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ABSTRACT. This paper is motivated by the search for one cardinal utility for decisions 
under risk, welfare evaluations, and other contexts. This cardinal utility should have 
meaning prior to risk, with risk depending on cardinal utility, not the other way around. 
The rank-dependent utility model can reconcile such a view on utility with the position 
that risk attitude consists of more than marginal utility, by providing a separate risk 
component: a 'probabilistic risk attitude' towards probability mixtures of lotteries, 
modeled through a transformation for cumulative probabilities. While this separation of 
risk attitude into two independent components is the characteristic feature of rank- 
dependent utility, it had not yet been axiomatized. Doing that is the purpose of this 
paper. Therefore, ~n the second part, the paper extends Yaari's axiomatization to 
nonlinear utility, and provides separate axiomatizations for increasing/decreasing 
marginal utility and for optimistic/pessimistic probability transformations. This is 
generalized to interpersonal comparability. It is also shown that two elementary and 
often-discussed proper t ies-  quasi-convexity ('aversion') of preferences with respect to 
probability mixtures, and convexity ('pessimism') of the probability transformation - are 
equivalent. 

Keywords: Rank-dependent utility, risk aversion, diminishing marginal utility, strength 
of preference, orderings of tradeoffs. 

1. I N T R O D U C T I O N  

In rank-dependent utility, the largest stream in nonexpected utility, 
risk aversion is separated into two parts: the first part is 'probabilistic' 
risk aversion, i.e., convexity of a (cumulative) probability transforma- 
tion, and the second part is diminishing marginal utility. A complete 
axiomatic separation of these two parts has not hitherto been obtained 
in the literatureo 1 This paper provides such, by employing the 'derived 
ordering of tradeoffs' method as introduced in Wakker (1984, 1989a). 
It describes an easy way to elicit and characterize utility differences, 
entirely independent of probabilistic risk attitudes, and has been 
recently used to modify prospect theory, in Tversky and Kahneman 
(1992) and Wakker and Tversky (1991). (A first impression of the 
method can be obtained from Example 9a below.) Once marginal 
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utility has been isolated, it can be filtered out, and probabilistic risk 
attitudes can also be characterized, independently of marginal utility. 

The paper is organized as follows. Section 2 describes the history of 
utility and the discussion whether utilities, to be used in decisions 
under risk, should model risk attitude, strength of preference, or both 
or none. The section aims to show how rank-dependent utility (RDU) 
can provide a new answer to this classical economic question. Section 3 
presents the basic general results of RDU, with Subsection 3.2 
introducing the derived tradeoffs idea in decisions under risk and 
Subsection 3.4 giving the generalization of Yaari's (1987a) result to 
nonlinear utility. This provides the most general characterization of 
R D U  presently available. 

Section 4 takes up the axiomatic separation of marginal utility and 
probabilistic risk attitudes. Subsection 4.1 shows how to compare, 
under RDU, utility functions of different decisions makers, indepen- 
dently of their probabilistic risk attitudes. This generalizes the work of 
Pratt and Arrow. As a corollary, decreasing (increasing, linear) 
marginal utility is characterized. Subsection 4.2 shows how to com- 
pare, under RDU,  the probability transformations of different decision 
makers, independently of their possibly different marginal utilities. 
The probability transformations are now interpreted as indicators of a 
probabilistic risk attitude. As a corollary, convex probability trans- 
formations are characterized. 

The latter can also be characterized by an attractive alternative 
condition: quasi-convexity with respect to probability mixtures; this 
clearly reflects aversion to probability mixtures, i.e., probabilistic risk 
aversion. This characterization is presented in Subsection 4.3. While 
elementarily stated, its proof is complicated. To be precise, deriving 
quasi-convexity of preferences from convexity of the probability 
transformation is elementary; this was already observed by Chew 
(1989). The reversed implication, however, is not proved elementarily. 
I know from experience that specialists in the field, when first seeing 
this basic result, think it must have been known before, so let me 
emphasize that the result is new. Neither its restriction to linear utility 
(and/or a continuous probability transformation), nor any other close 
result, is available in Yaari (1987a,b) or any other paper. 

Section 5 concludes and gathers results in the main Theorem 25. 
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This may be the most convenient presentation of all results of the 
paper except Theorems 14 and 20. Above Theorem 25, reference is 
given to the definitions that are used. Thus the theorem is directly 
accessible. Appendix 1 gives proofs, Appendix 2 the generalization to 
general, possibly nonquantified, outcome sets. 

2. A DISCUSSION OF UTILITY AND RISK ATTITUDE 

In traditional expected utility (EU), risk attitudes are entirely modeled 
through the utility function. Objection has often been raised: Utility 
should describe an intrinsic appreciation of money, prior to prob- 
abilities or risk, and risk attitudes should consist of more than just 
appreciation of money. This is the point of view defended in this 
section. 

Below, some of the history is described concerning the interpreta- 
tion of utility. Next I shall argue for an intrinsic meaning of utility, 
which is to be relevant for risky as well as riskless applications. Then 
two approaches-  the value-utility-difference approach and the trans- 
forming-single-outcome-probabilities approach - are described that are 
in line with this interpretation of utility; they incorporate components 
of risk attitudes separate from riskless utility. Disadvantages are 
mentioned. RDU is a recent and promising alternative approach to 
serve the same purpose. Finally, the section returns to the historical 
discussion of utility and argues for an interpretation of von Neumann 
and Morgenstern's (1944) writing on utility that differs somewhat from 
the prevailing interpretation. 

In the early writings on EU, the difference between risky and riskless 
utility was not yet an issue. Bernoulli (1738) and Cramer (1728), the 
origins of EU, implicitly ascribed an intrinsic meaning to utility. See 
also Jevons (1911) and Marshall (1948, pp. 398-400). Ramsey (1931) 
explicitly gave a riskless interpretation to risky utility 2. 

The ordinalists at the beginning of this century, however, questioned 
the meaningfulness of (riskless) cardinal utility. While their arguments 
were not primarily directed towards risky utilities, they did deprive the 
riskless interpretation of risky utility of its basis. The remarkable utility 
result of yon Neumann and Morgenstern (1944) did not change this 
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state of affairs. Arrow (1951, p. 425) wrote, about risky utility: 
" . . .  the utilities assigned are not in any sense to be interpreted as 
some intrinsic amount of good in the o u t c o m e . . . " ,  and, about 
cardinal utility under certainty: "which is a meaningless concept 
anyway". Savage (1954, beginning of Section 5.6) wrote: " . . .  the now 
almost obsolete economic notion of utility in riskless situations, a 
notion still sometimes confused with the one under discussion. ''3 Luce 
and Raiffa (1957, p. 32) presented the viewpoint that a risky utility 
represents strength of preference as 'Fallacy 3'. The above citations 
express the representational viewpoint, which holds that utility, elicited 
from decisions under risk, has been proved to be applicable there, and 
only there. Applications to other contexts, and interpretations, are 
based on mere speculation; they are not based on observable pref- 
erences. This has been the dominant viewpoint since the fifties. 

The idea of cardinal riskless utility has been kept alive, in spite of 
the ordinalists' arguments. Cardinal riskless utility is almost indispens- 
able in many applications, such as welfare evaluations (see Fisher, 
1927), the scheduling of income tax progression, dynamic decision 
problems, etc. For the context of risk, some references that explicitly 
identify risky and riskless utility are Harsanyi (1955), yon Winterfeldt 
and Edwards (1986, p. 211 ft.), and Lopes (1987). Allais (1953) may 
have been the first to explicitly argue that a risk-utility should have 
meaning independent of risk. Indeed, the persistence of the 'mistaken 
idea' that concave risky utility does reflect decreasing marginal utility 
suggests that the idea is not entirely void of sense after all. 

Under the strict representational viewpoint, risky utilities are not of 
great use. They are then no more than a convenient tool for modeling 
risk behavior, and for deriving risky decisions from other, possibly 
simpler, risky decisions. It is illustrative to make an, admittedly 
speculative, comparison with the role of mass in physics. Only when it 
was discovered that different ways of measurement were possible in 
different contexts, always leading to the same notion of mass, could 
mass become central in the physical sciences. Similarly for utility to 
become central in the social sciences, it must be one notion that can be 
measured in different ways in different contexts. Achieving that is 
worth a high price. It is hoped that the freedom that science has in 
modeling reality will be used to the maximum to obtain one unified 
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notion of utility. This can again be compared to the physical sciences. 
Potential  energy was introduced there for no other  reason than to 
preserve the law of conservation of energy4; this law is worth the price 
of the artificial concept of potential energy. 

A similar opinion on utility is found in Birnbaum and Sutton's 
(1992) paper  on configural weight theory,  a predecessor of RDU.  The 
following is a citation from their introduction: 

The principle of scale convergence states that when considering rival theories proposed 
to describe different empirical phenomena involving the same theoretical constructs, 
preference should be given to coherent theoretical systems (in which the same 
measurement scales can be used to account for a variety of empirical phenomena) as 
opposed to theoretical systems that require different measurements for each new 
situation,.. Configural weighting theory has the hope of resolving the inconsistent scales 
for utility and value measurement by separating the scaling of stimuli from the scaling of 
uncertainty and risk. 

The section up till now has argued for an intrinsic meaning of utility, 
prior to risk, and applicable to many contexts. Then,  if risk attitude 
consists of more than marginal utility, a theory must be developed that 
incorporates more components  of risk attitude. 

One such theory became popular  in the 'seventies and eighties'. The 
idea is to model riskless utility by a cardinal 'value function', and to 
use an increasing nonlinear transform to carry riskless value into risky 
utility. See for instance Krelte (1968), Bernard (1974), Dyer  and Sarin 
(1982), Barron,  yon Winterfeldt,  and Fischer (1984), Farquhar and 
Keller (1989, Section 2.3). This approach agrees with the views 
defended in this section on the existence of cardinal utility ( 'value')  
prior to risk, and also allows for more components to risk attitudes 
than marginal (riskless) utility. However ,  it does not seek for one 
unified cardinal utility, but explicitly distinguishes between riskless and 
risky utility. 

The value-utility-difference theory has nowadays lost popularity for 
the following three reasons. First, recent empirical research suggests 
that differences in measurements,  originally attributed to a fundamen- 
tal difference between value and risky utility, can be explained by 
fluctuations in preferences,  differences between various elicitation 
procedures,  measurement  errors, and, the topic of RDU,  distortions of 
probabilities. 5 Second, the theory remains within the realm of EU,  so 
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is susceptible to all the paradoxes against EU. Third and most 
fundamentally, observability of the value function is questionable. 

