
 1

 
HEMPEL’S RAVEN PARADOX: 

A LACUNA IN THE STANDARD BAYESIAN SOLUTION 
 

Peter B. M. Vranas 
vranas@iastate.edu 

Iowa State University 
7 July 2003 

 
Abstract. According to Hempel’s paradox, evidence (E) that an object is a nonblack nonraven 
confirms the hypothesis (H) that every raven is black. According to the standard Bayesian solution, E 
does confirm H but only to a minute degree. This solution relies on the almost never explicitly 
defended assumption that the probability of H should not be affected by evidence that an object is 
nonblack. I argue that this assumption is implausible, and I propose a way out for Bayesians. 

 

1. Introduction.1 
 

“What do you like best about philosophy?” my grandmother asks. “Every philosopher is brilliant!” I 
unhesitatingly reply. “That’s hardly believable” my grandmother responds. To convince her I 
perform an experiment. I choose randomly a person, Rex, from the telephone directory. Predictably 
enough, Rex is neither brilliant nor a philosopher. “You see,” I crow, “this confirms my claim that 
every philosopher is brilliant!” My grandmother is unimpressed. 
 

I repeat the experiment: I choose randomly another person, Kurt. Surprisingly, Kurt is both a 
philosopher and brilliant. Now my grandmother is really impressed. “Look, grandma,” I patiently 
explain, “you are being irrational. The fact that Kurt is both a philosopher and brilliant confirms the 
hypothesis that every philosopher is brilliant—or so you accept. But then the fact that Rex is both 
nonbrilliant and a nonphilosopher confirms the hypothesis that everything nonbrilliant is a 
nonphilosopher, and thus also confirms the logically equivalent hypothesis that every philosopher is 
brilliant—or so you should accept.” 
 

“Young man, you are being impertinent” my grandmother retorts. “You just rehearsed Hempel’s 
paradox; I do remember my philosophy classes. But it’s called a ‘paradox’ precisely because its 
conclusion is absurd.” 
 

“Is it, though?” I shamefacedly reply. “Not according to Bayesians. They argue that the fact that 
Rex is neither brilliant nor a philosopher does confirm the hypothesis that every philosopher is 
brilliant—although only to a minute degree, this is why we have the illusion that it doesn’t confirm 
it at all.” 
 

“Young man, you are being superficial” my grandmother responds. “Go through the Bayesian 
argument. It relies on the assumption that the fact that Rex is not brilliant should not affect the 
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1 This section presents the issues in a simplified and slightly imprecise way. Rigor is introduced in later sections. 
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probability of the hypothesis that every philosopher is brilliant. What on earth justifies this 
assumption?” 
 

I’m dumbfounded. What, indeed? Apparently nothing that Bayesians themselves have said: the 
assumption in question is almost never explicitly defended in the literature. After some serious 
thought, I conclude that my grandmother is right: the assumption is implausible. The standard 
Bayesian solution to Hempel’s paradox has a lacuna. 
 

In §2 I formulate more carefully Hempel’s paradox, the standard Bayesian solution, and the 
disputed assumption. In §3 and §4 I examine respectively arguments for and against the assumption. 
In §5 I propose a way out for Bayesians. I conclude in §6. 
 

2. Hempel’s paradox, the standard Bayesian solution, and the disputed assumption. 
 

Hempel’s paradox can be formulated as the argument from NC and EC to PC:2 
 

Nicod’s Condition (NC): For any object x and any properties F and G, the proposition that 
x has both F and G confirms the proposition that every F has G.3 

Equivalence Condition (EC): For any propositions P, Q, and Q′, if P confirms Q and Q is 
logically equivalent to Q′, then P confirms Q′.4 

Paradoxical Conclusion (PC): The proposition (E) that a is both nonblack and a nonraven 
confirms the proposition (H) that every raven is black.5 

 

The argument is valid: the proposition that a is both nonblack and a nonraven confirms (by NC) the 
proposition that everything nonblack is a nonraven, and thus confirms (by EC) the logically 
equivalent proposition that every raven is black.6 
                                                 
2 The exact origin of Hempel’s paradox is shrouded in mystery. Although Hempel apparently did not formulate the 
paradox in print until 1943 (128), Hosiasson-Lindenbaum formulated it as early as 1940 (136); she attributed it to 
Hempel but gave no reference. (Hempel (1945: 21 n. 2) referred to “discussions” with her.) The paradox was 
“foreshadowed” (Jeffrey 1995: 3) but by no means formulated by Hempel in 1937 (222). 
3 NC is part of Nicod’s (1924: 23, 1930: 219) criterion of confirmation, which also includes (inter alia) a claim that 
entails the negation of PC: the proposition that x has neither F nor G does not confirm the proposition that every F has 
G. Some authors include that claim (or directly the negation of PC) in the premises of Hempel’s paradox; they 
formulate thus the paradox as an apparently inconsistent set of plausible premises rather than (as I do) as an apparently 
sound argument with an apparently unacceptable conclusion. 
4 Some authors reject or modify EC. On the relevant debate see: Black 1966: 186; Fisch 1984; Foster 1971: 107-10; 
Giere 1970: 359, 361; Goodman 1983: 70-1; Grandy 1967: 22-3; Hempel 1945: 12-3; Lipton 1991: 102-3, 105; 
Morgenbesser 1962; Rescher 2001: 225-6; Rody 1978: 298-300; Scheffler 1963: 286-91; Scheffler & Goodman 1972: 
80-2; Schoenberg 1964: 202-8; Schwartz 1972: 247-8; Skyrms 1966: 242-3; Smokler 1967; Swinburne 1971: 320-1; 
Tempelmeier 1972: 10-1; Tuske 1998: 391, 399-400; Vincent 1975: 3-18; Young 1975: 56-60. 
5 People sometimes speak as if it were a itself (the object) that supposedly confirms H. As Hempel notes, however, “[a] 
particular bird may be a crow and black, but may also have an albino crow for a sister; in virtue of these properties, it 
would both confirm and disconfirm the hypothesis ‘All crows are black’. This consideration suggests that an object can 
be said to confirm or to disconfirm a hypothesis only under a particular description” (1967: 239; cf. Stove 1966: 446). 
People also sometimes say that, because (e.g.) a green leaf is a nonblack nonraven, H is confirmed (according to a 
variant of Hempel’s paradox) by the proposition that a is a green leaf. Apparently they presuppose that, if P confirms Q 
and P′ entails P, then P′ confirms Q. But then H would be both confirmed and disconfirmed by the proposition that a is 
a green leaf and b is a nonblack raven (Stillwell 1985; Stove 1966). 
6 In nomological versions of Hempel’s paradox, in which the sentences “every raven is black” and “everything 
nonblack is a nonraven” are used to express putative laws (rather than, e.g., accidental generalizations), one might deny 
that these sentences express logically equivalent propositions. On the relevant debate see: Black 1966: 186-7; Cohen 
1987: 158-60; Gaifman 1979: 115; Harré 1970: 120-1; Hempel 1945: 15-8; Huggett 1960; Nerlich 1964; Skyrms 1966: 
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The standard Bayesian solution to the paradox tries to vindicate PC. Bayesians argue that E does 
confirm H—but only to a minute degree, given that there are overwhelmingly more nonblack 
objects than there are ravens. Bayesians also claim that PC looks unacceptable (i.e., we have the 
impression that E does not confirm H at all) because we implicitly realize that the degree to which 
E confirms H is for all practical purposes negligible (and is much smaller than the degree to which 
the proposition that a is both black and a raven confirms H).7 
 

