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It makes sense to attribute a definite percentage ofvariation in some measure of behavior to variation in heredity only if 
of heredity and environment are truly additive. Additivity is often tested by examining the interaction effect in a two-way 

of variance (ANOV A) or its equivalent multiple regression model. If this effect is not statistically significant at the a = 0.05 
is common practice in certain fields (e.g., human behavior genetics) to conclude that the two factors really are additive and 

linear models, which assume additivity. Comparing several simple models of nonadditive, interactive relationships 
heredity and environment, however, reveals thatANOV A often fails to detect nonadditivity because it has mueh less power 

of interaction than in tests of main effects. Likewise, the sample sizes needed to detect real interactions are substantially 
than those needed to detect main effects. Data transformations that reduce interaction effects also change drastically the 

ofthe causal model and may conceal theoretically interesting and practically useful relationships. Ifthe goal ofpartitioning 
mutually exclusive causes and calculating "heritability" coefficients is abandoned, interactive relationships can be 

more seriously and can enhance our understanding of the ways living things develop. 

causal models; gene action; heritability; nature/nurture; power; sample size; scale transformation 

... tJ"UI.Octl analysis of data helps the researcher detect 
patterns of results that might otherwise be 

by uncontrolled and unknown sources of varia­
Like every analytical technique, a statistical method 

on certain assumptions about the properties of 
being studied. If assumptions are not valid, 

:m"thr,rl can lead to erroneous conclusions just as 
as can a faulty laboratory procedure. A method 
used with confidence only if there are effective 
test its validity. As discussed by Crusio (in press), 
experimental designs do not lend themselves to 
crucial assumptions, no matter how many obser­
are made. Another difficulty, the fucus of this 

article, arises when a test is possible, at least in 
but is so insensitive that violations of assump­
escape detection. 

widespread application of the analysis of variance 
A) to factorial experiments in the behavioral and 

1 SC~lel[}C€lS proVides a case in point. This technique, 
U'''J1CIO,rt by Fisher and Mackenzie (1923) for use in 

is convenient for evaluating the results of an 
in which every category of one factor (e.g., 

of a crop species) is combined with every condi­
another factor (e.g., kind or amount offertilizer). 

"'~"'''''''''lANOVA method is gradually being replaced 
flexible technique, multiple regression, which 

to a linear equation with one term for each 

separate "effect" in the experiment, but for simple fac­
torial designs the two procedures are essentially the same 
(Edwards 1979). ANOVA partitions the total variation in a 
measure (e.g., crop yield) among four contributing 
causes: (a) the "main" effect of variety averaged over all 
kinds of fertilizer, (b) the main effect of fertilizer averaged 
over all varieties, (c) the "interaction" of variety and 
fertilizer, and (d) sources of variation or "error" within 
each group. Interaction in a factorial experiment signifies 
the departure of a group mean score from the simple sum 
of the respective main effects. Ifpresent, it indicates that 
crop yield depends on the specific combination ofvariety 
and treatment. One of the great merits of the ANOVA 
method is that it can readily detect interaction. Unfortu­
nately, the technique is relatively insensitive to certain 
types of interaction and can be quite misleading when 
interpreted uncritically. 

Many psychological theories rise or fall with the occur­
rence or absence of statistical interaction. Discussing the 
question of whether or not drive and reinforcement are 
independent, Mackintosh (1974) wrote: ,"In principle, 
the question should be answered easily, requiring no 
more than a large factorial experiment in which several 
levels of drive are combined with several magnitudes of 
reinforcement, with an analysis of variance being per­
formed to test for a significant interaction of the two 
factors" (p. 154). Another example is the "person-situa­
tion"question. Psychologists ask whether an individual 
has a distinct personality, which remains the same in a 
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variety of situations (relative stability), or whether per­
sonality is highly flexible and specific to circumstance 
(situationism). It could also happen that personality 
changes according to the situation but that the kind of 
change depends on stable characteristics of the person 
(coherence). Rival explanations such as relative stability 
and coherence are often' contrasted using ANOV A. Mag­
nusson and Allen (1983) state: 'Though most of the 
variance in a Person X Situation matrix of data is usually 
because of the main effects ofpersons, enough variance is 
left that can be explained by interindividual differences in 
patterns of cross-situational profiles to support the co­
herence model" (p. 24). 

The detection and interpretati.on. of interaction are 
important in virtually every arecrof the behavioral and 
brain sciences, but they are nowhere so crucial as in 
human behavior genetics, where the prevailing models 
seek to partition variance between two sources, nature 
and nurture. Controversies in behavior genetics (e.g., 
Henderson 1979; Wahlsten .1979) have led to further 
questions about the validity and sensitivity of analysis of 
variance. The answers have implications for many other 
fields of study. The following discussion is therefore 
directed to a specific issue in behavior genetics but can 
easily be extended far beyond behavior genetics. 

2. Two researctr agendas 

Almost any characteristic of living organisms can be 
shown to vary as a consequence of both heredity and 
environment. Some studies attempt to understand the 
causes of these individual differences by examining the 
functional roles of heredity and environment in indi­
vidual development, especially how they relate to or 
depend upon each other; other studies try to estimate the 
strength ofthe influence ofone factor versus the other in a 
population oforganisms. These two research agendas can 
be contradictory. It is possible to ascribe a definite per­
centage of individual differences in a population to varia­
tion in heredity, for example, only if heredity and en­
vironment are strictly additive and act separately from 
one another in the course of development. 

Let us recall a theorem from introductory statistics. If 
one variable, Y, is the sum oftwo other variables, X and Z, 
then the variance of Y is equal to: 

Var(Y) = Va:r(X) + Var(Z) + 2Cov(XZ). 

IfX and Z are uncorrelated, then Cov(XZ) = 0 and the 
variance of a sum is the sum of the separate variances. 
Suppose X is a measure of one's heredity (H) and Z 
represents one's environment (E). We then arrive at the 
basic causal model in quantitative behavior genetics, Y = 
H + E, according to which a measured characteristic ofan 
individual is the sum of the two separate components. 
This model is the conceptual basis for analysing or parti­
tioning variance in a population, because it implies that: 

Var(Y) = Var(H) + Var(E). 

As expressed by Fuller and Thompson (1978) (who used P 
for "phenotype" rather than Y): "The fundamental prob­
lem of quantitative behavior genetics is to partition V p 

[Var(Y) here}] into its components so as to estimate the 
proportional contributions of genes and life histories to 
population variability:' (p. 52). The heritability coefficient 
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(h2) in the broader sense expresses the proportion 
measured variation among individuals attributable 
variation in their heredities, Var(H)lVar(Y). 
Plomin (1988): "Behavioral genetics is only useful 
addressing the extent to which genetic and pn'''mm"",~. 
tal variation contribute to phenotypic variation in a 
lation" (p. 107). 

