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In this note, it is shown that, given a π-institution I = 〈Sign, SEN, C〉, with N a category of natural trans-

formations on SEN, every theory family T of I includes a unique largest theory system
←
T of I.

←
T satisfies

the important property that its N -Leibniz congruence system always includes that of T . As a consequence, it is

shown, on the one hand, that the relation ΩN (
←
T ) = ΩN (T ) characterizes N -protoalgebraicity inside the class

of N -prealgebraic π-institutions and, on the other, that all N -Leibniz theory families associated with theory
families of a protoalgebraic π-institution I are in fact N -Leibniz theory systems.
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1 Introduction

The present note continues recent investigations in the categorical abstract algebraic logic theory of prealgebra-
icity and protoalgebraicity of π-institutions. Unlike other recent articles by the author that were based directly
on attempts to abstract or generalize parts of the theory of algebraizability of deductive systems [2, 3] and of
sentential logics [6], the present work has a unique flavor stemming from a peculiarity special in the categorical
context.

In [18], an attempt was made to lift the notion of a protoalgebraic logic of Blok and Pigozzi [2] to the level
of π-institutions. This attempt was primarily based on a novel notion of a Leibniz operator for π-institutions,
the N -Leibniz operator, first introduced in [12] and further elaborated on in [13, 14, 15, 16, 17, 18, 19, 20].
Recall that, given a π-institution I = 〈Sign, SEN, C〉, a theory family of I is a collection T = {TΣ}Σ∈|Sign|,
such that TΣ ⊆ SEN(Σ) is a Σ-theory of I, for all Σ ∈ |Sign|. On the other hand, a theory system T of I
is a theory family of I that is preserved by all signature morphisms, i. e., such that, for all Σ1,Σ2 ∈ |Sign|,
f ∈ Sign(Σ1,Σ2), SEN(f)(TΣ1) ⊆ TΣ2 . As it became clear in the development of [18], in place of the mono-
tonicity property of Blok and Pigozzi’s Leibniz operator [3] on the theories of a deductive system or of a sentential
logic, two alternatives may be used in the π-institution framework: either monotonicity of theN -Leibniz operator
on theory families or monotonicity of theN -Leibniz operator on theory systems. Since all theory systems are the-
ory families, monotonicity on theory systems seems to define a class of π-institutions, called the N -prealgebraic
π-institutions in [18], that is wider than the one obtained by monotonicity of the N -Leibniz operator on the-
ory families, called the class of N -protoalgebraic π-institutions in [18]. In fact it was shown via an example
in [18] that the inclusion of N -protoalgebraic π-institutions inside N -prealgebraic π-institutions is proper in
general. More specifically, if IS is the canonical π-institution associated with a sentential logic S in the sense
of [10, Section 3] or [11, Section 2.1], then the notions of N -prealgebraicity and N -protoalgebraicity for
π-institutions of this form do not coincide, since theory families of IS are just theories of the sentential logic S
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whereas theory systems of IS are theories of S that are closed under substitutions. For instance, it is known that
the {∧,∨}-fragment of classical propositional logic CPC∧∨ is not protoalgebraic and hence is not N -protoalge-
braic. But it is N -prealgebraic, since there are only two theory systems, {∅} and {FmL(V )}, which renders ΩN

monotonic on theory systems. The present work further clarifies the reasons why these two classes are different.
Besides this desire to further clarify the prealgebraicity-protoalgebraicity question, one more difference be-

tween the sentential and the categorical framework motivated the current work. In [20], the notion of a Leibniz
theory of a sentential logic [7, 8] was adapted in order to obtain the corresponding notion of an N -Leibniz theory
system of a π-institution. Since in π-institutions the dichotomy between theory families and theory systems is
ever present, it may be possible, to each given theory family T in an N -protoalgebraic π-institution, to associate
either its N -Leibniz theory family or its N -Leibniz theory system by taking intersections of theory families or
theory systems, respectively, having the same Leibniz N -congruence system. Which of these two should then
be chosen to play the role that Leibniz theories play in the sentential framework? This question is settled in this
note by showing that, if the π-institution is N -protoalgebraic, then all N -Leibniz theory families are actually
N -Leibniz theory systems so that no choice is necessary in this case.

