workshop on Cosmology and Time -28-

As the great dialectic of science and the philosophy of science proceeds from the
19" century to the present, Mach (and Poingplaéy a significant role, and so too do Rovelli
Barbour. | suggest, however, that all three, like Leibniz, cannot keep from elaborating an
discourse that stands in problematic (but productive) relation to the referential discourse
focus on, although they try to obscure the intervention of that analytic discourse. Such ar
account would take me beyond the bounds of this respoutsene feature of Barbour’s
discourse mostly clearly betrays its hybridity. That is his insistence that his theory must a
“the complete universe.” (Recall his conception of ephemeris time calculated on the basis «
whole universe.) This is precisely the kind of theorization that analytic discourse offers, a
with abstraction and uniformization, as Kant warned us: reason (which is about discourse
the understanding is about perceived reality) seeks the full series of conditions and prete
we can think them altogether. Barbour is here invoking the system of cosmological ideas
Kant goes after in the First Antinomy, in the Transcendental Dialectic of the Critique of P
ReasonIn sum, this aspect of Barbour’s theory, its insistence on the unity and organization of
the universe, does not come from the patient measurement of stars by astronomers nor 1
recording of the ticks of the cesium atom; it comes from the speculation of analytic discot
which seeks the conditions, indeed the ultimate conditions, of the things of this world. So
like all good scientists, while insisting on the importance of empirical methods and the

irreducible diversity of things, must also bring reference and analysis into rational relatior

This paper is the first draft of a response, and so far without a list of references, which w

added later as it is developed in tandem with the paper to which it responds.
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Abstract

I will give a broad overview of what has become the standard paradigm
in cosmology. I will describe the relational (& la Leibnitz) notion of time
that is often used in cosmological calculations and discuss how the local
nature of Einstein’s equations allows us to translate this notion into state-
ments about ‘initial’ data. Classically this relates our local definition of
time to a quasi-local region of a particular spatial slice, however incorpo-
rating quantum theory comes at the expense of losing this (quasi-) locality
entirely. This occurs due to the presence of two, apparently distinct, is-
sues: (1) Seemingly classical issues to do with the infinite spatial volume
of the universe and (2) Quantum field theory issues, which revolve around
trying to apply renormalization in cosmology.

Following the cosmological principle - an extension of the Copernicus
principle - that physics at every point in our universe should look the
same, we are lead to the modern view of cosmology. This procedure is
reasonably well understood for an exactly homogeneous universe, however
the inclusions of small perturbations over this homogeneity leads to many
interpretational/ conceptual difficulties. For example, in an (spatially)
infinite universe perturbations can be arbitrarily close to homogeneous.
To any observer, such a perturbation would appear to be a simple rescal-
ing of the homogenous background and hence, physically, would not be
considered an inhomogeneous perturbation at all. However, any attempt
to choose the physically relevant scale at which perturbations should be
considered homogeneous will break the cosmological principle i.e. it will
make the resulting physics observer dependent. It amounts to ‘putting the
perturbations in a box’ and a delicate practical issue is that the universe
is not static, hence the scale of the box will be time dependent. Thus
what appears physically homogeneous to an observer at one time will not
appear so at another.

This issue is brought to the forefront by considering the canonical
(space and time rather space-time) version of the theory. The phase space
formulation of General Relativity, just as for any other theory, contains
the shadow of the underlying quantum theory. This means that, although
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the formulation is still classical, many of the subtleties that are present in
the quantum theory are already apparent. In the cosmological context the
infinite spatial volume renders almost all expressions formal or ill-defined.
In order to proceed, we must restrict our attention to a cosmology that
has some finite spatial extent, on which our relational notion of time is
everywhere definable. In particular, this would constrain the permissible
data outside our ‘observable universe’.

This difficulty is an IR or large (spatial) scale issues in cosmology,
however in addition there are UV or short (spatial) scale problems that
need to be tackled. There are the usual problems of renormalization,
which are further complicated by the fact that the universe is not static.
In the cosmological setting this leads to new IR problems which again
prevent one from taking the spatial extent of the universe to infinity.
The physical relevance of this problem, the consequence for defining a
time variable, and the distinction of homogeneous and inhomogeneous IR
issues will be discussed.

1 Physical cosmology

The modern view of cosmology is a profoundly phenomenological one.
One interprets observational data in terms of approximate solutions to
Einstein’s equations assuming the matter content can be thought of as a
fluid. The observations themselves are often only proxies for the desired
observable, themselves containing various levels of approximations or as-
sumptions. In addition, cosmology represents an enormous extrapolation
of scales - 15 orders of magnitude or more - in energy density, acceleration,
length and time from the more familiar laboratory scale physics that has
been tested. Given these caveats, one should not expect that cosmological
observations perfectly agree with our currently established understanding
of physics, and indeed this is not the case.

Observations have shown that on galactic scales, evolution does not
follow from Einstein’s theory for any know matter content. Whilst there
is some debate as to whether this Dark Matter may, in fact, be due to our
lack of understanding of gravitation on these scales (MOND, TeVeS etc.)
or perhaps a consequence of our approximations, it is generally believed
that it is a phenomenological description of some, as yet undiscovered,
types of matter. Indeed it would be rather more fantastic to think that
all the particles in existence have properties that can be probed in the
laboratory with current technology, and that there is nothing left to dis-
cover.

On much larger scales, approaching the size of the observable uni-
verse, it has also been shown that the expansion of space does not follow
our naive expectations. The phenomenological description of this effect is
Dark Energy and its underlying explanation is rather more open to debate,
with possibilities ranging from a new fundamental scale, modifications to
general relativity, misuse of averaging in cosmology, undiscovered types
of matter with radically different properties to those we currently observe
etc. In addition to these possible classical resolutions, there is also much
work on the possibility that Dark Energy is a consequence of the under-
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lying quantum theory.

At this point one may start to be concerned. We have a phenomeno-
logical description of our universe that can match observations only if
we postulate two new sources of matter/ energy, that together account
for approximately 96% of the total current matter/ energy content of the
universe. However, whilst we may know little of the underlying physics
of these new sources, there are a myriad of observations that all agree
on their overall cosmological effect. These observations paint a coherent
picture of the evolution of the universe over the last 14 billion years or so,
a picture that is continually being tested by new observations and predic-
tions. Whilst we may not know what it is made of, we can at least see
the whole elephant!

This wealth of every more precise observations, and the remarkable
success of the phenomenological approach, allows us to tackle the undel-
rying conceptual challenges inherent in cosmology, with the real possibility
of testing our conclusions in the near future. An excellent example of this
was the question of why regions of space that have not been in causal con-
tact look (statically) the same? How could different regions ‘know’ the
properties of the others? One explanation is that there was an earlier pe-
riod Dark Energy-like expansion - known as Inflation - which ensures that
the entire observable universe was, in fact, in causal contact. Of course
there are other possibilities, such as a universe with an infinite past (for
example a bouncing or cyclic cosmology), however different solutions to
this conceptual difficulty led to different predictions for other observables.
Whilst nothing has yet been completely ruled out, the current observa-
tions are able to distinguish between the most basic versions of these (and
other) possibilities.

2 Spatial extent and time

Of the many important conceptual challenges facing any approach to cos-
mology I will concentrate on two: the spatial ‘size’ of the universe and
the notion of time. Here I will argue that it is very likely that these two
issues are intimately related, with the relation coming from the underlying
quantum gravity formulation of cosmology (what ever it may be).

2.1 Time

Here, in line with the phenomenological under pinnings of cosmology,
I shall consider a very practical notion of ‘time’, taking it to be given
entirely by relative change. I will consider time as a relational concept,
which can be defined for any two sub-systems. If one of these sub-systems
is considered a ‘clock’, the state of the others evolve with respect to the
internal time given by the evolution of this clock. For example, consider
a system containing as sub-systems a swinging pendulum, a revolving
wheel and an observer capable of observing both. This observer may
choose to use the pendulum as a clock and ask questions such as "How
many revolutions of the wheel are there in one cycle of the pendulum?”
Of course, the observer may equally decide to use the wheel as a clock and
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ask "How many cycles of the pendulum are there per revolution of the
wheel?” The choice of which sub-system the observer chooses to use as a
clock is irrelevant, only the relative change between them is important.
Note that the inclusion of the observer here is important. If neither the
pendulum nor the wheel were in motion, the observer would be unable to
use either device as a clock, however the fact that the observer interacts
with them (via observing), implies that there must be another sub-system
that could be used for the observer to measure time. Namely the field
propagating this interaction (i.e. photons traveling from the observer to
the devices). Thus, should the clock be static, it may not be a useful
means of measuring time, however the observer’s act of seeing the clock
means that time can still be defined, simply by using alternative degrees
of freedom to register relative change. Consider the following example. A
person observes a clock to read mid-day. A second, distinct, observation
is subsequently made and again the clock reads mid-day. There are three
conclusions that the observer might draw,

e 12N hours have elapsed between observations, for N a strictly pos-
itive integer,

e the clock is in fact broken and some indeterminate period of time
has passed,

e no time has passed between observations.

The last case can be ruled out by the fact that the observer carries out
two distinct observations. That is, other degrees of freedom - say the
photon propagation from the observer to the clock - distinguish the two
events. Similarly the first possibility does not present any difficult, since
although this particular observation may produce in the same result -
the clock reads mid-day - other observables would not (for example the
charge in the battery). Finally the second possibility is the case in which
the sub-system the observer has decided to use as a clock is static. Clearly
this does not make for a useful method of measuring the passage of time,
however, equally clearly, it does not mean that time is not definable.
Other degrees of freedom that are responsible for the interaction of the
clock and the observer could be used to define this relational notion of
time. In practice this means that when we are choosing a particular
degree of freedom of our system to be a clock, we want to ensure that its
evolution is monotonic, at least for the period of our observation. If it is
ever static, we must choose a different degree of freedom. In the event that
every degree of freedom of the system is static, then, indeed, relative time
would not be definable, however in such a situation the observer would
also have to be static and evolution would have no meaning.

Typically we want to choose a clock whose evolution is largely unaf-
fected by the state of the other sub-systems (we might prefer that our
watches tick at a uniform rate despite swinging of our arms for exam-
ple), however this needn’t be the case. In cosmology for example, we may
choose to use the expansion of the universe as a clock and ask ”What is
the state of some matter content when the expansion is such and such?”
or "How does this state change when the expansion varies from x to y?”.
The evolution of the matter content is highly dependent on the expan-
sion of the universe, however we can still describe the evolution of one
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parameter in terms of another. In cosmological notation this amounts to
writing ¢ (a), where a is the scale factor and ¢ is some particular matter
content. This practical, relational notion is very typical for cosmological
observations, where one regularly refers to time via red-shift (closely re-
lated to expansion) and considers the relative change of energy density,
temperature, galaxy number density etc. with respect to red-shift. In
early universe cosmology it is also common to consider the evolution of
matter fields (in particular the inflaton) as defining a clock, thus writting
(for example) a(¢).

2.2 The relation to spatial extent

To demonstrate the plausibility of a link between spatial extent and tem-
poral evolution consider the following. General relativity provides us with
local equations, the solution of which in any finite region can be calculated
from data specified on the boundary of that region. Typically we consider
foliating the manifold using 3-dimensional slices, labeled by a parameter
t, in which case the required data can be specified at an ‘initial’ slice. The
solution in any finite region on any other slice requires data to be specified
only on a (different) finite region of this initial slice. For example, in order
to predict the motion of an apple as it falls, one does not need to specify
the data describing the sun at the time the apple is dropped (provided
the apple hits the ground within 8 minutes - the light travel time from
the sun to the Earth).

This heuristic explanation applies to any system that is ‘well-posed’ -
of which general relativity is an example. It essentially says that solutions
can be calculated by ‘evolving’ initial data in time and that if we are in-
terested only in a finite temporal extent, then we need only specify a finite
spatial extent of initial data (provided the speed of light is finite). The
passage of time for some (finite) system can then be operationally defined
by the expanding spatial region of initial data required to uniquely specify
the evolution of that system. That is, given the state of an observable and
a clock at some instant, to know how the observable will change in rela-
tion to the changing clock we need only specify the initial data required
to calculate this evolution. The longer the evolution, the more initial data
that is required.

Consider for example an observer and a clock on some slice 3; and
suppose we provide initial data on a spatial slice ¥;, prior to the slice
containing the observer (i.e. some time before t). Both the observer and
clock are a (presumably extremely complicated) solutions to the coupled
general relativity and (classical) particle physics evolution equations, and
they are given uniquely by the data contained within a certain (finite)
region of the initial slice, Sy C ;. Given this data, there is a unique
solution describing the observer’s evolution in time, as measured by the
changing of the clock, from the initial slice to the slice labeled by ¢. Now
we wish to understand what is required in order for this observer to evolve
from the state of the clock given at ¢ to the state at ¢t + d¢t. The required
information is simply the data specified in S;15: C ¥ and so we can
consider the evolution in time of this particular observer, from ¢ to t + dt,
to be given by the additional data required in order to go from S; to St st
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i.e. Sitst N (S¢)¢, which is entirely defined on the initial spatial slice.

This transforming of the temporal extent of a solution to the spatial ex-
tent of the initial data is made possible by the existence of a fundamental
velocity - the speed of light. This leaves aside issues such as singularities
at which both spatial and temporal extent lose much of their meaning,
however it does provide a useful definition of time, for all practical pur-
poses, throughout most eras of cosmology. This entire discussion is a
roundabout way of describing the very familiar concept of ‘the observable
universe’ often used in cosmology - how much of the universe at some
earlier time is in principle observable to us today? In the notation above,
the current observable universe is just Stioday, Where the ‘initial’ data is
specified on some slice given very early in the cosmological evolution (close
to the big-bang singularity).

3 Infinite spatial extent

If we are interested only in evolution of a spatially finite system for finite
times, only a finite region of the initial spatial slice is relevant, the rest is
unimportant for this evolution and in particular the total spatial extent of
the initial slice is not relevant. Of course, if we want to evolve a solution for
infinite time, one must provide data on the entire spatial slice and in this
case the total spatial extent of the universe is relevant. If our universe were
exactly spatially homogeneous this question of spatial extent becomes
redundant, even for evolution between infinite times. Since every point
on the initial slice is equivalent, every point on any other slice must also
be equivalent to each other (although there may of course be differences
between slices). In this spatially homogeneous situation, all our solutions
depend only on one function that relates any spatial region on different
slices, the scale factor a(t).

Before we move away from the classical theory it is worth noting that
the above discussion also means that, for practical purposes, it does not
matter whether the spatial extent of the foliating slices are infinite or not.
Only a finite region of the ‘initial’ slice is relevant for the evolution of any
particular observer (such as ourselves). Thus in classical cosmology there
is essentially no difference between a universe that is spatially infinite
and one that has some finite spatial extent, provided it is larger than the
current size of the observable universe. Indeed observations can put limits
on the minimum size of the spatial slice (and to some extent its topology),
but these observational limits cannot extend beyond the observable spatial
size of universe. There is of course a very important conceptual difference
between a spatially infinite and a spatially finite universe, in particular
when it comes to trying to define what constitutes a ‘special’ position
or conditions. There are also some technical differences that effect the
practical calculations typically used in cosmology such as Fourier series vs.
Fourier transforms. However for cosmological observations the distinction
is unnecessary.

A word on causality. The above discussion is very similar to the notion
of causality, however it is not quite the same. Causality would usually be
defined as follows. Consider a set of initial data on some slice and add to



State College, PA; 16-17 April 2013

-35-

it a localized disturbance. Causality now describes the fact that, under
evolution, the consequences of this disturbance propagates slower than
(or equal to) the speed of light. It is certainly true that causality implies
that any disturbance outside our observable universe cannot effect us, and
hence that there is essentially no difference between an (spatially) infinite
and a (spatially) finite universe. However the converse is not true. As
we will see, a theory may be non-local and hence ‘know’ if the universe is
infinite or not, whilst still obeying causality.

Finally, note in particular that our relational definition of time can be
defined for any finite evolution, given by a finite initial data S, completely
independently of whether the spatial slice is finite or infinite (provided it
is sufficiently large to encompass St). Indeed it can be defined completely
independently of whether regions on the initial slice, outside S; have any
definable notion of time at all. In this sense, relational time, for finite evo-
lution, can be defined ‘locally’ (i.e. it is insensitive to the global properties
of the spatial slice).

4 The consequences of quantum theory:
Hamiltonian formulation

So much for classical cosmology, what changes when we try to incorporate
quantum theory? Quantum theory is not a local theory and any attempt
at quantization fails when we have a spatial slice that is infinitely large.
Indeed, this difficulty can be seen even before going to the quantum the-
ory, by considering the Hamiltonian or action formulation of the classical
theory. Both these frameworks contain the ‘shadow’ of the underlying
quantum theory and already at this (classical) level the problem of an
infinite spatial extent arises. The Hamiltonian generates evolution of the
system via Hamilton’s equations which we may hope to use as a practical
definition of time, since they describe how the observables evolve with re-
spect to one and other, one of which we may choose to refer to as a clock.
However the Hamiltonian is defined as an integral over the entire initial
spatial slice. In a sense, the Hamiltonian is defined so that it can gener-
ate the evolution of all possible regions of the initial slice for all possible
times. The only ways for this to be well-defined are that the initial slice
has a finite spatial extent with specified boundary conditions or that the
functions giving the Hamiltonian vanish sufficiently quickly ‘at infinity’
(both possibilities also require that the initial data be suitably regular ev-
erywhere). The latter is the usual condition used in mechanical systems,
where the spatial extent of the system being consider is obviously finite,
however in cosmology this would mean that our position in the universe is
somehow ‘special’ which breaks cosmology’s guiding principle and in any
case, precludes the existence of a solution which is exactly homogeneous.
Thus we are forced to consider only cosmologies in which the spatial ex-
tent is finite. Provided this finite spatial extent is sufficiently large, it will
not yet be observable, however this does alter our description of time. The
evolution of some finite region may explicitly depend only on the initial
data in some finite region of the initial slice, however for it to be defined at
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all, initial data on the entire initial slice must be specified. The evolution
of our falling apple may not depend on the state of the sun at the time the
apple drops, provided the sun’s contribution to the Hamiltonian is finite.