The Y = H + E model corresponds to a very 
diagram of causal relations: 

This implies that the influence of heredity on the 
opment and eventual magnitude of some 
completely separate and distinct from the influence 
environment, and that the effect of environment does 
depend on a person's heredity. Heritability analysis, 
be valid, requires that a particular model ofoevelopmen 
be true. Research results that cast doubt on the n .... ,.a:..1L" 

ofH and E necessarily cast doubt on the intpt'l,rpt"tinn 

heritability (McGuire & Hirsch 1977; 
because nonadditivity of the contributing causes 
invalid to partition the variance into distinct COInp~)n€m! 
and thereby renders a heritability coefficient me'ani.ngJle! 
(Lewontin 1974). Quantitative genetics broadly 
ceived can incorporate interactive effects (e.g., 
Sforza & Feldman 1973), but heritability analysis 

The direct investigation of individual 
through longitudinal observation and concurrent 
mental manipulation of heredity and environment, on 
one hand, makes no a priori assumption about the 
ditivity ofH and E. Rather, it uses genetic variants to 
interrogate nature. Logically, this research agenda 
to precede attempts to partition variance but, 
ically, it did not. Academic interest in hereditary 
of individual differences in intelligence and other 
attributes preceded the scientific study of """"''''11'''''' 
development by many years (Fancher 1985), just 
statistical techniques designed to partition variance 
dated important insights into the roles of genes 
development. 

3. Developmental and statistical Interactions 

Because heritability analysis requires the absence , 
statistical interaction involving Hand E, and because 
basic formula Y = H + E is a model for an individual, 
question of statistical interaction is sometimes posed as 
question of whether H and E interact in the course 
development. This can lead to some confusion in 
nology and meaning because differing interpretations 
interaction and "interactionism" abound, 
among psychologists. ,..••. 

In personality theory, for example, "interactionism" 
sometimes taken to mean that the combined effects of 
qualities of individuals and the situation in which they are 
reared or tested must be considered (Bowers 1973; 
nusson & Allen 1983), which to some theorists makes 
interaction term in ANOVA ofcritical importance. 
ever, if one simply asserts that both factors must 
considered, this does not necessarily invalidate an 

http:interpretati.on


model (H + E). On the contrary, it can lead to bold 
that quantitative genetic analysis will finally re­

the person-situation debate (Rowe 1987). 
human intelligence, Fancher (1985) 

"Everyone now recognizes that heredity and 
never work in isolation, but only in 

with each other. From the moment of birth 
each child's real or presumed 'nature' helps 
its nurture" (p. 231), as when a "bright" child 

special advantages. He hopes scientists will 
"an approximate appreciation of the relative 
of the two factors." Evidently, Fancher uses 

nt.",.",(,tjl1,n" in the sense of the covariance of H and E, 
compatible with additivity. 

tul\.lU"V' concept of interaction is the genetically deter­
"norm of reaction" (Platt & Sanislow 1988), in 

the kind and degree of response of a developing 
to a particular environment is itself assumed to 

)e:,::he:reclitllrv. This notion, advocated strongly by 
II,;UJ[II<tlllU1U:o.,;H (1949), is generally not compatible with 

of effects of Hand E in a factorial experi­
Le1Norltin 1974). However, Schmalhausen defi­
v£>.v,~... ~~.rl the causal contributions of Hand E: "In 

l(\n,I'Y),>.,t ofany individual, environmental factors 
as agents releasing form building processes and 

conditions necessary for their realization" 

Oyama (1985) has so well documented, many con­
advocates of interactionism assign a one-sided 

the genotype as the source of information giving 
living things. Her own use of interactionism is 

different. [See also Johnston: "Develop­
'-'''''Ina.:.a",vu and the ontogeny ofbirdsong" BBS 11 

The form of a developing organism is seen as a 
"ofthe interactions among the parts of the system, 
the informational function of any developmental 

is dependent on the rest of the system" 
1988, p. 99). If there is no developmental infor­

inherent in a component of a living thing apart 
multifarious relations with other componenets, it 

sense to assign a cert:lin fraction of a phe­
to one contributing cause. However, for Oyama 

: "Interactionism does not dictate any partic­
" of a study, and it does not require that 

interaction be observed in every experiment. 
views of developmental interaction (e.g., 

s) are compatible with the additivity ofH and E, 
others (Schmalhausen's) assume nonadditivity, 

>aI1l.otller ( Oyama's) makes no consisten t prediction 
re'Sults. Finding a statistical interaction be­
E would place heritability analysis in peril 

not by itself allow us to draw finer distinctions 
the nonn of reaction and Oyama's 

:rlOnis.m 

alternative models 

.of the current literature indicates that the 
mlry(~oe'1h(iellt and the general idea ofpartitioning 

very widely accepted in behavioral science. 
small number of scholars may be aware of the 
lOUIl1(1ati~Jns of this approach, but a large major­

readers is not. One objective of this 
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target article, therefore, is to explain clearly why and how 
the presence of statistical interaction should be assessed. 
To understand this problem better, let us contrast two 
alternative models. The scientific method requires that, 
to demonstrate that one hypothesis is true, reasonable 
alternative hypotheses must be shown to be false. 

Modell: Y = H + E 

Model II: Y = H·E 


. According to the second model, heredity and environ­
ment are multiplicative rather than additive. This means 
that an individual with a heredity more favorable for or 
vulnerable to developing some characteristic will change 
more in response to a particular change in environment 
than will one with a lower value of H .. For example, the 
induction of neural tube defects by various doses of 
insulin given to pregnant mice occurs with a steeperdose­
response curve in fetuses carrying the genes rib fusion 
(Rf) or crooked (Cd) than in their littermates (Cole & 
Trasler 1980). Many other reasonable models of H x E 
interaction could be postulated (e.g., Cavalli-Sforza & 
Feldman 1973), but this one is the simplest and reveals 
the fundamental difficulty with heritability analysis. A 
multiplicative model also proVides good expression of a 
deeper meaning of in teraction, as with the formula for the 
area of a triangle, where it makes no sense to assign 
greater responsibility for the area to the length ofthebase 
than to the height or vice-versa. 

Let us use these models to predict the outcomes of 
some simple experiments we could do in a laboratory. Let 
Hj represent the effect of the heredity of a particular 
strain of animal and let Ek represent the effect of the 
environment in which it is raised. Of course, genes 
themselves are sequences of nucleotide bases in DNA 
molecules and as such are categorical variables, whereas 
Hj is taken to be a continuous variable on an interval 
scale. For purposes of explication here, the usual pro­
cedure of quantitative genetics (Plomin et al. 1980) is 
used, which maps genotypes at rp.any loci onto a single 
scale of measure. The value Yijk is a measure of an in­
dividual i with heredity j reareo in environment k, and 
Mjk is the mean score of a large number of such or­
ganisms. 

For our first experiment, let us raise equal numbers of 
mice of strain 1 in two different environments, which is 
the proper method for assessing the plasticity or modi­
fiability of a characteristic. The design has only two 
groups. , 

EI E2 

HI IMll ! M12 ! 

It seems intuitively obvious that any difference in group 
means, aM = Mu - MIl!' must be attributable solely to 
the difference in environment, because all subjects have 
the same heredity. This may be reasonable logically, but 
it is mathematically true in general only if Model I is 
correct (or if the functions for the two strains are parallel 
across the range ofEk). Now, compare predictions of the 
two models. 

Model I: AM "" (HI + El ) (HI + E2) 


= (HI - HI) + (E1 - E2) = AE 
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According to Model I, the group mean differepce does 
not depend on which strain we choose for the 
experiment. 

Model II: ,lM = HI E} - HI E2 = HI(EI - E2) = Hi AE 

According to Model II, the group difference depends 
jointly on the magnitude of the environmental difference 
(AE) and the strain's heredity. The larger the magnitude 
of HI' the greater will be the group difference, which is a 
clear case of interaction. 

