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Abstract. It is quite widely acknowledged, in the field of cognitive science,
that the format in which a set of data is displayed (lists, graphs, arrays, etc.)
matters to the agents’ performances in achieving various cognitive tasks, such
as problem-solving or decision-making. This paper intends to show that for-
mats also matter in the case of theoretical representations, namely general
representations expressing hypotheses, and not only in the case of data dis-
plays. Indeed, scientists have limited cognitive abilities, and representations
in different formats have different inferential affordances for them. More-
over, this paper shows that, once agents and their limited cognitive abilities
get into the picture, one has to take into account both the way content is
formatted and the cognitive abilities and epistemic peculiarities of agents.
This paves the way to a dynamic and pragmatic picture of theorizing, as
a cognitive activity consisting in creating new inferential pathways between
representations.

1 Introduction

Philosophers of science have traditionally approached theoretical represen-
tations (i.e. theories, models, concepts) from an abstract point of view, by
idealizing away both from the actual means of representation used in sci-
entific practice, and from the actual reasoning of scientists who use these
representations. From such a perspective, contents are therefore considered
as independent both from the form in which they are expressed and from
the cognitive abilities and epistemic peculiarities of the agents. In conse-
quence, two logically equivalent representations (e.g. equations of motion in
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polar and cartesian coordinates) are generally considered as descriptions of
the same model (e.g. the harmonic oscillator): philosophers of science usually
assume that, despite their differences, two such representations have exactly
the same content.

In this paper, I adopt a different perspective, by considering scientific rep-
resentations as tools for theorizing; by “theorizing”, I refer to a certain class
of cognitive activities implying the construction, use, and development of
theoretical hypotheses. Assuming that scientists do not reason in abstracto
by contemplating abstract logical or mathematical structures, but rather by
manipulating concrete representing devices, I shall focus on the external rep-
resentations they construct and use in their day-to-day practice. I assume
that the main function of such representing devices is to enable scientists to
draw inferences concerning the systems they stand for. The overall purpose
of this paper is to analyze a crucial – though oft-neglected – feature of the
functioning of scientific (external) representations as inferential tools, namely
the importance of what I call their format.

Some studies in cognitive science and Artificial Intelligence on the use of
external representations in problem-solving [28, 35, 36] and decision-making
[21] show that the very way in which data are displayed (e.g. a list of nu-
merals as opposed to its corresponding graph) has important consequences
on the agents’ performances. Indeed, two representations coding the same
information can nevertheless convey it in different ways, thus facilitating
different cognitive processes and making such or such piece of information
more or less easy to access. Such differences I shall call differences in format.
However, studies emphasizing the importance of formats are almost always
concerned with tasks involving data manipulation and processing by agents
in order to achieve a particular task, and few analyzes (if any) have been
given of the importance of such phenomena for the use and manipulation of
theoretical representations. Theoretical representations, as opposed to mere
presentations of data, are representations expressing hypotheses about a cer-
tain domain of phenomena. If one considers theorizing as a kind of cognitive
activity, which consists in reasoning with theoretical hypotheses and explor-
ing their consequences, it becomes legitimate to inquire into the consequences
of a change in format for theoretical representations as well.

In this paper, my aim is twofold. My main goal is to show that formats,
whose importance is quite widely acknowledged in the case of data display,
have notable consequences on theorizing as well. In order to assess such con-
sequences and to evaluate their bearing on a philosophical understanding of
the content of scientific representations, further analysis is needed of the fact
that representations in different formats have different inferential affordances
for agents. Giving such an analysis is the second, subordinate aim of this
paper.

Firstly (section 2), I shall give a few examples showing the importance of
formats for both data manipulation and theorizing. In order to show that a
change in representation sometimes induces a change in the agents’ reasoning
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processes, I shall restrict to examples of representations in different formats,
which are nevertheless logically – or informationally – equivalent. In section 3,
I propose to clarify the very notion of format, as it is used in describing the
cases in section 2. It will appear that the intuitions underlying the use of this
notion are not fully captured by an account of the syntactic and semantic
rules according to which information is coded within a representation (its
“symbol system”, in Goodman’s sense). Indeed, the most relevant feature of
the format of a representation, in my analysis, is that it determines the infer-
ential affordances or potential of this representation for agents with limited
cognitive abilities. As we will see, the inferential affordances of a representa-
tion depend both on the way information is displayed and on the cognitive
abilities of this representation’s users. I will therefore argue that, as soon as
one acknowledges the importance of the format under which a certain infor-
mational content is displayed for its users’s performances, then one has to
take into account these two parameters (information display and cognitive
abilities of agents). I will finally draw a few consequences of this analysis for a
study of theorizing, conceived as the exploration of the content of theoretical
representations (section 4).

2 The “Representational Effect”: Data Displays and
Theoretical Models

In this section, I wish to show that what Zhang [36] has coined “the repre-
sentational effect” has important consequences for theorizing as well, and not
only for tasks involving data manipulation. “Representational effect” refers to
the fact that various representations displaying the same information in dif-
ferent ways do not facilitate the same cognitive behavior. After having briefly
recalled what it consists in in the case of data display (subsection 2.1), I shall
take two examples (the equations of Classical Mechanics and Feynman’s dia-
grams) highlighting the importance of the representational effect for the use
of theoretical representations (subsection 2.2).

2.1 External Representations and the
“Representational Effect”

Nobody would deny that external representations – as opposed to internal or
mental ones – sometimes prove practically indispensable to perform various
cognitive tasks, such as problem-solving or decision-making: laying out a
mathematical operation in order to solve it, drawing a graph from a set of
data in order to see easily the relation between two variables, or constructing
a diagram in order to solve a geometrical problem are common practices. For
instance, although it is in principle possible to divide 346 by 7 by mere mental
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computation, such an operation is quite difficult and costly – and doomed to
error – for an average agent. One would rather use paper and pencil to keep
track of the various steps of the computational process. Moreover, humans
have invented special procedures for displaying numerals1, which turn the
solution of a division into a simple manipulation. All pupils have learned
how to lay out a division and how to reach its solution by following simple
transformation rules of this kind of device:

3 4 6
6 6

3

7
4 9

In virtue of its particular spatial display and of its “internal dynamics”, this
external device, so to speak, “computes” the solution on behalf of the agent.
Manipulating it exempts one from drawing various inferences that would
otherwise be indispensable.

Note that the cognitive advantage of this procedure does not rely merely
on its being externalized: on the one hand, one could imagine that a trained
agent be able to “lay out” the division in his/her mind’s eye; on the other
hand, using paper and pencil to write down this division problem by following
a different procedure could prove much more costly2. The very advantage
of this procedure rather relies on what I propose to call the “format” of
the device shown above, namely the way data are displayed3, which deter-
mines the processes agents have to follow in order to extract information. This

1 See [24] for a review of the artifacts and procedures that were invented, through-
out history, to serve as “cognition amplifiers”, and which can be thought of as
the ancestors of our modern computers.