It is important to realize that although the Hamiltonian approach de-
scribes the classical evolution of the system, giving the same evolution
described by Einstein’s equations, it contains additional regularity con-
ditions coming from the underlying quantum theory. These regularity
conditions are non-local and we can no longer fully describe the evolution
of a system independently of the evolution of other causally disconnected
systems. It is not that the evolution of two causally disconnected systems
are dependent on each other, however to be able to evolve one we must
know that the evolution of the other exists and meets the regularity condi-
tion. Put another way, the existence of (this practical definition of) time
for any system requires that the same definition exist for all systems. This
additional requirement arises from the quantum theory, which then leaves
its imprint in the classical theory via the Hamiltonian description. An ex-
actly similar conclusion arises from the action formulation of the classical
theory. In the language of quantum field theory, this phenomenon comes
from the fact that the action contains additional ‘off-shell’” information,
not present in the original classical equations of motion.

Thus we see that although the classical equations of motion allow one
to define time via the evolution of a system, independently of causally
disconnected regions, indeed independently of whether such regions exist
at all or if they do, independently of whether time can be defined for
systems inhabiting these regions, this is no longer the case once the quan-
tum theory is considered. In the particular case of cosmology, if we wish
to consider solutions that are (spatially) homogeneous, we are restricted
to universes with a finite spatial extent and for inhomogeneous solutions
the local existence of this practical notion of time i.e the evolution of our
observable universe, implies that there exists a similar practical notion of
time for all, causally disconnected regions on our spatial slice. That is,
the existence of initial data sufficient to evolve into our universe implies
that initial data exists everywhere on the initial spatial slice and most im-
portantly that this slice is finite (or the data on it has compact support)
and the initial data, when integrated over the entire slice, is also finite.

5 Consequences of quantum theory: renor-
malization

We have seen that there is a surprising relationship between the total
spatial extent of our universe and the existence of a practical definition
of time, that is now required to be globally defined. This is apparent
already when the classical theory is written in terms of the Hamiltonian
approach, however it arises from the quantum theory, and the require-
ment that evolution be unitairily implementable. The conclusion we have
reached is that the total spatial extent must be finite, even if we wish to
focus only on finite evolution of finite spatial regions. Previously the pos-
sibility of an infinite spatial extent was not relevant for finite evolution,
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however now a divergence appears. Perhaps we should not be surprised
that, in the transition from classical to quantum theory, previously finite
expressions become divergent. This occurs also in the subtly of defining
products of operators at coincident (spatial) points, which also lead to
divergences in classically finite expressions. Since this is an issue to do
the small separation scales they are usually referred to as UV divergences.
These need to be regulated in a suitable manner, consistent with the basic
axioms of quantum theory, through a process known as renormalization.
The second source of divergence that we have discussed, due to an infi-
nite spatial extent is usually referred to as IR divergences. Perhaps this
too can be ‘renormalized’ in some suitable manner? Or perhaps the two
divergences are related in some as yet unexpected way? The physical sig-
nificant of our inability to define observables in a spatially infinte universe
may well point to a failing of the renormalization scheme. It may be that
the correct approach to renormalization, presumably arising from some
full theory of quantum gravity, will show us how to regulate not only the
usual UV divergences, but also the IR divergences that appear in cosmol-
ogy. If this were indeed the case, it may allow the local notion of time
that can be defined for classical systems to be harmonized with the global
requirement that currently result from quantum theory.

In the following I will describe how once again, the spatial extent of
the universe can enter the game when (one particular version of) the usual
renormalization procedure is carried out in cosmology. Again this leads
us to requiring that the total spatial extent of the universe be finite if
physical quantities such as (expectation values of) energy density are to
be well defined. At first sight this will suggest that we should alter our
definition of renormalization, and indeed it may well be possible to do
so in such a way as to ensure that all (finite) physical observables and
their (finite) evolution are well defined, even in spatially infinite cosmolo-
gies. However, the point of the entire procedure of renormalization is that
there is a universal method for removing UV divergences. This univer-
sality can be traced to the basic fact that all Riemannian manifolds are
locally approximated by Euclidean space and hence that, in some loose
sense, all UV divergences are the same. This universality is not present in
considerations of IR divergences and without something similar it would
be difficult to justify any particular approach.

5.1 Adiabatic renormalization

If one considers an almost homogeneous cosmology, then it is very natural
to decompose the system into a homogeneous part (the spatial average)
and the inhomogeneous part, which are considered small perturbations.
This matches extremely well with all observations of the early universe and
forms the basis of our modern understanding of the early universe. The
next step is to consider these small perturbations to be a quantum field,
now evolving on the homogeneous background, whose evolution provides
us with a ‘time’ parameter with which to evolve the perturbations. This
step is a particularly thorny one and it leads to many difficult conceptual
issues that collectively go under the name of the ‘quantum to classical
transition’, which will not be discussed here. Once this step has been
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taken, our cosmological system contains the classical evolution of a homo-
geneous universe and a quantum field (the perturbations) evolving on the
dynamical background. As with any quantum field theory, the definition
of many important quantities require renormalization and in particular
the definition of the energy density of the quantum field is formally diver-
gent without this procedure. Fortunately there is a well defined method
of performing this renormalization, even in for a system with a dynamical
background, and one can calculate the (expectation value of the) energy
density in the perturbations. For self-consistency of the basic approxima-
tions one needs to ensure that this renormalized energy density is indeed
a perturbation to the homogeneous background.

One explicit method for performing this renormalization of products of
operators, known as ‘adiabatic renormalization’ is the following. Perform
a Fourier transformation on the perturbation field and calculate the formal
expression for the desired operator (in this case the energy density). This
formal expression contains an integral (or sum) over the values of the
Fourier modes, k, which diverges. However, the integrand (or each term in
the sum) is finite and well defined for every k, it is only the combination of
all these finite contributions that diverges. Adiabatic renormalization then
provides an explicit factor to subtract from the integrand (or from each
term in the sum) for all k, that ensures that the resulting integral is well
defined. In this scheme, the large values of k correspond to small spatial
separations, and it is in this limit (k¥ — oo) that the subtraction factor
tends to a universial form. Indeed, the entire procedure for calculating
this subtraction factor is based on the idea that, for large enough % (i.e.
small enough scales), the spatial slice must approximate a flat slice and
hence, on these scales, the quantum field should approximate the results
of the well defined, flat space, quantum theory.

However, in a cosmology with an infinite spatial extent a new diffi-
culty arises. This adiabatic renormalization scheme is designed to ensure
that the large k (small scale) limit of the quantum field theory is well
defined, however it does not guarantee that the explicit subtraction term
is finite away from this limit. It may happen that the factor that needs to
be subtracted from integrand at some low value of k (i.e. on some large
scales) itself diverges, in which case the renormalization scheme may suc-
cessfully remove the UV divergences of the theory, only to introduce new
types of IR divergences. But should this be a concern? We have already
encountered IR divergences in cosmology and have thus had to restrict
our attention to cosmologies with finite spatial extent, is this more of the
same? Unfortunately not. One can remove these new forms of IR diver-
gences by considering a spatial slice that has a finite spatial extent, at
the technical price of replacing the continuous Fourier transform with a
discrete Fourier series, however this spatial extent cannot be arbitrarily
large. If the renormalization procedure is to be well defined, not only
must the spatial slice be finite, but it must have a spatial extent smaller
than some specific value (given by the background dynamics).

But should this new IR divergence be considered physical? It arose
from our attempt to remove UV divergences in some universal manner, but
this universality applies only to the UV limit of the theory. If we choose to
alter the subtraction terms for low k scales, whilst ensuring that the large
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k limit remains intact, we will not have spoiled the universality property of
the renormalization scheme. Indeed it is possible to perform an alteration
in such a way that the IR divergences are removed, thus ensuring that the
expectation value of all (relevant) renormalized operators are well defined.
The difficultly is that there are many ways of doing so and unlike the
removal of the UV divergences, there is no universality argument that can
be appealed to choose one (class). One needs to use additional physical
or conceptual inputs to choose the particular, ‘natural’, scheme.

6 Summary

As it has been presented here there appears to be two sources of IR di-
vergences in cosmology, one coming from the homogeneous sector and an
infinite spatial extend, the other from the renormalization scheme of the
inhomogeneous perturbations, however the distinction is perhaps one only
of mathematical convenience. Without splitting the cosmological model
into an homogeneous background and inhomogeneous perturbations, it is
difficult to formulate the quantum system, however physically it is per-
haps not illuminating. In particular when one is forced to consider spatial
regions larger than the currently observable universe. What an observer
considers ‘homogeneous’ is tied to their observable universe. After all, we
cannot say whether the universe is homogeneous or not on scales larger
than our currently observable universe. As we saw in Section (4) quantum
theory would seem to require us to restrict to a finite spatial slice if we
wish to consider an homogeneous universe, whilst in Section (5) we saw
that if we consider small perturbations over this background, then either
one of the following must hold.

e Not only must the spatial extent be finite, it must be smaller than
some specific scale or,

e Renormalization must be altered according to some, as yet unknown,
new principles.

One possibility is that we may try to avoid this artificial decomposi-
tion into homogeneous and inhomogeneous sectors, defining renormaliza-
tion in such a way as to ensure that (for example) the energy density in
the zero-mode (the purely homogeneous sector) vanishes in some suitable
manner. This may cure both forms of IR divergences (whilst not effect-
ing the removal of the UV divergences of the theory) and if the resulting
cosmological predictions were consistent with observations it would be a
viable model. However, such an approach would impose our prejudice on
the form of the universe on large (unobservable) scales. In such a case we
would have succeeded in rendering quantum theory in an infinite universe
well defined, however we would still have the fundamental discrepancy
between the purely classical, local notion of time or evolution and the
quantum requirement that this notion be applicable over the entire spa-
tial slice. There is an essential non-locality built into quantum theory,
which manifests itself at the classical level not by any change in causality,
but rather by a requirement that our notion of time be globally definable.

11
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These IR issues arise from the implementation of quantum theory to
cosmology. In all other quantum systems, we do not need to consider
the consequences of an infinite spatial extent, however in cosmology we
must face this head on. There two possible resolutions to the discrepancy
between classical cosmology, in which infinite and finite spatial extents
are indistinguishable and the application of quantum theory, in which a
difference appears:

e The classical locality is incorrect. We do need to constrain data
outside our observable universe to be able to define evolution and
hence relational time everywhere on a spatial slice, even for finite
evolution of a finite region. In additional to the regularity constraints
of the data, this requires either that the universe have a finite spatial
extent or that the data defining the basics variables have compact
support in a universe with infinite spatial extent (in particular it
cannot be homogeneous).

e Quantum theory needs to be reformulated in a more ‘local’ way, so as
to ensure that, when applied to cosmology, our observable universe
is not dependent on unobservable data. However any reformulation
must agree with the wealth of experimental data that quantum the-
ory has provided on laboratory scales, whilst simultaneously allowing
for independent definitions of evolution for causally disconnected re-
gions and the compatibility between these evolutions if these regions
overlap.

12
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In the burning fuse model of unbecoming in time, the future is real and past

unreal. It is used to motivate the idea that there is something unbecoming in the

April 12,2013

present literature on the metaphysics of time, whose focus is merely the assigning

of a label “real.”

I

Please imagine a long fuse hanging down from the ceiling. It is a carefully woven tube of

fabric that holds a core of gunpowder. We note that it is beautifully made, with brightly colored

threads intertwined with the coarser bare cotton. It a masterpiece of the modern weaver's art.

We take a match, strike it and bring it to the end of the fuse that is dangling near the

floor. It takes and emits a sputtering fire that shoots sparks onto the floor. We stand and watch as

the fire gradually ascends. Our attention is held by the flaming point that slowly advances

upward. Those parts of the fuse ahead of the fire take their turn to be consumed by it and to

1T am grateful to Mauro Dorato for discussion and guidance in the literature and for further

discussion to Tom Pashby and Bryan Roberts.
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disappear into the ashes. The beautifully woven fuse is reduced to a powder so light that it is
scattered and disappears.

This is the burning fuse model. The advancing point of fire is the now. It consumes the
future, the unburnt fuse, which is converted into the past, the scattered nothingness of ashes.

What is the relative ontic status of the past and future in the model? It is the inverse of the
growing block model. In that model, the function of the present is to actualize mere possibility in
the future into the realities of the past. In the burning fuse model, the future states carry the
capacity of being able to come to be present. That capacity is realized in momentary fires of the
present after which all reality is extinguished. The future is real; the past is not.

Which model should we prefer? The key novelty of the burning fuse model is the
recognition that future events carry a property that is not carried by past events: they carry the
capacity of being able to come to be present. Past events do not carry that capacity. Once they
are past, they are spent. The capacity is lost. Indeed they carry no potentialities at all.

Let us grant that the carrying of a potentiality or a capacity endows something with a
reality. Otherwise, what carries the potentiality? By that standard, future events have greater
claim to reality than do past events. But we have not allowed degrees of existence, so the only
way we can maintain the requisite ontic difference of future and past is to ascribe real existence

to future events and none to past events.2

I
At this point, if I have done my job well, you are starting to wonder if I have taken leave
of my wits. I am arguing for the reality of the future and the unreality of the past. Of all
combinations that we might consider, that would appear to be the least credible. In spite of the
appearance of caution and rigor, there is obviously something wrong in the burning fuse model
that should not survive closer scrutiny.
Yes, creating that sense of unease is my purpose. It is how I feel about the burning fuse

model. My real point is that I have the same feeling about the entire debate over presentism

2 For another defense of the reality of the future and the unreality of the past, see Casati and
Torrengo (2011). They note that we believe it is possible to travel to future events merely by

living, but we cannot travel to past events. They are gone.

_492-
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against eternalism against growing block possibilism; or perdurantism against endurantism.> On
the surface, we seem to be debating something concrete and important. Yet that sense evaporates
when we probe beneath the surface. It is the same with the burning fuse model. I am using it as a
foil to suggest that there is something unbecoming in this debate over becoming.

The old positivists are guilty of many excesses. That some proposition has no observable
consequences does not render it meaningless. They were rightly chastised for overreach in
suggesting otherwise. However they were on to something. If there are no observable
consequences, then there can be no brake from experience for a runaway imagination. When we
have a proposition with this unfortunate feature, we ought to take a second look and ask if the
proposition indicates something real. Or is it a fictional invention in some fevered philosopher's
dreams? Perhaps we are dealing with a pseudo-question, an artful use of language that appears to
pose some deep problem but is really only tangling us in a labyrinth of our own invention.4

I am not the first to harbor such reservations. Mauro Dorato> has recently mounted a
spirited assault on the issues debated in this literature. Among his many concerns is the lack of a
contrast class to give meaning to the predicate “is real.” The situation with temporal reality is
unlike that of coffee, he notes. When we assert that the coffee is real, we are informing our
listener that is it not a fake, ersatz coffee of burnt acorns. It is the real stuff. When a presentist
asserts the unreality of past and future events, in just which way are they unreal or ersatz? It
cannot merely be that they are not present. For that makes the presentist’s view true by
definition. To be asserting something more than a circularity, the presentist must provide some

other sense in which future events are unreal. Eternalists hold that all events, past, present and

3 For an introduction to these notions, see Savitt (2008) and Hawley (2010)

4 Another perennially recurring instance of this problem is the ever-popular question “What is
time?” Its longevity is due precisely to its trivial unanswerability. See John D. Norton, “What is
Time? Or, Just What do Philosophers of Science Do?”

http://www .pitt.edu/~jdnorton/Goodies/What_is_time/index.html

5 Dorato (2006). For further discussion in a similar vein see Dolev (2006) and Savitt (2006).



Workshop on Cosmology and Time -44-

future are real. They simply take the other side the definition and deny that a failure to be present
is sufficient to deprive an event of reality .0

This difficulty, in my view, captures what is wrong in this entire debate. What is at issue
is how a word, “real,” is to be used. Consider three events. The earth one year ago; the earth
today; and the earth one year in the future. At each event, the earth will be passing through the
same position in its orbit around the sun. A myriad of facts now follow. The speed of the earth is
momentarily the same. The distance to the sun is momentarily the same. The sun will appear
from earth to be in the same place on the ecliptic; or, to use the older way of thinking, to be in
the same house of the zodiac.

Presentists, eternalists and growing block possibilists will all agree on these facts and
every other conceivable astronomical fact pertaining to the three events. They will disagree,
however, just on one simple issue. How the label “real” should be applied. Presentists apply real
to the present event only. Growing block possibilists will apply it to the past and present events;
and eternalists to all three. That is all they disagree on. The whole debate reduces to a difference
on how to assign a label.

The perdurantist-endurantist debate has a similar character.” Perdurantists conceive of the
earth a year ago, the earth now and the earth a year hence as three temporal parts of the one
thing, the earth, that perdures through time. Endurantists, however, regard the earth as wholly
present at each instant. The earth now is not merely the present temporal part of the earth. It is

the totality of the earth, which is an entity that endures through time. Once again, they both agree

6 Once we would have taken it as automatic that simultaneous events are equally present and
thus equally real. Then special relativity brought us the relativity of simultaneity so that we
replaced the unconditional relation of absolute simultaneity with a relative simultaneous-for-you
and simultaneous-for-me, where you and I need not agree. This is a mismatch that the present
literature has sought exploit, but to poor effect. We should cut off the problem at the start. We
should not identify the simultaneity relation of relativity theory with the relation of co-present
reality. For a notion of reality that is observer dependent is no notion of reality I recognize.

7 See also Dorato (2012) for similar hesitations.
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on all the astronomical facts just mentioned. They disagree only on how the word “part” is to be
used. It is once again, a difference that makes no difference.8

The debate seems little different to me than the debate over Pluto’s planetary status. It
was known as a “planet” for the first three quarter century of our acquaintance with it. Then, in
2006, the International Astronomical Union declared it to be something less. It was not a planet,
but merely a “dwarf planet.” It was demoted since it failed to meet the third condition necessary
for it to be a planet: it clears the neighborhood around its orbit. When Pluto was relabeled, there
was an anguished response and a debate. There was a sense that something important had
happened. However no new fact about Pluto had been discovered. The issue was merely how

best to assign a label.
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Time and Quantum Theory: A History and
Prospectus

Tom Pashby

April 14, 2013

1 Introduction

The conventional wisdom regarding the role of time in quantum theory is
this: “time is a parameter in quantum mechanics and not an operator”
(Duncan & Janssen, 2012, p. 53). The reason for this is ‘Pauli’s theorem,’
a collection of results that show that (subject to a mild restriction on the
Hamiltonian operator) conventional quantum mechanics does not permit the
definition of a time observable, i.e. a self-adjoint operator canonically conju-
gate to energy.! If one wishes to have time appear as a genuine observable
of the theory, then this is obviously a problem, called by some “the problem
of time in quantum mechanics” (Hilgevoord & Atkinson, 2011; Olkhovsky,
2011). Hilgevoord’s (2005) attempted resolution of the problem rests on his
rejection of a particular motivation that one might have for wishing to re-
gard time as a genuine observable. Hilgevoord’s argument is essentially this:
there is nothing problematic about time being represented by a parameter
rather than an operator since space is represented by a parameter rather
than an operator as well.