Next, let us compare two strains raised in the same 
laboratory environment, which allows a crude measure of 
heritability (Hegmann & Possidente 1981). 

Hi, Hz 

El IM;l !MZl I 

Compare the predictions of the two models: 

Model I: ,lM = (HI + EI) - (Hz + E}) 
= (HI - Hz) + (E l - E l) = AH 

Model II: AM ::;; HIEI - HzEl = El(Hl - Hzl = EIAH 

Again intuition tells us that AM must reflect only AH, but 
according to the multiplicative model the manifestation of 
a particular strain difference in heredity depends on the 
environment in which the animals are raised. Under 
Model II, thtl"proportion of total variance attributable to 
the strain difference is no longer a valid indication of the 
magnitude of the AH effect or of "heritability" in the 
usual sense. 

Although the two models make very different numer­
ical predictions for both experiments, there is no practical 
way to test them because there is no way to measure the 
H or E component directly. Lacking this, both models 
predict that the group difference will not be zero, and 
Virtually any outcome is consistent with either model. 
Hence, an experiment must be designed so that the two 
models predict distinctly different testable outcomes. 
The solution is a two-way factorial experiment. in which 
at least two 
environments. 

strains are reared in at least two 

HI Hz 

El Mll M21 

E2 MI2 M22 

We can ask whether the difference in strain means in El 
is the same as in E2. 

Model I: AM in El = (HI + E I) - (Hz + E l) = HI H2 = AH 
,lM in E2 :: (HI + E2) - {Hz + Ezl = HI - H2 = AH 

Therefore, 

Model II: AM in EI = HIE1 - H2El = ElAH 
. AM in E2 = HlEz H2E2 = E2AH 

Therefore, 

,lHAE 

Model I predicts that the strain difference will be the 
same in both environments, whereas Model II predicts 
they will be different. The usual way to evaluate these 
alternatives is two-way analysis of variance (ANOVA), in 
particular the interaction term. The additive model re­
quires that there be no significant interaction between 
strain and environment, whereas Model II and a host of 
other models expect Significant interaction. This is essen­
tially the same test proposed by Plomin et al. (1977) for 
use in human adoption studies. They noted that the test 
proposed by Jinks and Fulker (1970) using monozygotic 
twins "may confound some purely environmental effects 
with genotype-environment interaction" (p. 314). Fur­
thermore, Vetta (1981) has pointed out a serious algebraic 
error in the Jinks and Fulker (1970) paper which renders 
their test of interaction meaningless. 

If there is agreement about this general approach for 
assessing H X E interaction, what are the results ofits use 
in practice? Even among specialists in behavioral genet­
ics there is still widespread support for Plomin's (1988) 
view that Hand E are additive and that behavioral 
genetics "is only useful" for partitioning variance. Here 
the problem is not a lack of understanding about the 
importance of interaction in theory. Rather, there is a 
divergence of opinion about its occurrence in reality. A 
central issue in this regard is the sensitivity of the test of 
additivity to the presence of real nonadditivity in the 
data. . 

Interaction has been evaluated in studies ofhuman IQ 
and usually none is seen (Plomin et al. 1977; Plomin & 
DeFries 1983; Plomin 1986). Generalizations have then 
been made that heredity and environment are truly 
additive, and sophisticated path models have been de­
rived to partition variance and covariance under the 
assumption that interaction is negligible (e. g., Heathet 
al. 1985; Henderson 1982; Phillips et al. 1987; Plomin et 
al. 1985). On the other hand, an immense collection of 
well-controlled laboratory studies of animals has pro­
vided abundant evidence of significant and illuminating 
interactions between heredity and environment (Carlier 
& Nosten 1987; Cole & Trasler 1980; Erlenmeyer-Kim­
ling 1972; Goodall & Guastavino 1986; Kinsley & Svare 
1987). At the 1987 Behavior Genetics Association meet­
ing in Minneapolis, the concurrent sessions on human 
and animal studies were almost like two separate worlds 
in terms of attitudes towards interaction. Many human 
behavior geneticists dismissed interaction and cited 
heritability estimates with great confidence, while most 
of those studying mice, rats, and fruit flies documented 
one case of interaction after another and expressed skep~ 
ticism about heritability coefficients. . 

How can it be that investigators draw such different 
conclusions about heredity-environment interaction? It 
is argued in this target article that the commonplace tests 
of interaction using ANOVA (analysis of variance) are 
relatively insensitive or have relatively low power to 
detect nonadditivity. The usual practice is to hypothesize 
zero interaction and, if no significant interaction term is 
found, to conclude that the factors are truly additive, 
which is tantamount to accepting a null hypothesis of 
additivity as true. In research with laboratory animals 
where heredity is under experimental control and 
numbers qf subjects with the same genotype can . 



to rearing in distinctly different environments, 
)stamtI;al interactions are often detected, whereas they 

pass unseen in an adoption study because of low 
of the statistical test. The history of this problem 

that serious errors of interpretation can occur if 
A is applied uncritically. 

has been termed an "unpleasantness" about the 
ofvariance ofa factorial design (Traxler 1976) was 

pointed out by Neyman (1935) in response to a 
~..""t",tinn on the topic by Yates (1935) at a meeting of 

Statistical Society in England. Yates touted the 
design as a method for detecting interactions, yet 

that "if there is no evidence of interac­
. . the two factors . . . may be regarded as ad­
"~(po 193). Neyman responded with a hypothetical 

111""'''''' example in which applying certain fertilizers a, 
to a plot separately reduced yields but in several 

increased yields. He then used Monte 
simulation to generate 30 random sets of data from 

mc)tbetltcalpopulation, obtaining 27 main effects ofa 
at the 0.01 level but nine instances when the a 

effect was significant while neither the a x b nor a X 
rit"'r!l(,ht'm achieved significance at even the 0.05 level. 

that when interactions "do exist and are 
.m'>u,I".,t malicious the method may give unsatisfactory 

(p. 238), and he concluded that "the cause of the 
lies in interactions which are very large and yet, 

to insufficient replication, are not likely to be found 
(p. 241). 

(1938) used the noncentral F distribution to 
precisely the power of the one-way ANOVA. 

·+I-"-~-~-s (1952) influential treatise explained how to 
power for the one-way design and suggested 

.do it for interaction terms involving one degree of 
For other situations, he assured the reader: "It 

matter to obtain the sensitivity of any experi­
225). Kempthorne noted that the results of a 

design may be "difficult to interpret" when 
are appreciable with respect to main effects 
the tests of additivity "may have rather low 

detecting non-additivity" (p. 258). Scheffe 
gave examples ofpower for the one-way design 

that "calculations for other experimental 
are similar" (p. 62). He further advised that if 

of fadors is to be accepted on the basis of a 
test of interaction, "it is wise to try to 

question whether this test has reasonable 
(p. 94). Thus, by 1960 the importance of the 
of interaction for ANOVA and the proper ap­
calculating power were generally understood 
. statisticians, although the degree of insen­

to interaction was not widely known. 
ofCohen (1977) made power calculations for 
more readily accessible to the less mathe­

sophisticated in the behavioral and brain sci­
little use was made of this feature of the 

n.~"1!'·,.Tin<Y the situation in 1976, Traxler observed 
experimenters interested in syn­

interactive effects seem to lack awareness 
'~'JL""'U of low power. Kraemer and Thiemann 
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(1987) remarked recently that "those who are able to do 
power calculations readily are generally those who least 
know the fields of application, and those who best know 
the fields ofapplication are least able to do power calcula­
tions" (p. 99), Their own work will help to overcome this 
problem, except with regard to interactions in ANOV A, 
which they did not discuss. 