Another theory to incorporate more components for risk attitude 
than marginal utility had been popular in the psychological literature in 
the fifties. This approach transformed single-outcome probabilities. 
Thus it adds a 'probability component' to risk attitudes, which seems 
more natural than an additional transformation for outcomes; it does 
allow for one unified utility. The earliest reference is Preston and 
Baratta (1948). See also Edwards (1962) and several other references. 
The approach regained popularity when it was adopted, for a subclass 
of lotteries, in prospect theory by Kahneman and Tversky (1979). 
Earlier, the presentation in Handa (1977) had given rise to much 
criticism. The problem is that the transforming of single-outcome 
probabilities leads to a violation of stochastic dominance as soon as 
lotteries with more than two outcomes are involved. The first pub- 
lished statement of that violation is Fishburn (1978). It was discovered 
independently by Kahneman and Tversky (1979, p. 283-284). 

Quiggin also observed that Handa's approach violates stochastic 
dominance. This observation, together with a general form presented 
by Allais (see, e.g., Allais, 1953, Section 41, Form IV), led Quiggin to 
the idea of RDU: One should not transform single-outcome prob- 
abilities, but cumulative probabilities, i.e., probabilities for receiving a 
fixed outcome or anything better (or worse, which leads to identical 
theories). 

R D U  seems to be the most popular generalization of EU nowadays. 
As with all deviations from EU, it allows for the modeling of the well 
known paradoxes, such as the Allais paradox and the Ellsberg 
paradox.* It underlies the new version of prospect theory (see Tversky 
and Kahneman, 1992; Wakker and Tversky, 1991) that does not 
violate stochastic dominance, as well as the generalization of EU in 
Luce (1988) and Luce and Fishburn (1991). The popularity of RDU is 
probably explained because it is the first well-developed and axiomat- 
ized theory to permit a separate attitude towards marginal utility and 
probabilistic risk. It serves the purpose of this section by allowing for 
one unified utility. 

I also want to mention what I consider weaknesses of RDU. The 
major weakness, in my opinion, is that a change of an outcome does 
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not affect the decision weights as long as the change of outcome did 
not affect its ranking as compared to other outcomes, but the change 
of outcome may suddenly and drastically change decision weights at 
the moment when it does affect the ranking of outcomes. I think this 
sudden change of decision weights is ad hoc and can never pretend to 
be more than an approximation of natural processes or of a perfect 
normative approach. This seems to be the major weakness of RDU. A 
similar criticism can be formulated for the generalization of Segal 
(1989/1993), Green and Jullien (1988), and Chew and Wakker (1991). 
The non-Fr6chet differentiabitity of RDU, as observed in Chew, 
Karni, and Safra (1987) and illustrated in Wakker (1989b), is a 
symptom of the weakness described. 

Another point of concern is that no very convincing empirical 
support for RDU has yet been obtained. The findings in Camerer 
(1989) are not conclusive. Cohen and Jaffray (1988) and Tversky and 
Kahneman (1992) find nonlinearity in probability mainly due to the 
certainty effect, i.e. if probabilities 0 or 1 are involved. The latter 
suggests that RDU is too general. Munier and Abdellaoui (1991), on 
the contrary, find nonlinearities throughout the domain. 

I have deferred until the end the discussion of the subtle viewpoints 
of yon Neumann and Morgenstern (1944) (vNM) on risky versus 
riskless utility. Fishburn (1989) gave an informative exposition, upon 
which the analysis here and above has drawn heavily. In several places, 
e.g. at the end of Section 3.2 and in footnote 1 there, vNM write that 
their risky utility makes it possible to order utility differences. This has 
led many (e.g. Allais, 1979, p. 592) to claim that vNM interpreted 
their risky utility as identical to riskless cardinal utility. However, vNM 
write in the footnote on p. 630-631, about their utility difference 
terminology (italics added here): "merely to facilitate the verbal 
discussion - they are not part of our rigorous, axiomatic, system." The 
ordering of utility differences concerns risky utility differences. There 
is no formal reason to identify them with some notion of riskless utility 
difference. This 'retraction' of vNM, as well as other similar retractions 
about orderings of utility differences, has been emphasized by Fish- 
burn (1989). 

On the basis of these writings of vNM, the representational view- 
point has been ascribed to them. But maybe their position is in 
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between. They only say that no riskless formalization of their utility 
has been given. This does not exclude a future possibility, and 
desirability, to do so. At  several places (e.g. the beginning of 3.2.1), 
vNM point out that one should be careful to exclude future develop- 
ments of theories. Several parts of their text suggest to me that they 
have in mind one notion of utility for the entire economic science. The 
very motivation for their analysis has been to obtain a cardinal utility 
that is relevant for another context: game theory. The same cardinal 
utility that provides an expectation representing individuals' pref- 
erences over randomized outcomes, is also used to provide the unit of 
exchange between players. I think the applicability of risky utility as 
means of exchange between players is as questionable as its applicabili- 
ty to welfare theory, or any other case of decisions under certainty. 

This section has defended a unified notion of utility that is prior to, 
but relevant for, risk. RDU can reconcile this with the position that 
there is more to risk attitudes than marginal utility, by adding a 
probabilistic risk attitude component. I hope that the reader will at 
least consider the described position as tenable. The rest of the paper 
gives axiomatic results for RDU that can be read and used in- 
dependently of the viewpoints of this section. The methods and results 
have, however, been motivated by the opinions expressed above. The 
adopted tool of derived orderings of tradeoffs appeals to cardinal 
utility, independent of probabilistic risk attitudes. 

3. RANK-DEPENDENT UTILITY FOR DECISIONS UNDER RISK 

3.1. Elementary Definitions 

denotes the set of probability distributions, called lotteries, over an 
interval [0,M], with M an arbitrary fixed positive number; elements of 
[0,M] are called outcomes. By > we denote the preference relation of 
a decision maker on ~,  with - ,  > ,  < ,  and < as usual; > is a weak 
order if it is complete (P>Q or Q>P for all P, Q) and transitive. A 
function V : N ~ N represents ~ if [P>Q] <=> [V(P)>~V(Q)]. (The term 
utility will be used for the function U below; generalized expectations 
of U will represent > . )  Cardinal is in this paper no more than an 
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abbreviation of the intractable 'unique up to a positive affine trans- 
formation'.  

In descriptive contexts it is well known that preferences depend on 
the way lotteries are presented to subjects. This paper does not 
address that question, and assumes that preferences depend only on 
probability distributions and not on the way of presentation. 

DEFINITION 1. Rank-dependent utility, (RDU) holds if there exist a 
strictly increasing continuous utility function U" [0,M]--->N and a 
strictly increasing probability transformation q~:[0,1]--->[0,1] with 
q~(0) = 0 and q~(1) = 1, such that > is represented by 

P~--> f~+p©Gv,ed~c + f~ [¢oGv, p - 1 ] d ~  " . (1) 

Here Gu, e is the decumulative distribution function of U under P, i.e. 
Gu,e: "r F-~ P({c~ E [0,M]: U(a) 1> ~-}). The integral is the rank-depen- 
dent utility (RDU)  of the distribution P. [] 

Continuity of q) has not been incorporated in the definition of RDU,  
because there is interest in discontinuities, primarily at 0 and 1. The 
characterization in Theorem 12 leaves continuity of q~ optional. ~ 
denotes the set of simple lotteries, i.e., probability distributions that 
assign probability one to a finite set. A simple lottery is denoted by 
(Pl ,  xl;  • • • ; P, ,  x , ) ,  where x 1 >i • • • ~ x ,  a n d p / >  0 for allj .  Obvious- 
ly, this designates the probability distribution that assigns probability 
Pl to outcome xl ,  etc. Note that the outcomes are rank-ordered. 
Axioms will be formulated by means of this notation in such a way that 
the notation is relevant. For illustration, a small deviation of this 
notation occurs in Example 9c; it will illustrate the crucial role of 
rank-ordering in RDU. 

Misunderstandings have arising in the literature as a consequence of 
inaccurate notation. Hence it is emphasized that subsequent xjs are 
allowed to be identical. For example, (Pl, a; P2, OL; P3, X 3 ; ' ' '  ;Pn, 
Xn) is identical to (Pl +P2, a ;  P3, x3;. • • ; P,, x ,) .  This identity is not 
an assumption, but a logical necessity, these notations merely being 
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two different ways of writing the same probability distribution. For a 
simple lottery (Pl ,  x ~ ; . . .  ; pn, x~), RDU can be written as a sum: 

R D U ( p l , x l ; .  . . ; pn,xn)= ~ A~U(x~), with (2) 
i=1 

Ai:= (pl + - + p , )  - ¢ ( p l  + " • (3) 

In the above formula, A 1 = ~(Pl) .  The decision weights A i are a kind of 
marginal q~ contribution to cumulative probabilities; they sum to one. 
One verifies elementarily that different notations for one same prob- 
ability distribution, by different ways of 'splitting-up' of probabilities of 
one same outcome, do not affect the RDU value in (2). 

The following result will be used in Subsection 4.3. Its simple proof 
is given immediately because it illustrates the nature of RDU. 

OBSERVATION 2. RDU is convex, concave, or linear (with respect to 
probability mixtures) if and only if q~ is. 

Proof. We only consider convexity. The decumulative distribution 
function of a (probability) mixture of probability distributions being 
the same mixture of decumulative distribution functions, convexity of 
q~ implies the same for RDU by (1). Conversely, if we set U(M) = 1, 
U(0) = 0, then the equality 

q(p) = RDU(p,  M; 1 - p ,  O) 

shows that convexity of RDU implies convexity of q~. 

Throughout the paper the following assumption is used, where P 
stochastically dominates Q if P(]-%~'])  ~< Q(]-%~-]) for all real r. 

ASSUMPTION 3. 
(i) Weak ordering. 