More formally, let R, R , B, and B  be respectively the properties of being a raven, a nonraven, 
black, and nonblack; then H ≡ ∀x(Rx→Bx) and E ≡ BaRa.  Let the degree to which E confirms H 
be P(H|E) – P(H),8 P being a subjective probability measure. It can be shown that: 

(1)  P H E P H P H
P Ba H P Ba

P Ra Ba
( | ) ( ) ( )

( | ) / ( )
( | )

.− = −








1 9 

If it is part of the background knowledge that a is drawn randomly from a population containing 
overwhelmingly more nonblack objects than ravens, then P Ra P Ba( ) / ( )  is minute10—and thus so 
is P Ra Ba( | ),  which is by definition P RaBa P Ba( ) / ( )  and thus does not exceed P(Ra) / P Ba( ).  
Say, then, that )|( aBRaP  is equal to ε2 (with ε minute), and substitute in (1) 1–ε2 (namely 

))|(1 aBRaP−  for ).|( aBaRP  
 

Bayesians standardly assume that P(Ba|H) and P(Ba) should be equal; this is the disputed 
assumption. Equivalently, P Ba H( | )  and P Ba( )  (and thus also P H Ba( | )  and P(H)) should be 
equal. Then (1) gives that P(H|E) – P(H) should be P(H)[(1–ε2)–1–1], namely P(H)ε2/(1–ε2); this is 
both positive (assuming )|( aBRaP  > 0) and minute, just as Bayesians claim. It follows that, in the 
presence of the other assumptions made so far, the disputed assumption is sufficient for the 

                                                                                                                                                                  
235-6, 242-3; Stove 1966: 452; Swinburne 1971: 318-20; von Wright 1966: 217-8; Wilson 1964a, 1964b: 400-1; 
Young 1975: 55-6. 
7 I refer to the standard Bayesian solution because “there is no such thing as the Bayesian solution. There are many 
different ‘solutions’ that Bayesians have put forward using Bayesian techniques” (Chihara 1981: 448). See, e.g.: 
Alexander 1958: 230-3; Chihara 1981: 440-8; Earman 1992: 69-73; Eells 1982: 60-1; Gaifman 1979; Gibson 1969; 
Good 1960, 1961; Hesse 1974: 155-62; Hooker & Stove 1968; Horwich 1982: 54-63; Hosiasson-Lindenbaum 1940: 
136-41; Howson & Urbach 1993: 126-130; Jardine 1965; Mackie 1963: 266-9; Nerlich 1964; Suppes 1966; Swinburne 
1971: 322-7, 1973: chap. 10; Wilson 1964b: 396-9; Woodward 1985: 409-16. Cf. Hintikka 1969; Humburg 1986; 
Maher 1999. 
8 This is not the only measure of degree of confirmation that Bayesians have used (Fitelson 1999, 2001), but it can be 
shown that the sufficiency and necessity results of this section (see below in the text) also hold for, e.g., the log-ratio 
measure log[P(H|E)/P(H)], the log-likelihood-ratio measure log[ )|(/)|( HEPHEP ] (assuming for the sufficiency 
result that )(HP  is non-minute), and the normalized difference measure /)]()|([)|()|( HPEHPEHPEHP −=−  

)(EP  defended by Christensen (1999; cf. Eells & Fitelson 2000; Joyce 1999: 205-6) (assuming for the sufficiency 
result that P(Ba) is non-minute and for the necessity result that P(H) is non-minute). 
9 Proof. By Bayes’ theorem, P(H|E) = P(E|H)P(H) / P(E). Now P(E) = P BaRa P Ra Ba P Ba( ) ( | ) ( ),=  and P(E|H) = 
P BaRa H P Ra BaH P Ba H P Ba H( | ) ( | ) ( | ) ( | )= =  because P Ra BaH( | )  = 1. So P(H|E) = P Ba H P H( | ) ( )  / [ ( | )P Ra Ba  
P Ba( )],  and (1) quickly follows.  (This proof assumes )()()( aHBPHPEP > 0.) 