Today the problem of the power to detect interaction, 
which is certainly relevant for any research involving 
factorial design imd ANOVA, is not generally understood 
among the practitioners or the. consumers of behavior 
genetic research. From time to time there has been 
mention of the rather low power of tests of heredity­
environment interaction (Eaves et aL 1977; Freeman 
1973), but this has remained obscure in the pages of 
specialty journals. The present target article tries to 
explain this matter in a way that will make it comprehen­
sible for anyone familiar with basic algebra and the 
ANOV A method. 

6. An instructive example: Gravitation 

A great danger in using AN OVA may occur when the true 
state of nature is markedly nonadditive but the statistical 
test is oblivious to this and misrepresents reality as 
additive. What if we apply factorial design and ANOVA to 
a situation known to be governed by a physical law? For 
example, according to Newton's law of universal gravita­
tion, the force (F) of attraction between two objects is 
proportional to the product of their masses (ml and m2) 
divided by the square of the distance (d) between their 
centers of mass. The G value in the equation is the 
gravitational constant. 

F = Gm1m2 

d2 

What would happen if a zealous advocate ofheritability 
analysis were transported to a physics laboratory and 
asked to determine the nature of'gravitation empirically? 
He might construct a simple apparatus as in Figllt'''! 1, 
where a 100 kg iron ball is affixed to a bench and another 
iron ball is suspended by a fine wire at a distance (d') from 
the surface of the first ball. The displacement of the 
second ball by the first yields a measure of force. If our 
experimenter runs a study with four levels of mass (m2) 
combined factorially with four distances (d') between the 
balls, as in Table 1, the results for the ANOVA will be as 
shown in Table 2. The rat.ge of mass is limited by his 
ability to move the wejghtsand the distance is limited by 
the size of the room. One presumes he makes small 
measurement errors on four trials under each condition of 
the study, resulting in a small within-group variance, so 
that the actual means of four separate measures in each 
condition deviate somewhat from the theoretical values 
in Table 1. 

The experimenter's conclusions from the ANOVA 
would be that both mass and distance are important for 
the force, although the internal factor (mass) is rather 
more important and accounts for more variance than the 
external factor (distance), and that mass and distance are 
additive because the interaction term is not even close to 
significance. He might even proclaim a simplified law of 
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Figure 1. Apparatus to measure the force of gravitational 
attraction (F) between a large iron ball (m l ) and a suspended iron 
ball (m2) whose surfaces and centers of gravity are d' and d cm 
apart, respectively. 

gravitation, F = IJ. + m + d. No doubt the interaction 
would have been significant, had a wider range of mass 
and distance been observed with more replications of the 
experiment. Indeed, a really large sample analyzed with 
the more sophisticated techniques of multiple regression 
and factor analysis can lead to models of motion far more 
complicated than anything ever imagined by Newton (1. 
Nabi, cited in Levins & Lewontin 1985). 

7. Insensitivity to H x E interaction 

Insensitivity to nonadditivity is not specific to the gravita­
tion example. It is inherent in the typical use of the 
analysis ofvariance procedure, because ANOVA regards 
interaction as whatever is left over after the main effects of 
each factor averaged over all levels of the other factor(s) 

Table 1. Expected force of attraction (dynes) 

Distance (d') 

Mass (m2) 100 125 150 175 cm 

25 
50 
75 

100 Kg 

.0109 

.0210 

.0307 

.0401 

. 0076 

.0146 

.0215 

.0281 

.0055 . 

.0108 

.0159 

.0208 

.0042 

.0083 

.0122 

.0160 
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Table 2. Two-way ANOVA for data in Table 1 

Source SS df MS F est (1)2 

Mass 0.00355 3 0.00118 12.97** 0.28 
Distance 0.00246 3 0.00082 8.98** 0.19 
Mass x Distance 0.00120 9 0.00013 1,46* 
Error 0.00438 48 0.00009 

*p> 0.10 
**p < 0.0005 

have been taken into account (Fisher & Mackenzie 1923). 
To know just how insensitive it may be, one must calcu­
late statistical power. 

The power of a statistical test is the probability of 
rejecting a false null hypothesis. A particular hypothesis, 
such as additivity of heredity and environment, may fail 
to be rejected on the basis of ANOVA for one of two 
reasons: (a) It may be true. (b) It may be false, but the test 
may have low power. The degree of power of the test of 
one hypothesis can be assessed only with reference to a 
specific alternative hypothesis. Additivity must be 
judged with regard to specific kinds of nonadditivity. 

If the additive model ofbehavior genetics (Y = H + E) 
predicts no significant H X E interaction, what is the 
power of a test of this hypothesis against the simple 
multiplicative model (Y = H·E)? This can be answered by 
supposing that the true relation is multiplicative and then 
determining what the results ofan experiment would be. 
Suppose the score of an individual is Y H·E + E, where 
E is the deviation of that individual from the mean of all 
those with the same heredity reared in the same environ­
ment. Let the values of E be normally distributed with a 
mean of zero and variance 0-2. For simplicity, suppose the 
experiment is done with J strains reared in K different 
environments, and that the levels ofH are equally spaced 
at h units apart and levels ofE are e units apart. The score 
for individual i from strain j in environment k is taken to 
be 

Yijk (jh)(ke) + Ei , 

and the expected value of all members of that group is 

Mjk = (jk)(he). 

From this relation we can easily determine the group 
means, as shown below. 

,STRAIN (j) 

1 2 3 J Mk 
g 

he 2he 

2he 4he 

3he 6he 

Khe 2Khe 

3he 

6he 

9he 

3Khe 

Jhe 

2Jhe 

3Jhe 

JKhe 

(J + 1)he/2Eo-< 1 
Z 
J:::; 2(J + 1)he/22:::; 
Z 3(J + 1)he/230 
>=C:->­
Z KG + 1)he/2J:::; K 

These expected means are all we need to calculate 
power Of the tests of main effects and interaction. Cohen 
(1977) estimates power in terms of the effect size para­
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which yields (see Note 2)
(f) which is homologous to the effect size measure 
a t test on two independent groups: 

d .......:::._--= > for two groups; 
CI' 

f == _CI'_M > for J groups. 
CI' 

deviation 0' is a measure of variation within a 
whereas O'M is the standard deviation between 

group means. Effect size compares differences .be­
groupS to variation within groups. The d coefficIent 

the number of standard deviations by which two 
group means differ. Cohen (1977) considers d values 

..2, 0.5 and 0.8 to represent small, medium, and large 
sizes, respectively, in psychological research. The f 

\,V'OUH,''''''' of effect size compares the standard deviation 
h£;,ki,,'''l"\ several true group means to the standard devia­

a group. 1 Cohen (1977) considers f values of 
0.25, and 0.4 to be small, medium, and large effect 

respectively, in analysis of variance with several 
.,,"L'-'"'''''' Effect sizes tend to be smaller when there are 

groups because some of the groups are likely to 
intermediate values. 