(ii) [(Strict) Stochastic Dominance] P >  Q whenever P #  Q and P 
stochastically dominates Q. • 
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3 . 2 .  D e r i v e d  T r a d e o f f s  

This subsection adapts the idea of derived (orderings of) tradeoffs, 
used in several previous papers of the author in decisions under 
uncertainty and multiattribute utility theory (see e.g. Wakker, 1989a), 
to the present context of decisions under risk. I hope that this paper, in 
giving the most general characterization of RDU presently available, 
and in being the first to obtain a complete axiomatic separation of 
marginal utility and probabilistic risk attitudes, will increase the 
interest in derived tradeoffs. Recently, Tversky and Kahneman (1992) 
and Wakker and Tversky (1991) used derived tradeoffs to obtain a new 
version of prospect theory that avoids problems concerning violation of 
stochastic dominance/transitivity; Wakker and Tversky (1991) give 
further motivations for the use of derived tradeoffs. 

The formal results of this subsection are given in the displayed and 
numbered definitions, formulas, and lemmas. The rest of the subsec- 
tion elucidates. Examples are given at the end of the subsection. 

The notation with star superscripts below indicates that the relation 
is quarternary; it might be interpreted as a revealed ordering of (a kind 
of) strengths of preferences. The notation (p~, x ~ ; . . .  ; p~, a ; . . .  ; p~, 

x~) is short for (Pl ,  xl;  • • • ; Pi-x, x i - 1 ;  P i ,  a ;  P ~ + I ,  Xi+l; • • • ; P~, x~). 

DEFINITION 4. For outcomes a , /3 ,  y, 6, we write [a ; /3 ]~*[y ;  6], or 
a [ 3 > * y 6  for short, if 

( p ~ , x l ;  . . . ; p~ ,  a ;  . . . ; p , , x n ) > ( p l ,  y ~ ;  . . . ; p ~ , 1 3 ;  . . . ; p n ,  y n )  and 

( p l , x l ; .  . . ; p i ,  y ; .  . . ; P n , X n ) K ( p l ,  Y l ; .  . . ; p i , 6 ; .  . . ; p n ,  y ~ )  

for some i, Pl ,  -. -,  Yn. 

Note that the probabilities Pl . . . . .  Pn were kept fixed throughout,  and 
that our conventions of notation implicitly imply that x i_ 1 ~> a I> xi~l, 

Y i - i  ~ ~Yi+l, Xi-1 > 1 7  > ~ X i + l ,  and Y i - 1  > ~  ~Yi+l. Substituting 
R D U  for the preferences in Definition 4 gives a I> and a ~ inequality, 
where, with hi as in (3), the only difference between the two 
inequalities is that the terms hiU(a), hiU(fi ) above have been replaced 
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by AiU(y), AiU(6) below. Cancelling the common positive factor A~ 
then shows: 

If RDU holds then: a~;> *y6 ~ U(a) - U(~ ) 

t> U(T) - U(~). (4) 

So >* is in agreement with the ordering of utility differences and may 
serve as a tool for the actual elicitation of utility. The reversed 
implication also holds under certain conditions, such as continuity of 
the probability transformation and continuity of utility. This can be 
derived from Theorem 12. 

DEFINITION 5. We write o43 > *3,3 if in Definition 4 we have < 
instead of < ;  we write .a/3 ~ *T6 if in Definition 4 we have - instead of 
< and >-. • 

The following is similar to (4). 
If RDU holds then: 

o~/3 ~ .3", ~ u ( , , ) -  u ( 3 )  = u ( 3 ' ) -  u (~)  

and 

,~/3 >'3 '~ ~ u (~ )  - u ( ~ ) >  u(3')  - u ( , ) .  

(5) 

(6) 

, with < For verbal elucidation of the * relations above, consider >* 
instead of < in Definition 4. Replacement of a, /3 by 3', 6 has caused a 
reversal of preference. The probabilities and the rank-ordering of 
outcomes have been kept fixed, so that also the probabilistic risk 
effects 7 have been kept constant for all preferences. The change of 
preference, being observed under constant probabilistic risk, must be 
explained by the change in outcomes: the 'tradeoff' a/3 (receiving a 
instead of/3) must be a stronger improvement (less serious loss) than 
the tradeoff -/~. This is reflected in Equation (6). Examples which 
further illustrate the intuition of the condition are given in Wakker and 
Tversky (1991). 

Next we introduce the main condition in the characterization of 
RDU. In earlier papers by the author the expression 'absence of 
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contradictory tradeoffs' was used for conditions like the one below. 
This paper follows the preferable terminology introduced in Tversky 
and Kahneman (1992). 

DEFINITION 6. We say that > satisfies tradeoff cons~tency if there do 
not exist outcomes a,/3, y, 3 such that both a/3~*y8 and y8 > *a/3. [] 

An immediate consequence of (4) and (6) is: 

LEMMA 7. RDU implies tradeoff cons&tency. I 

Theorem 12 shows that under usual conditions tradeoff consistency is 
not only necessary, but also sufficient, for RDU. To emphasize the 
present context of rank-ordered outcomes and to distinguish from 
other versions of tradeoff consistency, the terms 'rank-ordered tradeoff 
consistency' or 'comonotonic tradeoff consistency' would be more 
appropriate. The above version of tradeoff consistency being the only 
one in this paper, qualifying adjectives have been omitted, and no 
indexes have been added in the notation to indicate comonotonieity in 
the * relations >-% >% -* .  Comonotonicity has been introduced in 
Schmeidler (1989, first version 1982) and has also been used in Yaari 
(1987a, first version 1984). 

It may be argued that the use of * relations in characterizations 
violates a 'rule of the game' of representation theory. Representation 
theorems give characterizations, i.e., necessary and sufficient condi- 
tions for preferences, for the applicability of quantitative models such 
as RDU. The characterizations, given for instance in Statement (ii) in 
the representation Theorem 25 below, should 'translate' the meaning 
of the theoretical Statement (i) (claiming applicability of RDU) into 
the 'empirical language' directly in terms of the observable primitives, 
being the preferences, outcomes and associated probabilities. There- 
fore the * relations, being derived rather than primitive, should not be 
used in characterizations, it seems. However, the * relations are 
derived from the preferences in a very direct manner, so that it is easy 
to see the empirical content of statements in terms of these relations. It 
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is easy to replace the * relations by their definitions, leading to 
conditions directly in terms of preferences and directly testable; see 
Observation 8. 

I think that the formulations in terms of the * conditions are 
transparent, and that this outweighs the disadvantage of being one step 
further away from empirical reality. This does not hold, for example, 
for conditions directly in terms of utilities. In general it is not easy and 
involves many steps to derive utilities from preferences, thus to test 
conditions for utilities. So conditions for utilities should not be used in 
the characterizing empirical statements in representation theory. 

The observation below presents the reformulation of tradeoff 
consistency directly in terms of conditions for preferences. 

OBSERVATION 8. T r a d e o f f  c o n s i s t e n c y  is  s a t i s f i e d  i f  a n d  o n l y  i f  

(Pl ,Xl ;  • • • ; Pi, ~ ; .  - • ; P , , x , ) ~ ( P l ,  Y l ; .  • • ;Pi,  [ 3 ; . . .  ; p , ,  y , )  

( p l , x l ; . . .  ; p i ,  y ; .  . .  ; p , , x , ) < _ _ ( p l ,  y l ; . .  . ; p i , 6 ; .  . .  ; p , ,  y , )  

a n d  

(ql ,  ol; • - - ; q j ,  3/; • . • ; q m ,  0 m ) ~ ( q l '  Wt;" " " ; q j '  6 ; . . .  ; q m ,  Win)  

( q l ,  V l ;  . . . ; q j ,  a ;  . . . ; q m ,  Urn) < ( q l ,  w l ;  - • .  ; q j ,  [3; " .  • ; q m ,  w i n )  

f o r  n o  i ,  P l ,  • . • , Wm" m 

Finally, some examples are given for the above conditions. 

E x a m p l e  9 a  (Violation of tradeoff consistency). Preferences 

(3, 60; 2, 50; 3, 3 1 ) > ( 3 ,  61; 2, 51; 3, 30) and 

(3,60;  2, 50; 3, 4 1 ) < ( 3 ,  61; 2, 51; 3, 40) 

reveal [31;30]>*[41;40]. Substituting RDU gives U ( 3 1 ) - U ( 3 0 ) ~  > 
U(41) - U(40), in accordance with Formula (4): an ordering of utility 
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differences has been revealed. If the following preferences would also 
be observed: 

(½, 41; 1 ~, 20; ¼,10) >_(½,40; ¼,21; ¼, 11) and 

(½,31;~,x 20; ¼,10)<(½,30;  ¼,21", ~,11) , 

then these would reveal [41;40] >* [31;30]. Together with the revealed 
ordering of tradeoffs found above this gives a violation of tradeoff 
consistency. Indeed, under RDU the result would be U(41) - U(40) > 
U(31) - U(30), contradicting the ordering of utility differences found 
above. The four observed preferences falsify RDU. 

E x a m p l e  9 b  (Comonotonic sure-thing principle). The c o m o n o t o n i c  

s u r e - t h i n g  p r i n c i p l e  is violated if and only if there exist preferences of 
the kind 

( P l , X l ; . . .  ; p i , a ; .  . . ; p , , , x n )  > ( p l ,  y l ; .  . . ; p i ,  a ; .  . . ; Pn, Y~) 

( P l , X I ;  ' ' '  ; P i , 7 ; ' "  ; p~ ,x~)<(p~ ,  y l ; . . .  ; p i , 7 ; . . .  ;P , ,  Y~). 

That is, it is violated if preferences are not independent of common 
outcomes. This condition is weaker than the expected-utility sure-thing 
principle because it is only imposed on lotteries with rank-ordered 
outcomes. Preferences as above reveal the peculiar [ a ; a ] > * [ y ; y ] ,  
which by (6) immediately falsifies RDU. By [ y ; y ] > * [ a ; a ] ,  as re- 
sulting from reflexivity and the trivial 

( P l , X l ;  . . . ; P i , 7 ; . . .  ; P ~ , X , ) > ( P l , X l ;  . . . ; P ~ , 7 ; . . .  ; p , , x n )  

(Pl,Xl;  . .  . ; Pi , ,  a ; .  . . ; p ~ , x n ) < ( p l , x l ; .  . . ; P i ,  a ; .  . . ; p ~ , x ~ )  , 

a formal violation of tradeoff consistency is obtained. 

