Skip to main content
Log in

Mach-Einstein doctrine and general relativity

  • Part IV. Invited Papers Dedicated to Max Jammer
  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

It is argued that, under the assumption that the strong principle of equivalence holds, the theoretical realization of the Mach principle (in the version of the Mach-Einstein doctrine) and of the principle of general relativity are alternative programs. That means only the former or the latter can be realized—at least as long as only field equations of second order are considered. To demonstrate this we discuss two sufficiently wide classes of theories (Einstein-Grossmann and Einstein-Mayer theories, respectively) both embracing Einstein's theory of general relativity (GRT). GRT is shown to be just that “degenerate case” of the two classes which satisfies the principle of general relativity but not the Mach-Einstein doctrine; in all the other cases one finds an opposite situation.

These considerations lead to an interesting “complementarity” between general relativity and Mach-Einstein doctine. In GRT, via Einstein's equations, the covariant and Lorentz-invariant Riemann-Einstein structure of the space-time defines the dynamics of matter: The symmetric matter tensor Ttk is given by variation of the Lorentz-invariant scalar densityL mat, and the dynamical equations satisfied by Tik result as a consequence of the Bianchi identities valid for the left-hand side of Einstein's equations. Otherwise, in all other cases, i.e., for the “Mach-Einstein theories” here under consideration, the matter determines the coordinate or reference systems via gravity. In Einstein-Grossmann theories using a holonomic representation of the space-time structure, the coordinates are determined up to affine (i.e. linear) transformations, and in Einstein-Mayer theories based on an anholonomic representation the reference systems (the tetrads) are specified up to global Lorentz transformations. The corresponding conditions on the coordinate and reference systems result from the postulate that the gravitational field is compatible with the strong equivalence of inertial and gravitational masses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. The Collected Papers of Albert Einstein, Vol.4, “The Swiss Years: Writings 1912–1914,” M. J. Klein, A. J. Kox, J. Renn, and R. Schulmann, eds. (Princeton University Press, 1995).

  2. The Collected Papers of Albert Einstein, Vol. 5, “Correspondence 1902–1914,” M. J. Klein, A. J. Kox, and R. Schulmann, eds. (Princeton University Press, 1993).

  3. A. Einstein and M. Grossmann,Entwurf einer verallgemeinerten Relativitätstheorie und einer Theorie der Gravitation (Teubner, Leipzig, 1913): cf. alsoCP 4, No. 13.12

    Google Scholar 

  4. A. Einstein,Phys. Z. XIV, 1249 (1913); cf. alsoCP 4, No. 17.

    Google Scholar 

  5. A. Einstein,Phys. Z. XV, 174 (1913); cf. alsoCP 4, No. 25.

    Google Scholar 

  6. A. Einstein, “Bemerkungen”. Appendix to the reprint of the paper here cited as Ref. 3 in:Z. Math. Phys. 62, 260 (1914); cf. alsoCP 4, No. 26.

    Google Scholar 

  7. A. Einstein,Scientia 15, 328 (1914); cf. alsoCP 4, No. 31.

    Google Scholar 

  8. A. Einstein, “Formale Grundlage der allgemeinen Relativitätstheorie,”Berliner Ber. 1914, p. 1030.

  9. Mach's Principle: From Newton's Bucket to Quantum Gravity, J. Barbour and H. Pfister, eds. (Birkhäuser, Boston, 1995).

    Google Scholar 

  10. H.-J. Treder, H.-H. von Borzeszkowski, A. van der Merwe, and W. Yourgrau,Fundamental Principles of General Relativity Theories. Local and Global Aspects of Gravitation and Cosmology (Plenum, New York, 1980).

    Google Scholar 

  11. A. Ashtekar,New Perspectives in Canonical Gravity (Bibliopolis, Naples, 1988). (See, in particular, L. Bombelli's contribution “Lagrange Formulation,” pp. 77–91.)