the standard deviation of row 

M is the grand mean of all groups and Mk is the 
for environment k. In the case ofa two-way factorial 

. . where Jstrains are each reared in K different 
.UU'Ull"::i1'll:>, the mean for environment k, Mk, is the 

ilcross the J strains. It follows that:2 

K, a square factorial design, 

for interaction, 0'1' compares each group 
to the value expected from the sum of the 
That is, interaction in a two-way ANOVA is 

as the "leftovers" after additive effects have 
into account. For strain j reared in environ­
mean value expected from the two separate 
combined additively is 

+(M
j 

- M) + (Mk M) Mj + Mk - M, 

When J::= K: 

of the true group mean from this is 

- (M
J 
+ Mk - M) Mjk Mj - Mk + M. (fH) 

·J·K 

(X 

sample sizes. 

effect 
size 

0.1 

Main 

0.25 
0.4 
0.5 

1)(K 1) 

_U+ 1m - l)he 
Cl'I - 12 

Now, for the purpose of calculating power, the princi­
pal concern is with power of tests of main effects relative 
to power of the test of interaction, which may be deter­
mined using the ratio fB/f!, For the multiplicative model 
with equal numbers of strains (J) and environments (K): 

f If = Cl'H/CI' = /3(j+l)­
H I Cl'r/Cl' \j -a 1) 

Thus, to compute power we can first specify fH and then 
determine fI from the above ratio. This is done in Table 3 
for small, medium, large, and very large values offwhen 
there are 10 subjects per group and (X = 0.05 (see Note 3). 

Clearly, the test of H x Einteraction when a multi­
plicative model obtains has very low power compared to 
the tests of main effects, which tells us that with n 10 
the ANOVA will usually point to additivity ofH and E. As 
the number of strains and environments is made larger, 
the power of the test of interaction becomes greater, but 
even with 25 groups and 250 subjects it reaches only a 
modest 57%; Ifthe Bonferroni correction is applied to the 

level because several tests are being done simul­
taneously, the power of the tests of main effects and 
interaction will both decline but the problem of the 
relatively low power of the test of interaction will remain 
and could even be magnified for certain effect sizes and 

The results for a 2 x 2 design may seem a little 
perplexing at first glance. After all, there will be one 
degree offreedom for the numerator and effective sample 
size of 19 (see Note 3) for the tests of main effects and 
interaction alike. Shouldn't the power functions for both 
main effects and interaction therefore be identical? Defi­
nitely not. The shape of the power function in ANOVA is 
indeed determined by the degrees of freedom, but it is 
also determined by the non centrality parameter (Tang 
1938), which is in turn determined by the effect size f (see 
Note 1). The principal problem of power in two-way 
ANOVA is not simply a matter of degrees of freedom. 

Table 3. Power of test's of main effects of H (and E) 

and H x E interaction using 0: = 0.05 and n == 10 


subjects per group, when Y = H·E. J = number of strains 

and ent:ironments. 


Test of 
interactionTest of strain effect 

2 3 4 5 J= 2 3 4 5
J= 

5 6 6 69 11 14 19 
1488 7 9 1231 50 71 

67 92 99 >99 12 18 26 36 

87 99 >99 >99 16 27 41 57 
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Rather, it follows from the way the variance among all JK a. EXPECTED VALUES FOR FIVE STRAINS 

groups is partitioned among main effects and interaction, 
and this partition depends on the specific model of nonad­
ditivity chosen as an alternative to the null hypothesis of 
additivity. There is no such thing as a power function 
existing apart from specific numerical alternatives to the 
null. 

8. Reasonable alternatives to additivity 

The simple multiplicative model is not the only reason­
able alternative to additivity when different strains are 
involved. If the response is linear for each strain, there is 
no reason why the Y intercept should always be zero, as 
with Y = H·E. Consequently, several other models 
shown in Figure 2a were. assessed for power of main 
effects and interaction. Certain of these were similar to 
models proposed for interacting genetic and cultural 
inheritance (Cavalli-Sforza & Feldman 1973) and for 
mental disorders (Kendler & Eaves 1986). Because the 
"norm of reaction" is often not linear when a wide range of 
environments is evaluated (Henry 1986), two nonlinear 
models were also considered. Although it is sometimes 
proposed that the norm of reaction is genetically deter­
mined (e.g., Hull 1945; Schmalhausen 1949; Via & Lande 
1985), this is not realistic because the response to a new 
environment also depends on prior rearing conditions 
(DenenbergJ977). Nevertheless, for clarity, each model 
assumes that any parameters (a, b) are specified by 
heredity and that parameter values are equally spaced for 
the five strains. Rather than derive the ratio of effect sizes 
(fH/f}) using algebra, a computer program was written to 
generate expected means for a five strain by five environ­
ment (X = value of E) design and then to calculate IJ'Il> 

IJ'E' and IJ'}. Table 4 presents power estimates for each 
model when n = 10 and a = 0.05. The largest main effect, 
be it for H or E, is taken to have a large effect size, f = 0.4. 

In no case does the power of the test of interaction 
achieve an acceptable level of 80% or more when one or 
both main effects are virtually certain to be detected with 
ANOVA. It comes close to 80% for two Y = a + bX 
models, but when main effect size is 0.3 for these, the 
power of the test of main effects is 98% but the power of 
the test of H X E interaction is only 46%. The power of 
the test of interaction is relatively low even when the 
directions of effects of environment are opposite for 
several strains (Y = a + bX, Case 1, and Y = a X e - bX), or 
when the rank orders ofthe strains change across environ­
ments (Y = a + bX, Case 2). 

€l~l~~ t~
Z12345 12345 12345 

:5 

'r~ 
'r,a~ 

~~ 
Y = aXs"bX 

t~
o 2 3 1 2 3 4 

ENVIRONMENT (X) 
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z 
o 
j::: 
II: 
o 

1== :t/:~~"" 
1 2 3 4 5 1 2 3 4 5 '--7----;;-----:c-----'--' 

c..o .4 
II: Y =a + bX 
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2~ 
r'B1l.::- ly,Bxe'b~ 

2~1~ 
01234 1~3 

ENVIRONMENT (X) 

Figure 2. (a) Expected values ofa measure Y under six models 
for five strains of mice reared in five different environments 
where levels ofenvironment (X) are 1.0 units apart. Parameters 
of each model are assumed to be determined by each strain's 
heredity. (b) Profiles of simple main effects of heredity at each 
level of environment for the six models in Figure 2a, expressed 
as a proportion of the combined sum of squares for heredity and 
heredity by environment interaction. 