In a recent historical survey, Hilgevoord (2005) contends that the demand
that time be an observable can be traced back to a conceptual confusion
common among the progenitors of quantum mechanics, in particular Dirac,
Heisenberg, Schrodinger, and von Neumann. Hilgevoord claims that the
expectation of the authors of quantum mechanics that time should be an
observable was due to this confusion between space and position: led by the
role of position in the theory as an observable, they were mistakenly led to
the idea that time should be observable too. He traces the source of the

!See Srinivas & Vijayalakshmi (1981) for a rigorous derivation of this result.
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confusion to the frequent use of the spatial co-ordinates (z,y, z) to denote
the spectral values of the position observable of a single particle (¢, gy, qz)-

When presented with an operator whose spectral values appear to cor-
respond to points of space, it is natural to expect also an operator whose
spectral values correspond to instants of time. And given the expectation
of these authors that quantum mechanics would ultimately be a relativistic
theory, it is reasonable to demand of a theory set in space-time that time
and space should appear on the same footing. However, as Hilgevoord points
out, the spectral values of position are not identical with spatial points—this
correspondence is only valid for a system comprising a single particle since
in general the dimension of configuration space (and so the spectrum of the
position observable) is 3N, where N is the number of particles. Once this
confusion is made manifest and it is realized that time ¢ (a parameter) is
to be contrasted with space (x,y, z) (also parameters) the apparent asym-
metry is removed and so the justification for regarding time as an operator
(i.e. an observable) is removed, or so Hilgevood claims. This leads him to
dismiss later developments, such as the more recent use of POVMs (Posi-
tive Operator Valued Measures) to define (generalized) time observables, as
conceptually confused for the same reason.

Now, with regard to this particular justification for regarding time as
an operator, I agree that Hilgevoord offers an apt diagnosis: what is being
contrasted here is not time and space, but time and position. But while
I agree wholeheartedly that it would be a mistake to confuse space, time
and position in this way, I am not convinced that this was a confusion to
which many (or perhaps any) of the authors of quantum theory were prone.
Indeed, Hilgevoord acknowledges that there were other reasons which led
to the expectation that temporal properties were apt for representation by
operators. It is my view that these other reasons for defining time opera-
tors were more important to those authors—I will claim that some remain
compelling today—and thus are not so easily dismissed as resulting from a
simple conceptual error.

In this paper I will be concerned with analyzing in more detail how ideas
and expectations regarding the role of time in the theory arose and evolved
in the early years of quantum mechanics (from 1925-27). The general theme
will be that expectations which seemed reasonable from the point of view
of matrix mechanics and Dirac’s g-number formalism became implausible
in light of Dirac-Jordan transformation theory, and were dashed by von
Neumann’s Hilbert space formalism which came to replace it. Nonetheless,
I will identify two concerns that remain relevant today, and which blunt the
force of Hilgevoord’s main claim.
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First, I point out Dirac’s use of an ‘extended’ classical configuration
space, which includes time and energy as conjugate variables from the get-go,
is not subject to Pauli’s theorem, and, moreover, his motivations for using
this extended configuration space are not merely relativistic, as Hilgevoord
claims. This indicates another way to avoid this ‘problem of time:’ by
defining an ‘extended Schrodinger equation’ for functions of space and time
we can have a quantum theory in which time and energy are represented by
canonically conjugate observables, as Dirac had originally intended. Second,
I contend that the temporal quantities under consideration concerned not
time in the abstract, but the time of particular events (initially so-called
‘quantum jumps’). If ‘the’ time operator concerns the location of an event
in time, then it is no false contrast to draw an analogy with the position
observable, which concerns the location of an event in space (the event in
question being something like ‘the particle’s being here’). I will also attempt
to show how these considerations are related, in that exploring the second
claim (that the time of an event is an observable quantity) leads naturally to
the first (that quantum theory should be defined on extended configuration
space).

2 A Brief History of Time in Quantum Mechanics

2.1 Time in Matrix Mechanics

The expectation that energy and time must form a canonically conjugate
pair arose from the close relation of the new quantum mechanics to the
action-angle form of classical (Hamiltonian) mechanics that inspired it. In
Heisenberg’s famous Umdeiitung paper of 1925, time plays an almost iden-
tical role in the description of the new quantum variables as it did in the
specific classical cases he sought to re-interpret. The classical equation of
motion, Hamilton’s equation in action-angle co-ordinates (J, w), reads

dw OH  dJ  OH
a —8J 7 dt  ow’

The time dependence in action-angle form is particularly simple since the
canonical transformation into these co-ordinates is chosen such that J = 0
and w = vp, a constant. Thus J is time independent and w is linear in ¢.
This being the case, a general solution z(t) of these equations (for periodic

systems) may be Fourier decomposed into a sum over components labeled
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by amplitude and phase:

:l?(t) _ Z ZAT(Jn)eQMTvnt-

n=—oo 741

So it was this special form of classical Hamiltonian mechanics, one in which
time dependence takes an especially simple form, that provided the basis
of the emerging quantum kinematics. The time evolution of these solutions
was entirely confined to a complex phase, and so it was to be in the new
quantum theory.

In the matrix mechanics of Born & Jordan (1925) kinematical quantities
are represented by Hermitian matrices whose time dependence takes the
same form,

p(t) _ p(nm)€27riv(nm)t; q(t) _ q(nm)e%riv(nm)t.

Having obtained a matrix representation of these kinematical quantities, it
follows from the relation

v(nm) =W, — Wy,

that the time derivative of an arbitrary matrix function g(pgq) may be writ-
ten . )
o i
h h
where W = §,,,,W,, is a diagonal matrix (pp. 288-9). Since the diagonal
form of W was critical to the validity of this relation, the major practical
difficulty of applying the new quantum mechanics to a particular system
with a classical Hamiltonian of known functional form became essentially
that of finding a representation in which the quantum mechanical energy
took diagonal form.

g=+[(Wn = Wyp)g(mn)] = -(Wg — gW), (1)

By writing the Hamiltonian matrix H as a function of p and g Born and
Jordan derived the following dynamical equations for quantum variables in
the same form as Hamilton’s equations in classical mechanics,

They argued that this same relation holds true of a general function g(pq)
as well, yielding the so-called Heisenberg equation of motion,

.0

g h[Hg—gHL (2)



State College, PA; 16-17 April 2013

-51-

which immediately gave the result that H =0,ie. that energy is conserved.

There is in this formalism no reason to suppose that time could not be
represented by a matrix, and the fact that in classical mechanics w behaves
very much like a time parameter is suggestive of the idea that there should
be a matrix ¢(gp) canonically conjugate to H. Indeed, if one demands that
this matrix ¢ vary linearly with time then (2) appears to imply that it is
canonically conjugate to energy H since

t=1= [Ht—tH]=i/h.

2.2 Time as a ¢-number: Dirac’s Classical Analogy

Dirac, working in relative isolation in Cambridge, was led to the same dy-
namical equations by pursuing a structurally richer classical analogy. Like
Born and Jordan he recognized the non-commutativity of the multiplicative
operation as the key feature of Heisenberg’s quantum variables, but rather
than focusing on a particular representation of the variables, Dirac’s ap-
proach led him to identify shared algebraic structures of the classical and
quantum theories. We will briefly follow his development of the theory in his
initial paper ‘The Fundamental Equations of Quantum Mechanics’ (Dirac,
1925).

Whereas Born and Jordan’s derivative operation came for free from
their use of matrix multiplication, Dirac sought to define his operation al-
gebraically from the two basic conditions such an operation much satisfy:
distributivity and the Leibniz law. He shows that the operation ax — za,
which is to say the commutator of two ‘g-numbers’ (a nomenclature intro-
duced in a subsequent paper) satisfies these two conditions and so can be
interpreted as a differentiation of x with respect to some parameter v. For a
special case, Dirac let a be the diagonal matrix representing the energies of
the allowed transitions, then v is the time and this returns #, just as Born
and Jordan had found.

But in contrast to Born and Jordan, who built up their dynamical equa-
tions from matrix operations acting according to the quantum condition,
Dirac instead sought to establish a correspondence between classical and
quantum operations by setting up a structural analogy between the two
theories. He argued that as the quantum numbers become large the quan-
tum commutator corresponds to the classical Poisson bracket (multiplied by
a factor of —ih ).

B dr 9y Oy Ox
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The Poisson bracket is a canonical invariant, meaning that it takes the same
value evaluated in any canonical co-ordinates. Moreover, the Poisson bracket
expressions satisfy the two demands he placed on an operation of differen-
tiation. This suggested to Dirac that the quantum commutator represented
the same operation, valid for non-commuting ‘g-numbers’ — his own version
of the correspondence principle.

Once this correspondence was established, the quantum equation of
motion (2) followed immediately from the corresponding classical Poisson
bracket by mere transcription according to the new quantum schema. The
difference in Dirac’s approach was manifest in his ability to import results
from classical mechanics directly into his theory (although he was soon to
see that his translation procedure led to ordering ambiguities). Since action-
angle variables are classical conjugates with {w, J} = 1 (having been reached
by a canonical transformation) the suggestion is very strong indeed that w
and J, considered as g-numbers, must also be a canonical pair. Indeed,
obtaining numerical results from Dirac’s theory required transcription of
the results of the corresponding classical problem, expressed in action-angle
form.

2.2.1 ‘Relativity Quantum Mechanics’

When Dirac came to consider relativistic quantum physics his approach
was, naturally enough, to define a suitable relativistic classical description
in terms of Poisson Brackets, and then apply his quantum translation pre-
scription (Dirac, 1926b).? It is worth quoting in full Dirac’s description of
this procedure and his view of the significance of defining suitable classical
canonical variables.

It will be observed that the notion of canonical variables plays
a very fundamental part in the theory. Any attempt to extend
the domain of the present quantum mechanics must be preceded
by the introduction of canonical variables into the corresponding
classical theory, with a reformulation of the classical theory with
P.B.’s [Poisson Brackets] instead of differential coefficients. The
object of the present paper is to obtain in this way the extension
of the quantum mechanics to systems for which the Hamiltonian
involves the time explicitly and to relativity mechanics. (pp.
406-7)

2Note that this work was done before he was aware of Schrédinger’s wave mechanics.
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In the following section, entitled “Quantum Time,” Dirac immediately claims
that “[t|he principle of relativity demands that the time shall be treated
on the same footing as the other variables and so it must therefore be a ¢-
number” (p. 407). In order to do so, Dirac defines a classical Poisson bracket
that includes time t as a variable along with it’s canonical conjugate —W
(i.e. , minus the total energy).

[Py e\ oroy oyo
{x’y}_;{aqrapr 8qT8p,~} oW ot~ aw ot

In defining this Poisson Bracket, the set of canonical variables is extended
by two to include t and —W, and so the dynamics of the system now takes
place in this extended phase space. The physical solutions are defined by
the demand that the Hamiltonian (defined on the extended phase space)
vanishes with the total energy W, what is called today a constraint equation,

H—W =0. (3)

So while t and —W are variables conjugate on the extended phase space
(leading to the quantum commutators detailed in Dirac’s equation (7)) the
dynamics of the system are confined to a subspace of the phase space defined
by this constraint (the constraint surface).® As we have seen, Dirac is explicit
here that relativistic considerations motivate his introduction of time as a
g-number, but also he cites the time dependence of the Hamiltonian as a
motivation. There is nothing about the use of extended phase space which
implies that the system in question is relativistic, as it is just the fact that
the Poisson Bracket is defined on the extended phase space which implies
time and energy are conjugate variables, not the fact that the Hamiltonian
is relativistic. Hilgevoord (2005) regards the use of relativistic arguments
to motivate the demand that energy and time be canonical conjugates in
quantum mechanics as misguided due to the limited role that relativistic
particle mechanics plays in classical and quantum physics. Be that as it
may (and Dirac’s rhetoric here notwithstanding) it remains the case that
the conjugacy of energy and time has little to do with the fact that a system

3In fact, Dirac notes that the conjugacy relations may be inconsistent with the con-
straint, but this is just to say that the relations don’t necessarily hold for functions on the
constraint surface. Without the Schrodinger equation in hand, it is not yet clear that the
dynamical equation is in fact a wave equation satisfied by certain functions, whereas the
relations of conjuagacy hold generally for functions of the extended configuration space.
It is also worth emphasizing that, whereas position and momentum are conjugate vari-
ables on both the unextended and extended phase space, energy and time are conjugate
variables on the extended phase space alone.
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is relativistic, and everything to do with the fact that the system’s dynamics
are defined in the extended phase space. Although in the case of a relativistic
system the use of extended phase space is unavoidable, it is clear that Dirac
also viewed the (non-relativistic) Schrodinger equation as a wave equation
defined on functions of space and time, i.e., as an equation in the extended
configuration space.

2.2.2 The Time-Dependent Schrodinger Equation

Introduced by means of an optical-mechanical analogy, Schrodinger’s wave
mechanics was initially met with hostility from the matrix mechanics camp.
However, as we have seen, Dirac’s g-number approach was more general, and
so more flexible for extension in other directions. Following Heisenberg’s dis-
covery of a connection between the solutions of Schrédinger’s wave equation
and the energy values that appeared in the time dependence of the matrix
values for a dynamical variable, Dirac seized on Schrédinger’s new approach,
recognizing the means to free himself from the overly restrictive reliance on
classical methods, and overcome the problems introduced by the degener-
acy of energy levels arising in systems of many particles (Darrigol, 1993,
pp. 329-333). Unencumbered by the conceptual baggage of Schrodinger’s
painstaking path through classical physics, Dirac’s starting point was the
realization that quantum systems could be described by functions obeying
a linear wave equation, and he quickly moved to explore the consequences.

In a remarkable paper ‘On the Theory of Quantum Mechanics’ (Dirac,
1926a) he laid out the essentials of an approach which would serve as the ba-
sis for the later integration of wave and matrix mechanics. He demonstrated
the power of this new formalism by deriving the Bose-Einstein and Fermi-
Dirac statistics for an assembly of systems from elementary conditions on
the permutation of the wavefunctions describing the individual systems. The
foundation of this approach was the recognition that Schrodinger’s theory
allowed for the explicit representation of conjugate variables as differential
operators. To write down the time-dependent wave equation, therefore,
merely required him to make the substitutions

0 0
P o W ot
into the equation (3) above, treated as a wave equation, i.e.,
(H = W)y = 0. (4)

Hence Dirac’s derivation of the time-dependent equation depended on the
extended phase space description described in (Dirac, 1926b). To explain:
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the replacement of the conjugate variable —W by the corresponding differ-
ential operator relies on the existence of a space of functions of ¢ on which it
acts. The implication is that ¢ is also a g-number, an operator that acts by
multiplication on this space of functions of extended configuration space.*

In order to set up a correspondence with the Heisenberg equations of
motion Dirac is required to fix the value of the variable ¢, but in doing so he
makes it quite clear that the functions (or superpositions of functions) that
satisfy the general wave equation are functions of time and space.

As an example of a constant of integration of the dynamical
system take the value x(ty) that an arbitrary function x of the
p’s and ¢’s, W and ¢ has at a specified time t = ty3. The matrix
that represents x(tp) will consist of elements each of which is a
function of ¢y. (Dirac, 1926a, p. 665)

Under the special condition that the Hamiltonian is time independent (i.e.,
a constant of integration), so that the energy W has a diagonal matrix
representation, Dirac was able to derive the time dependence of the matrix
elements of a g-number x (although, as he is at pains to point out, only
for a Hamiltonian that does not involve time explicitly). This reverses the
logical order of Born and Jordan’s derivation of (1), which assumed the time
dependence by means of Heisenberg’s classical analogy. Dirac here instead
shows how this time dependence arises from the dynamics of the quantum
mechanics, that is, the Schrédinger equation.

However, he explicitly states that he views this separation of time and
space as inessential, and describes the alternative (solving directly in terms
of the extended phase space without considering variation in t) as more
fundamental:

It should be noticed that the choice of the time ¢ as the variable
that occurs in the elements of the matrices representing variable
quantities is quite arbitrary, and any function of ¢ and the ¢’s
that increases steadily would do. ...It is probable that the rep-
resentation of a constant of integration of the system by a matrix
of constant elements is more fundamental than the representa-
tion by a matrix whose elements are functions of some variable
such as ¢ ... (ibid. p. 666)

In summary, we can see that there was another motivation, independent
from relativistic considerations, which led Dirac to regard energy and time

4Note again that the space of functions on which W acts is not identical with the space
of wavefunctions that that satisfy the wave equation (4).
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as conjugate variables: his expression for the time-dependent Schrodinger
equation required that energy be represented by a differential operator d/dt,
which was defined on a space of functions of time. Note also that Dirac did
not yet have an dynamics that could apply to time-dependent Hamiltonians,
since the treatment he had given assumed from the outset that the allowed
energies were time independent.

2.2.3 Time in Transformation Theory

In Dirac’s presentation of transformation theory, ‘The Physical Interpreta-
tion of the Quantum Dynamics’ (1927) it is apparently assumed from the
outset that the theory involves the split between space and time that had
been introduced in the earlier paper.

These matrix elements [of a dynamical variable g] are functions
of the time only. In the present paper we shall not take rela-
tivity mechanics into account, and shall count the time variable
wherever it occurs as merely a parameter (a c-number). (Dirac,
1927, p. 625)

In the course of the development of the theory, which Dirac intends to
to provide a generalization of matrix mechanics to address non-periodic
systems and continuous observables, Dirac makes the (oft-quoted) crucial
link with Schrodinger’s wave mechanics:

The eigenfunctions of Schrodinger’s wave equation are just the
transformation functions ...that enable one to transform from
the (q) scheme of matrix representation to a scheme in which the
Hamiltonian is a diagonal matriz (Dirac, 1927, p. 635; emphasis
in the original).