10 For the sake of simplicity I don’t consider—except briefly in footnote 18—cases in which a is drawn from a 
population of (e.g.) only nonravens or only black objects (cf. Black 1966: 184; Horwich 1982: 58; Jardine 1965: 361-3; 
Royall 1997: 177-9; Woodward 1985: 411). For random sampling to be possible, assume that the population is finite. 
The inference to minuteness requires that P satisfy something like David Lewis’s (1980, 1994) Principal Principle. 



 4

Bayesian claim that E confirms H to a minute degree. To my knowledge, however, it has escaped 
notice that the assumption is also for all practical purposes necessary for the Bayesian claim. (1) 
entails that P(H|E) – P(H) is positive exactly if P Ba H( | ) / P Ba( )  > 1–ε2, and is minute—say less 
than some minute number δ2—exactly if P Ba H P Ba( | ) / ( )  < (1–ε2)[1+(δ2/P(H))]. Assuming that 
P(H) is non-minute, it follows that P(H|E) – P(H) is both positive and minute exactly if 
P Ba H P Ba( | ) / ( )  is very close to 1; and this holds only if P(Ba|H) ≅ P(Ba) (i.e., only if |P(Ba|H) – 
P(Ba)| is minute). I conclude that the disputed assumption is for all practical purposes necessary for 
the standard Bayesian solution to work.11 
 

3. Attempts to defend the disputed assumption.12 
 

Despite being essential for the standard Bayesian solution, the disputed assumption is almost never 
explicitly defended in the literature.13 The only argument that I have encountered in support of the 
assumption was adduced by Woodward: “in the absence of some special reason for supposing 
otherwise, it seems reasonable that my estimate of the number of masses in the universe should not 
go down (or up) when I learn that they all obey the inverse square law” (1985: 415).14 More 
formally, let P and P+ be respectively my subjective probability measures right before and right 
after I learn that H is true. Woodward’s argument might be formalized as follows: (1) P+(Ba) and 
P(Ba) should be equal; (2) P+(Ba) and P(Ba|H) should be equal; thus (3) P(Ba|H) and P(Ba) should 
be equal. How convincing, however, is premise (1)? One person’s modus ponens is another’s 
modus tollens: granting (2), someone who denies (3) will find (1) implausible. In other words, if my 
prior probability measure P is (rationally) such that P(Ba|H) and P(Ba) differ, then (given (2)) 
P+(Ba) and P(Ba) should differ—my estimate of the percentage of black objects should go up or 
down when I learn that they include every raven. Of course for all I have said it may still be the 
case that it’s epistemically irrational to have a prior which violates (3); my present point is only that 
Woodward’s argument doesn’t show this to be the case. 
 

Another attempt—this one not in the literature—to defend the disputed assumption appeals to the 
following Principle of Conditional Indifference (PCI): if none of H1, H2 gives more reason than the 

                                                 
11 In addition to claiming that (i) E confirms H to a minute degree, Bayesians standardly claim that (ii) BaRa confirms 
H to a non-minute degree, or—equivalently given (i)—that (iii) the degree to which BaRa confirms H is much larger 
than (i.e., exceeds by a non-minute amount) the degree to which E confirms H. I am not claiming that the disputed 
assumption is necessary (or sufficient) for (ii) or (iii), but my result that the assumption is for all practical purposes 
necessary for (i) entails my main claim that the assumption is for all practical purposes necessary for the standard 
Bayesian solution as a whole. 
12 One might argue that the disputed assumption is trivially true: the percentage of black objects in the population is 
fixed and thus cannot depend on H. But one might equally well (or rather equally badly) argue that the percentage of 
ravens that are black is fixed and thus cannot depend on H! These percentages are fixed but unknown; as far as our state 
of knowledge is concerned, the situation is as if the population had been drawn from a set of possible populations, and 
the percentage of black objects does vary across this set. 
13 Gaifman claims that, “not having ... a background theory, given only a natural classification into A’s and non-A’s and 
into B’s and non-B’s, there is no way in which knowing A’s frequency can be relevant to estimating B’s frequency 
within A” (1979: 126). Howson and Urbach comment that the assumption “seems plausible to us, at any rate as a good 
approximation” (1993: 127). That’s about all the “defense” of the assumption that I have found in the literature. 
14 Strictly speaking, Woodward—similarly for Howson and Urbach (footnote 13)—is discussing the assumption that 
P(Ra|H) and P(Ra) should be equal (an assumption that Bayesians standardly make to support claim (ii) of footnote 
11), but his discussion applies to the disputed assumption as well. 
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other to believe E, then P(E|H1) and P(E|H2) should be equal. Whether or not every raven is black 
seems irrelevant to whether the (randomly selected) object a is black, so PCI gives that P(Ba|H) and 
P(Ba| )H  should be equal; this is equivalent to the disputed assumption. PCI, however, bears a 
suspicious resemblance to the following Principle of Indifference (PI): if E gives no more reason to 
believe one of H1, H2 rather than the other, then P(H1|E) and P(H2|E) should be equal. PI is well 
known to “yield inconsistencies with alarming ease” (Howson & Urbach 1993: 59), but one might 
argue that PCI does not do so. PI yields an inconsistency if it is applied to two partitions of logical 
space, {H1, …, Hn} and {H′1, …, H′m}, which have different numbers of members (n ≠ m) but share 
a member—say H1 = H′1. Indeed, PI in such a case entails that P(H1|E) should be equal to both 1/n 
and 1/m. PCI, by contrast, in such a case entails that P(E|H1) should be equal to P(E),15 a value 
independent of the partition. Nevertheless, in the Appendix I argue that PCI does lead to 
inconsistency in the context of the disputed assumption. So this attempt to defend the assumption by 
using indifference fails. 
 