The inescapable conclusion is that the usual application 
of two-way ANOVA is relatively insensitive to the pres­
ence of real nonadditivity ofthe kind considered plausible 
by many investigators. There are basically two views 
about this reality. If the principal objective is to partition 
variance and calculate heritability coefficients, this may 
be seen as evidence that analysis of variance is "robust" 
with respect to the assumption of additivity. On the other 
hand, if the goal is to understand the nature of develop­
ment, the way things work, there will tend to be skep­
ticism about a statistical procedure which takes data that, 
to the eduQ1il.ted eye, show obvious differences in slopes 
and shapes of the norm of reaction for different strains, 
and apparently crunches them into a set of parallel 
straight lines. From the latter perspective, it will be 

Table 4. Effect sizes and power for six models using J = K = 5, n = 10 and 0: = 0.05 

Effect sizes Power of tests of 

Model fH fE fI H E HxE 

Y=H+E 0.40 0.40 0.00 >99 >99 
Y = H·E 0.40 0.40 0.19 >99 >99 36 
Y = a + bX, Case 1 0.40 0.00 0.28 >99 78 
Y = a + bX, Case 2 0.00 0.40 0.28 >99 78 
Y = a(1 - e-bX) 0.26 0.40 0.14 90 >99 19 
Y = aXe- bX 0.40 0.34 0.21 >99 >99 47 
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to understand how any inquiry could possibly 
from a test with inherently low power which often 

deceptively simple results. 
noteworthy that techniques which estimate 

by assuming no H X E interaction can yield 
biased estimates when certain kinds of interac­
indeed present in the data. After a detailed 

study of path analysis, Lathrope et al. 
"VU""Uy,~~ that among "the principal effects of 

are a mean overestimate of the genetic 
(p. 618). One hopes that this finding will not 

investigators from seeking better ways to 
H X E interaction and its consequences. 

is so insensitive to interaction, then alternative 
are required. Taking the relationships in 

2a, which usually yield nonsignificant H x E 
. terms, let us construct for each one a profile of 
simple main effects of heredity or strain dif­

at" each level of environment (Figure 2b). For 
these examples there are five levels of E and 

simple main effects of heredity. The total ofthe 
(SS) for these five must be equal to the SS 

effect of heredity plus the SS for H x E 
(Winer 1971). Thus, we can compute, at each 
the proportion of (SSH + SSHE) which is 

for by that particular simple main effect. Ifthe 
Oet:WE~en H and E is truly additive, then that 

should be the same across all levels of E 
2b). On the other hand, the profile ofsimple main 

is markedly uneven for the other cases in Figure 
obvious departure of this profile from a horizontal 

alert us to the possible presence of nonad­
the relation between Hand E, and thereby 

us against accepting a null hypothesis as true 
because we cannot conclusively prove it false. The 
intprl"IYpt the pattern of results by careful in spec­
V"'JI!U""""~'U by Bolles (1988), whose Rule 5 is: 


plot up the data to see what the numbers 

that you collect in an experiment will 


ifyou have found something, even while statis­

are fibbing, lying, and deceiving you" (p. 83). 


of this approach is sometimes recognized 

ITIn."""'"'' scientists look at graphs from a two-factor 


perceive what appears to be interaction, and 

]O,~pr\"r'M" t tests to confirm this impression. But 


truly prove the existence of nonad­

example suggests caution. The most widely 


of heredity-environment interaction in psy­

the Cooper and Zuhek (1958) study of the 


" and "dull" rat strains (bred selectively for 

.' .......• Hebh-Williams mazes) reared in three 

• environments (restricted, normal, and en­

Platt & Sanislow [1988] point out, the data 
" "normal" environment actually came from a 

.. expexi~ent pelformed earlier.) The authors 
pairs ofthe six groups, totalling only 65 

group, using separate t tests, and it is 
[}I'>IlP",,,rt that this demonstrated H x E interac­

~~.,,,~.'"'vv 1988). However, an ANOVA on the 
raw data kindly provided by R. M. 

slgmtllcalltmain effects ofstrain (F = 4.98, 
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p < 0.05) and environment (F == 14.33, P < 0.01) but no 
significant interaction (F = 3.07, P > 0.05). The F ratio 
for H X E interaction is slightly below the critical value of 
3.15. Properly speaking, the data provide suggestive 
evidence but not conclusive proof of H X E interaction. 
The mere observation that two strains differ signincantly 
at ex = 0.05 in one environment but not in another does 
not necessarily warrant rejecting the hypothesis of ad­
ditivity. After all, one value of t might be just great 
enough to achieve significance while the other t falls a bit 
short of significance. In the Cooper and Zubek (1958) 
data, the strain difference was obviously large in one 
environment and small in the others, which was quite 
sufficient to convince most of us that there was H x E 
interaction. 

10. Sample sizes for detecting interaction 

It would seem that many studies ofheredity and environ­
ment end up in a twilight zone of inconclusive results 
where different people can easily interpret subtle pat­
terns in the data to be hints of this or that, where the 
fading hopes ofsome are kept alive by "almost significant" 
interaction effects or results "tending in the direction of 
significance," while others are relieved that the interac­
tion effect was not quite large enough to rule out 
heritahility calculations. From a statistical standpoint, 
the studies often lack sufficient power to shed much light 
on the nature of H X E interaction. 

Looking closely at the data may help us avoid such 
serious mistakes as accepting a false null hypothesis, but 
the gaze ofan experienced investigator is also fallible and 
can never be a complete substitute for a statistical test. 
Outright rejection of additivity really ought to require a 
significant interaction term in the ANOVA. If we are 
careful to avoid Type I errors when testing for the 
presence of main effects, surely we sh"uld also try to 
avoid them when testing for interactions. Why opt for a 
more complex model if it really isn't necessary? 

Perhaps we would be wise to anticipate these various 
difficulties and address them at' the design phase before 
data are collected. If the effect size for a plausihle kind of 
interaction is substantially less than for the main effects, 
then a larger sample size will.be required to detect the 
interaction than will be needed merely to detect average 
effects of the treatments. If it really matters whether or 
not the phenomena being studied are nonadditive, one 
needs to use larger samples than are customary for finding 
main effects. Proving nonl,ldditivity false requires, at the 
very least, that the pow.er of a test of interaction be 
substantial, 80% or preferahly 90%, and that a proper 
sample size be chosen to guarantee sufficient power. 
Cohen (1977) provides convenient tables of sample sizes 
which yield different degrees of power for various effect 
sizes. A normal approximation that is useful when the 
interaction term has one degree of freedom is proVided hy 
Lachenbruch (1988). As shown above, for a two strain by 
two environment experiment the effect size for interac­
tion under the Y == H' E model will be fr == 0.133 when 
main effect sizes are large (0.40). The required sample 
sizes to detect such an interaction at powers of 80% and 
90% with ex = 0.05 are more than 125 and 167 suhjects per 
group, respectively, according to Cohen's tables. These 
values may appear extremely large, hut the analysis of 
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variance with its definition of interaction as leftovers 
demands large samples. What reason could one possibly 
cite for using an analytical device because of its ability to 
detect nonadditivity, yet choosing a sample size that 
renders it ineffective? The finest optics in the world will 
portray a fuzzy image if the camera is out of focus or 
shaking. 

11. Perils of ad hoc scale transformations 

It is sometimes proposed that interaction in any kind of 
factorial design be addressed by transforming the scale of 
measurement to make the main effects additive. For 
example, Dunn and Clark (1974) recommend the pro­
cedureof Tukey (1957) whereby a computer is used to 
find the values ofthe constants Gand p in the transfOrma­
tion (Y + C)p which minimjz~ the size of the interaction 
term relative to main effects. In biometrical genetics in 
particular, the investigator is advised to search for a 
transformation that will eliminate heredity-environment 
interaction entirely, so that heritability and other param­
eters can then be estimated (Jinks & Broadhurst 1974, p. 
11; Mather & Jinks 1982, p. 64). 