Both the prealgebraicity-protoalgebraicity issue and the Leibniz theory family-theory system question are ad-
dressed via a common construction which seems to have some importance of its own. More precisely, given a

π-institution I = 〈Sign, SEN, C〉 and a theory family T of I, T is shown to contain a largest theory system
←
T .

If, in addition N is a category of natural transformations on SEN,
←
T is shown to have the remarkable property

that ΩN (T ) ≤ ΩN(
←
T ). Note that this goes in the opposite direction of

←
T ≤ T , which holds by the defini-

tion of
←
T . Once this relationship between the two Leibniz N -congruence systems is established, it is not very

difficult to obtain the two results dealing with N -protoalgebraicity and with N -Leibniz theory families. Theo-
rem 4.1 gives a characterization of the class ofN -protoalgebraic π-institutions inside the class ofN -prealgebraic
π-institutions. Namely, it is shown that an N -prealgebraic π-institution I is N -protoalgebraic if and only if the

Leibniz N -congruence system corresponding to
←
T is identical with the Leibniz N -congruence system corre-

sponding to T , for every theory family T of I. This latter condition is not universally true for all π-institutions,
all categories of natural transformations N on SEN and all theory families T , whence Theorem 4.1 provides a
reason why N -prealgebraicity is a concept different, in general, than N -protoalgebraicity. Theorem 4.3, on the
other hand, shows that given a theory family T of an N -protoalgebraic π-institution I, the unique N -Leibniz

theory family T (N) included in T coincides with the unique N -Leibniz theory system
←
T N included in

←
T , i. e.,

the unique N -Leibniz theory family included in any theory family of I (including all theory systems) is itself a
theory system. Thus, the extra parenthesis (N) in the superscript for N -Leibniz theory families is not needed.

For general background on abstract algebraic logic, the reader is referred to the book [5] and the mono-
graph [6]. For all unexplained categorical notation any of [1], [4] or [9] may be consulted.

2 Largest theory system in a theory family

Suppose that I = 〈Sign, SEN, C〉 is a π-institution and N a category of natural transformations on SEN. We

show in this section that, for every theory family T of I, there exists a unique ≤-largest theory system
←
T of I

≤-included in T . This result has two very important consequences for the theory of categorical abstract algebraic
logic. On the one hand, it provides a characterization of the class of N -protoalgebraic π-institutions inside
the class of N -prealgebraic π-institutions, as introduced in [18], and, on the other hand, it yields the interesting
property that theN -Leibniz theory family T (N) corresponding to a given theory family T of anN -protoalgebraic
π-institution I is an N -Leibniz theory system, as introduced in [20].

Let T be a theory family of the π-institution I. Define the collection
←
T = {

←
TΣ}Σ∈|Sign| by setting, for

all Σ ∈ |Sign|,
←
TΣ =

⋂{SEN(f)−1(TΣ′) : Σ′ ∈ |Sign|, f ∈ Sign(Σ,Σ′)},
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SEN(Σ′′),

...

that is
←
TΣ is defined by pulling back along all signature morphisms with domain Σ. This description accounts

for the choice of
←

in our notation.

Proposition 2.1 Suppose that I = 〈Sign, SEN, C〉 is a π-institution and T a theory family of I. Then
←
T is

a theory system of I, such that
←
T ≤ T .

P r o o f. First, it is shown that
←
TΣ is a Σ-theory of I, for all Σ ∈ |Sign|. We do have, by definition,

←
TΣ =

⋂{SEN(f)−1(TΣ′) : Σ′ ∈ |Sign|, f ∈ Sign(Σ,Σ′)},

whence
←
TΣ is a theory because it is the intersection of inverse images of theories, which are themselves theories.

That
←
T ≤ T is easily seen, since one of the theories in the intersection in the definition of

←
TΣ is the theo-

ry SEN(iΣ)−1(TΣ) = TΣ.