There is a general reason why the disputed assumption is hard to defend. Suppose one somehow 
refutes the claim that my estimate of the percentage of black objects should go up or down when I 
learn that they include every raven. The disputed assumption does not follow: it does not follow that 
my estimate should remain the same. What follows instead is that my estimate may remain the 
same. Indeed: denying that my estimate should go up or down is compatible with affirming that it 
may go up or down and thus does not entail that it should remain the same. So even if there is no 
reason why P(Ba|H) and P(Ba) should differ, maybe there is no reason why they should be equal 
either: maybe they may differ and they may also be equal. But why understand the disputed 
assumption as the claim that P(Ba|H) and P(Ba) should be—rather than may be or are—equal? 
Because the assumption is used to defend the claim that E confirms H, and this is most reasonably 
understood as the claim that P(H|E) should exceed P(H); as Horwich (1982: 52) puts it, “reason 
requires” that P(H|E) exceed P(H).16 I conclude that the disputed assumption makes a relatively 
strong claim (“should” rather than “may”) and is for that reason hard to defend. In any case, it 
seems that no adequate defense of the assumption exists. 
 

4. Attempts to refute the disputed assumption.17 
 

Opponents of the disputed assumption have been more diligent than proponents: I have found in the 
literature three attempts to refute the assumption. I will argue, however, that all three attempts fail. 
 

                                                 
15 Proof. P(E) = P(E|H1)P(H1)+…+P(E|Hn)P(Hn) = P(E|H1)[P(H1)+…+P(Hn)] = P(E|H1).  
16 As Woodward (1985: 412-3) notes, this understanding of confirmation has the consequence that when E neither 
confirms nor disconfirms H it doesn’t follow that E is confirmationally irrelevant to H (i.e., that P(H|E) and P(H) 
should be equal). But I take it that’s unavoidable: replacing “should exceed” with “exceeds” makes confirmation “too 
subjective” (Horwich 1982: 51), and replacing “should exceed” with “may exceed” has the consequence that E can both 
confirm and disconfirm H. 
17 One might argue that Bayesians should take the disputed assumption to be trivially false: all that epistemic rationality 
requires according to Bayesians is conformity of degrees of belief to the probability axioms (and modification of 
degrees of belief by Bayesian conditionalization), so epistemic rationality according to Bayesians cannot require that 
P(Ba|H) and P(Ba) be equal. In reply I contest the premise of this argument: Bayesians can accept that epistemic 
rationality also requires conformity to, e.g., Lewis’s (1980, 1994) Principal Principle (cf. footnote 10) or van Fraassen’s 
(1984, 1995) Reflection Principle. Or even conformity to some indifference principle which, like PCI (see §3), entails 
that P(Ba|H) and P(Ba) should be equal; I don’t see how to exclude this possibility a priori. 
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An indirect attempt to refute the disputed assumption was made by Horwich (1982: 58-9). He 
argued that the assumption has the counterintuitive consequence that H is slightly disconfirmed by 
the proposition that a is both black and a nonraven.18 This consequence was called “awkward” by 
Swinburne (1971: 324, 1973: 158), “a minor embarrassment” by Horwich (1982: 58), “unintuitive” 
by Maher (1999: 61), “a paradox” by Hooker and Stove (1968: 307), “unacceptable” by Pennock 
(1991: 66 n. 21), and “a debilitating weakness” by Rody (1978: 289). I don’t see, however, why 
Bayesians should be embarrassed. To the charge that on their account BaRa  confirms H, Bayesians 
reply that the degree of confirmation is minute. Similarly, as Horwich himself points out, to the 
charge that on their account BaRa  disconfirms H, Bayesians can reply that the degree of 
disconfirmation is minute.19 If one accepts the first reply, then why reject the second?20 
 

Another attempt to refute the disputed assumption was made by Swinburne: “But now h, ‘all ϕ’s are 
ψ’ is added to our evidence. This is going to lead us to suppose that there are more ψ’s and less ϕ’s 
than, without it, we had supposed” (1971: 325). This argument is analogous to Woodward’s (see 
§3) and might be similarly formalized: (1′) P+(Ba) should exceed P(Ba); (2) P+(Ba) and P(Ba|H) 
should be equal; thus (3′) P(Ba|H) should exceed P(Ba). I reply again that one person’s modus 
ponens is another’s modus tollens: if my prior probability measure P is (rationally) such that 
P(Ba|H) and P(Ba) are equal, then (given (2)) P+(Ba) and P(Ba) should be equal. Again, for all I 
have said it may still be the case that it’s epistemically irrational to have a prior which violates (3′), 
but my present point is only that Swinburne’s argument doesn’t show this to be the case.21 
 

                                                 
18 Horwich (1982: 58-9), like Kruse (2000), also claims that the disputed assumption has the consequence that 
Bayesians are unable to distinguish cases in which a is drawn from different populations (cf. footnote 10). This is not 
so, however. Consider, for example, the case in which it is part of the background knowledge that a is drawn randomly 
from the nonravens in the population we have been considering so far. (H is still the proposition that every raven in the 
original population—not, of course, in the subpopulation of nonravens—is black.) Let P' be a corresponding subjective 
probability measure and assume that P'(Ba|H) and P'(Ba) should be equal. Then P'(H| aB ) = P'( aB |H)P'(H)/P'( aB ) = 
P'(H), so we do get the intuitively correct result that aB is confirmationally irrelevant to H (because in this experiment 
H is at no risk of being falsified). 
19 Proof. P H BaRa( | )  = P BaRa H( | ) P(H) / P BaRa( )  = [P(Ba|H) – P(BaRa|H)]P(H) / P BaRa( )  = [P(Ba|H) –
P(Ba|RaH)P(Ra|H)]P(H) / P BaRa( )  = [P(Ba|H) – P(Ra|H)]P(H) / P BaRa( )  = [P(Ba) – P(Ra)]P(H) / P BaRa( )  if 
P(Ba|H) = P(Ba) and (see footnote 14) P(Ra|H) = P(Ra). So [ ( | )P H BaRa  – P(H)] P BaRa( )  / P(H) = P(Ba) – P(Ra) –
P BaRa( )  = P(BaRa) – P(Ra) = − P BaRa( ) . Thus P H BaRa( | )  – P(H) = –P(H) P BaRa( )  / P BaRa( )  =  