Is this approach legitimate? Perhaps it is, if there is no 
other way to meet the assumptions of equality ofwithin­
group variances, norm,ality, and independence oferrors. 
When a mean-variance correlation occurs for response 
time measures or when many observations in some 
groups occur near the upper or lower limit of the scale, a 
transformatioo may be necessary to permit a valid test of 
significance, and such a transformation may also elimi­
nate a two-way interaction. If the interaction does have a 
rather trivial origin in mean-variance correlation, then 
the transformation may be warranted. Even then, there 
may be pitfalls inherent in the procedure, because pa­
rameter estimates of the logarithm of a variable, for 
example, can produce biased estimates of the un­
transformed measure and can distort the estimates of 
variance components (Heth et aI., 1989; KvaIseth 1985). 

There has been some dispute in the pages of the 
Psychological Bulletin about whether the scale of mea­
surement affects decisions about statistical significance, 
with arguments that it does not (Davison & Sharma 1988; 
Caito 1980) and counterexamples showing that it can 
(Townsend & Ashby 1984), but this particular dispute has 
been focussed on comparisons of two independent 
groups. Concerning the consequences of transformation 
for two-way interaction, there is no doubt that conclu­
sions can be drastically altered. The question is: should 
they be altered? 

The model on which ANOVA is based assumes equal­
ity, normality, and independence ofwithin-group devia­
tions, but it does not assume additivity of effects, al­
though path analysis does (Wright 1921). Transformation 
solely to eliminate interaction is a device to create the 
appearance ofsimplicity in the data, and there is a danger 
that this will be an entirely false appearance. For those 
who wish to learn how development actually works, 
wholesale and ad hoc testing of various transformations 
for the express purpose ofgetting rid ofH X E interaction 
is counterproductive, because the shape of a functional 
relationship between variables provides a valuable clue to 
their causal connections. On the other hand, those whose 
only goal is to parcel out the variance among separate 
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causes can proceed only in the absence of H X E interac~ 
tion and therefore they may be more willing to transform 
the scale ofmeasurement, even ifcausal relations become 
distorted. 

To return to the gravitation example, we can see that 
transformation of scale can radically alter the causal or 
explanatory model. Ifwe apply a logarithmic transforma­
tion to Newton's law, the equation becomes additive. 

[Gmlm]In F = In ~= In G + In ml + In m2 - 2 In d 

Physicists use this approach to,analyze sources of mea­
surement error, but they do so from a perspective very 
different from that of investigators who choose a transfor­
mation without knowledge ofthe form ofa genuine law of 
nature. Ifwe let the log transformed variables in New­
ton's law be the primed (') variables, it reads: F' = G' + 
mI' + m2' - 2 cl/. The interpretation of this equation is 
altogether different from the real law if we forget about 
the transformation and take the terms at face value. Addi­
tivity implies a causal model which separates the contri­
butions of the two masses, whereas the multiplicative 

VS. 

model implies mutual interdependence. Newton 
achieved a profound insight, which had eluded most 
predecessors who regarded the weight of an object as an 
inherent property of that object itself, something that 
existed in isolation from its surroundings. He argued that 
every speck of matter in the universe has mutual attrac­
tion with every other speck. Mutual attraction is ex­
pressed as the product of the masses. The weight of an 
object is the result of its interaction with other objects, It 
makes no sense to say that a person's weight depends 
more on body size than planet of residence. The additive 
model is really no simpler than the multiplicative one, in 
that both have three variables and a constant. The log 
transform alters the relations among the variables; conse­
quently, transforming the scale of measurement may 
conceal the relations among heredity and environment, 
as it might conceal the essence of gravitation. 

Transformation to suppress H x E interaction may 
create further obstacles to applying the knowledge gained 
from ANOV A. Consider the first use ofANOV A for a two­
way factorial design by Fisher and Mackenzie (1923) to 
examine the yield of 12 potato varieties under six condi­
tions ofmanure at the Rothamsted Experimental Station. 
Yields ranged from 26.5Ibs. per row for the Up to Date 
variety with farmyard dung to L 6 lbs. per row for the 
hapless "undunged" Duke ofYork. The effect ofsulfate of 
potash appeared to depend strongly on variety of plant 
and presence of dung, but the interaction term was not 
significant, although main effects were large. Inspecting 
their data, Fisher and Mackenzie observed a nonadditive 
pattern whereby higher yielding plants benefitted more 
from manure; they accordingly wrote that: "A far more 
natural assumption is that the yield should be the product 
oftwo factors, one depending on the variety and the other 
on the manure" (pp. 316-17). Rather than transfurming 
their original observations ofyields, they showed that the 
data "are better fitted by a product formula than by asum 



(p. 320). Modern quantitative behavioral genet­
<h{)wP'ver, would dictate a transformation to achieve 

. Such a procedure may be convenient for the 
but the everyday men of the soil must sell their 
by the pound and purchase manure by the ton. If 

is a variety whose yield increases more than others 
same bulk of fertilizer applied, they would cer­

want to know about this. After all, they cannot pay 
bills in the square root of pounds sterling. To the 

or scientist struggling to understand how things 
develop, real interactions should not be hidden 

hoc scale transformations. 
transformation of scale need not conceal 
If we can discover a transformation that 

eliminates interaction from the ANOVA, this 
about the mathematical structure of 

Y'_''''_____ observations (Lubin 1961). There is no se­
in generating additivity with a logarithm, 

the investigator remembers to calculate and 
anti-log when interpreting the results, rather 

~",","'r.u the additivity. For example, Box and Cox 
a log transform of a measure of strength of 

yarn in a three-way ANOVA to demonstrate that 
among weight of the load, length of yam, 
ofloading are multiplicative because the log 

eliminates the interactions. A problem arises 
original data are transformed and the profound 
. the change of scale on the causal model are 
when presenting the results. IfHand E really 

in a particular situation, a calculated 
is nonsensical and taking the log of the 

'VQ1h{)Tl~ may compound this. 

remedy proposed here for the problem of 
",,,'nr,,,,,,," oftests ofinteraction is the same as the one 

Neyman in 1935: Use larger samples, sup­
a large dose of caution and rigor when 

Are other, possibly more palatable 
? 

(cited by Traxler 1976) also proposed that 
should be affirmed only if the main effects are 
at the 0.01 level; whereas interactions are not 
at the O. 05 level. Using different ex levels could 

or even eliminate the imbalance in the 
tests, although this could become rather 

because the values of ex required to equate 
would depend on the specific alternative 
Contrasted with the additive modeL Fur­

the ex level is set at 0.05 for the interaction 
samples documented in section 10 are 

el1lctllon term in a J X K factorial design pro­
test of all possible kinds ofdeviations from 

and hence may not be very sensitive to 
of nonadditivity. It is possible to test 

pe.cilicallv for linear interactions whereby groups 
levels of one factor have different slopes of 

to levels of the other factor or when the 
U""V.~JH to be multiplicative (Freeman 1973; 

Perkins and Jinks (1973) used a similar 
,v"uuw that large variations among 82 strains of 

in response to 16 fertilizers were almost 
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entirely due to interactions of the linear type. These 
procedures will probably have greater power than the 
global F test, although the amount of gain has not been 
evaluated. However, there is concern that these tests 
may be biased (Roux 1984). Of course, they can provide 
no improvement at all for a 2 X 2 design and are need­
lessly complex for modest experiments having few de­
grees of freedom for the interaction term, which can be 
assessed more readily with orthogonal contrasts (Lachen­
bruch 1988). 