These eigenfunctions are in fact the energy eigenstates, so what Dirac has
found at this stage is the connection to Schrédinger’s time-independent wave
equation, which appears in the following form,

H{g). it )(d) /o) = H() (0. Q

T
It remains for him to provide a link to the time-dependent equation that he
had derived previously, i.e., the Heisenberg equations of motion. Remark-
ably, he does not do so: in his presentation of the theory the time dependence
of the quantum variables is assumed (condition (ii) of p. 327, ibid.). Nei-
ther does he try to derive the time-dependent Schrainger equation as we
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would recognize it today. In fact, the time-dependent Schrodinger equation
appears almost by accident; the only place Dirac explicitly considers time
dependence of the solutions of the Schrodinger equation is in considering
time varying Hamiltonians: first in general (p. 635) and then as a perturba-
tion (p. 640).

Dirac had, at this first stage, only identified his transformations with en-
ergy eigenstates, and relied on the relation to the (extended) classical phase
space to consider dynamics. The time variation of the quantum variables
he considered—“constants of integration”—was particularly simple on this
pseudo-classical picture, so long as the Hamiltonian was constant with time,
and thus could be given by the Heisenberg equations of motion (2). How-
ever, if the Hamiltonian is time-dependent then the matrix scheme cannot
have this simple time dependence. Dirac explains the problem as follows:

For systems in which the Hamiltonian involves the time explic-
itly, there will be in general no matrix scheme with respect to
which H is a diagonal matrix, since there will be no set of con-
stants of integration that do not involve the time explicitly. (p.
635)

Yet the result of the derivation that he enters into to address this problem,
is an equation for a Hamiltonian H that does not explicitly involve time—
an equation that we immediately recognize today as the time-dependent
Schrodinger equation for a wavefunction (¢’/a’),

H <qr,ih 4

oo ) 6/10) = Hlarup ) /o)) = ih g (a'fe'). (0)

The form of this equation (numbered (12) in Dirac’s paper) is inconsistent
with his claim to have derived “Schrodinger’s wave equation for Hamiltoni-
ans that involve time explicitly” (p. 636). In discussing this equation, (Dar-
rigol, 1993, p. 341) presents an alternative derivation (not Dirac’s) which
follows Dirac’s earlier paper in assuming that H is a constant of the mo-
tion. However, it is quite clear that this was not Dirac’s intention. This is
a puzzle. What could Dirac have meant by this claim?

It is very plausible that Dirac had just made a mistake in his deriva-
tion. Dirac’s comment about the lack of energy eigenfunctions, and the
dependence of H on t, indicates that he begins by considering solutions of
the ‘extended’ Schrodinger equation that lie in the extended configuration
space, for which there are no eigenfunctions. He begins the derivation (p.
635) by considering the Hamiltonian at an instant ¢ = 7, and the correspond-
ing instantaneous variables ¢, pr. Functions of ¢; and p, do not involve
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time explicitly, and so we can regard the Heisenberg equation of motion (for
variation in 7) as acting on these functions. From this it follows that

/ /
H,(¢a) = ma(qgia).

However, Dirac immediately suggests (p. 636) that we write ¢ for 7 and ¢ for
G-, which removes the time dependence of H, and gives (6). Thus does Dirac
arrive at the time-dependent equation for a time independent Hamiltonian.

This mistake is actually quite telling: Dirac does not yet have a concep-
tion of a time varying state, and so he is compelled to interpret this equation
as one in which the Hamiltonian varies. But, comparing (5) with (6), we see
that what he had found was that the variation of the state (¢//a’) in time
is given by the Hamiltonian operator in the position representation (rather
than the energy representation). As Dirac was aware, the space of instan-
taneous solutions was the only one in which his transformations could be
defined, but it is clear that these instantaneous spaces are to be reached by
fixing a particular value of the variable ¢ in the larger space and considering
variation with respect to a parameterization of that value.

The alternative was to consider a full blown four-dimensional wave equa-
tion applying to functions of time and space, a much more formidable prob-
lem. The middle ground that Dirac had found (apparently by accident) by
dealing with the problem in this manner was taken by him to correspond
to a time varying Hamiltonian, but he had instead derived the equation for
a time varying state, where the Hamiltonian may (or may not) vary with
time. Yet at no point in the paper does he entertain the thought that the
wavefunction can vary in time without variation of the Hamiltonian.

Why did he not immediately recognize this? At this time—before he
became aware of Hilbert space methods—Dirac did not possess the mod-
ern notion of a quantum state as a vector state. Moreover, the notion of a
(Schrodinger picture) instantaneous state was one that he was to remain re-
sistant to: specifying a time parameterization served to break relativistic in-
variance, and meant leaving the extended phase space.® It seems clear that,
for Dirac, the state of the system was to be defined in terms of the extended
configuration space, and from there the time evolution of the ‘constants of
integration’ (here, quantum variables) could be specified. In essence, this

5The modern notion of state only appeared in the second edition of Dirac’s Principles
of Quantum Mechanics. See (Brown, 2006, p. 402-403) for more details. Also note that,
contrary to Hilgevoord’s claim that “this view disappeared from his later work” (Hilgevo-
ord, 2005, pp. 36-37), the use of the extended phase space was essential to Dirac’s work
on constrained Hamiltonian Mechanics, e.g. Dirac (1966).
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resembles the modern Heisenberg picture, but without the restriction that
observable quantities (quantum variables) are evaluated at an instant. Ac-
cording to Dirac’s interpretation, the theory gave information at the level
of time averages.

2.3 The Time of a Quantum Jump

The question of whether time and energy are conjugate variables is closely
related to the existence of a time-energy uncertainty principle. Reading
Heisenberg’s famous “anschaulichen Inhalt” paper today (Heisenberg, 1927),
one is struck by the centrality of the time-energy uncertainty relation rather
than the position-momentum uncertainty relation in his informal discussions
of the “intuitive content” of the theory. It is clear that this relation is central
to Hesienberg’s attempt to articulate a physical interpretation of the theory.
As he was to later put it: “I wanted to start from the fact that quantum
mechanics as we then knew it [i.e. matrix mechanics] already imposed a
unique physical interpretation” (from Duncan & Janssen, p. 5).

Looking more closely, we see that Heisenberg’s concern is not with time
in the abstract (i.e., on a par with “space”) but rather the relationship
between the energy of the system and the time of a particular event—a
“quantum jump” regarded as a real physical process. Take the following
passage:

“According to the intuitive interpretation of quantum theory
attempted here, the points in time at which transitions—the
“quantum jumps”’—occur should be experimentally determinable
in a concrete manner, such as energies of stationary states, for
instance. The precision to which such a point in time can be
determined is ... h/AFE, if AE is the change in energy accompa-
nying the transition.” (p. 189)

This illustrates his faith that the observable content of the theory should
be fixed by theory, but also seems to indicate that his view was that these
quantum jumps took place at determinate moments of time, albeit times
about which we have limited knowledge. Moreover, Heisenberg discusses
how the possibility of measuring the energy precisely depends on performing
a measurement between the moments at which jumps occurred.

In quantum mechanics, such a behavior [of quantized periodic
motion] is to be interpreted as follows: since the energy is really
changed, due to other disturbances or to quantum jumps, each
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energy measurement has to be performed in the interval between
two disturbances, if it is to be unequivocal. (p. 194)

The implication is that a quantum system is to be understood as having
a determinate energy at all times, but that this energy fluctuates due to
exchanges with the environment — quantum jumps. This was the view
he had taken in his previous paper regarding energy exchanges between
two coupled systems, which had inspired Dirac’s transformation theory.®
Given this view, we come to appreciate why the time-energy uncertainty
relation has such a central role for the interpretation of the theory: since
Heisenberg regarded the physical content of the theory as corresponding to
discontinuous processes of energy exchange occurring at definite times, the
energy-time relation was naturally of central importance to his project of
providing an intuitive grasp of the physical content of the new quantum
mechanics.

It is also of interest that Jordan’s view at this time is very similar to
Heisenberg’s, and one can imagine that this is something that they had
discussed together.

What predictions can our theory make on this point? The most
obvious answer is that the theory only gives averages, and can
tell us, on the average, how many quantum jumps will occur
in any interval of time. Thus, we must conclude, the theory
gives the probability that a jump will occur at a given moment;
and thus, so we might be led to conclude, the exact moment is
indeterminate, and all we have is a probability for the jump. But
this last conclusion does not necessarily follow from the preceding
one: it is an additional hypothesis (Jordan 1927, from Duncan
and Janssen p. 17).

It seems plausible that Jordan is taking here a similar view to Heisenberg,
the view that quantum jumps are physical events taking place at the some
definite time. In the first part of the answer, he seems to approach Dirac’s
opinion that “[the theory] enables one to calculate the fraction of the total
time during which the energy has any particular value, but it can give no
information about the times of the transitions” (Dirac, 1927, p. 622). But
Jordan goes further to say that there is information here about the rate of
occurrence of quantum jumps. He goes even further in suggesting that the
theory might be considered to supply information about the probability that

5See (Duncan & Janssen, 2012, pp. 3-8) for more details.
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a jump might occur at a particular time. This is distinguished from the view
that the moment of time at which the jump occurs is indeterminate, leav-
ing open the possibility that the probabilities involved could be interpreted
epistemically rather than objectively.

The major technical contribution of Heisenberg’s paper concerns the
derivation of the position-momentum uncertainty relation from the Dirac-
Jordan transformation theory. On the other hand, the time-energy relation
(stated without proof on p. 177) followed intuitively from the quantization of
action-angle variables in classical theory, assumed to form a conjugate pair in
the quantum theory (presumably motivated by the classical analogy detailed
in my Section 2.1). However, the early form of Jordan’s transformation
theory was particularly encouraging for the prospects of a parallel deriva-
tion of the time-energy relation along the lines of the position-momentum
derivation, since it assumed (in modern parlance) that canonically conjugate
observables have purely continuous spectra spanning the real line. This is
a necessary condition for observables to allow the derivation of a standard
uncertainty principle in modern quantum mechanics, but it does not hold
of typical Hamiltonians (as Pauli later pointed out).

2.4 The 1927 Solvay Conference: The Fate of the Quantum
Jump

The period of time during which this ‘quantum jump’ interpretation of the
theory remained plausible was short-lived. By the time of Heisenberg’s
presentation with Born at the Solvay conference of October 1927 he no
longer held this interpretation of the physical meaning of the time of a
quantum jump. Born and Heisenberg’s presentation contains the following
passage,

If one asks the question when a quantum jump occurs, the theory
provides no answer. At first it seemed that there was a gap here
that might be filled with further probing. But soon it became
apparent that this is not so, rather, that it is a failure of prin-
ciple, which is deeply anchored in the nature of the possibility
of physical knowledge. One sees that quantum mechanics yields
mean values correctly, but cannot predict the occurrence of an
individual event. (Bacciagaluppi & Valentini, 2006, p. 420)

This seems to represent a retreat to Dirac’s position that only the time
average was a physically meaningful quantity. However, the rest of their
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presentation reveals a more radical point of view. Bacciagaluppi and Valen-
tini read their claim that “matrix mechanics deals only with closed periodic
systems, and in these there are no changes. In order to have true processes
...one must restrict one’s attention to a part of the system” (Bacciagaluppi
& Valentini, 2006, pp. 205-6) to suggest that they shared the view of Camp-
bell (endorsed by Heisenberg in a letter to Pauli) that time is a statistical
phenomenon, absent in atomic systems but emerging at the macroscopic
level like temperature or pressure.

Since the time-independent Schrédinger equation is solved by the sta-
tionary states corresponding to eigenfunctions of energy, if one makes the
supposition that a system is always in such a state and the theory supplies
probabilities for the ‘jump’ from one state to another, then it would be as
if time did not exist except for these discontinuous transitions. Though
Schrédinger introduces it only to reject it, his report contains a detailed
analysis of this proposal, in which quantum systems considered as a whole
involve no passage of time, and according to which time emerges from the
theory as a macroscopic parameter related to the number of quantum jumps
occurring between subsystems. According to this view, there is no change,
and thus no passage of time in between quantum jumps (p. 207), and time
rather emerges as a parameter related to the rate at which jumps occur.

Limiting our attention to an isolated system, we would not per-
ceive the passage of time in it any more than we can notice its
possible progress in space. ... What we would notice would be
merely a sequence of discontinuous transitions, so to speak a cin-
ematic image, but without the possibility of comparing the time
intervals between transitions. (p. 207)

According to Campbell’s hypothesis, “one cannot regard the jump proba-
bility in the usual way as the probability of a transition calculated relative
to unit time.” (p. 451) On this view, the theory supplies probabilities for
transitions between states and in terms of temporal information can only
provide probabilities that one transition occur before or after another.

The alternative, says Schrodinger, is to regard the system not as occupy-
ing a single stationary state (along the lines of Bohr’s earlier atomic theory)
but rather as having a state that may be an arbitrary linear superposition
of energy eigenstates. Taking this view—which was, of course, the view to
win out—time appears in terms of the evolution of the relative phases of the
eigenstates, decomposed relative to a particular basis. Now there is more
to say here about the emergence of the modern notion of state, some of
which is covered by Duncan & Janssen (2012), but we can see that already
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these developments were fatal to the idea of the quantum jump as a discon-
tinuous transition between stationary states, which relied critically on the
hypothesis that a system remain in an energy eigenstate at all times.

3 In Defense of the Notion of the Time of an Event

It is clear that (with respect to von Neumann’s Hilbert space formalism)
these expectations regarding the role of time in the theory were false: time
and energy are not conjugate variables, the Schrodinger equation is defined
for functions of space alone, and there is no such thing as the time of a quan-
tum jump (or collapse).” Nonetheless, I have shown that the motivations
of the authors were not simply the result of conceptual confusion (although
later physicists may have been misled along those lines), and so Hilgevo-
ord’s (2005) rejoinder that time already has an appropriate representation
in the theory as a parameter is misguided. Taking a sympathetic reading
of their motivations, I will show that these expectations can be physically
motivated, and can in fact be met with minimal mutilation of the existing
formalism. Thus the fact that the standard textbook presentation of quan-
tum mechanics is inhospitable to the introduction of ‘time’ as an observable
need not be read as a prohibition on the introduction of the time of an event
as an observable quantity.

The initial motivation of Heisenberg to regard the time of a quantum
jump as an experimentally meaningful quantity was the idea that a quan-
tum system remains in a stationary state of definite energy, except when it
instantaneously transitions to another stationary state. So if the energy of
the system could be shown experimentally to have changed from one value
to another, then a quantum jump must have occurred in the meantime (p.
191), and the time at which it had occurred could be experimentally de-
termined (up to an uncertainty depending on the energy difference). It
was thus natural for Jordan to regard the transformation theory as provid-
ing probabilities for such transitions to occur within a particular interval
of time. I claim that, while the requirement that a system be in an energy
eigenstate at all times was mistaken, the idea that the theory should provide
probabilities for events to occur during intervals of time as well in regions
of space was not.

To take a straightforward example, consider an experiment consisting

"Of course, the dynamics of the theory can be modified to bring about the stochastic
collapse process at particular moments of time, but I will not consider these alternative
dynamics.
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of a single radioactive atom and a Geiger counter that fully surrounds it.
If the half-life of the atom is 1 hour, then the probability that the counter
clicks in the first hour is 1/2, the probability it clicks in the second hour
1/4, the probability it decays in the third hours is 1/8, and so on. Thus the
probability that the counter clicks at some point in the future is given by
an arithmetic sequence that tends to one as t tends to infinity. However,
once the counter has been observed to click, the probability that it clicks in
the future in zero. This is evidently a experimentally meaningful situation,
and we should expect that this phenomenological law may be derived from
a detailed quantum mechanical description of the decay process. However,
within the standard account of measurement there is provably no way to
implement this simple scheme.

This description would involve a (Heisenberg picture) quantum mechani-
cal state v in a Hilbert space H, a Hamiltonian H describing the time evolu-
tion of the system, and a series of operators 11, Ts, T3 such that (|T1) =
1/2, (¢|Tayp) = 1/4, and (|T3¢p) = 1/8. Since the theory has a time
translation symmetry implemented by the unitary group e**, we have that
Ty = e HiT et and Tye i The'Ht where t is one hour. Even this bare
bones sketch is enough to tell us something interesting about the opera-
tors T;: if H is a self-adjoint operator with spectrum bounded from below®
then it follows that (¢|T;4+175|1) # 0 and so these operators T; cannot be
projections onto mutually orthogonal subspaces of H.?

Thus there is no mixed state decomposition in terms of states v; such
that T;1; = 1;, in which case the ; would correspond to the system de-
caying during distinct intervals of time, and neither can the T; together
serve to define a self-adjoint ‘time of decay’ operator. The former implica-
tion indicates the von Neumann’s collapse postulate cannot be applied to
this situation; the latter than his identification of observables of the theory
with self-adjoint operators is ill-suited to include the time of an event as an
observable quantity. Yet there seems every reason to suppose that the the-
ory should be able to answer questions like, “When will the Geiger counter
click?” or in a diffraction experiment, say, “When will a dot appear on the
screen?” In failing to answer these questions, the theory would be fail to be
empirically adequate. This failure would constitute a real ‘problem of time’
for the theory. But this problem can be overcome, and without modifying
the dynamics: The problem is not with the way that quantum mechanics

8This corresponds to the assumption that the is a value of energy for the system below
which it cannot drop.
9For a proof this result see Unruh & Wald (1989).
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defines the state of the system, but the way that probabilities are derived
from the state.

The first thing to note is that in the identification of observables with
self-adjoint operators it is assumed that these these operators act instan-
taneously. In the Schrédinger picture (in which the states vary with time)
the expectation value of an operator A in the state 1 is (Y¢|A|)y), whereas
in the Heisenberg picture (in which the observables vary with time) the ex-
pectation value of an operator is (1|e~*#! Ae'|¢)). (These return the same
values since [;) = e'?![1)).) In the Schrodinger picture it makes very little
sense to ask when a particular event occurs (in the sense of a probability
for it occurring during some interval of time) since we may only interrogate
the state at a moment of time. However, in the Heisenberg picture we may
define operators that involve more than one moment of time by integrating
over t.

Consider an instantaneous measurement of position. The existence of
a self-adjoint position observable implies the existence of an assignment of
projection operators Pa to regions of space A such that disjoint regions of
space correspond to mutually orthogonal subspaces. In the Heisenberg pic-
ture, an instantaneous measurement of Pa at time ¢ apparently corresponds
to asking the question “is the system located in A at time t?” The proba-
bility of finding a positive answer is (1|e "t Ppetft|¢)), and if the system
is found to be in A then the state is updated accordingly by the projection
operator Pa(t) = e 1t Pyeiflt,

To consider a measurement that takes place over more that one instant,
we can integrate these operators over t. The most straightforwardly defined
of these operators is the dwell time operator,!” whose expectation value
corresponds to something like the proportion of time that a system spends
within a region A, .