–P(H) P Ra Ba( | ) P Ba( )  / [P(Ba) – P(BaRa)] = –P(H) P Ra Ba( | ) P Ba( )  / [P(Ba)(1–P(Ra|Ba))], which is minute if the 
background knowledge ensures that P Ra Ba( | )  and P(Ra|Ba) are minute but P(Ba) / P Ba( )  is non-minute (there are 
overwhelmingly more nonblack objects and overwhelmingly more black objects than ravens, but at most many—not 
overwhelmingly—more nonblack than black objects).  (Similar proofs can be given for the other three confirmation 
measures mentioned in footnote 8.) 
20 Of course some people reject the first reply. On the relevant debate see: Aronson 1989: 232; Black 1966: 196; 
Chihara 1981: 442; Cohen 1987: 154; Hempel 1965: 48; Hintikka 1969: 27; Poundstone 1988: 39. 
21 Swinburne tries to bolster his argument as follows: “If all future ϕ’s are ψ, then in so far as ϕ’s are similar to ~ϕ’s, 
future ~ϕ’s are more likely to be ψ than we would otherwise have supposed” (1971: 325; cf. Maher 2002: 7). But why 
suppose that ϕ’s are similar to ~ϕ’s? 
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A third attempt to refute the disputed assumption was made by Maher: “There are just two ways  
Ba  can be true,” namely BaRa  and BaRa,  and H rules out BaRa;  “since [H] does not rule out 
any of the ways in which a can be black, it is plausible that” P Ba( )  should exceed P Ba H( | )  
(1999: 60). Maher’s conclusion is equivalent to the claim that P Ba H( | )  should exceed P Ba H( | ),  
which is in turn equivalent to the claim that P BaRa H( | )  + P BaRa H( | )  should exceed 
P BaRa H( | )  + P BaRa H( | ).  Maher points out that P BaRa H( | )  should be zero. Does then Maher’s 
argument amount to no more than the (clearly unwarranted) assertion that, because the former of the 
last two sums has two potentially positive terms but the latter has just one, the former should exceed 
the latter?22 Maher might note in response that the only potentially positive term in the latter sum, 
namely P BaRa H( | ),  “corresponds” to one of the terms in the former sum, namely P BaRa H( | ).  
But how would this correspondence help Maher’s argument, unless he assumed that the 
corresponding terms should be equal? And clearly he would not be entitled to make this assumption 
(I am not saying he does make it), which is equivalent to the claim that P H BaRa( | )  and P(H) 
should be equal: this would beg the question against Bayesians, who claim that BaRa  does confirm 
H. I conclude that Maher’s argument fails.23 
 

Where does this leave us? I think that Swinburne’s and Maher’s arguments were bound to fail 
because they tried to show too much, namely that P(Ba|H) and P(Ba) should differ.24 To refute the 
disputed assumption it’s enough to show instead that these two quantities may differ, and to show 
this one could try to rebut every putative reason why they should be equal. In §3 I rebutted the only 
two such reasons of which I am aware. Although the disputed assumption is thereby made 
implausible, it is clearly not decisively refuted. Still, until further reasons are adduced, it seems 
sensible for those Bayesians who rely on the assumption to look for a way to stop relying on it. 
 

5. A way out for Bayesians. 
 

It is important to distinguish two questions that a full solution to Hempel’s paradox must address: 
 

Prescriptive question: Should P H BaRa( | )  exceed P(H) (i.e., does BaRa  confirm H)? 
Explanatory question: Why do people believe that P H BaRa( | )  and P(H) should be equal (i.e., 

that BaRa  is confirmationally irrelevant to H)? 
 

                                                 
22 Strictly speaking, since Maher compares the implications of H for Ba  and for Ba, one might have expected him to 
conclude (not that P Ba H( | )  should exceed P Ba H( | ),  but rather) that P(Ba|H) should exceed P Ba H( | );  equivalently, 
that P BaRa H( | )  + P BaRa H( | )  should exceed P BaRa H( | )  + P BaRa H( | ),  a claim to which the (dubious) reasoning 
of two versus one potentially positive terms also applies. But each of the last two claims is equivalent to the claim that 
P(Ba|H) should exceed 1/2, so this reconstruction of Maher’s argument might be too uncharitable. 
23 Maher also argues (1999: 60) that the disputed assumption is incompatible with imposing five conditions on P 
(including Carnap’s “λ-condition”). Maher, however, admits he “cannot prove” (1999: 53) that these conditions hold in 
the context of Hempel’s paradox. 
24 Forster (1994: 362-3), following Good (1967: 322), argues that P(Ra|H) and P(Ra) should differ in the presence of 
appropriate background knowledge; but it does not follow that they should differ in the absence of such knowledge. Cf. 
Aronson 1989: 231-7; Chihara 1981: 431-2, 451 n. 35; Clark 2002: 164; Earman 1992: 70; Good 1968; Hempel 1967; 
Horwich 1982: 62; Howson & Urbach 1993: 128-9; Korb 1994; Maher 1999: 62-4; Poundstone 1988: 39-40; 
Rosenkrantz 1977: 33-5, 1982: 82-4; Sainsbury 1995: 81; Swinburne 1971: 326-7; Will 1966: 56-7. 
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The standard Bayesian solution answers the prescriptive question with “yes, but marginally”, and 
answers the explanatory question with the claim that people mistake marginal confirmation for 
confirmational irrelevance. If the disputed assumption is false, then Bayesians must give up the 
above answer to the prescriptive question: P H BaRa( | )  may be equal to or different from P(H), and 
which of these cases should hold depends (approximately) on whether P(Ba|H) is equal to or 
different from P(Ba).25 But Bayesians can still produce a plausible answer to the explanatory 
question: they can supplement their previous answer to this question with the claim that people 
mistakenly take the disputed assumption to be true. Why do people make this mistake? Because, 
one might suggest, they reason by indifference (see §3). Take a standard example (van Fraassen 
1989: 303): given that a cube comes from a factory which produces cubes with edge length at most 
2 cm, what is the probability that the cube has edge length at most 1 cm? Most people, one might 
conjecture, would say it’s 1/2. Similarly, one might conjecture, most people would say that P(Ba|H) 
and P(Ba| )H  should be equal. Reasoning by indifference comes naturally to people; it takes some 
thought to realize that such reasoning leads to inconsistencies.26 
 