So, it only remains to show that
←
T is a theory system, rather than just a theory family. Suppose, to this end,

that Σ1,Σ2 ∈ |Sign| and f ∈ Sign(Σ1,Σ2). Then, we have

Σ1 Σ2
�f

Σ,

g
�

�
�
��

h
�

�
�

��

←
TΣ1 =

⋂{SEN(g)−1(TΣ) : Σ ∈ |Sign|, g ∈ Sign(Σ1,Σ)}
⊆ ⋂{SEN(hf)−1(TΣ) : Σ ∈ |Sign|, h ∈ Sign(Σ2,Σ)}
=

⋂{SEN(f)−1(SEN(h)−1(TΣ)) : Σ ∈ |Sign|, h ∈ Sign(Σ2,Σ)}
= SEN(f)−1(

⋂{SEN(h)−1(TΣ) : Σ ∈ |Sign|, h ∈ Sign(Σ2,Σ)})
= SEN(f)−1(

←
TΣ2),

and, therefore, SEN(f)(
←
TΣ1) ⊆

←
TΣ2 , and

←
T is a theory system of I, as was to be shown.

Abstractly,
←
T may be characterized as the largest theory system of I ≤-included in the theory family T .

Proposition 2.2 Suppose that I = 〈Sign, SEN, C〉 is a π-institution and T a theory family of I. Then
←
T is

the largest theory system of I that is ≤-included in T .

P r o o f. Suppose that T ′ is a theory system of I, such that T ′ ≤ T . Let Σ ∈ |Sign|, and ϕ ∈ SEN(Σ), such
that ϕ ∈ T ′

Σ. Therefore, since T ′ is, by hypothesis, a theory system of I, for all Σ′ ∈ |Sign|, f ∈ Sign(Σ,Σ′),
SEN(f)(ϕ) ∈ T ′

Σ′ . But, also by hypothesis, T ′ ≤ T , whence we obtain SEN(f)(ϕ) ∈ TΣ′ , for all Σ′ ∈ |Sign|,
f ∈ Sign(Σ,Σ′). But this is equivalent to ϕ ∈ SEN(f)−1(TΣ′), for all Σ′ ∈ |Sign|, f ∈ Sign(Σ,Σ′), i. e., that

ϕ ∈ ⋂{SEN(f)−1(TΣ′) : Σ′ ∈ |Sign|, f ∈ Sign(Σ,Σ′)} =
←
TΣ.

Therefore T ′
Σ ⊆
←
TΣ, for all Σ ∈ |Sign|, and, hence T ′ ≤

←
T .
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It is now obvious that the following holds:

Corollary 2.3 Suppose that I = 〈Sign, SEN, C〉 is a π-institution and T a theory family of I. T is a theory

system of I if and only if
←
T = T .

P r o o f. The largest theory system that is included in a given theory family is the theory family itself if and
only if the theory family is a theory system. Now use Proposition 2.2.

Corollary 2.4 Suppose that I = 〈Sign, SEN, C〉 is a π-institution and T, T ′ theory families of I. If T ≤ T ′,

then
←
T ≤

←
T ′.

P r o o f. It suffices to notice that, if T ≤ T ′, then
←
T is a theory system that is included in T ′, whence by

Proposition 2.2,
←
T ≤

←
T ′.

3 Leibniz congruence systems

It will now be shown, in what is the main result of this note, that the LeibnizN -congruence system corresponding

to the theory system
←
T ≤-includes the LeibnizN -congruence system corresponding to the theory family T . But,

first, an auxiliary technical lemma is needed to facilitate the main proof.

Lemma 3.1 Suppose that I = 〈Sign, SEN, C〉 is a π-institution, N a category of natural transformations
on SEN and T a theory family of I. Let Σ,Σ′ ∈ |Sign|, f ∈ Sign(Σ,Σ′). Then, for all σ : SENn −→ SEN
in N , all ϕ ∈ SEN(Σ) and all �χ ∈ SEN(Σ′)n−1,

σΣ′(SEN(f)(ϕ), �χ) ∈
←
TΣ′

if and only if, for all Σ′′ ∈ |Sign| and all g ∈ Sign(Σ′,Σ′′), σΣ′′ (SEN(gf)(ϕ), SEN(g)n−1(�χ)) ∈ TΣ′′ .