T, = / Pa(t)dt.
—0o0
But while this is a self-adjoint operator (albeit one whose measurement in
a concrete experimental situation is questionable), it is not appropriate for
describing the time of an event since it does not assign probabilities to times
(or time intervals).

Consider instead a cloud chamber experiment where we set up a detector
that is sensitive to the presence of high energy particles, with the chamber
located in A. The presence of the particle will be registered by an ionization
event, which is recorded by a photosensitive emulsion. For a given state ¥

19See Jose Munoz et al. (2010) for a recent discussion.
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we want to obtain the probability that the detector fires during some interval
I = [t1,12], given that it fires at all. The obvious candidate for an operator
that corresponds to the presence of a particle within A during a time interval
[tl, tg] is

) - [ " Patt)dt,

1

but this operator is not normalized. Nonetheless, if we assume that the
particle will be detected at some time (and exactly once) then the normal-
ization is provided by the dwell time operator, which, being self-adjoint, has
a unique square root Ty = (T;/ 2). Using the inverse of this operator, we
define
Ex(I) =T, P Ea(tr, ta)) T, *,

which returns the identity when I = R. With this ‘operator normalization’
the quantity (|Ea(I)|y) can be interpreted as giving the probability that
the event occurs during I rather than at some other time.!!

The operators Fa(I) together form a Positive Operator Valued Measure
(POVM) which maps temporal intervals I to positive operators on H.12
However, these operators are not mutually orthogonal projections and can-
not form a Projection Valued Measure (PVM); in general, a POVM that
covaries with time translations Ea(I) = e *#H#*Ex(I — t)e’H* cannot be a
PVM.!? Since the self-adjoint operators on H are in one-to-one correspon-
dence with the set of PVMs, there is no self-adjoint operator corresponding
to the operators Ea(/) (in the same sense that the position operator @
corresponds to the projections Pp). Thus von Neumann’s association of
observables with self-adjoint operators would exclude these event time ob-
servables.

But it is not surprising that this is so since in von Neumann’s measure-
ment schema the measurement of an observable takes place at an instant,
i.e. under the condition that the time is £. The usual probabilities given by
an observable are conditional probabilities in the following sense: they are
probabilities which are valid given that the time is t. On the other hand,
the event time observable is ‘measured’ over an interval of time by leaving

"This operator normalization scheme is suggested by Brunetti & Fredenhagen (2002)
and has been interpreted (Busch, 2007) in terms of the amount of time that the system
spends in the region A during I, but to do so ignores the physical meaning of the nor-
malization. The more natural interpretation, I claim, is in terms of the probability of a
detection event, given that such an event will certainly occur.

12See Brunetti & Fredenhagen (2002) for a proof of this in general.

13See Srinivas & Vijayalakshmi (1981).
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the experiment set up and waiting for it to register an event. The condi-
tion under which such a experiment takes place is that such an event will
occur sooner or later, i.e., the probabilities provided by E(I) are also con-
ditional probabilities, with the condition being that the event takes place
exactly once over all of time. The incompatibility of these normalization
conditions indicates that they correspond to incompatible measurements.
But how many experiments take place at an instant of time? If we are judg-
ing by empirical relevance, I suggest that the conditionalization required by
event time observables is more apt—only a poor detection experiment ends
without a detection event.

These observables have a close relation to the screen observables of
Werner (1986), which generalize the quantum time of arrival.'* Screen ob-
servables apply to a typical diffraction experiment where an electron, say, is
emitted and some time later detected at a photoluminescent screen. Since
the screen is sensitive to the presence of an electron at all times, and elec-
trons in an ensemble will be detected at different times, an instantaneous
position observable cannot suffice to describe even the spatial distribution
of detection events. For these screen observables, one assumes again that
the detector will fire at some time ¢, and so the sum of the probability of
detection over all times is unity. Again, very few experimental arrangements
(if any) correspond to anything like an instantaneous position measurement,
which would provide probabilities for a detector spread out through all of
space which fires exactly once when switched on for an instant.

The main puzzle that is raised by event time observables such as these
is, in my view, one of providing a suitable update rule. While POVMs play
the same predictive role as PVMs'®, event time POVMs are particularly
ill-suited to supplying the means to update the state, which is typically
defined for projectors through Liiders Rule, which projects the state into
the eigenspace of the measured eigenvalue (normalizing according to the
trace). However, the very normalization of the POVM Ea(R) = I which
made it suitable for its role as an event time observable makes it ill-suited
to provide probabilities for events that occur subsequent to detection. For
example, it is unclear that we can obtain a definite answer to the question:
what is the probability that the particle is first detected in A during I
and subsequently in A’? To answer this question appears to require a new
normalization scheme since now the particle is detected in both A and A/,

!This has been a topic of much research. See Muga & Leavens (2000) for a review.
15 As with a projection, a normalized positive operator E supplies probabilities through
taking the trace of the density operator p, T'r[pE].
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i.e., twice. But if we normalize along those lines then we have lost the
conditional nature of the probabilities desired: the question was, what is the
probability of finding the particle in A’ given that it was already detected
in A?

For answering such questions, we must go beyond operator normaliza-
tion and instead consider the extended Schrodinger equation, defined for
functions of time and space as Dirac originally envisioned it,

(H — W)p(z,t) = 0.

The problem with this equation is that the operator (H — W) has a con-
tinuous spectrum, and so there is no vector ¥ (x,t) € L*[R*] = H, which
is an eigenvector with eigenvalue 0. However, as Dirac had claimed, energy
(=) and time are conjugate variables on this space of functions of space
and time. Without going into the details, recent work by Brunetti et al.
(2010) has shown how solutions to this equation may be written in terms of
linear functionals rather than vectors. While these physical solutions don’t
form a Hilbert space, and define non-normalizable ‘weights’ on the algebra
of observables of H rather than algebraic states, there is a construction
which, given an operator on H, representing the occurrence of an event,
leads to a GNS Hilbert space representation giving the expectation values
for the algebra of observables on the condition that the event in question
did occur.

Since time is a self-adjoint operator on H, (which, remember, is not
the space of solutions of the extended Schrodinger equation), the event time
operators such as Ta(I) are projections in this space. By conditionalizing
on these events, one can calculate probabilities for subsequent events, such
as another detector firing elsewhere. This theory has a good claim to be re-
garded as a straightforward generalization of the usual Schrédinger dynam-
ics. First, by setting up an appropriate map from H, to H, the projections
TA(I) become the operator normalized time POVM Ea(I). Second, and
most importantly, the predictions of the usual Schrédinger picture descrip-
tion are returned in the instantaneous limit. But note that the differences
between the instantaneous form and the extended form are significant: the
solutions of the extended Schrédinger equation do not form a Hilbert space,
and there is no meaning to the phrase ‘the state of the system’ without first
specifying an event, the occurrence of which can be used to give a probability
assignment to further events. Thus such probability assignments correspond
to a conditional state.
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4 Coda: The Philosophy of Time

What does this have to do with the metaphysics of time? The great debate
over the nature of time in fundamental physics began with the correspon-
dence of Gottfried Wilhelm Leibniz and Samuel Clarke. Against the New-
tonian view of time as a substantive physical entity (substantivalism) — the
“container view” of space-time — Leibniz argued that time is nothing more
than the temporal relations between independently existing events (relation-
ism). Recent discussions of the role of time in cosmological theories (e.g.,
Barbour (1999)) have tended to take the line that philosophical consider-
ations demand the elimination of time from physical theories, or at least
reduction of time to some other quantity with respect to which change may
be defined. However, it is implausible that Leibniz intended to deny the ex-
istence of time. For example, he wrote that “time is the order that makes it
possible for events to have a chronology among themselves when they occur
at different times,” which is inconsistent with a reductive or eliminativist
account of temporal relations.'®

Instead, Leibniz believed that time is nothing above and beyond the
temporal ordering relations that exist between events: “times, considered
without the things or events, are nothing at all, and ... consist only in the
successive order of things and events.” This view was in stark contrast
to Clarke, who maintained that “time is not merely the order of things
succeeding each other, because the quantity of time may be greater or less
while the order of events remains the same.” Thus what Clarke affirmed
and Leibniz denied was the metrical structure of time; in a world consisting
of successive events with a single linear temporal order, Clarke believed that
one could (in principle) measure the amount of time between two successive
events, whereas according to Leibniz this is a meaningless notion—once
given the temporal orderings of events we have all there is to say about the
temporal facts.

In ordinary quantum mechanics (the Dirac-von Neumann formalism)
time features as a parameter that indexes the states (Schrodinger picture)
or the observables (Heisenberg picture). In the Schrédinger picture, the
natural way to view the time indexed states is as describing the same physical
system at distinct moments of time. This seems to describe a world in which
time is continuously valued, having the structure of the real line. It is hard
to see how such a world could be made compatible with Leibniz’s view of
time as nothing but the temporal relations between events. But if we view

6 All quotations are from translations at http://www.earlymoderntexts.com/.
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the formalism as a means for providing probabilities for the occurrence of
events in time, as I have suggested, we obtain a view of the world much more
hospitable to Leibniz’s contention that time is just the temporal ordering
relations between (possible and actual) events.
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ABSTRACT. This paper is a tour of how the laws of nature can
distinguish between the past and the future, or be T-wviolating. 1
argue that, in terms of the basic argumentative structure, there are
basically just three approaches currently being explored. The first
is an application of Curie’s Principle, together with the C'PT theo-
rem. The second route makes use of a principle due to Pasha Kabir
which allows for a direct detection. The third route makes use of a
Non-degeneracy Principle, and is related to the energy spectrum of
elementary particles. I show how each provides a general template
for detecting T-violation, illustrate each with an example, and dis-
cuss their prospects in extensions of particle physics beyond the
standard model.

1. INTRODUCTION

Unlike thermal physics, the physics of fundamental particles
does not normally distinguish between the past and the future. For
example, a typical classical mechanical system never makes such dis-
tinction, although one can imagine strange systems that do'. And
there was a time in the mid-20th century when this “invariance un-
der time reversal” or T-invariance was demanded, for example, even by
Weinberg (1958), because of the great simplification it provided in the
description of weakly interacting particles.

Well, a lot has changed since then, and a great deal of evidence
has been accumulated which shows that, contrary to the early views of
particle physicists, fundamental physics can be T-wviolating — it does
distinguish between the past and the future! I do not wish to retell that
story here. There are many sources?, which are really much better than
me, that will explain to you all about the gritty but ingenious detections

'For an overview of the classical case, see (Roberts 2013).

2For just one of my favorite recent book-length overviews, try (Bigi and Sanda
2009).
1
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of T-violating interactions, the deep and beautiful theory underlying
them, and how we can expect that theory to develop from here.

At this conference, I would like to attempt a different project,
which is to draw out the basic analytic arguments underlying the var-
ious approaches to T-violation. I would like to cast these arguments
into their bare skeletal form; to think about what makes them alike
and distinct; and to ask how they may fare as particle physics changes
is extended beyond what we know today. In sum, what I would like is
to take a lighthearted tour — from a birds eye view, if you like — of the
existing roads to T-violation.

What’s helpful about this perspective, I think, is that it makes
clear that there are really only three distinct roads to T-violation where
we stand today. They can be summarized as follows.

(1) T-Violation by Curie’s Principle. Pierre Curie declared that
there is never an asymmetric effect without an asymmetric
cause. This idea, together with the so-called C'PT theorem,
was the road to the very first detection of T-violation in the
20th century.

(2) T-Violation by Kabir’s Principle. Pasha Kabir pointed that,
whenever the probability of an ordinary particle decay A — B
differs from that of the time-reversed decay B’ — A’, then we
have T-violation. This provides a second road.

(3) T-Violation by a Non-degeneracy Principle. Certain kinds of
matter, such as an elementary electric dipole, turn out to be T-
violating whenever their energy spectrum is non-degenerate®.
This provides the final road, although it has not yet led to a
successful detection of T-violation.

In the next three sections, I will explain each of these three roads
to T-violation. Some of these roads are very exciting and surprising,
especially if you have not travelled down them before, and I will try to
keep things light-hearted. My explanations will begin with a somewhat
abstract formulation of an analytic principle, and then an illustration
how it provides a way to test for T-violation. I'll end each section with
a little discussion about the prospects for extensions of particle physics
beyond the standard model, and in particular extensions in which the
dynamical laws are not unitary.

Let’s start at the beginning.

3A self-adjoint operator A in finite dimensions is degenerate if it has two orthog-
onal eigenvectors with the same eigenvalue. I will discuss this property in more
detail below.
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2. T-VIOLATION BY CURIE’S PRINCIPLE

The first evidence that the laws of a certain kind of “weakly
interacting” system are T-violating, rather incredibly, was produced
in 1964, with little knowledge of the laws themselves. How was this
possible? It was through a clever mode of reasoning first pointed out
by the great French physicists Pierre Curie, and adopted by James
Cronin and Val Fitch in a very surprising discovery. Here is that story.

2.1. Curie’s principle. In 1894, Pierre Curie argued that physicists
really ought to be more like crystallographers, in treating certain sym-
metry principles like explicit laws of nature. He emphasized one sym-
metry principle in particular, which has come to be known as Curie’s
principle:

When certain effects show a certain asymmetry, this

asymmetry must be found in the causes which gave rise
to them. (Curie 1894)

To begin, we’ll need to sharpen the statement of Curie’s Princi-
ple, by replacing the language of “cause” and “effect” with something
more precise. An obvious choice in particle physics is to take an “ef-
fect” to be a quantum state. What then is a cause? A natural answer
is: the other states in the trajectory (e.g. the states that came before),
together with the law describing how those states dynamically evolve.
So, Curie’s principle can be more clearly formulated:

If a quantum state fails to have a linear symmetry, then
that asymmetry must also be found in either the initial
state, or else in the dynamical laws.

This is a common interpretation of Curie’s principle’. In fact it can be
sharpened even more, and we will do so shortly. But first let’s now see
how it applies to the history of symmetry violation.

2.2. Application to C'P-violation. In the study of symmetry viola-
tion, Curie’s Principle appears to have first been used by Gell-Mann
and Pais (1955). They did not refer to it in this way, but I think it
will be clear that this is what they were using. Let’s start with the
example of charge conjugation (CC) symmetry, which has the effect
of transforming particles into their antiparticles and vice versa. Sup-
pose we have two particle states #; and 05; their interpretation is not
important for this point®. And suppose the state 6, is “even” under

4C.f. (Barman 2004), (Mittelstaedt and Weingartner 2005, §9.2.4).
5Gell-Mann and Pais used 0(1) and 08 refer to the neutral kaon states K; and K»
discussed in Footnote 6 below.
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charge conjugation, in that C6; = 6, while the state 05 is “odd,” in
that C'fy = —0y. Then, Gell-Mann and Pais observed,

according to the postulate of rigorous CC invariance,
the quantum number C' is conserved in the decay; the
09 must go into a state that is even under charge con-
jugation, while the 6 must go into one that is odd.
(Gell-Mann and Pais 1955, p.1389).

Given C-symmetric laws, a C-symmetric state must evolve to another
C-symmetric state. Or, reformulating this claim in another equivalent
form: if a C-symmetric state evolves to a C-asymmetric state, then
the laws themselves must be C-violating. That’s a neat way to test for
symmetry violation. And it’s a simple application of Curie’s Principle.

Although Gell-Mann and Pais were discussing C-symmetry, the
same reasoning applies to any linear symmetry whatsoever. In par-
ticular, it applies to C'P-symmetry, which is the combined application
of charge conjugation with the parity (P) or “mirror flip” transforma-
tion. James Cronin and Val Fitch exploited Curie’s Principle when
they made the shocking discovery of CP-violation in 1964, for which
they won the 1980 Nobel Prize in physics. In fact, Cronin later wrote
that the Gell-Mann and Pais article “sends shivers up and down your
spine, especially when you find you understand it,” pointing out that
it suggests a statement that is an unmistakable application of Curie’s
Principle (although Cronin does not call it that way):

You can push this a little bit further and see how CP
symmetry comes in. The fact that CP is odd for a long-
lived K meson means that K could not decay into a
7t and a 7. If it does — and that was our observation
— then there is something wrong with the assumption
that the CP quantum number is conserved in the decay.
(Cronin and Greenwood 1982, p.41)

When you create a beam of neutral K mesons or “kaons,” the long-lived
state K is all that’s left after the beam has traveled a few meters®. It
had been discovered eight years earlier in the same Brookhaven labora-
tory by Lande et al. (1956). And it was known that K is not invariant

6 The study of strong interactions had led to the identification of kaon particle
and antiparticle states K and K that are eigenstates of a degree of freedom called
strangeness. In the study of C'P-violation, it is easier to study the superpositions
K, = (K°+ K% /v2 and Ky = (K° — K)/+/2, since the lifetime of the latter is
orders of magnitude longer. At the time, K5 was identified as the “long-life kaon
state Kp.”
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CP-odd C P-even

FIGURE 1. The K — 777~ decay. By Curie’s Princi-
ple, this asymmetry between an initial state and a final
state implies an asymmetry in the laws.

under the C'P transformation, whereas a two pion state 7t7~ 4s invari-
ant under C'P. The observation of such an asymmetric decay, Cronin
suggests, could only be the result of a C'P-violating law.

Amazingly, when Cronin and Fitch analyzed the photographs
of a K7 beam in a spark chamber at Brookhaven National Laboratory,
they found clear evidence that some of the long-lived kaons kaons were
decaying into a pair of pions, K; — w77 ~. Their conclusion, by a
simple application of Curie’s Principle, was that the laws must be C P-
violating. They told Pais about their discovery at Brookhaven over
coffee. Pais later wrote, “After they left I had another coffee. I was
shaken by the news.” (Pais 1990)

Of course, there were many deep insights that led to the discov-
ery of C'P-violation. They included the discovery of the strangeness
degree of freedom, the prediction of kaon-antikaon oscillations, the dis-
covery of the long-lived K, state, the understanding of kaon regener-
ation, and many other things. But I hope to have shown here that,
in skeletal form, the first argument for C'P-violation is really a simple
application of Curie’s Principle.

2.3. The conclusion of T-violation. The final step to the conclusion
of T-violation now follows from the so-called C'PT-theorem. Virtually
all known laws of physics are invariant under the combined transfor-
mation of charge-conjugation (C'), parity (P), and time reversal (7).
Of course, the precise law of unitary evolution governing the decay of
the neutral kaon was not known in 1964. But there was a theorem to
assure us that, at least for quantum theory as we know it — describ-
able in terms of local (Wightman) fields, and a unitary representation
of the Poincaré group — the laws must be invariant under C'PT'. This
result, called the C'PT theorem, was first proved in this form by Jost
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(1957). And it straightforwardly implies that if C'P is violated, 7" must
be violated as well”.