E x a m p l e  9 c  (The Allais Paradox). Many authors have shown that the 
Allais paradox can be described by RDU. The example is nevertheless 
presented here because it illustrates the notations and conditions of 
this paper. They will slightly deviate here from the main body of the 
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paper, as will be explained shortly. Suppose that we observe, with M 
denoting $1 000 000, 

( ~ ,  M; 1~0, M; i~0, M)>-(~,  5M; 89,  M; ~0 ,0)  and 

({o, M; 0; M) < ( 0,5M; 0; 

It may seem that, by Definition 4 (with i =2,  Pi =0.89), [M;M] 
>* [0;0], which by (6) immediately leads to a falsification of RDU. 
Together with [0;0]>*[m;m], as trivially implied by (½, M; ½, 0)>(½, 
M; ½, 0) and (½, M; 1, M)<(½, M; ½, M) (Definition 4 with i =  2), 
this would also violate tradeoff consistency. Indeed, usual additive EU 
can be falsified by similar reasonings. Still, RDU is not falsified 
because it is crucial for R D U  that the outcomes are rank-ordered. In the 
notation (~0, M; ~o,  O; x¢6,1 M) for the third lottery in the above 
preferences, the outcomes were not rank-ordered. Once the outcomes 
are rank-ordered, the violation of tradeoff consistency disappears. 
Indeed, RDU can model the Allais preferences, as is well known, e.g. 
by taking utility = identity and q~ : p ~--~p/2 for all p ~< 0.99. • 

3.3. Further Conditions 

This subsection gives some more conditions of a technical nature, used 
in the main theorem. This paper follows the usual terminology, where 
probability measures are countably additive. 

One continuity condition is assumed in the main results. It only 
considers simple lotteries with fixed probabilities and variations in 
outcomes and is weaker, so less restrictive, than most continuity 
conditions used in the literature; these are further discussed at the end 

r 0 M 1" of Appendix 2. By t , ] + we denote the set of rank-ordered n-tuples 
from [0,M], i.e., 

[0 ,M]~:-- -{(xl , . . . ,x , , )E[0,M]":Xl~ "'" ~ x n } .  (7) 

DEFINITION 10. The preference relation > satisfies simple-continui- 

ty if, for any fixed probability vector ( P l , . . - ,  P,), the preference 
relation induced on [0,M]~ is continuous. • 
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Instead of continuity on nonsimple lotteries, this paper uses the 
certainty-equivalent condition, requiring existence for every probability 
distribution P of a certainty equivalent CE(P)E[0 ,M] ,  such that 
CE(P) - P. Again, it is weaker than the infinite-dimensional continuity 
conditions as used in the literature. 

The following conditions characterize continuity of the strictly 
increasing probability transformation. Because there is empirical 
interest in discontinuity at 0 and 1 plus continuity on ]0,1[, we separate 
these continuities and leave each combination of them optional in 
Theorem 12. 

DEFINITION 11. We say that > satisfies continuity in probabilities on 
]0,t[ if, for all probabilities p: 

If (p,  M; 1 - p, 0) > (1, ~) then there exists q < p  such that 

still (q, M; 1 - q,0) >- (1, a ) ,  (8) 

and the same holds if the two preferences and the inequality are 
reversed. We say that > satisfies continuity in probabilities at 1 if (8) 
holds for p = 1; > satisfies continuity in probabilities at 0 if (8) holds 
for p = 0 with reversed preferences and inequality, s • 

The following solvability condition for the increasing probability 
transformation, similar to Quiggin (1982, Axiom 3), can be seen to be 
equivalent to continuity at all probabilities: for every outcome/3 there 
exists a probability p such that (1,/3) -- (p, M; 1 - p ,  0). 

3.4. Extending Yaari' s (1987a) Representation to Nonlinear Utility 

T H E O R E M  12. Let > be a preference relation on ~. RDU holds if 
and only if  >- is a weak order that satisfies the certainty-equivalent 
condition, simple-continuity, stochastic dominance, and tradeoff consis- 
tency. The probability transformation is uniquely determined, utility is 
cardinal. Continuity conditions of  the probability transformation agree 
with the related continuity conditions o f  ~ in probability. • 
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This theorem gives the most general characterization of RDU, pres- 
ently available. Continuity of q~ at 0,1, and on ]0,1[ is optional, and the 
result can without any problem be adapted to contexts where not all 
probability distributions are given. Any fixed subset of [0,1] will do as 
set of available probabilities; the proof needs no adaptations for this. 
Further, the approach of this paper can easily be extended to general 
intervals, nonincreasing utility, to multidimensional outcomes, and 
even nonquantitative outcomes; Appendix 2 describes the extension to 
any connected topological space. The remainder of this subsection 
discusses related literature. 

As compared to Quiggin (1982), the restriction q~(½)= ½ has been 
deleted, discontinuity of q~ is allowed for, and nonsimple probability 
distributions have been included; Quiggin's analysis also uses continui- 
ty in outcomes in an implicit manner. Elucidations to the mathematics 
in Quiggin (1982) are provided in Quiggin and Wakker (1992). 

As compared to Yaari (1987a), the restrictions of linearity of utility 
and continuity of p have been deleted. Linearity of utility was also 
relaxed in Segal (1989), a result that was used in Segal (t990). The 
result was criticized in Wakker (1993b), and corrected in Segal (1993). 
His characterizing condition employs epigraphs of distribution func- 
tions and is not intuitive in terms of preferences. It applies to one- 
dimensional monetary outcomes and finite-dimensional commodity 
bundles, and implies continuity of utility and of the probability 
transformation. Luce (1988), Segal (1990), and Luce and Fishburn 
(1991) use a two-stage approach to obtain rank-dependent forms. 

Theorem 1 in Chew (1989) is the result in the literature that is most 
similar to Theorem 12. Chew formulates his characterization for 
functionals, but in the first sentence of Section 8 indicates the way to 
reformulate his results for preference theory (through certainty equiva- 
lents). Instead of the requirement of tradeoff consistency, Chew uses a 
'Weak Commutativity' condition, which can be seen to be a version of 
the bisymmetry condition from functional equations, as introduced in 
decision theory by Pfanzagl (1968) and also studied in Section 6.9 of 
Krantz et al. (1971). Chew uses ('compact') continuity with respect to 
weak convergence; again, this requires both continuity in outcomes 
and in probabilities, and leads not only to continuity of utility but also 
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to continuity of the transformation ~p. Also Chew's weak commutativi- 
ty axiom uses essentially the availability of certainty equivalents 
(implied by his continuity), so that his intuitive axiom involves 
structural/technical assumptions. 

Also Chew and Epstein (1989) provided a characterization of RDU, 
for monetary outcomes and continuity of utility and probability 
transformation. Corrections for their work were supplemented in 
Chew, Epstein and Wakker (1993). Chateauneuf (1990) proposed two 
axioms, A.4 and A.5, which together are also necessary and sufficient 
for RDU for simple distributions; here ~ is a connected compact 
metric space (see also Appendix 2). Axiom A.4 is a comonotonic 
sure-thing principle, A.5 is an attractive adaptation of mixture in- 
dependence to RDU which, like tradeoff consistency, implies pro- 
portionality oi' the additive value functions. Continuity of ~ is again 
imposed. A first version of our Theorem 12, with an underlying state 
space made explicit, appeared in Wakker (1987, Observation 7.6.1 plus 
Theorem 6.8). 

Nakamura (1992, Proposition 2) also makes explicit the underlying 
[0,1] state space. He considers only simple probability distributions 
and uses the 'algebraic approach' initiated by Krantz et al. (1971). 
Wakker (1988) argues for the preferability of this approach over the 
topological approach; the latter, however, is more customary and 
hence is used in this paper (see Appendix 2 for full generality). 
Nakamura's nontechnical axiom is a generalization of bisymmetry 
axioms to multisymmetric structures and is similar to Chew's (1989) 
weak commutativity. As Chew's axiom, it needs availability of certain- 
ty equivalents in its formulation. For uncertainty, an appealing 
variation on the muttisymmetric axiom was introduced in Gul (1992) 
for additive EU and has been used in Chew and Karni (1991) for 
rank-dependent theories; Wakker (1991b, Theorem 8) adapted 
Theorem 12 to uncertainty and to the algebraic approach; his structur- 
al assumptions are somewhat less restrictive than the ones used in the 
above works and, for instance, do not imply the existence of certainty 
equivalents. All works discussed so far for the context of uncertainty 
assumed finite state spaces. Extensions to infinite state spaces have 
been given in Wakker (1993c). 
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4. DISENTANGLING PROBABILISTIC RISK ATTITUDES AND 
MARGINAL UTILITY 

Before turning to our results in Subsection 4.1, we discuss some 
literature. Axioms for the distinction between attitudes towards 
probabilistic risk and attitudes toward wealth have not yet been 
provided in the literature. Chew, Karni, and Safra (1987) use the 
condition that a mean-preserving increase in risk is never favorable, to 
characterize the joint concavity of utility and convexity 9 of q~. 

That same condition is used in Yaari (1987a, see also Yaari, 1987b, 
p. 176) as a necessary and sufficient condition for convexity of q~. Yaari 
does not need to deal with the separation of marginal utility and 
probabilistic risk attitudes because other conditions in his approach 
already imply constant marginal utility. Also Chateauneuf (1988) 
characterizes convexity of q~, mainly by 'uncertainty aversion' axioms. 
He does not need to reckon with marginal utility because, as in Yaari 
(1987a), the axioms imply constant marginal utility. Chateauneuf 
indicates the desirability of the generalization to nonlinear utility in 
Section 5; the present paper provides that generalization. See also 
Quiggin (1982, p. 328, bottom) and Yaari (1987a, p. 96 1.11-12 and p. 
110 1.3-6). Wakker (1990b, Corollary 9) characterizes convexity of ~0 
in a different way, directly in terms of comonotonicity, by requiring 
the usual independence implication for mixtures with respect to 
outcomes to hold whenever only the lotteries in the dispreferred 
mixture are comonotonic, and the other lotteries can be general. 
Again, the result, like Yaari's and Chateauneuf's, crucially depends on 
the implied linearity of utility. 

Hilton (1988) considers risk premiums, and finds a way to separate 
these into a term related to the transformation q~ of probabilities and a 
term similar to the traditional Pratt/Arrow measure. Hilton's separa- 
tion, however, requires knowledge of U and ~o, so is theoretical, and 
does not provide a separated behavioral axiomatization directly in 
terms of testable properties of preferences. Chateauneuf and Cohen 
(1990) study the definition of risk aversion that requires preference of 
expected values over lotteries; this is weaker than aversion to mean- 
preserving risk. They show that neither diminishing marginal utility, 
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nor convexity of the probability transformation, is implied. An 
alternative condition to characterize convexity of the probability 
transformation for general utility, and different from the conditions of 
this paper, was obtained independently by Wakker (1986, Section 
VI.11), Segal (1987), and Chateauneuf (1990). 