P r o o f. Suppose that Σ,Σ′ ∈ |Sign|, f ∈ Sign(Σ,Σ′). If σ : SENn −→ SEN is a natural transformation
in N , ϕ ∈ SEN(Σ) and �χ ∈ SEN(Σ′)n−1, we have

σΣ′(SEN(f)(ϕ), �χ) ∈
←
TΣ′

iff σΣ′ (SEN(f)(ϕ), �χ) ∈ SEN(g)−1(TΣ′′), for all Σ′′ ∈ |Sign|, g ∈ Sign(Σ′,Σ′′)
iff SEN(g)(σΣ′ (SEN(f)(ϕ), �χ)) ∈ TΣ′′ , for all Σ′′ ∈ |Sign|, g ∈ Sign(Σ′,Σ′′)
iff

SEN(Σ′′)n SEN(Σ′′)�
σΣ′′

SEN(Σ′)n SEN(Σ′)�σΣ′

�

SEN(g)n

�

SEN(g)

and σΣ′′ (SEN(gf)(ϕ), SEN(g)n−1(�χ)) ∈ TΣ′′ , for all Σ′′ ∈ |Sign|,
g ∈ Sign(Σ′,Σ′′).

Lemma 3.1 is now used to prove the central theorem of the present work which states that, for all theory
families T of a π-institution I, the Leibniz N -congruence system associated with T is included in the Leibniz

N -theory system associated with
←
T . In other words, we have ΩN (T ) ≤ ΩN (

←
T ), despite the fact that

←
T ≤ T !

Theorem 3.2 Suppose that I = 〈Sign, SEN, C〉 is a π-institution and N a category of natural transforma-

tions on SEN. If T is a theory family of I, then ΩN (T ) ≤ ΩN (
←
T ).
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P r o o f. To show that ΩN (T ) ≤ ΩN (
←
T ), suppose that Σ ∈ |Sign|, ϕ, ψ ∈ SEN(Σ), and 〈ϕ, ψ〉 ∈ ΩN

Σ (T ).
Recall from the characterization of ΩN , given in [18, Proposition 2.4], that, for all σ : SENn −→ SEN in N ,
Σ′ ∈ |Sign|, f ∈ Sign(Σ,Σ′) and �χ ∈ SEN(Σ′)n−1,

(1) σΣ′(SEN(f)(ϕ), �χ) ∈ TΣ′ iff σΣ′(SEN(f)(ψ), �χ) ∈ TΣ′ .

Now let σ : SENn −→ SEN be in N , Σ′ ∈ |Sign|, f ∈ Sign(Σ,Σ′) and �χ ∈ SEN(Σ′)n−1. We have

σΣ′(SEN(f)(ϕ), �χ) ∈
←
TΣ′

if and only if, by Lemma 3.1, σΣ′′ (SEN(gf)(ϕ), SEN(g)n−1(�χ)) ∈ TΣ′′ , for all Σ′′ ∈ |Sign|, g ∈ Sign(Σ′,Σ′′),
if and only if, by equivalence (1),

σΣ′′ (SEN(gf)(ψ), SEN(g)n−1(�χ)) ∈ TΣ′′ , for all Σ′′ ∈ |Sign|, g ∈ Sign(Σ′,Σ′′),

if and only if, again by Lemma 3.1, σΣ′(SEN(f)(ψ), �χ) ∈
←
TΣ′ . Thus, using [18, Proposition 2.4] once more, we

get that 〈ϕ, ψ〉 ∈ ΩN
Σ (
←
T ). Therefore ΩN (T ) ≤ ΩN (

←
T ).

4 Important consequences

Two important consequences of Theorem 3.2 are obtained in this section. First, a characterization theorem
for the class of N -protoalgebraic π-institutions, as it sits inside the class of N -prealgebraic π-institutions, is

given in terms of the relation between ΩN (T ) and ΩN (
←
T ). This characterization fills in a gap that was left

open in the development of the theory of prealgebraicity and protoalgebraicity of [18]. As another important
consequence of Theorem 3.2, it is shown that, in the context of N -protoalgebraic π-institutions, the N -Leibniz
theory family T (N) corresponding to a given theory family T , defined in a way analogous to the N -Leibniz
theory system TN corresponding to a given theory system T in [20], is an N -Leibniz theory system. Therefore
all N -Leibniz theory families are N -Leibniz theory systems and the theory of [20] covers these families in their
full generality.