Bayesians who want to pursue the above suggestion have a lot of work to do: given that the 
explanatory question is empirical, they need to go beyond considerations of plausibility and 
examine evidence on how people in fact reason (cf. Humberstone 1994). So I hope it is clear that 
the above suggestion is not intended as a full defense of a Bayesian solution to Hempel’s paradox. 
(Such a defense would also need to address the numerous objections that have been raised against 
the standard Bayesian solution.) The suggestion has instead the limited but useful purpose of 
showing how Bayesians might be able to cope with a little noticed but particularly perfidious 
obstacle: the implausibility of the disputed assumption. 
 

6. Conclusion. 
 

The disputed assumption, namely the claim that P(Ba|H) and P(Ba) should be equal, is both 
sufficient and for all practical purposes necessary for the standard Bayesian claim that 
P H BaRa( | ) – P(H) should be positive but minute; i.e., the claim that BaRa  does confirm H but 
only marginally. I argued that the assumption is implausible: P(Ba|H) and P(Ba) need not be equal. 
This is not to say that they should differ: they may differ but they may also be equal. If so, then the 
standard Bayesian answer to the prescriptive question must be given up: P H BaRa( | )  and P(H) 
may differ but they may also be equal. Bayesians, however, can still produce a plausible answer to 
the explanatory question: people, reasoning by indifference, mistakenly take the disputed 
assumption to be true, and then mistake marginal confirmation for confirmational irrelevance. I 
conclude that, even if the assumption is false, there is still hope for Bayesians. 
 

Appendix: The Principle of Conditional Indifference leads to inconsistency. 
 

Suppose that an object a is drawn by simple random sampling from a finite population. Let the random 
variables X, Y, and Z represent respectively the percentages of ravens, of black objects, and of black ravens in 

                                                 
25 If so, and if the Equivalence Condition is true, then Bayesians must also give up Nicod’s Condition (see §2). 
26 To reach an inconsistency in the factory example, note that the factory produces cubes of volume at most 8 cm3, and 
we are asking what is the probability that a cube from the factory has volume at most 1 cm3; so why shouldn’t the 
answer be 1/8 rather than 1/2? To reach an inconsistency in the context of the disputed assumption, see the Appendix. 
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the population (so that the percentage of ravens that are black is G = Z/X). Define the (Bernoulli) random 
variable R to have the value 1 if a is a raven and 0 otherwise. Then P(R=1|X=x) should be x. Given that the 
population contains overwhelmingly more nonblack objects than ravens, the space of all possible values for 
<X, Y, Z> is S = {<x, y, z>: 0 ≤ z ≤ x ≤ γ2(1–y) ∧ z ≤ y}, with γ2 positive but minute (ignoring, to simplify, the 
complication that x, y, and z can take only discrete values). To simplify the exposition, I will deal with the 
intersection S′ of S with the plane (e.g.) y = 1/2. S′ corresponds to the largest triangular area in Figure 1, the 
hypotenuse corresponding to H. 
 

The key to generating an inconsistency by means of PCI is that a sample space can be partitioned in multiple 
ways. The family of lines {z = gx; 0 ≤ g ≤ 1} gives one partition of S′; the family of lines {z = xn; n ≥ 1} (plus 
the line z = 0) gives another partition. (Strictly speaking, these are not partitions, because every line includes 
the point <0, 0>; but PCI is not limited to partitions.) Since a given value g of G is compatible with all 
possible values x of X, g provides no information on the distribution of R (which is determined by x); so PCI 
entails that, for any g and g′, P(R=1|G=g) and P(R=1|G=g′) should be equal to each other—and thus also to 
P(R=1). It follows that R and G = f1(X, Z) = Z/X should be independent. Similarly, PCI entails that R and N = 
f2(X, Z) = lnZ/lnX (this comes from Z = XN) should be independent. In the end, PCI will entail that R and <X, 
Z> should be independent, a conclusion incompatible with the claim that P(R=1|X=x) should be x. 
 

To derive an inconsistency rigorously, consider the simplified case in which exactly 
four points of S′ have nonzero probabilities (Figure 1). (Such a prior does not seem 
epistemically irrational, unless one appeals to the demonstrably problematic PI.) 
Assume that the probabilities pA, pB, pC, and pD are all different and sum to 1, and 
that the x-coordinates satisfy xB = xD and xA = xC. The last equality gives (in obvious 
simplified notation; e.g., P(R|A) = P(R=1|X=xA∧Y=1/2∧Z=zA)) P(R|A) = P(R|C), so 
that (using Bayes’ theorem) (1) pCP(A|R) = pAP(C|R). Similarly, xB = xD gives: (2) 
pDP(B|R) = pBP(D|R). Applying now PCI to the partition {A∨B, C∨D} gives that 
two equalities should hold: P(R|A∨B) = P(R) = P(R|C∨D). The first equality gives P(A∨B|R) = P(A∨B), so 
(3) P(A|R)+P(B|R) = pA+pB. The second equality gives similarly: (4) P(C|R)+P(D|R) = pC+pD. A similar 
application of PCI to the partition {A∨D, C∨B} gives: (5) P(A|R)+P(D|R) = pA+pD, (6) P(C|R)+P(B|R) = 
pC+pB. It can be shown that the system of equations (1) - (6) has the unique solution P(A|R) = pA, P(B|R) = pB, 
P(C|R) = pC, and P(D|R) = pD. But then P(R|A) = P(A|R)P(R)/pA = P(R) = P(B|R)P(R)/pB = P(R|B). The 
conclusion that P(R|A) and P(R|B) should be equal is incompatible with xA ≠ xB. 
 