Thus, insofar as the C'PT theorem applies to our world, the
Cronin and Fitch application of Curie’s principle provides immediate
evidence for T-violation as well.

2.4. Mathematical underpinning. The statement of Curie’s prin-
ciple described above is not just a helpful folk-theorem. It can be
given precise mathematical expression. Let me now try to make the
mathematics more clear. I'll begin with a very simple mathematical
statement of Curie’s Principle in terms of unitary evolution, and then
show how it can be carried over to scattering theory.

To begin, recall what it means for a law to be invariant under
a linear symmetry transformation R.

Definition (invariance of a law). A law of physics is invariant under
a linear transformation R if whenever ¢(t) is an allowed trajectory
according to the law, then so is Ry (t).

In the standard model of particle physics, interactions are as-
sumed to evolve unitarily over time, by way of a continuous unitary
group U, = e " where H is the Hamiltonian generator of ;. In this
context, the above definition of invariance is equivalent to

[H,R] =0

where H again is the Hamiltonian and R is linear (Earman 2002). In
these terms, we can give a first formulation of Curie’s Principle as
follows®.

Fact 1 (Unitary Curie Principle). Let Uy = e ™ be a continuous
unitary group on a Hilbert space H, and R : H — H be a linear
bijection. Let v; € H (an “initial state”) and ; = e "Ha); (a “final
state”) for some t € R. If either

(1) (initial but not final) Rip; = 1b; but Ry # 5, or

(2) (final but not initial) Ripy = 1y but Rip; # 1,
then,

(3) (R-violation) [R, H]| # 0.

"CPT-invariance says that (CPT)H = H(CPT), and thus that (CP)THT " =
H(CP). So, if we have time reversal invariance THT~! = H, then we must also
have C'P-invariance CP(H) = H(CP). Equivalently, if C'P invariance fails, then
so does time reversal invariance.

8A version of this fact was pointed out by Earman (2004, Prop. 2).
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Proof. Suppose that [R,H| = 0, and hence (since R is linear) that
[R,e”™H] = 0. Then Ry; = v if and only if Ry; = Re "y, =
e_itHR’QDi — e—itHwi — wf. ]

This, again, is just a helpful first formulation. We have not yet
arrived at a principle that is appropriate for the description of C'P-
violation. The claim of Cronin and Fitch was that in a neutral kaon
scattering event, there is a particular decay mode K; — wtn~ that
occurs only if the laws are C' P-violating [C' P, H] # 0. We have not yet
given a rigorous formulation of that application of Curie’s Principle.

To get there, we first observe that it is enough for C'P to fail
to commute with the S-matrix, [C'P,S] # 0. For, if a symmetry R
commutes with the “free” part of the Hamiltonian [R, Hy] = 0 (which is
true of most familiar symmetries, including C'P), then by the definition
of the S-matrix?,

[R,S] # 0 only if [R, H| # 0.

Thus, by showing that the scattering matrix is C'P-violating, one equally
shows that the unitary dynamics are C'P-violating as well. With this
in mind, we can now state Curie’s Principle in a form that is more
appropriate for scattering theory.

Fact 2 (Scattering Curie Principle). Let S be a scattering matriz, and
R : H — H be a unitary bijection. If there exists any decay channel
P — % such that either,

(1) (in but not out) Ry™ = ™ but Ryt = —°% or

(2) (out but not in) Ryt = % but Ryp™ = —™",
then,

(3) [R, 5] #0.

Moreover, if U, = e~ Ho+V) s the associated unitary group, and if R
commutes with the free component Hy of the Hamiltonian H = Hy+V,
then (R-violation) [R, H] # 0.

9 One easy way to prove this is to just look at the explicit Dyson expression of
the S-matrix,

(1) S = Texp (fi /OO dtv,(t)) ,

J—o0
where V7 is the interacting part of the Hamiltonian H = Hy + V7, and T is the
time-ordered multiplication operator (Sakurai 1994, p.73). If H = Hy + V;, then
R, Hy] = 0 and [R, H] = 0 implies that [R, V;] = [R, H—Hy] = [R, H|—[R, Hy] = 0.
Thus, since R is linear, we can pass it through the integral above to get that

RSR™!'=8.
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Proof. We prove the contrapositive; suppose that [R, S] = 0. Since R is
unitary, (%, Sy = (Ry°ut, RSY™) = (Ry°, SRy™). So, if either

the “in but not out” or the “out but not in” conditions hold, then,
(W, SYm) = (RG™, SRY™) = — (4™, Sy").
Hence, (1%, S¢™) = 0, which means that there can be no decay chan-

nel 9 — %% Finally, we note that if [R, Hy] = 0, then and [R, S| # 0
implies that [R, H] # 0 by the definition of the S-matrix. O

This, finally, is the precise mathematical statement of Curie’s
Principle that was applied by Cronin and Fitch. Taking ¢ = K|,
and 1°“ = 77—, they discovered a scattering event ¥ — °% that
satisfies “out but not in” for the transformation R = C'P. It follows
that the laws are C'P-violating. And given C'PT invariance, it follows
that they are T-violating as well.

2.5. Advantages and limitations. An obvious advantage of this ap-
proach to T-violation is that you don’t have to know the laws to know
that they are T-violating. At the time of its discovery in 1964, many
of the structures appearing in the modern laws of neutral kaon decay
were absent: there were no W or Z bosons, no Kobayashi-Maskawa
matrix, and certainly no standard model of particle physics. All that
came later. Nevertheless, Curie’s Principle provided a surprisingly sim-
ple test that the laws are T-violating, even without knowing the laws
themselves.

A more subtle advantage is that, as a test for C'P violation,
Curie’s Principle will likely continue hold water in non-unitary exten-
sions of quantum theory'® Although unitary evolution is assumed in
some of the background definitions, nothing about the argument from
Curie’s Principle requires the evolution be unitary. For example, the
“scattering version” of Curie’s principle in no way depends on the uni-
tarity of the S-matrix; indeed, the conclusion that [R,S] # 0 holds
when S is any Hilbert space operator whatsoever that connects 1™
and ¢°" states. In this sense, the argument from Curie’s principle is
very general indeed.

The limitation is that it is an indirect test for T-violation, and
one that we might not trust as we attempt to extend particle physics
beyond the standard model. In particular, the reliance on the C'PT
theorem is troubling. It is not implausible that C'PT invariance could
fail as particle physics is extended beyond the standard model. For
example, we might wish to consider a representation of the Poincaré

10C f. Weinberg (1989).
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group that is not completely unitary. In such cases, the C'PT theo-
rem can fail, and thus so would the link between C'P-violation and
T-violation. It would be preferable to have a direct test of T-violation
instead.

One might respond to this concern by trying to apply Curie’s
Principle directly to the case of T-violation. Unfortunately, that doesn’t
work. Recall in the statement of Curie’s Principle above assumed the
symmetry transformation was linear. This turns out to be a crucial
assumption; Curie’s Principle fails badly for antilinear symmetries like
time reversal'l. So, this road to T-violation is essentially indirect.
One can check directly for C'P violation, but only recover T-violation
by the C'PT theorem. A direct test of T-violation will have to follow
a completely different argument. That is the topic of the next section.

3. T-VIOLATION BY KABIR’S PRINCIPLE

New progress has recently been made in the understanding of
T-violation. We now have evidence for the phenomenon that appears
to be much more direct. The first such evidence began with an ex-
periment by Angelopoulos et al. (1998), performed at the CPLEAR
particle detector at CERN. Like the original T-violation experiment,
this discovery involved the decay of neutral kaons. But unlike previous
tests of T-violation, this experiment did not make use of Curie’s Princi-
ple, and in this way managed a direct detection of T-violation. Things
got even better when, just a few months ago now, yet another direct
detection of T-violation was announced by the BaBar collaboration at
Stanford (Lees et al. 2012). This experiment involved the decay of a
different particle, the neutral B meson. It’s an exciting time for the
study of T-violation!

What I would like to point out is that both recent detections of
T-violation hinge on a common principle. It is not Curie’s Principle,
for we have seen that this does not allow for the direct detection of
T-violation. Let me call it Kabir’s Principle, since it was pointed out
in an influential pair of papers by Kabir (1968, 1970). Unlike the Curie
Principle approach to symmetry violation, this one is really built to
handle antilinear transformations like time reversal. Here is how it
works.

3.1. Kabir’s Principle. To begin, let me summarize the simple idea
behind Kabir’s Principle somewhat roughly.

Hgee Roberts, “The simple failure of Curie’s Principle,” manuscript of July 21,
2012, http://philsci-archive.pitt.edu/9249/
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If a transition ¥™ — ¢°% occurs with different proba-
bility than the time-reversed transition T¢°% — T)™,
then the laws describing those transitions must be T-
violating.

This suggests a straightforward technique for checking whether or not
an interaction is governed by T-violating laws. We set up a detector to
check how often a particle decay v, — 1y occurs (called its branching
ratio), and compare it to how often a the decay Ty — T; occurs.
Easier said than done, naturally. But if one occurs more often than
the other, then we have direct evidence of T-violation.

In the next subsection, I will sketch briefly how such a procedure
was first carried out at CERN. I’ll then discuss the precise mathemat-
ical formulation of Kabir’s Principle.

3.2. Application to T-violation. The first direct detection of T-
violation involved the decay of our friend the neutral kaon. So, let’s
return to the strangeness eigenstates K° and K°, which have strange-
ness eigenvalues 41, respectively. It is generally thought that, if strong
interactions were all that governs the behavior of these states, then
strangeness would be conserved. So, by the kind of arguments dis-
cussed above, you could never have a particle decay like K¢ — K°,
because these states have different values of strangeness. However —
and this is another thing pointed out in the remarkable article by Gell-
Mann and Pais (1955) — when weak interactions are in play, there is no
reason not to entertain decay channels that fail to conserve strangeness.

In fact, in the presence weak interactions, it makes sense to
consider both K° — K° and K° — K as possible decay modes. These
particles could in principle bounce back and forth between each other,
K° = K° by a phenomenon called kaon oscillation. This is a very
exotic property, which applies to only a few known particles (one of
them being the B meson), and it is part of what makes neutral kaons
so wonderfully weird.

Now, the convenient thing about oscillations between K° and
K" is that they are very easy to time reverse. In particular,

TK'=K° TK°=K"

This allows us to apply Kabir’s Principle in a particularly simple form:
if we observe K° — K° to occur with a different probability than K° —
K° then we have direct evidence for T-violation! This is precisely what
was found at the CPLEAR detector, in showing that there is “time-
reversal symmetry violation through a comparison of the probabilities
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FIGURE 2. Application of Kabir’s Principle. If the decay
K% — K O happens more often than the time-reversed
decay K — K, then the interaction is T-violating.

of K° transforming into K° and K° into K% (Angelopoulos et al.
1998).

At this level of abstraction, it was the very same strategy that
was used in the Stanford T-violation experiment with B mesons. It
turns out that neutral B mesons can also oscillate between two states,
BY =2 B_. Bernabéu et al. (2012) pointed out that if these transi-
tions were to occur with different probabilities, then we would have
T-violation. And this is just what was recently detected by Lees et al.
(2012) at Stanford. Thus, both the Stanford detection and the original
CPLEAR detection T-violation were made possible by the abandon-
ment of Curie’s Principle, in favor of the more the more direct principle
of Kabir.

3.3. Mathematical Underpinning. As with Curie’s Principle, Kabir’s
Principle has a rigorous mathematical underpinning. But before get-
ting to that, it’s important to note the special way that unitary opera-
tors like the U, = e~ and the S-matrix transform under time reversal.
The point where many get stuck is on the fact that T is antiunitary.
This means that it conjugates the amplitudes, (TY,T¢) = (¥, p)*.
It also means that it is antilinear, in that it conjugates any complex
number that we pass it over:

T(a) + bp) = a™ Ty + b*T'p.

As a consequence, the condition of time reversal invariance that [T, H] =
0 does not imply that the unitary operator U; = e~ commutes with
T. Instead, the complex constant picks up a negative sign. That is, for
time reversal invariant systems, TU, T~} = ¢~ (CHTHT™Y) — gith — g, —
U;. Similarly, a unitary S-matrix describes a time-reversal invariant
system if and only if T'ST~! = S*.

We can formulate a mathematical statement of Kabir’s Princi-
ple. Note that, as discussed in Section 2.4, the failure of the S-matrix
to be time reversal invariant (T'ST™* # S*) implies T-violation in the
ordinary sense (TU, T # U}).
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Fact 3 (Kabir’s Principle). Let S be a unitary operator (the S-matrix)
on a Hilbert space H, and let T : H — H be an antiunitary bijection.

If,

(1) (unequal amplitudes) (™, Sipouty £ (Topout ST™),
then,

(2) (T-violation) TST—* # S*.

Proof. We argue the contrapositive. Suppose T'ST ! = S*. Since T is
antiunitary, (% Sy™) = (Tt TSy™)*. But TS = S*T by time
reversal invariance, so,

<w0ut7swin> _ <T1/JOUt,S*TT/Jin>* —_ <T1/}zn7 STwout>’
where the last equality just applies properties of the inner product. [

3.4. Advantages and limitations. Like Curie’s Principle, Kabir’s
Principle provides a way to establish T-violation of the laws without
assuming very much at all about those laws. But even better, it does so
without recourse to the C'PT theorem. In this sense, Kabir’s Principle
stands a better chance of remaining valid in C'PT-violating extensions
of the standard model.

A limitation is that, unlike the Curie’s Principle approach, Kabir’s
Principle only seems to work when the dynamics is unitary. As in
Section 2.5, suppose we consider some non-unitary extension of the
standard model. Unfortunately, an essential part of the Kabir Princi-
ple argument involves the assumption that time reversal invariance has
the effect,

TUT =U_ =U;.
When U, is a unitary group, this is a simple mathematical fact. How-
ever, if we wish to consider a one-parameter group U; that is not uni-
tary, then the concept of time reversal invariance TU,T~! = U_, does
not necessarily imply that TU, T~ = Y. But this latter fact is (cru-
cially) applied in the proof of Kabir’s Principle.

Thus, although the Kabir Principle applied by Angelopoulos
et al. (1998) and Lees et al. (2012) has the advantage of providing a
direct test, they are not general enough to apply without modification
to the context of a non-unitary dynamics.

4. T-VIOLATION BY A NON-DEGENERACY PRINCIPLE

I’d like to finish with one final road to T-violation. It is perhaps
the most direct and yet the least well-known of all the approaches.
In simplest terms, this route involves the search for exotic new kinds
of matter. Let me begin with a toy model of how this can happen.
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I’ll then turn to the general reasoning underpinning this approach to
T-violation, and finally show how this reasoning has been applied (un-
successfully so far) in empirical tests.

4.1. A toy example. An electric dipole moment typically describes
the displacement between two opposite charges, or within a distribution
of charges. But suppose that, instead of describing a distribution of
charges, we use an electric dipole moment to characterize a property
of just one elementary particle. This particle might be referred to as
an “elementary” electric dipole moment.

The existence of such particles has been entertained, though
none have yet been detected. Let Hy be the Hamiltonian describing
the particle in the absence of interactions; let J represent its angu-
lar momentum; and let E represent an electromagnetic field. Then
these “elementary” electric dipoles are sometimes'? characterized by
the Hamiltonian,

H=Hy+J- L.

Since time reversal preserves the free Hamiltonian Hy and the electric
field F, but reverses angular momentum J, this Hamiltonian is mani-
festly T-violating: [T', H] # 0. Therefore, an elementary electric dipole
of this kind would constitute a direct detection of T-violation. No need
for Kabir’s Principle. No need for Curie’s Principle. No need for the
CPT theorem.

Like the T-violating K; — nt7n~ and K° = K° decays, there
are general principles underpinning this example of T-violation, too.
In this case, they stem from the relationship between T-invariance and
the degeneracy of the energy spectrum. The relevant relationship can
be summarized as follows.

4.2. A Non-degeneracy Principle. A system is called degenerate if
its Hamiltonian has distinct energy states with the same energy eigen-
value. An intuitive example is the free particle on a string, which is
degenerate: the particle can either move to the left, or to the right, and
have the same kinetic energy either way. Kramers (1930) showed that
an odd number of electrons can be expected to have a degenerate en-
ergy spectrum, and for this his name remains attached to that effect:
Kramers Degeneracy™. But it was Wigner (1932) showed the much
deeper relationship between degeneracy and time reversal invariance.

12(See Khriplovich and Lamoreaux 1997)

13The reason people were interested in the first place, it seems, is that degeneracy
was a key part of knowing how to studying very low temperature phenomena using
paramagnetic salts (Klein 1952).
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For the purposes of understanding 7T-violation, the relevant re-
lationship can be summarized as follows.

Fact 4 (Non-degeneracy Principle). If (1) time reversal acts non-
trivially on states, in that T # e for some eigenvector 1 of H; and
(2) the Hamiltonian H is non-degenerate; then we have T-violation, in
that [T, H] # 0.

We will see shortly how this fact has a simple prove deriving
from the work of Wigner. But first, let me point out how it can be
used to provide evidence of T-violation, if we were to detect a particular
kind of electric monopole.

4.3. Application to T-violation. We observed above that an appro-
priate system can provide an explicit and direct example of T-violation.
The properties that these systems tend to share, it turns out, are just
the properties of the Non-degeneracy Principle above. There are vari-
ous examples that one could study here to illustrate. But let me spare
the reader and give just one that is rather important, the elementary
electric dipole moment.

The thing that is not obvious is that the elementary electric
dipole moment is that it always satisfies part (1) of the Non-degeneracy
Principle. That is, time reversal always acts non-trivially on such sys-
tems, in that there is some eigenvector ¢ of H that is transformed non-
trivially, T4 # €. We'll show why that is in the following. But to
get from there to T-violation, notice that we need only make the plau-
sible assumption that an elementary particle in a stable ground-state is
non-degenerate. It then follows by the Non-degeneracy Principle that
the system is T-violating.

To begin, let’s introduce the elementary electric dipole mo-
ment!'*. Tt is normally taken to be a system characterized the following
three properties.

(1) (Permanence) There is an observable D representing the dipole
moment is “permanent”, in that (¢, DY) = a > 0 for some
eigenvector ¢ of the Hamiltonian H. That is, the dipole is a
permanent feature of the particle, like its charge or spin-type.