2 My focus on external representations is rather based on expediency (it makes
the study of formats easier) than on a commitment to any particular thesis
concerning the relation between external and mental representations. One can
acknowledge that most cognitive processes involve, indeed, both external and
mental representations – and should therefore be studied as distributed processes,
as suggested by the advocates of distributed cognition [17, 15, 35] – without
committing oneself to the metaphysical version of the extended mind thesis, as
advocated by Andy Clark and David Chalmers [3, 2]. Note, however, that an
interesting empirical question would be: are the processes actually performed on
external representations a mere externalization of internal processes that would
be performed mentally on the “same representations”, if merely imagined? In
other words, are these two kinds of processes similar in some relevant sense, the
internal ones being only too complex and requiring too much memory skills to
be performed without any external aid, but being in principle describable by the
same algorithms? Another, related, question is whether agents using external
devices have to construct an internal model of the problem to be solved, the
external device serving as an aid in this construction process (see [35]). In this
paper, I shall not tackle these issues, which have no bearing on my argument.

3 Zhang [35] speaks of the “form” of the “graphic display”.
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becomes clear when one considers several representations displaying the same
data in different ways.

Consider, for example, a list of numerical data corresponding to the tem-
perature in Paris over a year (the bracketed numerals represent the months,
and the numerals in bold characters represent the values of the corresponding
temperature in degrees Celsius): [1]2.5 ; [2]3; [3]9; [4]15; [5]18; [6]23; [7]25;
[8]23; [9]22; [10]13; [11]6; [12]3. From such a list, one can draw a graph, as
in figure 1 below.

Fig. 1 Annual evolution of temperature in Paris.

The data displayed in these two representations are identical. In other
words, the list and the graph contain exactly the same information – since
the graph was drawn from the list, and the numerals shown in the list can be
retrieved by properly reading the graph. However, as Larkin and Simon [28]
would put it, these two representations are informationally equivalent, but
computationally different : though containing the same information, they do
not require nor do they facilitate the same cognitive operations. Consequently,
the graph and the list do not make the various pieces of information they
contain equally accessible to the agents.

Consider, for instance, the task of assessing the global evolution of tem-
perature from January to June. In virtue of the spatial relationships between
the points of the graph, one does not need to memorize and then compare the
numerals standing for the values of temperature at different times, in order
to finally infer the global evolution of temperature over the year; the graph
displays in an immediately accessible4 form the temporal evolution of tem-
perature. The spatial display of the graph, again, computes this information

4 For a definition of the notion of accessibility, see [32], where I rely on John Kul-
vicki’s notions of “extractability”, “syntactic salience” and “semantic salience”
[23].
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on behalf of the agent. On the other hand, if one wants to know the pre-
cise value of the temperature in June, one would rather use the list, since
this value is explicitly5 displayed in the list, whereas it is not so in the
graph.

To sum up, differences in the representational format imply differences in
the cost and in the type of the cognitive processes required to access the vari-
ous pieces of information contained in the two representations. Some pieces of
information are easier and quicker – less costly – to access within the graph,
while others are so within the list. Entering data into the graph as well as
computing information within it do not consist in the same type of processes
as entering data and computing them within the list. Certainly, as Larkin and
Simon acknowledge [28, p. 67], “ease” and “quickness” are not precise con-
cepts, and it seems therefore difficult to give a measure for the cost of a cogni-
tive task. Similarly, our present knowledge of cognitive processes is too poor
to enable us to assess precisely the difference between two types of cognitive
processes (e.g. those involved in the reading of a list of numerals as opposed
to those involved in the reading of a graph). However, without knowing what
“happens in the head” of an agent, and without being able to precisely model
these processes, we have an intuitive grasp of what a type of cognitive oper-
ation is, by analogy with the notion of algorithms; similarly, it seems prima
facie possible to assess the quickness of a cognitive process by measuring the
amount of time involved in performing this task, or by counting the number
of (at least conscious) steps involved in it. For an average user with normal
cognitive abilities, it seems quite uncontroversial that the process of assessing
the general evolution of temperature between June and December (stating
whether it increases or decreases) is much less costly by using the graph than
the list6.

Cognitive scientists and AI researchers nowadays pay a growing attention
to the role of external representations in tasks involving complex information-
processing (see [36] for a review7). Some have underlined the importance of
what Zhang called the “representational effect” – namely the consequences
of the format on the agents’ performances in various cognitive tasks, such as
5 The notion of explicitness needs a further analysis as well. Here, I take it in the

intuitive sense – which is also the sense Larkin and Simon [28] seem to rely on –
corresponding to the idea that an information is explicitly represented when no
inference is needed to access it. For a more refined analysis of the implicit/explicit
distinction, see [20].

6 For a more detailed analysis, see [32].
7 See also Jiajie Zhang’s online bibliography on external representations (thanks

to Alex Kirlik for indicating me this link):
http://acad88.sahs.uth.tmc.edu/resources/ExtRep_Bib.htm

http://acad88.sahs.uth.tmc.edu/resources/ExtRep_Bib.htm


The Theoretician’s Gambits 539

problem-solving8 and decision-making9. However, although some have sug-
gested that some kinds of representations are particularly well suited to the
expression of some kinds of information10, no clear account of what I have
proposed to call “format” has been given11. I shall come back to this in
section 3. Let me first turn to a few examples revealing the existence of a
representational effect in the use of theoretical representations as well.

2.2 The Representational Effect and Theoretical
Models

Till now, I have been considering external devices displaying data to be pro-
cessed by agents in order to achieve simple cognitive tasks. As such, the
contents of these representations are sets of data, which were collected by
empirical inquiry and entered into the representing device by following rather
simple rules. However, theoretical models, such as, for instance, the equation
of the simple pendulum, are not mere displays of data. They are rather rep-
resentations expressing hypotheses about a wide range of phenomena and
systems’ behavior, thus enabling scientists to explain and predict these phe-
nomena. Their content, as such, is much richer and more complex to define
than the content of the representations considered above.

Indeed, analyzing the content of scientific representations and accounting
for their explanatory and predictive power is one of the central problems in
the philosophy of science. Philosophers have generally addressed this problem
by giving a logical reconstruction of the relation between theoretical repre-
sentations and the phenomena they stand for. Therefore, logical equivalence
has long been taken as a criterion of identity of content for scientific repre-
sentations: two representations are considered scientifically equivalent if they
are inter-deducible, thus having the same set of empirical consequences. On
8 Zhang [35, 36, 37] shows that different representations of a common abstract

structure can generate dramatically different representational efficiencies, task
complexities, and behavioral outcomes. He moreover suggests [34] that all graphs
could be systematically studied under a representation taxonomy based on the
properties of external representations.

9 Kleinmutz and Schkade [21] showed that different representations (graphs, tables,
lists) of the same information can dramatically change decision-making strategies.