4.1. Decreasing~Increasing Marginal Utility, and the Pratt~Arrow 
Comparisons o f  Marginal Utility, Generalized to RDU 

This subsection generalizes the classical Pratt/Arrow results concerning 
marginal utility from EU to RDU. We characterize the case where one 
decision maker's utility is a concave transform of a second decision 
maker's utility, i.e., the first utility shows a 'stronger decrease of 
marginal utility'. As a corollary, characterizations are obtained of 
concave, convex, and linear, utility. In the interpretation of this paper, 
these results reflect a stronger decrease of marginal utility where 
marginal utility is prior to risk attitude. The results of this subsection 
are based on the techniques as developed in Wakker (1989a, Chapter 
VII) for additive subjective expected utility. 

In U1, U 2, superscripts are general superscripts and do not designate 
exponents. The 1" and 2* relations below are derived from >-1 and >-2 
in the usual way. The characterizing conditions given below reflect the 
corresponding properties of marginal utility in a transparent manner. 

DEFINITION 13. We say that >2 exhibits a stronger decrease o f  
marginal utility than >-1 if, for all a >~13~y 96 ,  [a[3<x*y6 & 
0/~3 ~ 2*'y6] is excluded. • 

The condition describes what intuition suggests: a high-payments 
tradeoff a/3 should not come out better for the decision maker with the 
stronger decrease of marginal utility. 

T H E O R E M  I4. Suppose that RDU holds for >1, q l, U 1 as well as 
>2, q z, U 2. Then the following two statements are equivalent: 
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(i) U 2 = ~ o U ~ ]'or a continuous, concave, and strictly increasing tO on 
U~([O,M]). 

(ii) ~ 2  exhibits a stronger decrease o f  marginal utility than ~1. • 

The proof of the implication ( i ) ~  (ii) may clarify: suppose that 
UI(cx)-UI(/3)<2-~UI(')t)-UI(~) and U 2 ( a ) - U 2 ( / 3 ) > U 2 ( 7  ) - 

U2(8) for a~>/3~3,~>~,  as implied by the preferences excluded in 
Definition 13, and by (4) and (6). Then, in terms of the U 1 scale, U 2 
exhibits a strict increase in marginal utility. This precludes that U 2= 

* U 1 for a concave $ on UI([0,M]).  So a violation of (ii) implies a 
violation of (i), which establishes the implication ( i ) ~  (ii). 

Of  course, in Definition 13 one can define a weaker decrease o f  
marginal utility by reversing the preferences between the square 
brackets or by interchanging the role of >1 and >2. This characterizes 
a convex transformation $ in statement (i) in Theorem 14. The 
combination of the two conditions is called identical marginal utility 
and leads to utilities that are related by a linear transformation, i.e., 
that are identical given cardinality. As a corollary of Theorem 14, 
results are obtained concerning increasing and decreasing marginal 
utility. For clarity we write [a ;/3] instead of a/3 for tradeoffs. 

D E F I N I T I O N  15. We say that: 

> exhibits decreasing marginal utility if [a + e;/3 + e] > *[a;/3] is 
excluded for all outcomes in question with c~ >/3, • > 0; 

> exhibits increasing marginal utility if [a;/3] > *[a + e;/3 + e] is 
excluded for all outcomes as above; 

> exhibits constant marginal utility if it exhibits both decreasing and 
increasing marginal utility. • 

Again, the conditions describe what intuition suggests: e.g., under 
decreasing marginal utility the strength of preference (interpreting 
utility differences like that) of o~ + e over/3 + e should not exceed that 
of a over/3. It is easily seen that a decision maker exhibits decreasing 
marginal utility if and only if he exhibits a stronger decrease of 
marginal utility than an expected value maximizer. Similar things hold 
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for increasing/constant marginal utility. This illustrates the con- 
venience of comparability of marginal utility, independent of attitudes 
towards probabilized risk. The fact that expected value preferences are 
linear in probabilities and general RDU preferences are not, does not 
pose any problem. Thus an immediate corollary of Theorem 14 is: 

COROLLARY 16. Under RDU, U is concave (convex, linear) if and 
only if >__ exhibits decreasing (increasing, constant) marginal utility. • 

4.2. Characterizing Probabilistic Risk Aversion Independently of  
Marginal Utility 

We have seen above that the * relations provide the means to measure 
phenomena related to marginal utility, independently of attitudes 
towards probabilistic risk. So these marginal utility phenomena can be 
'filtered out', and subsequently the effects of attitudes towards prob- 
abilistic risk can be isolated. This makes it possible to compare the 
attitudes towards probabilistic risk of two decision makers even if they 
have different marginal utility. Given the great generality of this 
method of comparison, it cannot be expected to be very simple; Table 
1 shows that the characterizing condition actually involves a scheme of 
five preferences for each decision maker. Nevertheless it is hoped that 
the formulation of the characterizing condition in Definition 19 by 
means of derived tradeoffs (which underlies Definition 17) will make 
the idea transparent. 

As an illustration, consider two 'very' elementary probability dis- 
tributions P := (p ,  M; 1 -p ,0 ) ,  Q:=(q,  M; 1 - q, 0). We want to see 
how, for some probabilistic mixture AP + ( 1 -  A)Q, the first decision 
maker compares this 'increased probabilistic risk' with the 'midpoint- 
outcome' that has as utility the midpoint of the RDU values of the 
lotteries, and how the second decision maker does this. We want to 
find out if the second decision maker has systematically higher aversion 
to the increased probabilistic risk than the first. This is the case if he at 
least as often disprefers the probabilistic mixture to his midpoint- 
outcome as does the first decision maker. In the theory of RDU that 
will imply (e.g. with U(0) = 0, U(M) = 1) 
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go l(Ap 4- (1 -- A)q) ~< (q~ l (p )  + q~ ~(q))/2 ~ ~o2(Ap 

+ ( 1 - A ) q ) ~ < ( Z ( p )  + q2(q)) /2  " (9) 

As elaborated in the proof of Theorem 20, this condition implies under 
continuity that q2 is a convex transform of q~. The major problem, 
finding a way to detect behaviorally what the midpoint-outcomes (/x 1, 
/x 2 below) are, independently of the specific utilities U 1 ~ U z, can be 
solved by the tool of derived orderings of tradeoffs. 

D E F I N I T I O N  17. An outcome ~ is called the midpoint-outcome 
between outcomes oz, [3 if [a;/x] ~ *[/,;/3]; it is the midpoint-outcome 
between lotteries P and Q if it is the midpoint-outcome between 
certainty-equivalents C E ( P ) ~  P and C E ( Q ) -  Q. That is, 

[ CE(P);Ix ] ~ *[/x ;CE(Q )] . (10) 

The following lemma, a direct consequence of (5), shows that a 
midpoint-outcome is uniquely determined given the strict increasing- 
ness of utility. 

L E M M A  18. Under RDU,  if ~ is the midpoint-outcome between a and 
[3, then U(tz) = (U(a) + U([3))/2;/fp~ is the midpoint-outcome between 
P and Q, then U(Ix) = (RDU(P)  + R D U ( Q ) ) / 2 .  • 

D E F I N I T I O N  19. We say that ->e is more averse to probabilistic risk 
than ->1 if, for all p ,  q, A ~ [0,1], 

/~1_~ 'AP + (1 - A)Q ~/.¢z>2AP + (1 - A)Q (11) 

where P = (p ,M;  1 - p , O ) ,  Q = (q, M; 1 -  q, 0), and /z' and /z 2 are 
midpoint outcomes between P and Q of the respective decision 
makers. We say that _>2 is more prone to probabilistic risk if in (11) we 
have < instead of _>; _>2 is equally averse to probabilistic risk if it is 
both more averse and more prone to probabilistic risk. • 

The antecedent preference in Equation (11) shows that the first 
decision maker prefers the midpoint-outcome /x 1 to the ( ' two-stage') 
lottery that results with probability A in the lottery giving with 
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probability p 1Lhe best outcome, and with probability 1 -  A in the 
lottery giving with probability q the best outcome. Then the second 
decision maker who has greater aversion to probabilistic mixing, 
should certainly prefer his midpoint-outcome to the increased prob- 
abilistic risk of the two-stage lottery. 

In the above condition one could take any outcomes a >/3 instead 
of M, 0, and let these outcomes be different for the different decision 
makers. Thus the condition can even be used to characterize greater 
aversion to probabilistic risk if the outcome sets for the decision 
makers are different. 

We rewrite the above condition directly in terms of preferences, to 
show its empirical content. First note that, under RDU, for a general 
preference relation > ,  

[q~(Ap + (1 - A)q) is less/equal the midpoint between q~(p), 

~(q) l  

is revea led  by the preferences in Table  1. 

Tha t  is, certainty equivalents  C E ( P ) ,  C E ( Q )  must be found  for  

P = ( p , M ; 1  - p , 0 )  and Q = (q ,M;1  - q,0)  to  give (i) and (ii). Next  the 
midpoint outcome /z is found,  by eliciting [ C E ( P ) ; / x ] -  * [ /x ;CE(Q)] ;  

the equivalences  in (iii) and (iv) are only simple examples  o f  pref-  

ences  to elicit this - *  relation. I t  can be seen that r, x, y as in (iii) 
and  (iv) can always be  found,  mainly  by choosing r sufficiently large; 

m a n y  other sorts of preferences could be used instead to elicit the 
midpoint outcome. These were the ' s t ructural ' ,  p repara tory ,  prefer-  

ences  in Definition 19. Then ,  finally, (v) is the revealing preference.  

If  > z  is more averse to probabilistic risk than ~1 ,  then, whenever 
for  p ,  q, A the preferences of  Table  1 can be constructed to give (v) for  

TABLE 1 
~0(p) + q~(q) 

Preferences revealing ~p(Ap + (1 - A)q) ~ 2 

CE(P) -- P = (p, M; 1 - p, 0). 
CE(Q) - Q = (q,/el; 1 - q, 0), 
(r, x; 1 - r, CE(P)) ~ (r, y; 1 - r,/~), 
(r,x;1-r;Ix) .~(r,y;1-r, CE(Q)), 

~>AP + (1 - A)Q. 

and 

(i) 
(ii) 
(iii) 
(iv) 

(v) 
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>1, i.e., the antecedent preference in (11), it should also be possible 
to construct the similar preferences for >-2 (where the CEs and/x will 
of course be different). 