    Google Scholar 

  12. A. Ashtekar,Non-perturbative Canonical Gravity (World Scientific, Singapore, 1991).

    Google Scholar 

  13. H.-H. v. Borzeszkowski and H.-J. Treder,Gen. Relativ. Gravit. 25, 291 (1992).

    Google Scholar 

  14. M. Fierz,Helv. Phys. Acta XII, 3 (1939); W. Pauli and M. Fierz,Helv. Phys. Acta XII, 297 (1939).

    Google Scholar 

  15. A. Einstein,Phys. Z. XIV, 1249 (1913).

    Google Scholar 

  16. A. Einstein, “Zur allgemeinen Relativitätstheorie (mit Nachtrag),”Berliner Ber. 1915, pp. 778 and 799.

  17. D. Hilbert, “Grundlage der Physik. 1. Mitteilung,”Göttinger Ber. 1915, p. 395;Gesammelte Abhandlungen (Collected Papers) III, No. 16.

  18. A. Einstein, “Hamiltonsches Prinzip und allgemeine Relativitätstheorie,”Berliner Ber. 1916, p. 111.

  19. A. Einstein,Berliner Ber. 1918, p. 488.

  20. A. Einstein, “Riemann-Geometrie und Aufrechterhaltung des Begriffs des Fernparallelismus,”Berliner Ber. 1928, p. 219.

  21. A. Einstein, “Einheitliche Feldtheorie und Hamiltonsches Prinzip,”Berliner Ber. 1929, p. 124.

  22. A. Einstein and W. Mayer, “Systematische Untersuchung über kompatible Feldgleichungen, welche von einem Riemannschen Raum mit Fernparallelismus gesetzt werden können,”Berliner Ber. 1931, p. 3.

  23. E. Noether, “Invarianten beliebiger Differentialausdrücke,”Göttinger Ber. 1918, p. 37.

  24. F. Klein, “Über die Differentialgesetze von Impuls und Energie in der Einsteinschen Gravitationstheorie,”Göttinger Ber. 1918, p. 235.

  25. R. Weitzenböck, “Differentialinvarianten in der Einsteinschen Theorie des Fernparallelismus,”Berliner Ber. 1928, p. 466.

  26. C. Møller,Math.-Fys. Skr. Dan. Vid. Selskab 1, No. 10 (1961).

  27. C. Møller, “Survey of Investigations on the Energy-Momentum Complex in General Relativity,” inEntstehung, Entwicklung und Perspektiven der Einsteinschen Gravitationsheorie, H.-J. Treder, ed. (Akademie-Verlag, Berlin, 1966).

    Google Scholar 

  28. A. Einstein, “Neue Möglichkeit für eine einheitliche Feldtheorie von Gravitation und Elektrizität,”Berliner Ber. 1928, p. 224.

  29. A. Einstein, “Zur einheitlichen Feldtheorie,”Berliner Ber. 1929, p. 2.

  30. H.-J. Treder,Ann. Phys. (Leipzig) 35, 371 (1978).

    Google Scholar 

  31. C. Pellegrini and J. Plebanski, “Tetrad fields and gravitational fields,”Mat.-fys. Skr. Dan. Vid. Selskab 2, No. 4 (1963).

    Google Scholar 

  32. F. W. Hehl,Found. Phys. 15, 451 (1985); F. W. Hehl, J. D. McCrea, E. W. Mielke, and Y. Ne'eman, “Metric-affine gauge theory of gravity: Field equations, Noether identities, world spinors, and breaking of dilation invariance,”Phys. Rep. 258, 1–171 (1995); cf. also the literature cited therein.

    Google Scholar 

  33. L. Infeld and J. Plebanski,Motion and Relativity (Pergamon, Oxford, 1960).

    Google Scholar 

  34. E. Schrödinger,Phys. Z. 19, 4 (1918).

    Google Scholar 

  35. A. Einstein,Phys. Z. 19, 115 (1918).

    Google Scholar 

  36. H. Bauer,Phys. Z. 19, 163 (1918).

    Google Scholar 

  37. H. von Freud,Ann. Math. Princeton 40, 417 (1939).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

von Borzeszkowski, H.H., Treder, H.J. Mach-Einstein doctrine and general relativity. Found Phys 26, 929–942 (1996). https://doi.org/10.1007/BF02148835

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02148835

Keywords

Navigation