10 Larkin and Simon [28] suggest that different kinds of representations typically
display, in an explicit form, different kinds of information: diagrams preserve
topological relations, outlines preserve hierarchical relations, and languages are
well fitted to display logical or temporal relations. For an analysis of the types
of reasoning associated with the use of graphs and diagrams, see the works by
Tufte [30, 31]; for diagrammatic logic, see [29, 27].

11 Note, incidentally, that differences in format can happen between different types
of representations (e.g. linguistic versus diagrammatic) as well as between repre-
sentations belonging to the same broad type (e.g. graphs in different coordinate
systems, arabic versus roman numerals).
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such a view, one could feel reluctant to attribute any importance to a mere
change in the presentation of this content.

However, if one considers scientific representations as tools for theoriz-
ing, namely for drawing inferences enabling agents to explore the content of
these representations – and therefore to gain knowledge concerning the sys-
tems they stand for, and concerning their link to other representations –, it
becomes legitimate to pay attention to the very format of these representa-
tions, since it might have consequences for their inferential role for agents, in
practice – despite their equivalence in principle. Let me briefly give two ex-
amples showing that formats matter for the use of theoretical representations
as well.

2.2.1 The Equations of Classical Mechanics

Consider, first, the equations of Classical Mechanics (CM). Solving a problem
in CM, say, predicting and explaining the dynamical evolution of a system,
typically consists in finding the functions that describe the temporal evolution
of the position and velocity of the system under study. First, one writes down
the differential equations governing the dynamics of the system with the help
of the information one has about it; and then, one solves these equations.

The equations of CM can be formulated in different ways, according to
the kind of coordinate system used to describe the motion of a physical sys-
tem. One distinguishes generally between the Newtonian and the analytical
(Lagrangian and Hamiltonian) formulations. According to the problem at
hand, using one or the other formulation can dramatically facilitate both
the processes of writing the equations and of solving them. The Newtonian
formulation relies on a description of the configuration of systems by means
of Cartesian (and sometimes polar) coordinates, which represent the posi-
tion and velocity of each point of the system at some instant t. Newtonian
equations of motion, which govern the dynamical evolution of a system so
represented, have the form of Newton’s Second Law (F = ma, where F, the
force, and a, the acceleration, are vectorial quantities). The first step in solv-
ing a problem in this framework consists in specifying the forces exerted on
the various points of the system in order to write down the corresponding
equations. In other words, the Newtonian format requires that one enters
data concerning the forces, since the value of forces is explicitly displayed in
the Newtonian equations.

In the case of constrained systems, namely systems with internal forces
maintaining constraints between different points (thus preventing them from
moving independently from each other) the identification and specification
of each force is practically impossible. In such cases, the Lagrangian formu-
lation is more appropriate: it relies on a description of the configuration of
systems by means of so-called “generalized” coordinates, which correspond
to the degrees of freedom of the system. Transforming the description of the
system from Cartesian coordinates into generalized ones (qi) enables one to
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write down the Lagrangian equations of the system, without needing to know
the forces maintaining the constraints. The Lagrangian equations have the
following form:

d

dt

(
∂L

∂q̇i

)
− ∂L

∂qi
= 0.

Forces do not appear in them; the dynamical evolution of the system is en-
tirely governed by a scalar quantity, the Lagrangian L, which typically cor-
responds to the difference between the kinetic and potential energies of the
system. These equations implicitly contain the forces maintaining the con-
straints, since they are expressed in coordinates taking these constraints into
account. Therefore, it is possible to retrieve information concerning the forces;
nevertheless, the constraints need not appear explicitly. What may be called
the Lagrangian format consists in presenting, in an explicit form, information
concerning the energy of the system, rather than information concerning the
forces. Despite their equivalence to the Newtonian equations, the Lagrangian
ones are therefore much more appropriate to cases where some forces are
unknown.

In some cases, though, Lagrangian equations are only partially integrable;
it is thus impossible to achieve the second step of the problem-solving process,
namely finding the analytical solutions of the equations. The Hamiltonian
formulation, which uses a different kind of generalized coordinates12, enables
one to change an intractable Lagrangian equation into two corresponding
first order equations, by means of mathematical transformations called “Leg-
endre transformations”. Such first order equations (∂H

∂pi
= q̇i and ∂H

∂qi
= −ṗi)

are integrable. The Hamiltonian H typically equals the total energy of the
system.

One can easily show the inter-deducibility of these three kinds of equations.
Nevertheless, as we have seen, changing from one to the other can consid-
erably enhances our problem-solving capacities: changing from Cartesian to
generalized coordinates sometimes facilitates the process of writing the equa-
tions, which is otherwise practically impossible; changing from a Lagrangian
to a Hamiltonian representation transforms one intractable equation into two
tractable ones. As Paul Humphreys [16] would put it, despite their equiva-
lence in principle, these various equations are not equally usable in practice.
Their formats neither require nor facilitate the same processes.

Moreover, this variety of formulations has consequences on the develop-
ment of the theory itself. The Lagrangian formalism is suitable for the ex-
pression of the theory of relativity, and the Hamiltonian formalism is used
in Quantum Mechanics. As Feynman said concerning the various ways of
expressing the law of gravitation (via Newton’s law, field theory, or min-
imum principles), these formulations are “equivalent scientifically. [...] But
psychologically, they are very different” [9, p. 53].
12 Lagrangian generalized coordinates have the dimension of positions and of veloc-

ities, whereas Hamiltonian ones have the dimension of positions and momenta.
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2.2.2 Feynman’s Diagrams

Consider now the case of Feynman’s famous diagrams (see Figure 2). Feyn-
man first introduced them in 1948, as a mean to help physicists get rid of
the infinities of quantum electrodynamics (QED) which prevented them from
giving predictions about complex interactions of atomic particles13. At that
time, he presented them as “mnemonic devices” [18, p. 52] to complete com-
plex higher order calculations without confusing or omitting terms, that task
being practically impossible by means only of the mathematical formulae.

A year later, Dyson [5, 4] demonstrated the equivalence of Feynman’s dia-
grams with the mathematical derivations given at the same time by Schwinger
[25, 26] as a workable calculational scheme for QED. Moreover, Dyson made
Feynman’s methods “available to the public”14, by codifying the rules for
constructing the diagrams, stating the one-to-one correspondence of features
of the diagrams to particular mathematical expressions.

Fig. 2 Diagram corresponding to the following equation: K(1)(3, 4; 1, 2) =
−ie2

∫ ∫
K+a(3, 5)K+b(4, 6)γaµγbµ × δ+(s562)K+a(5, 1)K+b(6, 2)dτ5dτ6 (drawn

from [8, p. 772]).