T H E O R E M  20. Suppose that RDU holds for >1, ~91, U 1 as well as 
~2, 2, U 2, with 1 and 2 continuous. Then q?2=t//°@l for a 
continuous, convex, strictly increasing qJ" [0,1]---~ [0,1] if and only if_>_ z 
is more averse to probabilistic risk than >-1. 'Convex' can be replaced by 
'concave' if 'averse" is replaced by 'prone'; 0 is the identity if and only 
if >-2 is equally risk averse. • 

Note that, by means of equal probabilistic risk aversion, identical 
attitudes towards probabilistic risk can be characterized in general, 
even if the utilities are not identical. As a corollary of the above result, 
convexity and concavity of q~ can again be characterized, independent- 
ly of utility. This is done by comparison to the preferences of a linear 
~, i.e., of 'classical' EU with linearity in probabilities. Linearity of q~ is 
characterized by equivalence in the antecedent preference in (11) for 

= 1/2. Thus a condition to characterize convexity of q~ is: 
For all probabilities p, q 

tx>(P + Q)/2 (12) 

for the midpoint-outcome /z of P = (p,M;1 - p , 0 )  and Q = (q,M;1 - 
p,0). 
A decision maker, averse to probabitistic risk, will typically 'under- 
value' the mixed lottery (P + Q)/2 and assign to it a value less than the 
midpoint of the RDU values of the other two lotteries. 

COROLLARY 21. Under RDU, q~ is convex if and only if (12) holds, 
it is concave if and only if (12) holds with < instead of  >-, and ~ is 
linear if and only if (12) holds with ~ instead of  >_. • 

Note that the last part of the above Corollary, together with 
Theorem 12, gives a characterization of EU maximization, alternative 
to, but of course far less attractive than, the one given by yon 
Neumann and Morgenstern (1944), for continuous increasing utility. 
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We could have introduced the term 'aversion to probabilistic risk' for 
(12), with terms risk prone and risk neutrality similar. The following 
subsection will, however, give more appealing conditions, therefore no 
name is reserved for the present conditions. 

Convexity of ~ implies that (12) can be extended to general 
probability distributions P, Q. This can be derived from Observation 2 
in a straightforward way, and is left to the reader: 

OBSERVATION 22. In Corollary 21, Condition (12) can be replaced 
by the stronger condition: 

For all probability distributions P, Q and midpoint-outcomes 

tx between P and Q, we have tx>(P + Q ) / 2 .  

The variations of  (12) with <__ and ~ can be adapted similarly. • 

A similar strengthening is not possible for the more averse/prone-to- 
probabilistic-risk condition. In the definition of comparative probabilis- 
tic risk it is crucial that only probability distributions P, Q are 
considered with one highest outcome, one lowest outcome, and no 
other outcomes. If P, Q have three or more outcomes, then there may 
be different proportions of utility differences for the different decision 
makers and these can be seen to 'disturb' the relevation of probabilistic 
risk attitudes. 

4.3. A Natural Characterization of  Probabilistic Risk Aversion 

This subsection characterizes probabilistic risk aversion directly 
through quasi-convexity of preference with respect to probabilistic 
mixing. This is an appealing and natural result, directly reflecting 
aversion to probabilistic mixing. Chew (1989, Corollary 2) already 
showed that convexity of the probability transformation q~ implies 
quasi-convexity of preference; the derivation of this result is elemen- 
tary, see Observation 2. It is surprising that the reversed implication 
has not been obtained before in the literature. Indeed, its proof is not 
elementary. It shows that quasi-convexity of RDU implies convexity 
with respect to probability mixtures. 
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The proof uses techniques developed in the study of quasi-concave 
additively decomposable functions (which are 'almost' concave). See 
for instance Yaari (1977), Debreu and Koopmans (1982), Crouzeix 
and Lindberg (!986), and Wakker (1989a, Sections VII.3 and VII.4). 
In the present context of RDU, quasi-convexity with respect to 
probability mixtures is interpreted as aversion to probabilistic risk, 
quasi-concavity as proneness, and their combination, betweenness 
(linearity) as neutrality. 

DEFINITION 23. The binary relation > is quasi-convex (with respect 
to probability mixtures) if P ~ Q  implies P~AP + ( 1 - A ) Q  for all 
0 < A < 1, it is quasi-concave (with respect to probability mixtures) if 
P<Q implies P<__,~P + (1 - A)Q for all 0 < A < 1, and it satisfies 
betweenness (or is linear with respect to probability mixtures) if it is 
both quasi-convex and quasi-concave. • 

THEOREM 24. Under RDU, q~ is convex if and only if  > is quasi- 
convex, ~ is concave if  and only i f >  is quasi-concave, ~ is linear if  and 
only if  > satisfies betweenness. • 

It may seem paradoxical that probabilistic risk aversion, a reflection 
of pessimism, has been characterized through aversion to probabilistic 
mixtures, whereas in Schmeidler (1989, Remark 3), Gilboa and 
Schmeidler (1989), and Wakker (1990b) the pessimistic uncertainty 
aversion was characterized by appreciation of probabilistic mixtures. 
The explanation is as follows. In these references risk neutrality with 
respect to purely probabilistic risk is presupposed, contrary to the 
probabilistic risk aversion as characterized in the above theorem. 
Pessimism concerns nonprobabilized uncertainty there, as opposed to 
probabilized. As soon as there is nonprobabilized uncertainty, addi- 
tional probabilistic mixing increases the role of probabilized risk with 
respect to which the decision maker is neutral, and decreases the role 
of nonprobabilized uncertainty with respect to which the decision 
maker is pessimistic. Thus he will appreciate probabilistic mixing. 
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5. THE MAIN THEOREM 

The following theorem combines all results of this paper, except the 
interpersonal comparability results in Theorems 14 and 20. Appendix 2 
describes the extension to multidimensional, even nonquantitative, 
outcomes. The only remaining restrictive condition then is continuity 
of utility. 

Next references are given to the definitions in this paper. The 
certainty-equivalent condition has been defined in Subsection 3.3, 
simple continuity in Definition 10, stochastic dominance in Assumption 
3, tradeoff consistency in Definition 6; decreasing, increasing, and 
constant marginal utility are given in Definition 15, continuity in 
probability in Definition 11, and quasi-convexity, quasi-concavity, and 
betweenness of > in Definition 23. 

THEOREM 25 (Main theorem). Let ~ be a preference relation on the 
set ~ o f  probability distributions over [0,M]. The following two 
statements are equivalent: 

(i) R D U  holds. 
(ii) The preference relation ~ is a weak order, it satisfies stochastic 

dominance, the certainty-equivalent condition, simple-continuity, 

and tradeoff consistency. 

The probability transformation q~ in Statement (i) is uniquely de- 
termined, the utility U is cardinal. The following equivalences hold for 
R D U :  

(a) U is concave C> ~ exhibits decreasing marginal utility; 
(b) U is convex C z> ~_ exhibits increasing marginal utility; 
(c) U is linear <~ ~ exhibits constant marginal utility; 
(d) q~ is continuous on the interval ]0,1[ (or at O, or at 1, respectively) 

c> ~ is continuous in probability on the interval ]0,1[ (or at O, or 
at 1); 

(e) ~p is convexC> >- is quasi-convex; 
(f) ~ is concave<::> ~ is quasi-concave; 
(g) ~o is linear c> ~ satisfies betweenness. [] 
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A P P E N D I X  1: P R O O F S  

Often, without further mention, the result is used that a nondecreasing 
function from an interval to ~ is convex as soon as it is nondecreasing 
and satisfies 'midpoint-convexity', i.e., p( (~  + 9)/2) ~< (~p(tx) + q~(~))/ 
2 for all arguments /~, u. This follows from Hardy, Litttewood and 
Pdlya (1934, Theorems 111 and 86, where one should note that their 
term 'convex' has the same meaning as our term 'midpoint-convex'), 
firstly on the interior, then by nondecreasingness at a right endpoint, 
next by midpoint-convexity at a left endpoint. 

Proof of  Theorem 12. We first suppose that RDU holds and derive 
the conditions for the preference relation. With the exception of 
stochastic dominance, everything is straightforward from substitution 
and Equations (4) and (6). So we only derive stochastic dominance; it 
is taken in the strict sense in this paper. As is well known, stochastic 
dominance is satisfied if ~ is continuous. If ~ is not continuous, then 
the transformed decumulative distribution functions may be discon- 
tinuous and correspond to probability distributions that are not 
countably additive/set-continuous. Contrary to what has sometimes 
been thought, stochastic dominance need not hold under finite ad- 
ditivity, such as resulting for instance from Savage's (1954) model; this 
is pointed out in Wakker (1993d). However, in the present case, where 

contains only countably additive probability distributions with right- 
continuous distribution functions, the fact that the transformations of 
these distribution functions may not be right-continuous does not pose 
a problem: suppose that P stochastically dominates Q and P C  Q. 
Then there exists tx C ~ such that P(U <~ Ix) < Q(U <~ Ix). Obviously, 
l~ < U(M). By countable additivity and the implied right continuity of 
distribution functions, there exist 6, E > 0 such that Q(U ~ l ~ ) - e  > 
P(U <, I x + 6 ). For each IX < r < ix +/~ we have Q(U < "r) >>- Q(U <~ 
I~)>Q(U <~lX)-e> P(U ~-Ix +S)>lP(U <r). Hence Q(U>ir)~< 
Q(U > p~) < Q(U > l x) + e < P(U > I~ + 6 ) <~ P(U >i ~'). Applying (1) 
to calculate RDU(P)  and RDU(Q) ,  we see that the integrand for P is 
always greater/equal than the integrand for Q by stochastic dominance 
and countable additivity. On the interval ] / z ,~+S[  the inte- 
grand for P is greater/equal q~(Q(U > ix)+ E), the integrand for Q is 
less/equal ~(Q(U > IX)). Because q~ is strictly increasing, strict prefer- 
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ence of P over Q follows, as required by stochastic dominance. In 
more general contexts, where ~ may contain strictly finitely additive 
probability measures, stochastic dominance does not hold in general. 
As pointed out in Wakker (1993d), it should then be required only for 
simple probability distributions, with weak stochastic dominance 
imposed on all probability distributions. 