(2) (Isotropic Dynamics) Since it is an elementary particle, its sim-
plest interactions are assumed to be isotropic, in that time evo-
lution commutes with all rotations, [e~" Ry] = 0. Note that
if J is the “angular momentum” observable that generates the
rotation Ry = €/, then this is equivalent to the statement that
[H,J] =0.

Mo, (Ballentine 1998, §13.3), (Messiah 1999, §XXI.31), or (Sachs 1987, §4.2).
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(3) (Time Reversal Properties) Time reversal, as always, is an an-
tiunitary operator. It has no effect on the electric dipole ob-
servable (TDT~' = D), which is basically a function of po-
sition. But it does reverse the sign of angular momentum
(TJT~' = —1J), since spinning things spin in the opposite ori-
entation when their motion is reversed.

A system with these three properties turns out to satisfies con-
dition (1) of the Non-degeneracy principle, that T # e for some
eigenvector ¢ of H. To see why, assume (for reductio) that it does not,
and thus that for each eigenvector v of the Hamiltonian, there is a unit
e such that T = €. We will show that the assumption that the
dipole moment is “permanent” then fails, contradicting our hypothesis.

Since [H,J] = 0, there is a common eigenvector for H and
J, which we will denote 1. By the Wigner-Eckart Theorem!®, each
eigenvector of and J will satisfy,

(2) (¢, DY) = (v, Jy)

for some ¢ € R. Now, an antiunitary operator T" satisfies (T, T'¢) =
(1, ¢)* for any ¥, ¢. And a self-adjoint operator satisfies (¢, A)* =
(1, Av) for any 1. Applying these two facts to Equation (2), we get
that (T, TDvy) = (T, TJy). But T commutes with D and anti-
commutes with J, so this equation may be written,

(3) (T, D(TY)) = =T, J(T))
Finally, we assume the distinct ray condition fails, so T = e for
some e, Applying this to Equation (3), we get

(e—i06i9)<¢’ D¢> = _(6_i06i9)6<¢7 J¢>

Combined with Equation (2), this implies that (¢, Dy) = 0, contra-
dicting our hypothesis that D is permanent.

So, the elementary electric dipole has at least one energy eigen-
vector 1 such that T # €4, That’s premise (1) of the non-degeneracy
argument. To get to T-violation, we need only convince ourselves of
premise (2), that such a system is described by a non-degenerate Hamil-
tonian. Constructing such a system is part of an active search for
T'-violation.

There are many interesting things to say about this research; for
a book-length treatment, see Khriplovich and Lamoreaux (1997). All

157 special case of this theorem states that the components of any vector ob-
servable are proportional to the components of angular momentum. (See Ballentine
1998, §7.2, esp. page 195).
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I would like to point out for now is that this approach to T-violation
hinges on a simple Non-degeneracy Principle, which is distinct from all
the other approaches to T-violation discussed so far.

4.4. Mathematical Underpinning. As suggested above, Fact 4 ba-
sically arises out of Wigner’s discovery of a connection between time
reversal and degeneracy for systems with an odd number of fermions.
Here is how that connection leads to a principle for understanding 7-
violation.

Wigner began by noticing a strange fact that two successive
applications of the time reversal operator 7. When applied to a system
consisting of an odd number of electrons, it does not exactly bring an
electron back to where we started. Instead, it adds a phase factor
of —1. Only by applying time reversal twice more can we return an
electron to its original vector state. This is a curious property indeed!
But there is no getting around it. It is effectively forced on us by the
definition of time reversal and of a spin-1/2 system (Roberts 2012).

This led Wigner to the following argument that the electron

always has a degenerate Hamiltonian'®.

Proposition 1 (Wigner). Let H be a self-adjoint operator on a finite-
dimensional Hilbert space, which is not the zero operator. Let T : H —
H be an antiunitary bijection. If

(1) (electron condition) T?* = —1I, and
(2) (T-invariance) [T, H] =0
then,

(3) (degeneracy) H has two orthogonal eigenvectors with the same
ergenvalue.

That’s a fine argument for degeneracy, when we are confident
about time reversal invariance. But what if we are interested in systems
that are 7T-violating? No problem. We can just interpret Wigner’s
result in the following equivalent form.

Corollary. Let H be a self-adjoint operator on a finite-dimensional
Hilbert space, which is not the zero operator. Let T : H — H be an
antiunitary bijection. If

(1) (electron condition) T? = —1I, and
(2) (non-degeneracy) H has no two orthogonal eigenvectors with
the same eigenvalue

16Wigner’s assumption of a finite-dimensional Hilbert space can be relaxed, as
generalizations exist for Hamiltonians with a continuous energy spectrum as well
(Roberts 2012).
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then,
(3) (T-violation) [T, H] # 0.

This means that Wigner’s result is actually a toy strategy for
testing T-violation in disguise! Suppose we discover an electron de-
scribed by a non-degenerate Hamiltonian. Then we will have achieved
a direct detection of T-violation.

There is a more general sort of reasoning at work here. It turns
out that the T? = —I condition is stronger than is really needed to
prove the result. The following generalization, which otherwise follows
Wigner’s basic argument, is available.

Proposition 2. Let H be a self-adjoint operator on a finite-dimensional
Hilbert space, which is not the zero operator. Let T be an antiunitary
bijection. If
(1) (distinct ray condition) T # e for some eigenvector v of
H, and
(2) (non-degeneracy) H has no two orthogonal eigenvectors with
the same eigenvalue

then,
(3) (T-violation) [T, H] # 0

Proof. We prove the contrapositive, by assuming (3) fails, and proving
that either (1) or (2) fails as well. Let Hi = ht for some h # 0 and
some eigenvector 1 of unit norm. Since T' is antiunitary, T will also
have unit norm.

Suppose (3) fails, and hence that [T, H] = 0. As we saw in the
proof of Proposition 1, this implies that if 1/ is an eigenvector of H with
eigenvalue h, then so is T7. By the spectral theorem, the eigenvectors
of H form an orthonormal basis set. So, since ¢ and T are both
unit eigenvectors, either T4 = ¢® or (T, 1) = 0. The latter violates
non-degeneracy (2). And, since ¢ was arbitrary, the former violates the
distinct ray condition (1). Therefore, either (1) or (2) must fail. O

This simple generalization is now more than a “toy” experi-
mental test. It is the mathematical grounds for the Non-degeneracy
Principle stated in Section 4.2, and part of an active search for T-
violation.

5. CONCLUSION

We have seen three routes to T-violation, of distinctly different
forms. The first route, which employs Curie’s Principle and the C'PT
theorem, is by necessity indirect. The reason is the curious result
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that Curie’s Principle fails for time reversal in quantum mechanics.
As a consequence, one can only use this principle to test for linear
symmetries like CP-violation. Insofar as the premises of the C'PT
theorem are correct, T-violation can then be derived as a consequence
of C'P-violation. But for a more direct test, one can take the second
route and apply “Kabir’s Principle,” which restores the possibility of
a direct detection of T-violation. For another direct test, one can take
a third route and apply the Non-degeneracy Principle. This allows for
a direct test of T-violation, which is not contingent on the premises of
the C'PT theorem, although it requires knowing more about the form
of the Hamiltonian.

Curiously, the former two approaches (the only successful ap-
proaches) both ultimately rely, in their own different ways, on the as-
sumption of unitary time evolution. The first approach does so not
with Curie’s Principle — it doesn’t require unitarity — but in the ap-
plication of the C'PT theorem. The second approach does so in the
application of Kabir’s Principle. This suggests that, in extensions of
the standard model that relax the assumption of unitarity, we may lose
our best existing evidence for T-violation. Of course, there will always
be a limiting case in which unitary evolution is justified, and so there
will be a limiting case where we have T-violation. But moving forward,
the question of whether T-violation will remain an explicit feature of
the fundamental laws is, for the moment, an open one.
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I. INTRODUCTION

“The now is a link of time....for it links together past and future, since it is a beginning
of one and an end of another.” - Aristotle [1]

Whether physics can be described on a continuum or lattice is one of the oldest questions
considered by philosophers in one form or another. The most famous paradox of Zeno argues
against the infinite divisibility of a temporal interval - that is against continuous time[2].
Achilles is sent to chase a tortoise, which is given a head start. If we label the position of
the turtle x; for points in time ¢. Then in each instant that Achilles reaches x; the turtle has
moved on to xyy1, thus it should seem logically impossible for Achilles to catch the turtle.
Viewed externally, however, one can easily verify that Achilles does indeed catch the turtle
at a finite time. Of course we now know the resolution to this apparent paradox is that
there can be a finite sum of an infinite number of terms, as Archimedes found. To Zeno,
however, this was not known, as it was assumed that an infinite sum cannot be finite, and
thus it appeared that there could not be an infinite number of time points in an interval -
time should not be continuous.

Tong makes a case against the a lattice reality based upon the problems with implemen-
tation in practical terms [3], stating “ no one knows how to formulate a discrete version of
the laws of physics.” Futhermore he makes the compelling case that chiral fermions do not
sit easily upon a lattice, and since the Standard Model is a chiral model, this means that it
appears impossible to place known physics upon a lattice. Indeed lattice simulation models
of chiral fermions in four dimensions seem to rely crucially upon treating the particles as
living essentially on a five-dimensional lattice [4]. There is an important distinction to be
noted here: Attempts are made to simulate the four-dimensional behaviour of the particles,
for which the use of extraneous mathematical structure (in this case the extra dimension) is
appropriate. If, however, one were to claim that physics in fact inhabits a lattice, rather than
being simulated on one, this extra structure becomes unwelcome baggage whose existence
must be explained. Tong goes on to argue that the appearance of the integers in physics
is constructed from an underlying continuum, an argument which mirrors the duality be-
tween a particle which exists as the excitation of a field, and a field which is observed to be
composed of particles.

There are three ways in which one can respond to arguments of this type. The first,
more simplistic argument is to state that what has been shown is not a “no-go” theorem
against lattice constructions in four dimensions, merely that we do not yet know how to
construct one. As such it is plausible that a lattice construction may be achieved in the near
future, at which point all such objections would be rendered null. A second point would be
that the problem may come about from trying to force a continuum theory onto a lattice.
If discreteness is fundamental, then a continuum theory should emerge at large scales, but
features of theory at the lattice level may be radically different from those of the continuum.
The final method of avoiding such problems in the context of this paper is to argue merely
in favour of discrete time, not space. This argument may seem unnatural on some level, as
the even-handed treatment of time and space is a guiding principle for modern theories such
as relativity. However it is clear that there is a physical, substantive distinction between the
two at least at the level of metric signature. In practical implementations of these theories
a space-time splitting is employed regularly.

In this paper I will explore the effects of introducing a discrete tick to physical systems.
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The paper is laid out as follows: In section III I will show how the effects of introducing
this tick onto systems with continuous time parameter, establishing the kinematics of such
treatments. This is followed by section IV in which I discuss the implementation of discrete
time steps in numerical simulations. Section V shows one practical application of these
techniques to circular motion, and a way of establishing dynamics which solve some the
problems found is introduced in section VI. Finally I will note how this effects quantum
gravity. But first, to clocks...

II. A NOTE ON CLOCKS
“They took away time, and they gave us the clock.” - Abdullah Ibrahim.

The nature of physical clocks seems dichotomous at first glance. A clock is a timekeep-
ing device, an instrument whose observation gives information used to define the interval
between two events. A clock should contain a cyclic element, which describes the tick of the
system. This role is performed by, for example, observations of the positions of shadows cast
by the sun or the repeated dripping of water from a vessel (as was used in the earliest clocks
of Egypt and Babylon) through to the oscillations of a caesium atom used in the atomic
clocks of today. The clock must also be monotonic, defining unambiguously a separation of
reality into past and future.

There is of course no contradiction in this. Although at first an individual system cannot
be seen to be both globally monotonic and cyclic, a clock is not, in essence, a single system.
Clocks consist of two distinct coupled systems, these being the cyclic and monotonic parts
accordingly. The cyclic part triggers, at some point in its cycle, a distinct and discrete ad-
vance of the monotonic part, as the pendulum of a grandfather clock causes the second hand
to tick upon reaching its escapement, advancing the second hand. Of course, a grandfather
clock is cyclic in itself, but upon marking the end of each day, a calendar can be updated
such that the overall observation of time remains monotonic.

As described thus far, the measurement of time may be refined by reducing the interval
of a tick and classically there is no reason that this refinement may not, in principle, yield an
arbitrary degree of accuracy. However, lurking in the small scales is the spectre of quantum
mechanics and the Mandelstamm-Tamm uncertainty which effectively means that for any
quantum clock there is an unavoidable minimum for the amount of time it takes for a wave-
packet to move a distance equal to its standard deviation, for example. For a comprehensive
review see [13]. This minimum is dependent upon the physical nature of the clock, so one
might suspect that it is merely a practical problem to refine the tick indefinitely. However,
it is conceivable that time is fundamentally discrete, with an indivisble tick.

A prime candidate for discretization is the Planck time - the unique time that can be
formed from the dimensional constants of nature (Newton’s constant, Planck’s constant and
the speed of light). The Planck time, around 107*? seconds, is the time interval after the
big bang on which quantum gravity effects are thought to be dominant, and the time-scale
on which we would expect to see quantum corrections to Einstein’s equations. The upshot
is that the dynamics of the tick may in fact be unavailable as an observable, and thus the
only reading of time one can get is that of the monotonic part, reading time as though from
a digital clock.

Within Quantum Gravity, issues regarding implementation within the Hamiltonian frame-
work are so severe that they have been dubbed “The Problem(s) of Time”. Some state that
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this consists of as many as eight separate yet connected issues [14]. The purpose of this
paper is not to address such issues, but I will point out that even in the symmetry reduced
mini-superspace models which are used ubiquitously in quantum cosmology time evolution
is measured with respect to a scalar field. If one is even-handed in treating both geometrical
and matter variables, one must apply the same “polymer quantization” [6] to both, and thus
the universe is imbued with a discrete tick.

The role of a clock within a physical system is split into three parts by Busch [11, 12].
First, time as measured may be “external” or “pragmatic” - there is no coupling between the
dynamical system being observed and the clock used to measure time within that system.
In a classical sense, external time can be said to be measuring some aspect of Newton’s
absolute time on which dynamics takes place. Second, an “intrinsic” time is one which is
measured as some quantity of the system itself, such as the readout of a digital display, or
the position of the hands on the face of a watch. Third, “observable” or “event” time is a
direct measurement of some physical quantity which is taken to be time itself, such as the
position of a particle. Throughout this paper I shall always have the idea of intrinsic time
in mind, as an external time can be made intrinsic simply by extending the configuration
space of a system with external time by taking the product of a the configuration space with
the configuration space of the clock. To those interested in relational observables, such as
the cosmologist, intrinsic time is all one can work with - there is no external space on which
a clock can live. In terms of quantum gravity, any physical clock must have a mass and
thus interact gravitationally with all other components of the system through its action on
space-time. Therefore cosmologically all observable time is intrinsic.

IIT. DISCRETE TIME
“God made the integers, all the rest is the work of man.” - Kronecker.

In this section we will discuss the result of overlaying a discrete temporal structure onto a
continuum dynamical system. The result of this will be to produce a system which contains
only information about the discrete structure, removing all reference to the continuum.
The background continuum is therefore used in the manner of Wittgenstein’s ladder [7] -
an external structure of convenience whose utility has no bearing on the resultant system.
Constructions of this type are commonplace in physics. Prime examples include the use
of a fiducial cell in cosmology against which to measure the size of the universe. Upon
calculation, care must be taken to show that results are independent of the choice of cell.
Similarly, General Relativity is a background independent theory, yet in practice calculations
often involve coordinate choices. Again resulting physical quantities must be shown to be
coordinate independent.

The mathematical structure of our background system shall consist of a manifold M
of arbitrary dimension n which can be factlorized into configuration! states and a one-
dimensional? temporal direction : M = C x T. The global topology of M will remain un-

I Here we shall work extensively in the position representation, but extension to the momentum represen-
tation of states is straightforward.

2 Tt is conceivable that this is extended to multiple temporal directions, however this action seems to offer
little to the discussion at hand other than to distract from the essential argument through mathematical
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determined at present, however our underlying continuum mean that both C and 7 should
be continuous. For reasons of convenience we will often think of 7~ as being either St (the
circle) or R (the real line). Here we follow the construction of the “341 decomposition” of
Arnowitt, Deser and Misner [8], however it is important to note that we are not splitting
space-time but rather configuration-space-time. Physically time here is a further configura-
tion variable, that of the system clock.

A. Treatment of position

The discretization of time can be performed in two distinct ways, which can be thought
of as describing configurations instantaneously or over an interval. To illustrate this, let
us consider two physical scenarios which each will describe a discretization of time on a
particle moving in a circle. In the first situation the system is measured at fixed intervals
with a stroboscopic light, whose flash is interpreted as being instantancous®. This I will call
“instantaneous measurement”.

A second method would be to consider measurement to be smeared across an interval.
This is effectively the complement of the above: a camera is set up to measure the system
with its aperture open for an interval, closing instantaneously between intervals. The result-
ing measurement will not consist of a unique configuration but rather a trajectory across
the interval which is to be considered a single measurement. Here the idea of an instant is
used in analogy to that of Le Poidevin [16], in which an instant separates two intervals. Le
Poidevin took this instant to be the “now” which separates past from future, I shall invoke
it to separate temporal intervals. This treatment I will term “smeared measurement”.

Both measurements of a system’s position consist of replacing the time interval of our
manifold by a discrete subgroup, for instance replacing a real interval Z with a subset of the
integers Z or replacing S with S, (the cyclic group of order n). Without loss of generality
let us take each tick of the clock to be separated by an equal time interval with respect to
the background time. This can be achieved by making a transformation of the background
time, since an operational time obtained through any monotonic function of background
time will serve will equal sufficiency. In replacing a continuous set with a discrete one we
throw away an infinite amount of information about the system - the complete dynamics
between ”ticks of our clock.

To give an illustration of the differences between our two treatments consider the motion
of a particle along a path. Suppose we describe the motion with background dynamics
x = z(t). One may ask for the relational observable Xr of a system, defined to mean the
position of a particle at the time when the clock reads time to be T'. In the instantaneous
treatment X7 will be a single reading of a number, the unique position at that instant in
background time. However in the smeared treatment the measurement will be a complete
path, all positions occupied between background times 7" and T + §7T for temporal intervals
dat.