As is well known, this was the beginning of an amazingly successful career
for these diagrams, which, as Kaiser [19] describes in detail, were eventually
used in almost every field of theoretical physics. The diagrams were initially
intended to relieve physicists’ memory and help them in performing difficult
calculations; they finally became genuine theoretical tools, which went be-
yond the theoretical frame within which they had first been designed. They
indeed played a crucial role in research in high energy post-war physics, and
are still taught and used today. Beyond the equivalence of mathematical for-
mulae and diagrams in principle, the latter acquire a genuine independence.
As Kaiser [19, p. 75] suggests – thus echoing Feynman’s quote about the
13 For historical and technical details, I refer the reader to the works of David Kaiser

[18, 19], from which I drew all my material concerning this case.
14 Dyson, Letter to his parents, 4 Dec. 1948, quoted by Kaiser [19, p. 77].



The Theoretician’s Gambits 543

law of gravitation –, Dyson demonstrated “the mathematical [...] equivalence
between Schwinger’s and Feynman’s formalisms”, but “by no means” their
“conceptual equivalence”15.

In both cases (equations of CM and Feynman’s diagrams), representations
whose equivalence can be mathematically proven happen to have different
consequences in problem-solving and theory-development. According to the
intuitive understanding of the notion of “format” suggested by the toy ex-
amples given in subsection 2.1, it makes sense to claim that all these are
differences in format. Newtonian, Lagrangian, and Hamiltonian equations
have different formats; so do Schwinger’s formulae and Feynman’s diagrams.
Although they contain, at least partially, the same information, these repre-
sentations do not convey this information the same way. Constructing and
using them do not consist in the same cognitive operations: identifying and
specifying the forces exerted on a system by manipulating vectors does not
amount to the same process as identifying the Lagrangian of the system;
drawing a diagram enabling one to visualize the different quantities to be
remembered in a calculation does not consist in the same operation as per-
forming this calculation by means of a mathematical formula. Since theorizing
often consists in drawing inferences by means of theoretical representations
in order to explore their content – be it in order to draw predictions concern-
ing particular phenomena or in order to inquire into the logical relationships
between various theoretical hypotheses – one can therefore say that formats
do matter for theorizing.

In section 4, I shall come back to these two examples, and draw a few
consequences for our understanding of both theorizing and the content of
theoretical representations. Beforehand, in the next section, I will analyze
further the very notion of format; in particular, I shall examine the idea that
the format of a representation determines the inferential affordances of this
representation for its users.

3 Formats and Inferential Affordances

As we have seen above, representations in different formats can be informa-
tionally equivalent though computationally different. This means that such
representations can contain the same information – have the same informa-
tional content – without making it equally accessible to agents with limited
cognitive abilities. In other terms, although the informational content of a
15 So-called “conceptual role semantics” or “inferential role semantics” (see, e.g.,

[12]), which states that the content of a representation consists in (or depends
on) its role in the inferential processes of agents could help us give a precise
meaning to Kaiser’s suggestive remark: diagrams and equations neither facilitate
nor require the same inferential processes. Defending such a view would enable us
to state that what Feynman calls a “psychological difference” sometimes counts
as a genuine conceptual difference.
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representation seems independent from the way this representation is for-
matted, its format (partially) determines the inferential procedures agents
have to follow in order to access the various pieces of this content. Represen-
tations in different formats do not have the same inferential affordances for
agents; they neither facilitate, nor require the same inferential procedures.

Before elaborating on such a view, a clarification of the very notion of
“informational content” is needed. Although the informational content of a
representation depends neither on the way it is coded within it, nor on the
inferential procedures agents have to follow in order to access it, it is certainly
determined by some features of the representation, namely the syntactic and
semantic features in virtue of which this representation has such content. In
section 3.1, I propose a definition of the notion of informational content, by
appealing to the Goodmanian analysis of symbol systems.

In section 3.2, I shall come back to the notion of format. The intuitive use
of this notion obviously relies on an analogy with computer science: a format
serves to specify a procedure for both encoding data and retrieving them.
Prima facie, the format of a representation seems to be one and the same
thing as its symbol system: indeed, the symbol system of a representation
is the set of syntactic and semantic rules according to which information is
encoded within it. However, I shall argue that such rules do not correspond
to the actual inferential procedures agents have to follow when they intend to
retrieve pieces of information from the representation. Therefore, appealing
to the notion of symbol system is insufficient to account for the very idea
that representations in different formats have different inferential affordances
for agents. I shall conclude that, if one wants to pay attention to the infer-
ential procedures agents have to follow in order to access the content of a
representation (rather than concentrate on its mere informational content),
then one has to take into account both the way information is encoded and
the cognitive abilities of agents.

3.1 Symbol Systems and the Informational Content
of Representations

There are various theories of information16, but it is unnecessary for my pur-
pose to enter into any detail: let me simply state that a piece of information
is a proposition that can be object of belief. One can start by defining the
informational content of a representation as the set of all the pieces of infor-
mation that an agent mastering its symbol system could in principle extract
from it.

Here, “symbol system” is understood along the lines of Nelson Goodman’s
definition [11], namely, by analogy with a language, as a set of syntactic and
semantic rules. Its syntax defines the set of relevant perceptual properties and
their rules of arrangement and transformation. The semantics governs the
16 See [10] for a recent account.
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way these perceptual properties so arranged denote different elements of the
domain of reference of the system. According to Goodman, a particular set of
marks (visual or auditory) is a representation of some feature of the world (its
target)17 in virtue of a symbol system. Following the initial definition of the
informational content given above, one can say that the symbol system under
which a certain set of marks has to be interpreted determines its informational
content. This definition, though, requires several refinements.

As I said in the introduction, one of the main functions of scientific rep-
resentations is to enable agents to draw inferences concerning the systems
they stand for. This can be generalized to non-scientific representations as
well, if one concentrates on their epistemic use (as opposed, for instance,
to their aesthetic use), namely their use in a knowledge-seeking enterprise.
However, the very phrase “drawing inferences concerning a system” needs to
be refined. Indeed, the epistemic enterprise of using a representation to gain
knowledge concerning its target consists in two inferential steps, which are
often simultaneous, but need to be distinguished.

For such an enterprise to be successful, one has to be able to interpret
the information carried by the graph as information about some particular
target. One needs to be aware of the source and the precision of the data
one can extract from the representation. For instance, one has to know what
approximations and idealizations were made in collecting the data. Consider
the graph in figure 1. If one believes that the values shown in it represent
the average temperature over one month, whereas measurements were made
at 8am every 10th of the month, one’s epistemic enterprise fails. Likewise if
one takes the graph to be a representation of the variations of temperature
in Paris, whereas the measurements were in fact made in Madrid.