REFERENCES 
 

Alexander, H. G. (1958), “The paradoxes of confirmation”, British Journal for the Philosophy of Science 9: 227-233. 
Aronson, Jerold R. (1989), “The Bayesians and the raven paradox”, Noûs 23: 221-240. 
Black, Max (1966), “Notes on the ‘paradoxes of confirmation’”, in Jaakko Hintikka and Patrick Suppes (eds.), Aspects 

of inductive logic. Amsterdam: North-Holland, 175-197. 
Chihara, Charles (1981), “Quine and the confirmational paradoxes”, in Peter A. French, Theodore E. Uehling Jr., and 

Howard K. Wettstein (eds.), Midwest Studies in Philosophy. Vol. 6: The foundations of analytic philosophy. 
Minneapolis: University of Minnesota Press, 425-452. 

Christensen, David (1999), “Measuring confirmation”, Journal of Philosophy 96: 437-461. 
Clark, Michael (2002), Paradoxes from A to Z. New York: Routledge. 
Cohen, Yael (1987), “Ravens and relevance”, Erkenntnis 26: 153-179. 
Earman, John (1992), Bayes or bust? A critical examination of Bayesian confirmation theory. Cambridge, MA: MIT 

Press. 
Eells, Ellery (1982), Rational decision and causality. New York: Cambridge University Press. 
Eells, Ellery and Branden Fitelson (2000), “Measuring confirmation and evidence”, Journal of Philosophy 97: 663-672. 
Fisch, Menachem (1984), “Hempel’s ravens, the natural classification of hypotheses and the growth of knowledge”, 

Erkenntnis 21: 45-62. 
Fitelson, Branden (1999), “The plurality of Bayesian measures of confirmation and the problem of measure sensitivity”, 

Philosophy of Science 66 (Proceedings): S362-S378. 
——— (2001), “A Bayesian account of independent evidence with applications”, Philosophy of Science 68 

(Proceedings): S123-S140. 

 

 z    Figure 1 

 

          B
     A

 x 
   0     C    D    γ2/2 
 



 10

Forster, Malcolm R. (1994), “Non-Bayesian foundations for statistical estimation, prediction, and the ravens example”, 
Erkenntnis 40: 357-376. 

Foster, Lawrence (1971), “Hempel, Scheffler, and the ravens”, Journal of Philosophy 68: 107-114. 
Gaifman, Haim (1979), “Subjective probability, natural predicates and Hempel’s ravens”, Erkenntnis 14: 105-147. 
Gibson, L. (1969), “On ‘ravens and relevance’ and a likelihood solution of the paradox of confirmation”, British 

Journal for the Philosophy of Science 20: 75-80. 
Giere, Ronald N. (1970), “An orthodox statistical resolution of the paradox of confirmation”, Philosophy of Science 37: 

354-362. 
Good, Irving J. (1960), “The paradox of confirmation”, British Journal for the Philosophy of Science 11: 145-149. 
——— (1961), “The paradox of confirmation (II)”, British Journal for the Philosophy of Science 12: 63-64. 
——— (1967), “The white shoe is a red herring”, British Journal for the Philosophy of Science 17: 322. 
——— (1968), “The white shoe qua herring is pink”, British Journal for the Philosophy of Science 19: 156-157. 
Goodman, Nelson (1983), Fact, fiction, and forecast (4th ed.). Cambridge, MA: Harvard University Press. 
Grandy, Richard E. (1967), “Some comments on confirmation and selective confirmation”, Philosophical Studies 18: 

19-24. 
Harré, R. (1970), The principles of scientific thinking. London: MacMillan. 
Hempel, Carl G. (1937), “Le problème de la vérité”, Theoria 3: 206-246. 
——— (1943), “A purely syntactical definition of confirmation”, Journal of Symbolic Logic 8: 122-143. 
——— (1945), “Studies in the logic of confirmation”, Mind 54: 1-26, 97-121. 
——— (1965), Aspects of scientific explanation and other essays in the philosophy of science. New York: Free Press. 
——— (1967), “The white shoe: No red herring”, British Journal for the Philosophy of Science 18: 239-240. 
Hesse, Mary (1974), The structure of scientific inference. London: MacMillan. 
Hintikka, Jaakko (1969), “Inductive independence and the paradoxes of confirmation”, in Nicholas Rescher (ed.), 

Essays in honor of Carl G. Hempel: A tribute on the occasion of his sixty-fifth birthday. Dordrecht: Reidel, 24-46. 
Hooker, Clifford A. and D. Stove (1968), “Relevance and the ravens”, British Journal for the Philosophy of Science 18: 

305-315. 
Horwich, Paul (1982), Probability and evidence. New York: Cambridge University Press. 
Hosiasson-Lindenbaum, Janina (1940), “On confirmation”, Journal of Symbolic Logic 5: 133-148. 
Howson, Colin and Peter Urbach (1993), Scientific reasoning: The Bayesian approach (2nd ed.). Chicago: Open Court. 
Huggett, W. J. (1960), “On not being gulled by ravens”, Australasian Journal of Philosophy 38: 48-50. 
Humberstone, I. L. (1994), “Hempel meets Wason”, Erkenntnis 41: 391-402. 
Humburg, Jürgen (1986), “The solution of Hempel’s raven paradox in Rudolf Carnap’s system of inductive logic”, 

Erkenntnis 24: 57-72. 
Jardine, R. (1965), “The resolution of the confirmation paradox”, Australasian Journal of Philosophy 43: 359-368. 
Jeffrey, Richard C. (1995), “A brief guide to the work of Carl Gustav Hempel”, Erkenntnis 42: 3-7. 
Joyce, James M. (1999), The foundations of causal decision theory. New York: Cambridge University Press. 
Korb, Kevin B. (1994), “Infinitely many resolutions of Hempel’s paradox”, in R. Fagin (ed.), Theoretical aspects of 

reasoning about knowledge: Proceedings of the fifth conference. Asilomar, CA: Morgan Kaufmann, 138-149. 
Kruse, Michael (2000), “Are there Bayesian success stories? The case of the ravens paradox”, presented at the 2000 

Philosophy of Science Association conference. Available at <http://hypatia.ss.uci.edu/lps/psa2k/bayesian-success-
stories.pdf>. 