A more radical departure from the standard ANOVA 
procedure is provided by the likelihood ratio test (Marler 
1980), which compares the likelihoods of a particular set 
of data according to two distinct hypotheses, neither of 
which must serve by default as the null hypothesis. This 
approach can be extended to more than two reasonable 
alternatives, as done by Deb~ay et al. (1979). Similarly, 
one could compare additive and various nonadditive 
models ofheredity and environment in a factorial design. 
These calculations require much more effort from the 
investigator and considerable computing time, but they 
should yield greater statistical power than the ANOVA 
approach. Unfortunately, this would also require much 
greater mathematical knowledge on the part of the 
reader. 

13. Heritability and eugenics 

Analysis of variance may be useful in identifying signifi­
cant sources ofindividual differences, but its insensitivity 
to the underlying mathematical structure of functional 
relationships limits its utility to the early phases of inves­
tigation. If variations in both heredity and environment 
are found to contribute to individual differences in behav­
ior, then the next phase of the research ought to look 
more closely at the intricacies of the two processes in the 
developing organism using larger sampl~ and more sen­
sitive analytical methods. Simply to cite a heritability 
coefficient or compare the relative strengths of the main 
effects ofheredity and enviromI1ent in a factorial experi­
ment does not advance our understanding ofthe nature of 
development. 

Unfortunately, estimating heritability seems to be the 
main objective of some investigators. As Kevles (1985) 
and Fancher (1985) have documented, many ofthe found­
ers of human behavioral genetics were committed to a 
program of eugenics. The only practical application of a 
heritability coefficient is to predict the results of a pro­
gram of selective breeding. The rate of change in the 
average value of a characteristic during the first few 
generations under a regime of artificial selection of 
breeders will be directly proportional to the heritability 
(in the narrow sense) of the characteristic in the popula­
tion. If such a goal is eschewed, there is no compelling 
reason to focus attention on "heritability" and ignore 
interaction. 

14. Gene action Is Interactive and dynamic 

Ofcourse, .statistical problems are not the only challenges 
to theories ofadditivity ofheredity and environment, and 
statistical solutions are not likely to settle this dispute. 
Perhaps the greatest weakness in the Y = H + E model is 
the assertion that the effects ofone's heredity on develop-
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ment are entirely separate from those of one's environ­
ment. This claim is contradicted by many discoveries in 
developmental biology. 

There are now go09 reasons to believe that the genes in 
the nucleus do not contain a program for development or 
a blueprint for brain structure (Gerhart 1982; Stent 1981). 
The timing and spatial location of important events in 
development are not directly specified by information 
intrinsic to the genes in the nucleus (Davidson 1987; 
Easter et al. 1985; Oyama 1985). Rather, a gene codes or 
programs for a protein or enzyme, and the consequences 
of this activity at the level ofmacromolecules for even ts at 
the cellular and organismic levels, depend on other parts 
of the cell, other cells in the growing organism, and even 
events outside the organism. Th,e metabolic activities of 
DNA molecules are subject,to control by factors outside 
the nucleus of the cell (Blav. et al. 1985). The actions of 
certain genes can be modified greatly, even sometimes 
switcbed on or off entirely, by changes in temperature 
(Atkinson & Walden 1985; Heikkila et al. 1986), light 
(Klein & Yuwiler 1973), diet (Benkel & Hickey 1987), and 
even tbe maternal environment (Carroll et al. 1986). 
Developmental biology is tuned in to nonadditive pro­
cesses (Pritchard 1986). Direct evidence of biochemical 
gene action in an environmental context supports a dyna­
mic and interactive view. 

The continued use of statistical tests insensitive to 
interaction is distressing, not merely because it fosters a 
false impression that heritability analysis is justified, but 
because valuable information about processes of develop­
ment may be lost. A knowledge of interaction deepens 
our understanding of how living things acquire form and 
motion. According to Lubin (1961): "The most important 
questions that can arise from a statistical finding of in­
teraction are those which are non-statistical. ... For me, 
significant interactions raise two most important ques­
tions: How does this interaction occur? How can I bring it 
under experimental control?" (p. 816). Likewise, for 
Lassalle (1986), H X E interactions should be viewed "as 
powerful tools which can assist us in understanding the 
underlying processes of behaviour" (p. 205), and for 
Bateson (1987) "analyses of statistical interaction should 
be the starting points of attempts to understand how 
developmental processes work and should not be treated 
as ends in themselves" (p. 2). 
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NOTES 
1. Effect size ffor a one-way ANOVA is related to an alter­

native measure of effect size, the proportion of total variance 
attributable to differences among group means, termed 112 by 
Cohen (1977) and 002 by Hays (1988), according to the relation 

f.< 
w2=I+f.< 

For 002 , small, medium, and large effect sizes would be about 
0.01,0.06, and 0.14, respectively. Cohen (1977) gives power in 
terms of f, but several other sources use the noncentrality 
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parameter of the non central F distribution, A, or relatcd mea­
sures a or <1>, with the follOWing relations among them for ] 
groups of n observations each: . 

<1> = fVn , 
8 <1>VJ = fVnJ , 
A = 82 = f2oJ. 

2. Principal steps in the derivation of (fE are 

M 
- 0 + 1)(K + l)he 

i - 4 ' 

M kO + l)he 
k 2 

M - M = 0 + l)he[k _ (K + 1)1 
k 2 2 

2:
K 

(M - M)2 = 0 + 1)2(he)2K~~ + l)(K - 1)
k 

k~l 

For finding (fI' the first step for each group is: 

Mjk-Mj Mk+M=[j O;I)][k_(K;l)]he. 

Across all J. K groups, this yields: 

J K

2: 2: (M. -M.-M +M)2 = JKO+l)O-I)(K+l)(K-l)(he)2 
Jk J' k 144 

j =1 k= 1 

3. The tables in Cohen (1977) and most other sources on 
power of ANOVA apply directly to a one-way design, but our 
interest here is in a two-way factorial design. Cohen (1977) 
addresses this problem by noting that a mean for one level of 
the flrst factor across all levels of the other is not based on only 
n observations; rather, it is based on nK observations. Of 
course, a few degrees offreedom are lost because ofconstraints 
placed on the data in computing between-groups sums of 
squares; hence, the effective sample size (n') for a test of the 
main effect of heredity is 

n' "" dferror + 1 = K(n 1) + 1. 
dfbetween + 1 

When there are 5 strains reared in 5 environments and 
n = 10 subjects per group, effective sample size per strain for 
the test of the main effectis 46. For the test ofinteraction, n' = 
14.2 because 

JK(n - 1)dferror + 1n' 
+ 1 o - 1)(K 1) + 1 + 1.dfHxE 

That is, the power ofthe test of the interaction term is essentially 
the same as the power ofa test ofvariation among 17 groups with 
14.2 observations per group in a one-way design. 

Rather than deriving all values of power by interpolation from 
the tables given by Cohen (1977), the normal approximation to 
the noncentral F distribution (Severo & Zelen 1960) was used. 
This is not the best available approximation (Tiku 1966), but it is 
reasonably good when we are interested in statistical power to 
only two decimal places or the nearest percent, and it is much 
easier to compute. 
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