But, before inferring – soundly or not – from the features of the graph to
the features of its target, one has to know how to read the graph itself in order
to extract information from it. This is what I call mastering the system under
which the graph functions. For a given graph, the symbol system that defines
it determines which of its perceptual features are syntactically relevant, and
how they are to be interpreted, within the graph. Let me insist: reading off the
information from the graph – even before interpreting it as about some target
– requires the knowledge of the system’s semantics (although not necessarily
of its actual referent), and not just of its syntax. When a teacher draws a
graph on a blackboard in order to teach how to read such a representation,
he does not intend the graph to represent the evolution of any real quantity.
Nevertheless, there is a sense in which the graph “tells” its readers that
the intended quantity increases or decreases over time. It does contain such
information, whether or not it is true of any real place. In the following, I
shall concentrate on this second – in fact, logically first – step of the reading
of a representation: the very extraction of the information it contains within
17 The target can be a material object, properties of an object, the evolution of

the value of some quantity, the relation between various quantities, an event, a
pattern, etc.
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it, independently of the true or approximately true statements its user may
formulate about its intended target18.

Of course, this definition of the informational content of a representation
involves some further difficulties. First, some pieces of information are pre-
sented in an explicit19 way, while other pieces require some inferential process
to be extracted. Performing such inferences requires the mastering of the rules
of the system. But it is far from clear, for a given representation, what rules
are to be included in the system’s syntax and semantics. For instance, the
graph in figure 1 “says” in an explicit way that the temperature in July is 25
degrees Celsius, and that the temperature in December is 3 degrees Celsius.
One would also like to say that it contains – though implicitly – the infor-
mation that the temperature in December is 22 degrees less than in July.
Therefore, it seems reasonable to consider that the basic rules of arithmetic,
which enable one to make the subtraction, are part of the system’s rules – or
at least are supposed to be mastered by any user of such representation. Now,
should we consider that the transformation rules from Celsius to Fahrenheit
are part of the system’s rules? If they are, then the graph also says – im-
plicitly – that the temperature in July is 77 degrees Fahrenheit. If not, then
the graph does not contain such information. Here, one has to acknowledge
that whether these transformation rules are part of the system depends on
the context in which the graph is used.

Moreover, the informational content of a representation seems to be
context-dependent for (at least) one more reason. As Haugeland [13] sug-
gests, one should distinguish between what he calls the “bare-boned” content
of a representation and its “fleshed-out” content. The bare-boned content of
a representation needs no further assumption to get extracted. On the other
hand, the fleshed-out content is obtained via a deduction which implies some
background knowledge. As Haugeland notes, this distinction does not cor-
respond to the implicit/explicit distinction. Some implicit information can
be extracted from the graph without any further factual knowledge: infer-
ring that the temperature in December is 22 degrees less than in July only
requires mastering the rules of arithmetic. However, inferring, for instance,
that the temperature in Paris in July is 15 degrees less than in Madrid im-
plies possessing the knowledge that the temperature in Madrid in July is 40
degrees Celsius. In some contexts – and particularly scientific ones –, a consid-
erable amount of background knowledge is indispensable to derive important
18 Whether one can genuinely speak of representation and informational content

when there is no actual referent is a difficult issue, one I shall not tackle here.
Since I will not consider issues concerning successful representations or misrep-
resentations, I shall not use the term “information” as a success term; rather,
I use it to refer to any propositional content that an agent who knows how to
read the graph – who masters its symbol system – can extract from it, whether
or not this agent is mistaken concerning the target, and whether or not there is
any such target.

19 See footnote 5.
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information from a representation. Here again, what knowledge is supposed
to be possessed by the user of a representation depends on the context. There-
fore, the informational content of a representation is context-dependent.

However, acknowledging this fact does not dangerously challenge the char-
acterization of the informational content of a representation in terms of its
symbol system. In any case, the very system in which a representation has to
be read is settled by the context: to borrow one of Goodman’s examples [11,
pp. 229-230], whether a “black wiggly line” has to be read as an electrocar-
diogram or as a drawing of Mt Fujiyama obviously depends on the context
(for instance, on the caption). One can therefore state that, for a given set of
marks, once what is part of the system under which it functions is settled by
the context, this system fully determines the informational content of the set
of marks. Although this set of marks’ having a content certainly depends on
the existence of some agent, since nothing is a representation unless someone
uses it as such, this agent is an ideal one, who perfectly masters the system,
and whose cognitive abilities are not limited.

So far, nothing has been said about the actual cognitive processes that
agents with limited abilities have to run when they seek information within a
representation, nor about the practical possibility for them to access differ-
ent pieces of its informational content. Symbol systems are sets of objective
syntactic and semantic rules, which determine the informational content of
representations. The inferential procedures agents have to follow when they
want to extract pieces of this content certainly depend on the symbol system
of this representation: the differences in the procedures required in order to
read the list and the graph in figure 1 are obviously due to objective differ-
ences in the way data are structured within each of them; the graph and the
list are not constructed along the same syntactic and semantic rules. In other
words, the inferential affordances of a representation obviously depend on its
symbol system. However, as we will see in the next section, merely referring
to its symbol system is not sufficient to account for the inferential affordances
of a representation, and therefore to fully capture the intuition underlying
the use of the notion of format.

3.2 The Inferential Affordances of a Representation
Are Agent-Relative

As suggested above, the intuitive use of the notion of format relies on an
analogy with computer science. Following this analogy, the format of a rep-
resentation might be said to determine a set of procedures for constructing,
transforming, and interpreting this representation. Prima facie, there is no
reason why one should not describe these procedures by referring to the sym-
bol system of the representation, namely the rules governing the way data
are structured within it.
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However, as a further analysis of the computer science analogy reveals,
these procedures do not only depend on the way data are structured (on the
symbol system), but also on the “processor” which is operating on them20,
namely on the agents themselves, and on their cognitive peculiarities. Indeed,
a difference in symbol system may induce a difference in the inferential af-
fordances of the representation for one and the same agent, but the same
set of marks functioning under the same symbol system can also have dif-
ferent inferential affordances for different agents. Laplace’s demon – whose
cognitive abilities are unlimited –, a computer, a trained agent and a child do
not process data the same way. For these different “agents”, the very same
representation (the same set of data structured following the same syntactic
and semantic rules) may have different inferential affordances.

To be clear, let me take a simplistic example. Imagine two representations,
A and B, which have the same informational content, consisting of two pieces
of information x and y. Suppose that, in virtue of the way data are structured
within A, and of my own cognitive abilities, I need to extract x first if I want
to access y. On the other hand, B does not enable me access x unless I
extract y first. Obviously, this difference in the inferential procedures needed
to access x and y is grounded in a difference in symbol system (though it
does not affect the informational content)21. However, suppose now that there
exist cognitive agents different from me (let’s say, Martians) for whom the
situation is the other way around. Accessing x and y within A requires the
same inferential procedures for me as accessing x and y in B would require
for Martians. The operations these fictional agents have to perform in order
to access respectively x and y with B are the same as the operations I have to
perform if I use A. The symbol systems of A and B are the same for Martians
and for me (A and B encode data along the same objective rules). However,
their inferential affordances are not the same for Martians and for me.