Lewis, David K. (1980), “A subjectivist’s guide to objective chance”, in Richard C. Jeffrey (ed.), Studies in inductive 
logic and probability, vol. 2. Berkeley: University of California Press, 263-294. 

——— (1994), “Humean Supervenience debugged”, Mind 103: 473-490. 
Lipton, Peter (1991), Inference to the best explanation. New York: Routledge. 
Mackie, John L. (1963), “The paradox of confirmation”, British Journal for the Philosophy of Science 13: 265-277. 
Maher, Patrick (1999), “Inductive logic and the ravens paradox”, Philosophy of Science 66: 50-70. 
——— (2002), “Kuipers on qualitative confirmation and the ravens paradox”, forthcoming in Roberto Festa et al. 

(eds.), Confirmation, empirical progress, and truth approximation: Essays in debate with Theo Kuipers, vol. 1. 
Amsterdam: Rodopi. 

Morgenbesser, Sidney (1962), “Goodman on the ravens”, Journal of Philosophy 59: 493-495. 
Nerlich, G. (1964), “Mr. Wilson on the paradox of confirmation”, Australasian Journal of Philosophy 42: 401-405. 
Nicod, Jean (1924), Le problème logique de l’induction. Paris: Alcan. 
——— (1930), Foundations of geometry and induction (P. P. Wiener, trans.). London: Routledge. 
Pennock, Robert T. (1991), Causally licensed inference and the confirmation relation. Ph. D. dissertation, University of 

Pittsburgh. 



 11

Poundstone, William (1988), Labyrinths of reason: Paradox, puzzles, and the frailty of knowledge. New York: 
Doubleday. 

Rescher, Nicholas (2001), Paradoxes: Their roots, range, and resolution. Chicago: Open Court. 
Rody, Phillip J. (1978), “(C) instances, the relevance criterion, and the paradoxes of confirmation”, Philosophy of 

Science 45: 289-302. 
Rosenkrantz, Roger D. (1977), Inference, method and decision. Boston: Reidel. 
——— (1982), “Does the philosophy of induction rest on a mistake?”, Journal of Philosophy 79: 78-97. 
Royall, Richard M. (1997), Statistical evidence: A likelihood paradigm. New York: Chapman & Hall. 
Sainsbury, Richard M. (1995), Paradoxes (2nd ed.). New York: Cambridge University Press. 
Scheffler, Israel (1963), The anatomy of inquiry: Philosophical studies in the theory of science. New York: Knopf. 
Scheffler, Israel and Nelson Goodman (1972), “Selective confirmation and the ravens: A reply to Foster”, Journal of 

Philosophy 69: 78-83. 
Schoenberg, Judith (1964), “Confirmation by observation and the paradox of the ravens”, British Journal for the 

Philosophy of Science 15: 200-212. 
Schwartz, Robert (1972), “Paradox and projection”, Philosophy of Science 39: 245-248. 
Skyrms, Brian (1966), “Nomological necessity and the paradoxes of confirmation”, Philosophy of Science 33: 230-249. 
Smokler, Howard E. (1967), “The equivalence condition”, American Philosophical Quarterly 4: 300-307. 
Stillwell, Shelley (1985), “Confirmation, paradoxes, and possible worlds”, British Journal for the Philosophy of 

Science 36: 19-52. 
Stove, D. (1966), “Hempel’s paradox”, Dialogue 4: 444-455. 
Suppes, Patrick (1966), “A Bayesian approach to the paradoxes of confirmation”, in Jaakko Hintikka and Patrick 

Suppes (eds.), Aspects of inductive logic. Amsterdam: North-Holland, 198-207. 
Swinburne, Richard G. (1971), “The paradoxes of confirmation—A survey”, American Philosophical Quarterly 8: 318-

330. 
——— (1973), An introduction to confirmation theory. London: Methuen. 
Tempelmeier, Ernest S. (1972), The raven paradoxes and epistemological problems of confirmation theory. Ph. D. 

dissertation, Temple University. 
Tuske, Joerg (1998), “Dinnāga and the raven paradox”, Journal of Indian Philosophy 26: 387-403. 
van Fraassen, Bas C. (1984), “Belief and the will”, Journal of Philosophy 81: 235-256. 
——— (1989), Laws and symmetry. Oxford: Clarendon. 
——— (1995), “Belief and the problem of Ulysses and the sirens”, Philosophical Studies 77: 7-37. 
Vincent, R. H. (1975), “Selective confirmation and the ravens”, Dialogue 14: 3-49. 
von Wright, Georg H. (1966), “The paradoxes of confirmation”, in Jaakko Hintikka and Patrick Suppes (eds.), Aspects 

of inductive logic. Amsterdam: North-Holland, 208-218. 
Will, Frederick L. (1966), “Consequences and confirmation”, Philosophical Review 75: 34-58. 
Wilson, P. R. (1964a), “On the confirmation paradox”, British Journal for the Philosophy of Science 15: 196-199. 
——— (1964b), “A new approach to the confirmation paradox”, Australasian Journal of Philosophy 42: 393-401. 
Woodward, James (1985), “Critical review: Horwich on the ravens, projectability and induction”, Philosophical Studies 

47: 409-428. 
Young, Gregory A. (1975), The paradoxes of confirmation: A study in the logic of confirmation. Ph. D. dissertation, 

The University of Miami. 