Theorem 4.1 (Characterization of protoalgebraicity) Let I = 〈Sign, SEN, C〉, with N a category of natural
transformations on SEN, be an N -prealgebraic π-institution. Then I is N -protoalgebraic if and only if, for all

theory families T ∈ ThFam(I), ΩN (T ) = ΩN (
←
T ).

P r o o f. If I is N -protoalgebraic, then, since
←
T ≤ T , we obtain that ΩN (

←
T ) ≤ ΩN (T ). The reverse inclu-

sion holds by Theorem 3.2.

Suppose, conversely, that, for all theory families T ∈ ThFam(I), ΩN (T ) = ΩN (
←
T ). Then, if

T, T ′ ∈ ThFam(I)
are such that T ≤ T ′, we have

ΩN (T ) = ΩN (
←
T ) (by hypothesis)

≤ ΩN (
←
T ′) (by N -prealgebraicity and Corollary 2.4)

= ΩN (T ′) (by hypothesis).

Therefore I is N -protoalgebraic.

In the remainder of this section I = 〈Sign, SEN, C〉, with N a category of natural transformations on SEN,
will be an N -protoalgebraic π-institution. Recall from [20] the concept of the N -Leibniz theory system TN

associated with a given theory system T of I. In a way analogous to the way TN was defined for T a theory
system, T (N) may be defined for an arbitrary theory family T . Namely, T (N) is the least theory family of I that
has the same LeibnizN -congruence system as the theory family T . Such a theory family always exists. Existence
of T (N) may be shown in a way very similar to the way existence of TN was shown for a theory system T
in [20, Proposition 1].
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Proposition 4.2 Let I = 〈Sign, SEN, C〉 be an N -protoalgebraic π-institution. For every theory family T
of I, there exists a unique N -Leibniz theory family T (N) of I, such that ΩN (T (N)) = ΩN (T ). It is given by

T (N) =
⋂{T ′ ∈ ThFam(I) : ΩN (T ′) = ΩN (T )}.

In the second important consequence of Theorem 3.2, it is now shown that, given a theory family T of
an N -protoalgebraic π-institution I, the N -Leibniz theory family T (N) associated with T coincides with the

N -Leibniz theory system
←
TN associated with

←
T . Hence studying N -Leibniz theory systems in this context

exhausts the study of all N -Leibniz theory families.

Theorem 4.3 (Leibniz theory systems) Let I = 〈Sign, SEN, C〉, with N a category of natural transforma-

tions on SEN, be an N -protoalgebraic π-institution. For every theory family T of I, T (N) =
←
TN .

P r o o f. We first show that T (N) ≤
←
TN . In fact we have

T (N) =
⋂{T ′ ∈ ThFam(I) : ΩN (T ′) = ΩN (T )} (by the definition of T (N))

≤ ⋂{T ′ ∈ ThSys(I) : ΩN(T ′) = ΩN (T )} (since ThSys(I) ⊆ ThFam(I))
=

⋂{T ′ ∈ ThSys(I) : ΩN(T ′) = ΩN (
←
T )} (by Theorem 4.1)

=
←
TN (by the definition of

←
TN ).

For the opposite inclusion we have

←
TN =

⋂{T ′ ∈ ThSys(I) : ΩN (T ′) = ΩN (
←
T )} (by the definition of

←
TN )

=
⋂{
←
T ′ : T ′ ∈ ThFam(I) and ΩN (T ′) = ΩN (T )} (equal sets by Theorem 4.1)

≤ ⋂{T ′ : T ′ ∈ ThFam(I) and ΩN (T ′) = ΩN (T )} (by Proposition 2.2)

= T (N) (by the definition of T (N)).

Similarly to the way TN was defined for a theory system T and T (N) was defined for a theory family T , one
may define the notion of the N -Leibniz theory system TN associated with an arbitrary theory family T of an
N -protoalgebraic π-institution I as the least theory system of I that has the same Leibniz N -congruence system
as T . With this definition, then, Theorem 4.3 yields immediately:

Corollary 4.4 Let I = 〈Sign, SEN, C〉, with N a category of natural transformations on SEN, be anN -pro-
toalgebraic π-institution. For every theory family T of I, T (N) = TN , i. e., the N -Leibniz theory family associ-
ated with T equals the N -Leibniz theory system associated with T .
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