Next suppose that the conditions for preferences hold. It must be 
shown that R D U  holds. The proof uses the generalized results on 
additive representation theory as developed in Wakker (1991a, 1993a). 
First fix a probability vector (Pl ,  • • -,  P , )  with n/> 2. We simply write 

for the induced binary relation on [0,M]] (this notation was defined 
in Equation 7). This preference relation satisfies all conditions in 
Statement (ii) of Theorem 3.2 in Wakker (1993a): It is a weak order, 
continuous by simple-continuity, and it satisfies a >//3 ¢~ ( x i , . . . ,  x i_ 1, 
a ,  x i + l ,  . . . , x , ) ,  > ( x l ,  . • • , x i - 1 ,  / 3 ,  x i + l ,  . • • , X n )  ( 'monotonicity').  
Tradeoff consistency immediately implies 'generalized triple cancella- 
tion',  i.e., the condition of Observation 8 with i = j  and probabilities 
fixed. Continuity of > on [0,M] is immediate, > being identical to ~>. 
By Theorem 3.2 of Wakker (1993a) there must exist an extended 
additive representation ( x i , .  . . , x , )  ~ E j~=I  V i ( x i )  for > where possibly 
V 1 assigns the value - ~  to the minimal outcome 0 and/or  V, assigns 
the value o0 to the maximal outcome M = ~. All other Vj values are 
real. By standard procedures it can be shown that tradeoff consistency 
implies that the different Vjs 'locally' order differences the same way 
where they are finite and hence can be taken proportional to each 
other. This is completely similar to Wakker (1989a, Lemma VI.8.2) 
and will not be elaborated. It follows that, for the minimal outcome 0, 
lim, + 0 Vl('r) is finite by proportionality with V 2 and that VI(0 ) can be 
taken as this limit; similarly V,(M) can be taken as real limit, and all 
Vjs are real-valued and proportional on their entire domain. Conse- 
quently > on [0,M]~ is represented by ( x l , . . . ,  x , ) ~  T.i~__ ~ h j U ( x i )  for 
a continuous cardinal U and positive Ajs summing to one. Define 
~ ( r ~ =  1 • ' ~ i ~ < n  pj).=E~= 1 ,tj for all 1 . By the uniqueness up to similar 
positive affine transformations of the Vjs found above (see Wakker, 
1993a, 'joint cardinality'), those ¢ values are uniquely determined and 
U is cardinal. 
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At this stage the U and q~ values obtained might be thought to 
depend on the chosen probability vector (Pl , .  • •, P,). However, for 
any two probability vectors a third 'more refined' probability vector 
can be considered such that all lotteries obtained from the first or 
second probability vector can also be obtained from the third. By 
standard arguments this shows that the ~p values are independent of 
the particular partition, and that U is cardinal and can also be chosen 
independent of the partition. In short, the desired RDU representation 
and uniqueness results have been obtained for the simple lotteries. 

The extension to nonsimple lotteries is routine and, given the 
minimum and maximum utility values, an elementary application of 
Wakker (1993c). A brief sketch is as follows. Because each considered 
probability distribution P is bounded (by 0,M), there exist sequences 

j ~  
of simple probability distributions (P) j= l  and (QJ)~=~ such that the 
PJs are all stochastically dominated by P and the Q Js all stochastically 

- 1  - 1  dominate P, and further 1/j >1 Gejv('r ) -Ge jv ( z )~0  for all j, ~-, with 
the inverses of distribution functions defined on [0,1] as usual. This 
uniquely determines the U value of the certainty equivalent of P, 
which represents preferences, as the RDU value of P. 

That continuity conditions of q~ imply the corresponding continuity 
conditions in probability for > is straightforward. Next suppose that 
(8) holds. Take an arbitrary 0 < p  < 1  and let (p, M; 1 - p ,  0 ) - / 3 .  
Taking/3j convergent to/3 from below (for more general outcome sets, 
as considered in Appendix 2, let U(/3j) converge to U(/3) from below) 
and applying (8), shows that q~ is left-continuous at p. The other 
continuity results are established similarly. • 

Proof of Theorem 14. The implication ( i ) ~  (ii) follows from the 
lines below the theorem. So we assume (ii) and derive (i). 

We take any fixed 0 < p  < 1 and use only lotteries of the form (p, xl; 
l - p ,  x2). Suppose that /z is a nonextreme outcome. The next 
paragraph shows that an interval S :={a  E c~ :/z+ ~>a >~/x-}, with 
/x + > /z  > / z - ,  can be found so that on S the implication in (4) can be 
reversed for >~. 

The details for finding S are as follows. Take any 0 </x, e.g. 0 = 0. 
By connectedness of the range of U we can take/x +,/x- so 'close' to/x 
that ~ + > / z > / ~ - > 0  and ~pl(p)(Ul(l~+)-Ul(tx-))<[1-q~l(p)] 
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(UI(IX-)-UI(O)) .  Then for each a > / 3  in S:={~/:/x+~>y~>/x-}, 
(p,  a ;  1 - p ,  0) < l(p,  /3; 1 - p ,  /x-). Obviously, (p, a;  1 - p ,  0) > 
(p , /3 ;  1 - p,  0). By continuity and connectedness, there exists ~r(a,/3) 
between/x-  and 0 such that (p, a;  1 - p ,  0) - l (p , /3 ;  1 - p ,  o-(~,/3)). 
Hence for each o~>/3, T > 6  in S, UI (eO-UI ( /3 )>~UI (y ) -  
g~(6 ) ~ (p, y; 1 - p, O )<~(p, 6; 1 - p, o-(a, /3 )) ~ afl > ~*y6 (the last 
implication uses the 1 equivalence above). 

Hence on S, for all a >//3/>7 ~>~, u l ( a )  - Ul(fl)  <~ UI(T) - U1(6) 
implies a/3<~*y& which implies, by stronger decrease of marginal 
utility, a/3<z*y6. This implies, by (4), U2(a)-uZ( /3)<-U2(y)  - 
U2(6). By standard arguments, Statement (i) is satisfied on the open 
interval UI(S) around the point U~(/x) in the interior of the range of 
U a. The result follows on Ux(]0,MD, and by continuity on the entire 
UI([O,M]). [] 

Proof of Theorem 20. We only derive the results concerning 
convexity. First suppose that q 2 =  0 °q~ 1 with 4' convex, and obviously 
continuous and strictly increasing. Suppose that p, q, A, /x I are as in 
the antecedent preference in (11). By connectedness of the range of 
U 2 one straightforwardly obtains the midpoint-outcome/x 2 between P 
and Q. For simplicity of notation, set UI (0 )=  U2(0)= 0, U~(M)= 
U2(M) = 1. Substituting RDU and Lemma 18 in the antecedent 
preference in (11) gives 

q0'(p) + q~l(q) 
1 i> ~ (Ap + ( 1 - h ) q ) .  (13) 

So 

q Z(p) + q2(q) O(q l(p)) + 0(q i(q)) 

2 

~>0( rp I(p) + q~ l (q)  ) 2 

>/4,(q~l(Ap + (1 - A)q)) 

= q~2(Ap + (1 - A)q), 

the first inequality by convexity of 0, the second by (13). The 
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established inequality implies the second preference in (11). So .~2 is 
more averse to probabilistic risk than _>1. 

Next we suppose that >.2 is more averse to probabilistic risk than _>1 
and derive ~0 as above. As q l and ~p2 are strictly increasing and 
continuous functions from [0,1] to [0,1], there exists a 0 with all 
desired properties except possibly convexity; convexity is established 
next. For each p, q there exists, by continuity of q~, a h such that 
q~l(hp + (1 -) t )q)  = (q l(p) + ~pl(q))/2" This gives the antecedent 
preference in (11) (with equivalence), which implies the second 
preference in (11), thus the right-hand side of (9). It follows that 
satisfies the midpoint-convexity condition for its arguments q01(p), 
~pl(q), hence, by surjectivity of 1 ,  for all of its arguments. • 

Proof of Corollary 21. We only consider the case of convexity. 
Setting U(M)= 1, U(0)=0 ,  the condition in (12) implies (q~(p)+ 
q~(q))/2>~p(p+q)/2, i.e., midpoint-convexity. Convexity follows. 
The reversed implication, even for general lotteries P, Q, follows from 
Observation 2. • 

Proof of Theorem 24. We only consider the first statement. As 
shown in Observation 2, convexity of ~p implies convexity of RDU, 
hence quasi-convexity of > .  So assume that ~ is quasi-convex, which 
implies that RDU is also quasi-convex. It remains to be proved that 
is convex, i.e., RDU is convex. 

The 'leading idea' in the proof below is based on a measure for 
convexity, different from the Pratt/Arrow measure and 'vanishing in 
the small'. For any v >/x we write 

~o(/.)/2 + ~p(v)/2 - ~o(/z/2 + v12) 
- 

(14) 

This h can be interpreted as a measure of convexity of ¢ on the inter- 
val [/z, v]. Suppose that the strictly increasing ~ is nonconvex. Then 
some interval [/z, v] has a negative h value. Loosely speaking, for any 
interval [o-, r] disjoint from [/~, v], it will be shown, by consideration 
of proper lotteries, that, under some restrictions, the measure of 
convexity of q~ with respect to [o-, r] must kind of make up for [/x, p], 
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and be greater/equal  than -A. Since the mentioned measure will 
(under differentiability) tend to zero as ~- tends to o-, nonconvexity of q~ 
leads to a contradiction. A detailed elaboration is given below. 

As a preparation for the proof  of the claim about  - ) t  above, we 
show, for general pc, v, o., r: 

L E M M A  26. Suppose  that pc < v <~ o. < 7. Then A[pc, u] + A[o-, r]/> 0. 
Proof .  All lotteries in this proof are of the form (pc, xl; (v - pc)/2, 

x2; (v - / , ) / 2 ,  x3; (o. - v), x4; (~- - ~r)/2, xs; (z - o')/2, x6; 1 - z, x7), 
with fixed probabilities and x 1 i> - . .  ~>XT, and always with xl = a, 
x 4 = 3,, x 7 = eJ ° So the seven probabilities are suppressed. As an aid 
for the reasonings below, we display the seven decision weights 
(defined in (3)): 

[ ~ v+pc  / v  + tx'~ 
,p(pc ),,0 ~ ) -  q~(pc), q~(v)- ,; ~ , - ~ ) ,  ,;(o') - q~(v), 

( o - +  ~'~ 
q~(°'~'~T-T) -q~(° ) '  q~(~ ' ) -~\  2 / , 1 - q ~ ( r ) .  