Without even appealing to fictional agents such as Martians, there exist
many inter-individual differences in virtue of which the same representation
does not have the same inferential affordances for two different agents. A
trained agent may be able to see immediately the form of the solutions of an
20 As Larkin and Simon [28, p. 67] note, “when we compare two representations for

computational equivalence [as opposed to informational equivalence], we need to
compare both data and operators. The respective value of sentences and diagrams
depends on how these are organized into data structures and on the nature of
the processes that operate on them”. Larkin and Simon refer to Anderson [1]
who argues “that the distinction between representations is not rooted in the
notations used to write them, but in the operations used on them” [28, p. 68].

21 Indeed, the change in symbol system is accompanied by a change in the per-
ceptual properties, therefore canceling the effects on the informational content:
consider for example a map of temperature where reddish colors would stand for
warm areas, and blueish colors for cold areas. If I both change the system – the
rules according to which red stands for warm and blue for cold – and the colors,
the content remains unmodified.
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equation, while a beginner might need to perform various operations (some-
times with the help of paper and pencil) in order to reach the same conclusion.
In some cases, a change in the perceptual properties of a representation (e.g.
the addition of colors on a black and white diagram, facilitating the extrac-
tion of some information) counts as a change in its inferential affordances for
some agents (agents with normal perceptual abilities) though not for others
(color-blind persons).

More generally, one can state that the objective rules in virtue of which
a certain set of marks has a certain content underdetermine the procedures
one would actually follow in searching information. Consider again the graph
in figure 1, and suppose one wants to calculate the difference of temperature
between October and February. The system’s rules in virtue of which the
graph contains this information allow for a great variety of procedures in
order to find it: one can add a graduation to the graph (based on the two
numerical values which are given), draw lines from the points of the graph
corresponding to February and October to the graduated scale, and then
make the subtraction; one can also measure the distance between the height of
the graph in february and in october and compare it to the distance between
July and December (which we know corresponds to 25 − 3), etc. Therefore,
one cannot say that the syntactic and semantic rules of a representation
determines a set of fixed and objective procedures, independently from a
particular user in a particular situation. These rules do not correspond to
the actual procedures agents have to follow. The procedures one will perform
in order to access such or such piece of information also depend on one’s
cognitive abilities, skills, habits, preferences, background knowledge, etc.

As a consequence, in order to fully capture the intuition underlying the
use of the notion of format, the right unit of analysis is not the symbol
system of a representation, but the formatted representation insofar as it is
used by agents with limited cognitive abilities – the rules according to which
data are structured insofar as they are processed by cognitive agents. In other
words, one should focus on the cognitive interactions of agents with formatted
representations.

To sum up, the format of a representation determines its inferential affor-
dances (or potential) for a particular agent. The inferential affordances of a
representation for a particular agent might be defined as the set of procedures
this agent, given his/her cognitive abilities and epistemic peculiarities, should
follow in order to access the various pieces of the informational content of this
representation. In the following section, I propose to draw some consequences
of such a view for an analysis of theorizing. Meanwhile, it will appear that
such a definition of the inferential affordances of a representation is unten-
able: not only is it impossible, in practice, to state the explicit algorithms
agents have to implement in order to use a representation, but in fact the
very idea of a set of procedures to be implemented is a rough idealization,
which does not do justice to the complexity of the cognitive interactions of
agents with external representations.
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4 Theorizing as “Work in Progress”

In section 2, we have seen that formats matter to the use of theoretical repre-
sentations as well. The analysis of section 3 led me to conclude that the actual
processes one has to follow in order to extract information from a represen-
tation depend both on the way data are structured and on one’s cognitive
abilities. In other words, the inferential affordances of a representation are
agent-relative. How relevant is such an agent-relative notion to an analysis of
the role of theoretical representations in scientific practice?

In subsection 4.1, I argue that the recognition of the agent-relativity of
the inferential affordances of a representation might shed light on our under-
standing of expertise and learning. In subsection 4.2, I propose to go one step
further, by reassessing the normative dimension of my analysis of formats –
as determining procedures agents have to follow in order to access the content
of a representation. Finally, in subsection 4.3., I draw a few consequences of
my view for an analysis of the content of theoretical representations.

4.1 Agent-Relativity of Inferential Affordances:
Consequences on Expertise and Learning

Let me come back to the examples of section 2, which reveal the importance
of formats for theoretical representations as well (as opposed to mere data dis-
play). As we have seen, the different forms of equations of CM have different
inferential affordances for agents. However, one can assess these differences
without referring to any particular agent. Newtonian equations are practi-
cally useless in describing the motion of a constrained system for all agents.
Certainly, the differences in inferential potential between the equations of
CM would not apply to Laplace’s demon, since differences in format do not
affect the informational content of a representation. But, in order to assess
the inferential differences between the equations of CM, it seems legitimate
to assume a standard agent without considering inter-individual differences.
Unlike idealized agents for whom differences of formats would not matter,
standard agents have limited cognitive abilities. Such a standard agent would
be the typical user of this kind of representation: in the case of the graph, a
human adult with normal cognitive abilities; in the case of the equations of
CM, someone mastering the rules of the calculus and having a fair training
in physics. For a layman without such training, it makes little sense to com-
pare the Lagrangian and the Hamiltonian formats. If one does not even know
how to solve a differential equation, whether integrable or not, one would
not gain anything if provided with the Legendre transformations, in addition
to a non-integrable Lagrangian equation. Therefore, the agent-relativity of
the inferential affordances of representations does not seem, prima facie a
relevant feature for an analysis of theoretical representations.
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In some cases, though, it proves useful to pay attention to inter-individual
differences, and therefore to acknowledge that the same representation can
be used in different ways by different agents (and thus have different infer-
ential affordances for them). As I will now suggest, this might shed light on
expertise and learning (the process of becoming an expert), conceived of as
the deepening and sharpening of one’s understanding of a theory.

Beginners and experts, trivially, do not use differential equations in the
same way. However, that does not mean that beginners always use them
in a faulty way: even in conforming to the rules of the calculus, beginners
may follow longer and less efficient inferential paths than experts. One could
therefore think of learning as a process consisting in progressively modifying
the procedures of use of some representations. By acquiring the skills en-
abling one to use a type of representation in an efficient way, one reduces,
so to speak, the inferential path leading to a problem’s solution. Learning
how to use a certain type of equations, and becoming more and more skill-
ful in it, consists in modifying their inferential affordances by learning new
transformation rules – new inferential paths22.

Accordingly, expertise could be thought of as the ability to use certain rep-
resentations in an optimally efficient way. As suggested by Andrea Woody
[33], becoming an expert consists in acquiring an “articulated awareness” of
the representations used in this field. The more expert you are, the more eas-
ily you draw inferences with these representations. Moreover, in addition to
solving problems more quickly, the expert has a deeper understanding of the
very content of theories, namely of the deductive relationships between the
various hypotheses this theory consists in. Deepening one’s understanding of
a theory therefore consists in progressively modifying the inferential architec-
ture of its various principles and hypotheses, by developing new inferential
paths between them. Consider again the equations of CM: whereas the be-
ginner might find it difficult to understand why Newtonian and Lagrangian
equations are equivalent, the trained physicist can “see immediately”, so to
speak, their equivalence. Indeed, he is able to transform the ones into the
others very quickly.