“Instants are not parts of time, for time is not made up of instants any more than a
magnitude is made of points” [9]

Some take instantaneous treatment of time is taken to induce a discretization of position

complexity.
3 This could be the result of measuring a single photon reflected from a particle
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space. Zeno'’s Dichotomy paradox [5] argues that one must occupy each point in a spatial
interval whilst traversing the interval. In doing so, if time is discrete, one must take an
infinite number of time steps, one at each position. This argument relies (unknowingly at
the time of its inception) on the cardinality of any interval Z C R being larger than that of
Z - there can be no mapping f : Z — 7 such that f is surjective. However in our treatment
the motion is not taken to be a continuous one in discrete time - from one tick to the next
one’s position can change by an amount that is not infinitesimal.

The smeared treatment affects position space on a more fundamental level. Observations
of position are no longer points, but rather (unordered) paths in the configuration manifold.
In performing the smearing all information about the velocity through position space during
a tick is lost - all that remains is a trajectory consisting of all the points occupied during
the interval. As an example, consider a particle moving in one dimension, its position
here during a tick would be the entire interval covered between its leftmost and rightmost
positions covered by the continuum trajectory in this interval. Our observations will consist
of a set of paths 7, : [0, 1] — C modulo an equivalence relation identifying two paths formed
by any permutation of the unit interval. For continuous dynamics, this permutation should
be smooth, but in principle there is no distinction for sudden leaps. Note that we have lost
all sense of direction of the path - we cannot say from a single path whether the a particle
moves left to right, or vice versa, or even starts and ends somewhere in the middle of the
path, reaching ends at intermediate times. A path in which a particle revisits a previous
point during a tick is permissable, and cannot be distinguished from one which does not.

If our background system is does not revisit the same point in position space during a
two consecutive ticks there will be a unique point at which the paths are joined, and this
may be taken to be the configuration of the background system at the instant between
ticks. However if at any stage in these ticks a point in configuration space is revisited this
reconstruction is no longer possible: As an example, consider a particle moving in a single
dimension of which we make two observations. During the first tick we observe the path to
cover the interval from 0 to 2. During the second, from 1 to 2. We cannot say, from these
two observations whether the background dynamics had the paths join at 2, 1 or in fact any
position in between, as all such dynamics would yield the same observations.

B. Treatment of velocities

Once position space has been defined, it is necessary to define velocities which will be
fundamental to understanding dynamics. The usual method of defining a velocity is not
available since defining

x(t + d0t) — (1)
ot

relies crucially on this limit being accessible to the system. In a discrete time system,
0t has a fundamental minimum, and furthermore, in the case of the smeared treatment,
the action of subtraction of two intervals is not obviously defined. Let us first address the
simpler case of instantaneous time.

The fletcher’s paradox outlines a key difficulty in identifying velocity in instantaneous
time. It can be formulated in the following way: Suppose one is given a set of instantaneous
observations of a particle in motion (Zeno uses an arrow in flight). Then at each instant
the particle has a fixed position and does not appear to move, and so there appears to be

T = Limgtﬁg (31)



Workshop on Cosmology and Time

-908-

no motion in sum. This is resolved by Russell’s “at-at” treatment of motion [10] - that
to travel between two points at different times is to occupy all intermediate points in the
interval between.

In modern differential geometrical terminology, we describe the velocity of an object as
a member of the tangent space to the position space at the point occupied by the system:
v € T.C. One can define the obvious velocity in this instance by simply letting the removing
the limit in 3.1. However, velocities defined this way are not necessarily members of 7.C.
Recall that T,C is isomorphic to R", where n is the dimension of the manifold C. For a
finite tick, vdt must be a automorphism of mathcalC'. In fact, the space of velocities at a
point on C, which we shall denote V,C must be isomorphic to C, since velocity at a point
is defined by the point in C at which one arrives after a single tick. Upon approach to the
limit, the two points in the configuration space become close and once again we recover the
tangent space. This naturally carries over to momentum which is no longer a member of the
co-tangent space (the space of linear functionals of members of the tangent space) but in
fact lives on the co-velocity space - the space of linear functionals of members of the velocity
space.

Velocity in the smeared treatment is more complicated. Our observations consist of
unordered paths in configuration space. In the case where any two adjacent paths overlap
only in a unique point, one could define the velocity of a particle to be the length of the
path covered divided by the length of the tick. However this gives only a minimum for the
velocity of the particle in the background system, as the particle may not have uniformly
covered this interval, but may have oscillated multiple times along the path during the tick.
Consider the case of a man pacing back and forth on a boat - in a smeared observation he
will appear to move with the approximate velocity of the boat, but on a closer inspection
his speed at any time will not be this. Thus we obtain a lower bound for speed, defined to
be the length of the path covered at any interval. This lower bound is the only reasonable
candidate for a velocity in this setting, though we must assign a sense of direction to it.
This is simple to do in the case that intersections are unique, but for multiply overlapping
intervals the task becomes difficult. One possible assignment is to take the velocity as being
oriented towards any part of a later path that is not contained in the prior one, or towards
any point not contained in the subsequent path, but this of course does not deal with paths
contained entirely within the both the preceding and subsequent path. In these cases the
only seemingly logical thing to do is to set the velocity to zero.

Thus our space of velocities becomes the space of directed paths in C. If C is compact, or
indeed any configuration variable on C is compact, the space of velocities is again removed
from T,C. Those positions inhabiting a compact direction of position space must induce a
finite dimension in velocity space.

Implementation of dynamics in the smeared system is considerably more difficult: The
logical method would be to apply a similar form of numerical integration to the entire path,
taking each point and moving it by the velocity of the path. In the case of a particle
moving along a line, this is of course perfectly acceptable. However there is a question of
accelerations, which are brought about by the application of force.

IV. DISCRETE TIME AS NUMERICAL INTEGRATION

“’Tt always bothers me that, according to the laws as we understand them today, it takes
a computing machine an infinite number of logical operations to figure out what goes on in
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no matter how tiny a region of space, and no matter how tiny a region of time. How can all
that be going on in that tiny space?” - Feynman.

The difference between velocity space and tangent space is known to those working on
numerical integrators, though in different terms. These methods attempt to reproduce the
continuum dynamics with a finite (though often variable) time-step. The Strominger-Verlet
method [17] (and improved velocity-Verlet [18]) uses the velocity and acceleration of the
system both at an instant and in the preceding and succeeding instants to refine estimates
of discrete motion to remain close to the continuum trajectory. The Runge-Kutta algorithm
[19] is a more complex method involving the use of iterative methods to perform a time-
step. One might be tempted, therefore, to state that a discrete system should run on a very
accurate numerical integration method.

However, there is a problem with this system: The dynamics of the system of ¢,, depend
upon an estimation of the configuration and hence accelerations of the system at ¢,,,1. Unless
we allow for the (potential) future to act upon the present, this is not possible: A particle
cannot know the accelerations it would feel if it were to move to a future location until it
moves there. If one insists that all the information available to a particle is its current posi-
tion and velocity (or momentum), none of these methods can be applied. Even if one were
to allow it access to its complete prior history over discrete time, this would be insufficient,
for one can construct two paths (using Hermite polynomials for a one dimensional example)
each of which visit all prior configurations but differ on future locations. One is then driven
towards describing the dynamics of discrete time using a method more akin to that of Euler
for the numerical integration of a differential equation. This is clearly not optimal, as it
will break conservation equations held in the background continuum (an example of which
is given below). It has been shown by Ge and Marsden [15] that there is no fixed time step
method which conserves symplectic structure, and Noether charges (ie all conserved quan-
tities in the continuum system). In fact, all known numerical integrators which do conserve
Noether charges require knowledge of the forces that the system will experience after the
time-step has been implemented. In simulations this is perfectly acceptable, as one can tell
the computer what model of physics to implement. However in reality this would require
information about the future to be passed to a prior time, which is for most an unpalatable
premise.

Thus one is forced into one of the following: We could drop the notion of discrete time
as it appears incompatible with conservation laws. This is of course the most obvious route
to take, but as I will argue in section VII there is good reason to believe that a discrete tick
does exist. The second possibility is that a the continuum implications of Noether’s theorem
cannot apply in a discrete time setting, so physics breaks all conservation laws at some level.
Since symmetry and conservation lie at the very heart of all modern physics, this is a very
unwelcome path to take. Finally one could argue that dynamics must be altered in some
fundamental way when one discretizes time. This I discuss further in section VI.

V. CYCLIC CONFIGURATIONS

The limitations of discrete treatments of time become apparent when one treats cyclic
systems whose period with respect to background time is of the same order as the length
of a tick. In such cases our ideas of basic physical quantities such as velocity can become
ill-defined. We shall illustrate this problem by exploring a simple system: uniform circular
motion. This systems has a long-standing association with the idea of time as for centuries
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time has been displayed on a clock through the uniform circular motion of its hands. It is
therefore fitting that this forms an exemplary model of issues in the discretization of time.

A. TUniform Circular Motion

Let us consider a simple system, the motion of a particle travelling with uniform angular
velocity around a circle. The dynamics of our system is simple to describe: 6(t) = 6y + wt,
in which w is the angular velocity. For brevity of exposition let us choose a gauge in which
0o = 0. Let us define the period of the system 7 = 27 /w.

In the instantaneous treatment of this system an observer makes a number measurements
0(t) = 0,6;...0, corresponding to the position of the particle at clock times 1 through n.
However, upon being asked to reproduce the angular velocity of the system, such an observer
runs into immediate ambiguities: She cannot determine whether or not the particle is moving
clockwise with angular velocity 6,/6t or anticlockwise with angular velocity (2m — 6,)/0t.
In fact, to the observer all background dynamics of the form w,, = w + 27n/dt for n € Z
will yield indistinguishable observations. If 6t is a multiple of 7 the observer will not see
the particle move at all. This is well known through the stroboscopic analogy as an optical
illusion which has in the past been used to determine the frequency of, for example, cylinder
firing in car engines.

This is a clear illustration of the difference between V,C and T,C. The tangent space to
the circle is the real line, but the topology of the space of velocities distinguishable with
instantaneous time is that of the circle itself.

Let us consider dynamics, supposing that the circular motion of our particle is brought
about by some central force. If one were to adopt a strict implementation of discrete time,
taking as a basis for dynamics Newton’s laws of motion, and updating both velocity and
acceleration only once per time step (ie implementing the method of Euler) there is an
obvious problem. Newton’s laws of motion state that we must evolve motion along the
tangent to the curve described (the velocity should be a member of 7,C. This immediately
leads to the particle leaving the circle, breaking energy and angular momentum conservation.
One could ask how bad this problem is: To first order in each of the variables involved the
drift of the numerical integration increases as w?rTdt/2. Where T is the total time interval,
divided into ticks dt, for a particle orbiting at radius . For the orbit of the Earth around
the sun since its formation this distance comes to around 2 x 107'"m if we assume the
fundamental tick to be the Planck time. This is far less than the radius of a proton, for
example, thus we are unlikely to be able to detect any effect of this granularity, even taking
fast spinning objects such as pulsars into consideration.

One might argue that the implementation should involve some averaging or weighted
average of an initial velocity and a final velocity, vy = v; + aét and so the implemented
velocity for the tick should be v, = (v;+vy)/2. However, this does not alleviate our problem
- since it is simple to show that the final speed will be higher than the initial speed, thus the
system has not conserved energy despite the presence only of a central force. One quickly
runs into the theorem of Ge and Marsden[15] with such efforts.

At first sight the smeared treatment appears advantageous: It is indeed possible to de-
termine the direction and angular velocity of the system for small values. For §t smaller
than 7 the measurement of angular velocity can be performed by simply taking length of
the complete interval covered in each tick and dividing by the length of the ticks. However,
once the tick length becomes greater than or equal to the period of motion, all observations
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become indistinguishable, as each observation will yield the entire circle as the path covered
in that tick. If the tick length is one half the period of motion or greater, we will be unable
to distinguish in which direction the particle is moving without resorting to a trick: It will
be moving counter to the direction in which the paths defined as the complete circle minus
the path covered in a tick is moving. This again is ambiguous at exact division of the period
into half.

VI. NEW DYNAMICS

If one wishes to keep both discrete time and conserved quantities in the manner of con-
tinuum systems, then one is forced to implement dynamics in a way that differs from the
usual methods of Newton, Lagrange et al. Classical evolution is implemented through the
use of a second order differential equation:

From this prescription one can find the trajectory of a system. However as has been noted
above, if one implements finite time-steps the trajectory that one recovers differs from that
of the continuum, since evolution through a finite length along a vector in the tangent space
does not necessarily remain in the space compatible with conservation of Noether charges.

One way in which conservation can be implemented is to enforce “by hand” conservation
which is brought about by symmetries of the system. I shall construct such a system to
show that in principle such systems can exist, without making claims as to their accuracy
or fidelity to known physics. This manner of ensuring that fundamental physical quantities
such as energy and momentum are conserved is similar in spirit to that used in discrete
Hamiltonian systems in engineering for example [20].

The method is implemented as follows: For a system, establish those charges which are
to be conserved due to symmetry using the method of Noether. For an initial value problem,
find the surface(s) within phase-space such that this conservation takes place, £.

Dynamics is implemented by using finite time-step methods with the fundamental tick:
¢ (t+0t) = q(t) + §(t)t, ¢ (t + 6t) = §(t) + f(q, ¢)dt. Finally one finds the point of £ such
that g, ¢ are closest (with respect to some given metric) to ¢/, ¢’

Implementing this method in the case of an inverse square central force yields approxi-
mately the correct dynamics: Conservation of the angular momentum and energy are im-
plemented, and if one measures distances in configuration by D := 1/72A¢? + Aq? then one
finds that the orbit recovers the clasical limit when 77 is small compared to 7.

This method has clear limitations. It depends upon the choice of measure used on config-
uration space to define a notion of distance from the conservation surface. Further the link
between velocity and position become somewhat tenuous - velocity is no longer measurable
directly as a change in position, but rather is an intrinsic quality of the system. Of course,
this is the nature of any instantaneous velocity measured in a discrete system as we have
seen, but nonetheless this remains aesthetically displeasing. The dynamics expressed here
will differ considerably from continuum dynamics in the case of chaotic systems, as surfaces
of configuration space compatible with conservation of fundamental charges may become
close to one another, allowing a system to jump from one classical trajectory to the next.

Despite the limitations, what we have established is a method by which a discretized
system may retain conservation laws mirroring those of the classical system on which it
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is based. The method is contrived and arbitrary, relying heavily on implementation of
conservation by fiat, but is proof that such solutions can exist without having to resort to
retrodiction of motion in the manner used by numerical integrators, or varying of time step.

VII. DISCRETE TIME AND QUANTUM GRAVITY

There have been several attempts to quantize gravity through a discretization of geometry.
Perhaps the most famous of these is Regge calculus [21] in which space-time is broken down
into blocks which are internally flat (ie the inside is a section of Minkowski space) and whose
curvature lies entirely at the interface between two blocks. This method has the appearance
of breaking up a curve into a series of straight lines, with all the curvature being concentrated
at the corners.

The causal dynamical triangulations programme [22] makes a splitting of space-time into
space and time. Time is implemented in discrete steps, with the layer between being “trian-
gulated” by a set of polyhedra. Once again, curvature lives on the interface between these
polyhedra. The programme attempts to reconstruct a path-integral approach to quantum
gravity by restricting the integral over geometry to being one over such triangulations. This
has all the hallmarks of an instantaneous discretization of time - each layer of polyhedra
is overlaid on the last at a discrete time interval. Sorkin’s causal set model [23] follows a
similar scheme, but rather than triangulating space, takes a discrete “sprinkling” of points
into space-time to create its structure. Time here would again appear instantanecous for any
finite number of points, though the interval of any time step would be arbitrary.

Collins et al. [24] show that when one takes into consideration the interactions of ele-
mentary particles a very tight bound is placed upon the breaking of Lorentz invariance. A
granularity of space-time on the Planck scale does not necessarily induce a factor of E/E,
in corrections to the continuum model for a system of energy E (wherein E, denotes the
Planck energy). Does this rule out discrete time?

Rovelli and Speziale [25] argue that this is not in fact the case for discretization of length.
Just as the discretization of angular momentum does not spoil rotational invariance, the
existence of a minimal length (or in the case considered by Rovelli and Speziale area) does
not break Lorentz invariance. A Lorentz transformation between two observers necessarily
alters the operators used to measure length, which will not commute. It is entirely plausible
that an analogous argument can be made for any measurement of time.

As T have previously noted, in treatments of cosmology, time must be intrinsic in the
manner of Busch - there can be no external parameters which are used to describe time.
Modern treatments of quantum cosmology, such as Loop Quantum Cosmology, employ a
matter field as a clock. In the simplest models this is a massless scalar field, so its motion
is monotonic, and observations of the field value give a time for the system [26].

In simplicial decompositions of space, such as those used in spin-foam theories, time will
again appear to have a discrete nature. Here one decomposes four dimensional space into
a set of simplices which fill a region, and a time slicing can be applied by cutting across
these simplices at an instant. However, due to diffeomorphism symmetry, two slices are
indistinguishable if the networks dual to the simplices have the same structure, so when
viewed from this perspective, time is simply the evolution of networks, which are inherently
discrete - only the topology of a network is important as there is no notion of geometry.
Therefore each change to the network, such as adding a new link or node, is a discrete step,
and must appear to happen instantaneously in the continuum theory, or in a “tick” in the
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discrete theory.

There are two obvious issues that must be addressed when applying discrete time to
cosmology. The first is that the Planck time is precisely the time at which quantum effects
are thought to be dominant. However, by our definition there would only be a single tick
between this point and the singularity itself. Within LQC, there may be as few as 20 ticks
during which the density is high enough for quantum effects to be significant. Yet these
differences are to be the time in which quantum gravity replaces GR. It appears unlikely
that such a narrow set of points can have so large an effect on global dynamics.

The second problem to be addressed is that if one does have singularity resolution in
a continuum theory due to some modified dynamics in which the universe “turns around”
from contraction to expansion, the turn around could be missed in the discrete time step.
As an analogy, consider a particle moving in a one dimensional potential well towards a
thin yet high wall. In the continuum theory, the particle will reflect off the wall and its
trajectory reverse, but in the discrete theory a high enough velocity will allow the particle
in some cases not to “see” the wall at all - it will simply be on one side at one time and the
opposite one tick later. In LQC this scenario is avoided as the singularity is disallowed by
the constraint, but in other theories in which singularity resolution is brought about, this
effect may be significant.
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