Now, whether one considers the inferential affordances of a representation
for a beginner or for an expert, the view of formats I have proposed still has
a normative dimension. Indeed, according to the above analysis, the format
of a representation for a particular agent determines the set of procedures
this agent (given his/her limitations, skills, background knowledge, etc.) has
to follow in order to access the various pieces of information contained in it.
In other words, given a particular agent, there seems to be something as the
right way of using a representation. Moreover, by suggesting that expertise
could be assessed by referring to the efficiency of the way one uses a certain
type of representations, I have assumed that there exists an optimal way of
using scientific representations in order to access their content. In the next
22 As noted by Kuhn [22], learning consists in acquiring skills (know-how) rather

than learning explicit rules.
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subsection, I shall argue that the very idea of an agent’s optimally mastering
the rules of a certain type of representations, and of the existence of a set of
procedures to be followed, relies on an illegitimate idealization.

4.2 Who Is the Expert?

Consider again the case of Feynman’s diagrams. The interest of this case is
not exhausted in the comparison between diagrams and mathematical for-
mulae (which can be made without referring to inter-individual differences).
As their letters and personal papers show, Feynman and Dyson explicitly
disagreed on the legitimate use and status of the diagrams within QED.
Dyson conceives of them as secondary, psychological aids to the performance
of mathematical calculations. On various occasions, he claimed that their use
would be illegitimate if they had not been proven rigorously derivable from
mathematical formulae: “until the rules were codified and made mathemati-
cally precise, I could not call [Feynman’s method] a theory.” [6, p. 127]. For
him, diagrams were means to “visuali[ze] the formulae which [he derived] rig-
orously from field theory” [6, pp. 129-130]23; they had a meaning only within
QED, to which they added nothing except cognitive tractability.

On the other hand, Kaiser reports that Feynman never felt the need to
show how to derive diagrams from mathematical expressions, and expressed
clearly on various occasions his theoretical preference for diagrams over math-
ematical formulae: “All the mathematical proofs were later discoveries that I
don’t thoroughly understand but the physical ideas I think are very simple.”
(Feynman, Letter to Ted Welton, 16 Nov. 1949, quoted in [19, p. 178])24.
Hence, unlike Dyson, he thought of diagrams as primary and more impor-
tant than any mathematical derivation that might be given. In addition to
being mnemonic devices, they provided an intuitive dimension to the theory,
and Feynman took them as “intuitive pictures” [19, p. 176]. As Dyson notes,
Feynman “regard[ed] the graph as a picture of an actual process which is
occurring physically in space-time” [6, p. 127]25. Rather than visualizations
of the formulae, they were primary visualizations of the physical processes
themselves. Despite their agreement on the in-principle equivalence of the
diagrams and the formulae, Feynman and Dyson did not construct and use
diagrams in the same way, and in the final analysis did not even “see” the
same thing in them.

As Kaiser suggests, this difference in use by the two physicists can be ex-
plained by referring to their own theoretical commitments and preferences.
Unlike Dyson, who demonstrated how to cast both Feynman’s diagrams and
23 Quoted in [19, p. 190].
24 Feynman also spoke of the “physical plausibility” of the diagrammatic approach

(quoted in [19, p. 177]).
25 Quoted in [19, p. 190].



The Theoretician’s Gambits 553

Schwinger’s equations within a consistent field-theoretic framework26, Feyn-
man’s renormalization approach, from which the diagrammatic method arose,
was based on particles, rather than on fields. More generally, as Kaiser notes,
Feynman had a preference for a semi-classical approach, and worked almost
entirely in terms of particles, trying to remove fields from theoretical de-
scriptions altogether. Such theoretical commitments and interests, together
with individual preferences for some kinds of reasoning (Feynman expressed
on various occasions his favoring “visualization” over abstract calculation)
must have contributed to giving the diagrams different inferential affordances
for Feynman and Dyson. Dyson deduces them from mathematical formulae,
whereas Feynman draws them intuitively: each one relates them in a different
way to other representations, and, finally, to the physical world.

In addition to Feynman and Dyson’s using the diagrams according to differ-
ent rules, Feynman himself, as well as other physicists, continuously modified
their rules of use. Kaiser [19] gives an impressive analysis of the “plasticity”
of diagrams throughout their “spreading” in theoretical practices in modern
physics. He studies their varying uses and interpretations in different con-
texts and “schools” (Oxford and Cambridge, Japan, Soviet Union). Despite
Dyson’s efforts, the rules of construction and interpretation of the diagrams
have not been strictly followed. Moreover, this is the reason why they were
so successful: rather than mere calculation tools, they were genuine discovery
tools that contributed important theoretical developments to modern physics,
by being used and applied in new fields.

Who is the “standard user” of these diagrams? Feynman? Dyson? Others?
Who is the expert who follows the procedures corresponding to the inferen-
tial affordances of the diagrams for experts? The inferential affordances of
diagrams are obviously different for Feynman and for Dyson (since they do
not use them the same way). Moreover, these affordances constantly changed
for Feynman himself. Stating that the format of the diagrams determines a
set of procedures their user must conform to would amount to missing some
essential aspects of their role in theorizing.

I suggest that, far from being an exception, this is an exemplary case of
the way representations are used in theorizing. Let me come back to the ex-
ample of CM. In the case of the Newtonian, Lagrangian, and Hamiltonian
equations, there seem to exist fixed sets of procedures that any expert mas-
ters. Let’s suppose that this is so, and that every (trained) physicist today
uses them by following the same processes. Reducing them to representations
whose inferential affordances are strictly fixed would nevertheless prevent us
from noticing essential aspects of scientific invention and discovery. Consider
Hamilton’s use of the Legendre transformations: this innovation does not
rely on any empirical novelty, but rather consists in the introduction of new
transformation rules within mechanics, which results in a modification of the
26 Dyson [7, p. 23] claims that he contributed to allow “people like Pauli who

believed in field theory to draw Feynman diagrams without abandoning their
principles”.
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inferential affordances of the various equations. I suggest that theory devel-
opment often consists in such a process of modifying the procedures followed
in using the representations. As a chess player who, knowing the rules, in-
vents a new gambit, the theoretician modifies the inferential processes he/she
performs in order to solve problems and sometimes develops novel connex-
ions between different equations. In the case of CM, as well as in the case
of Feynman’s diagrams, stating that the format of the different equations
determines a set of rules agents have to follow in order to extract some pieces
of information relies on an illegitimate idealization: the right algorithm does
not exist.

These considerations imply that we should reassess the normative dimen-
sion of my previous analysis of formats and inferential affordances. The con-
sequences of what I intuitively meant by “format” are too context and agent-
dependent to be settled in terms of a fixed set of procedures to be applied. An
agent’s use of a representation depends on the particular situation in which
he/she is involved and on his/her particular goals. As the case of Feynman’s
diagrams show, the inferential affordances of a representation for the same
user – as well as for the community – change over time: the inferential affor-
dances of diagrams are not the same for Feynman in 1948 and ten years later.
Likewise, the inferential affordances of the Lagrangian equations were mod-
ified by Hamilton’s adding to mechanics new rules of transformation, which
changed the role of the various equations of the theory in the scientists’ rea-
soning processes. Therefore, the inferential affordances of a representation are
fundamentally dynamical in character; they should to be defined (beside the
perceptual properties of the representation and a minimal set of construc-
tion and interpretation rules) in reference to a particular situation, involving
a particular agent, with particular skills, theoretical commitments, prefer-
ences, reasoning habits, as well as interests and intentions in the particular
inquiry in which he/she is involved.

By this, I do not mean that a philosophical analysis of the use of repre-
sentations in theorizing and the importance of formats has to be strictly de-
scriptive. Once the highly agent-dependent and situation-dependent nature
of the use of representations has been acknowledged, it is certainly worth
trying to find the theoretically interesting regularities in the use of represen-
tations in different contexts, and there is certainly room for normative claims.
For instance, acknowledging that the inferential affordances of a representa-
tion are relative to its users’ background knowledge and skills could help us
analyze the role and virtue of various kinds of representation in scientific
teaching and popularization. In these activities, as well as in theory develop-
ment by experts, there are definitely successful as well as failing strategies.
In analyzing those cases, a certain degree of idealization is required, and
it is worth ignoring some inter-individual differences and assuming types of
agents (therefore speaking of the inferential affordances of a representation
for beginners, for experts, etc). According to the kind of question to be stud-
ied, different levels of idealization might be justified: if one is interested in
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popularization, one should pay attention to various inter-individual differ-
ences and to the cognitive abilities of the laypersons – although one can
assume types of laypersons; on the other hand, if one is interested in the
inferential differences between Lagrangian and Hamiltonian equations, one
should definitely assume a type of agents – experts – who use differential
equations the same way. Note, however, that the case of Feynman’s dia-
grams shows that inter-individual differences between experts (or groups of
experts27) are sometimes also worth taking into account.

4.3 Formats, Theorizing, and the Content of
Theoretical Representations

Finally, the view I have been defending enlightens some common features of
various theoretical activities, in particular learning and theory development,
which are usually not treated under the same heading. Indeed, as suggested
above, both might be thought of as processes consisting in the modification
of the inferential affordances of some representations – i.e. of the way one
uses them. Contrary to what the idea of formats as determining a fixed set
of procedures to be followed suggests, experts, as well as students, continue
to deepen their understanding of the theoretical hypotheses they develop
and use, by inventing new inferential paths between representations. This is
what physics students do. This is what Hamilton did, with this (important)
difference: he did it first and made his modification publicly available.

Let me clearly state that my point does not amount to saying that sci-
entists’ reasoning does not obey any rule and that there exists no difference
between a sound inference and a wrong one. Of course, solving a differential
equation implies that one conforms oneself to a whole set of calculation rules;
if one obeys them, one cannot deduce contradictory results from the different
types of equations of mechanics. There is a sense in which these equations are
equivalent; one cannot draw just anything from them. Just like a chess game,
the inferential affordances of a representation partially depend on a set of
rules which are objective, in the sense that these rules do not depend on the
users and on the situation. My point is to claim that these rules are highly
insufficient to determine the way representations are used; reducing our anal-
ysis of theoretical representations to an idealized – positivist-like – image of a
27 Such a view enables us to characterize scientific communities by referring to their

sharing types of representations and using them the same way, as already sug-
gested by Kuhn [22]. As Kuhn emphasized, different communities can use the
same “symbolic generalizations” – e.g. Schrödinger’s equations – in consistent
(i.e. conforming to objective mathematical rules) but different ways (applying
them to different cases and giving them different interpretations). These equa-
tions do not have the same inferential affordances for these different practitioners.
Kaiser’s study [19] of the uses and interpretations of the diagrams by different
schools is an example of the fruitfulness of this view.
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fixed set of rules results in a narrow conception of theorizing, which does not
enable us to capture the complex processes which are at play in theorizing,
and particularly the creative dimension of theorizing28. Theoretical represen-
tations such as the equations of mechanics or Feynman’s diagrams are highly
sophisticated tools of calculation and inquiry; as the analogy with the chess-
player’s inventing new gambits suggests, the process of drawing new bridges
between them and inventing new ways to connect them to the phenomena –
and therefore of modifying the procedures of use of these representations –
are potentially infinite. Theorizing partially consists in developing these rules
in order to explore the content of representations.

Acknowledging that such exploration is potentially infinite might finally
offer a new standpoint to think of the content of theoretical representations,
and of their predictive and explanatory power. Indeed, in virtue of the ob-
jective rules’ underdetermining the inferential procedures one may follow in
using them, it is always possible to draw new consequences and “discover”
new relations between them and the phenomena. In other words, the famous
“theoretician’s dilemma” formulated by Hempel [14] as a consequence of the
reductionist demand on theoretical terms does not arise: theoretical represen-
tations are not theoretical because they seem to refer to some unobservable
entities, but rather because they allow theoreticians to create novel connec-
tions between them by manipulating them and modifying their inferential
affordances.

5 Conclusion

Philosophers of science generally consider theories and models as abstract
entities, whose representational relationships with the phenomena have to be
elucidated by formal reconstruction. I hope to have shown that one cannot
understand the explanatory and predictive fruitfulness of scientific represen-
tations without taking into account the particular form of what Humphreys
calls the “concrete pieces of syntax” [16], which are used in theory learning,
application, and development, and whose rules of construction and interpre-
tation are not fixed. As he suggests, one should give up the “no-ownership
perspective” [16] characteristic of most philosophy of science, and pay atten-
tion to the computational dimension of theorizing. Moreover, I have shown
that, once agents and their limited cognitive abilities get into the picture,
it becomes impossible to draw a clear-cut frontier between epistemic differ-
ences, which would count for all humans, and purely psychological differences.
28 Note, incidentally, that Kuhn, although he strongly criticized the positivist image

of theorizing conceived of as mere application of rules, also missed this creative
dimension. He indeed considered the mathematical development of a theory such
as CM as a “purely formal” work, as opposed to conceptual innovation. My
analysis of theorizing aims at showing that conceptual novelty sometimes arises
from formal invention.
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This is particularly true in the case of scientific representations, which are
complex and sophisticated tools, and not mere displaying of data. Taking
into account particular agents, with particular skills, involved in particular
situations, finally enables us to enlighten some essential aspects of theoriz-
ing, which are often neglected. From this perspective, theorizing partially
consists in constructing and manipulating representations, whose role in the
agents’ reasoning processes – whose inferential affordances – change(s) with
the agents’ abilities and interests.
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