We can take outcomes a > fl/> 3' ~> S > E such that 

3,, , )  - 3,, e ,  , ,  (15) 

Calculations are greatly simplified by working with RDU*,  instead of 
R D U ,  with 

R D U * : = R D U  - RDU( (a ,  /3, /3, 3,, e, e, E)) 

= R D U - { q ~ ( p c ) U ( o 0  + [ q ~ ( - ~ - ) -  q~(pc)]U(/3) 

+ [ ~ ( v ) -  ~ ( Z - ~ - ~ ) ] U ( / 3 ) +  [~,(o-) - ,;(v)]U(3,) 

+ q~ "r+o.  

That is, we cancel common first, fourth, and seventh, terms, and 
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subtract second, third, fifth, and sixth terms as minimal in (15). The 
equivalence (15) in terms of RDU* equalities gives 

[ ~ 0 )  - ~ ( o - ) ] ( u ( 6 )  - u @ ) )  : [~(,.,) - ,p (u . ) l (U(o, )  - u(f i)) .  
(16) 

By quasi-convexity of _> each of the two lotteries in (15) is preferred to 
the 1/½ mixture of them, i.e., (a, a, /3, 7, 6, E, E). So each of their 

1 1 R D U *  values, as well as the ~/~- mixture of them, is at least as large as 
the RDU* of the mixture-lottery: 

+ -[~(~) -7 ~(~)](u(6- ) - u(,))~> 
[ ~ , ( - ~ ) -  ~(.)]m(,~) - u(t3)) 

+ q~ ' r + o -  

Subtracting gives 

[ ~0- )  + ¢ ( ~ )  1 ~- + o-\  l 
+ 

I ~ ( - W - ) j ( u o )  - u@))/> o. 

Dividing by the positive factors in (16) gives 

+ u + / z  

[ ~(~) + ~(~) 
+ 

L 2 

So ~,[~, ~] + ;~[~, ~-]/> 0. 

Suppose now that the strictly increasing (p is not convex. Then for 
some interval, say [/z, u], we have A[/z, v] < 0. It follows from the 
above lemma that ~o is convex on [0,/z] and [u, 1]. In particular it has a 
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finite right derivative everywhere on [0,/x[ and [v, 1[. For each tr from 
one of these intervals where q~ has positive right derivative, it follows 
from elementary analysis that A[tr, ~-] tends to 0 if r decreases to or, the 
derivative being finite. This contradicts Lemma 26 for a ~- close enough 
to o-. Hence,  everywhere on [0, /z[ and on [v, 1[ the right derivative of 

is 0, and q~ must be constant. Because ~0 is strictly increasing, /x = 0, 
v = 1, and ~p(1/2) > 1/2 follows. Now take any 0 < cr < 1/2. Then g~ is 
not convex on [0, 1/2] or on [o-, 1], thus has an interval with negative h 
within one of these two intervals. But, as shown above, this either 
implies that q~ is constant on [1/2, 1[, or on [0, or[. Neither of these is 
possible. Nonconvexity of q~ is impossible. • 

APPENDIX 2: EXTENSION TO GENERAL OUTCOME SETS 

For the sake of easy accessibility, in the main body of the paper the 
results have been formulated for the case where q~ is a bounded closed 
interval [0, M], and utility is strictly increasing. This can straight- 
forwardly be generalized to the case where c¢ is any connected 
topological space, mainly by Wakker (1993c and 1993a). The proof for 
the case ~ = [0, M] has been presented with this in mind. The 
adaptation of the results is described briefly. 

In general, strict increasingness of U is deleted everywhere (in 
particular in the definition of RDU) and the usual ordering i> on ~ is 
replaced everywhere by the preference relation ~ restricted to qg 
(outcomes identified with degenerate lotteries), where there are 
assumed to exist outcomes a >/3. Equalities a =/3 are sometimes 
replaced by equivalences a - / 3 ;  the midpoint-outcomes in Definition 
17 are no longer uniquely determined. Under RDU,  U obviously 
orders outcomes in agreement with > on the outcomes, which gives 
the analogue of strict increasingness. The latter also gives natural 
extensions of stochastic dominance, similarly to Wakker (1990a; there 
events of obtaining a fixed outcome or any outcome at least as good 
were considered): P stochastically dominates Q if for each outcome 
o~ E c¢, p(  (/3 E c~ :/3__< a})  ~< Q( {fi E ~ :/3 < a}) .  Several conditions in 
the text used lotteries (p, M; 1 - p ,  0); here one takes instead the 
lottery (p,  o'; 1 - p ,  ~-) for any outcomes cr > r. 

With the above modifications, all results and proofs concerning 
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probabilistic risk aversion in Subsections 4.2 and 4.3 remain valid 
without further modifications. In Definition 13, the comparative 
definition of decreasing marginal utility, the condition must be added 
that the two preferences coincide for the certain outcomes, and one 
should take a ~ I/3 ~ 13, ~ ~6. With these modifications, Theorem 14 
and its proof remain valid. Because there is no direct meaning for 
concavity/convexity/linearity of utility for general outcomes, no 
adaptation of Corollary 16 should have been expected. 

So we finally turn to Theorem 12. The result is adapted here only on 
the set of 'bounded lotteries'. A lottery is bounded if it assigns 
probability 1 to a set { / 3 ~ : o ~ / 3 ~ } .  That all conditions for 
preferences follow from RDU is straightforward and is not elaborated. 
So suppose that all conditions for preferences hold. To derive is that 
RDU holds. Continuity of ~ on c~ is now derived from simple- 
continuity with n = 1. Then the derivation of RDU for simple dis- 
tributions is exactly as in the proof of Theorem 12. The extension of 
RDU to the bounded lotteries is obtained by the same reasoning as in 
the proof of Theorem 12, but now for the probability distributions as 
induced on the range of U. Also uniqueness results require no 
adaptation. The utility function may very well be unbounded, for 
example if ~ = ~ and the utility function is the identity. 

The extension to any arbitrary subset of the set of lotteries with 
finite RDU value, also if not bounded, can be obtained by Theorems 
21 and 29 in Wakker (1993c), because an underlying probability space 
can always be constructed and RDU then is a special case of Choquet 
expected utility. For brevity, elaboration is omitted. 

THEOREM 27. Let the outcome set q~ be an arbitrary connected 
topological space instead of [0,M] and let ~ be the set of  all bounded 
lotteries over q~. Then Theorem 12, Theorem 14 with the condition 
[o~>1/3<=>~>2/3] added in Statement (ii), Theorem 20, Corollary 21, 
Observation 22, Theorem 24, and Theorem 25 without Statements (a), 
(b), and (c), remain valid. 

Finally, we give some additional comments on the simple continuity 
condition used in this paper. The most customary continuity conditions 
for probability distributions are continuity with respect to weak 
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c o n v e r g e n c e ,  o r  wi th  r e spec t  to  L 1 conve rgence ,  of  the  d i s t r ibu t ion  

func t ions .  This  r equ i r e s  b o t h  con t inu i ty  in o u t c o m e s ,  imply ing  con-  

t inu i ty  of  ut i l i ty  in R D U ,  and  con t inu i ty  in p robab i l i t i e s ,  which  impl i e s  

con t i nu i t y  of  the  p r o b a b i l i t y  t r a n s f o r m a t i o n  ~. I t  a lso imposes  con- 

t inu i ty  r e s t r i c t ions  on  p r o b a b i l i t y  d i s t r ibu t ions  wi th  inf ini tely m a n y  

o u t c o m e s ;  ' i n f i n i t e -d imens iona l '  con t inu i ty  is c o m p l i c a t e d  and  m o r e  

r e s t r i c t ive ,  and  o f t en  impl ies  b o u n d e d n e s s  o f  ut i l i ty .  A s  shown in this  

A p p e n d i x ,  W a k k e r  (1989a,  C h a p t e r  V ) ,  and  W a k k e r  (1993c), s imple  

con t i nu i t y  does  a l low for  u n b o u n d e d  uti l i ty.  

A C K N O W L E D G E M E N T S  

T h e  r e sea rch  has  b e e n  m a d e  poss ib le  by  a fe l lowship  o f  the  R o y a l  

N e t h e r l a n d s  A c a d e m y  of  A r t s  and  Sciences ,  and  a fe l lowship  o f  the  

N e t h e r l a n d s  O r g a n i z a t i o n  for  Scientif ic  R e s e a r c h .  T h e  first ve r s ion  of  

this  p a p e r  r ece ived  he lpfu l  c o m m e n t s  f rom B o b  N a u  and  R a k e s h  

Sar in ,  the  p r e s e n t  ve r s ion  f rom a n o n y m o u s  re fe rees  and  n u m e r o u s  

co l l eagues ;  H e i n  F e n n e m a  gave  very  useful  c o m m e n t s .  

NOTES 

1 A discussion of the results in rank-dependent utility that are presently available is given 
in the beginning of Section 4. 
z See the sixteenth paragraph (Le t . . .  etc.) in combination with the ninteenth paragraph 
(The . . .  expectation) of Section 3. 
3 Friedman and Savage (1948) sometimes seemed to have a different point of departure; 
their work may be taken as evidence that risk attitudes cannot be entirely captured in 
utility. 
4 Compare Savage (1954, p. 101). 
5 Compare for instance Krzysztofowicz (1983, Conclusion 1) with Krzysztofowicz and 
Koch (1989, top of p. 182); see also the early McCord and de Neufville (1983, p. 295). 
6 The latter can be modeled by 'Choquet expected utility', as initiated by Schmeidler 
(1989) for decisions under certainty. Wakker (1990a) shows that RDU is the special case 
of Choquet expected utility when applied to decisions under risk, the domain of this 
paper. For a mixed case of risk and uncertainty, Jaffray (1989) developed a model that 
distinguishes between marginal utility and attitudes towards ambiguity, but preserves 
neutrality with respect to probaNtistic risk. 
7 In RDU formalized through decision weights in Formula (3). 
SBy the conventions of notation of this paper, for p = 1 we write (1,M) rather than 
(1,M;0,0), and for p = 0 we write (1,0) rather than (0,M;1,0). 
9 Concavity in the dual setup of Chew, Karni, and Safra (1987). 
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10 Given the convention that all probabilities in the notations of lotteries should be 
positive, the seven-outcome notation above applies only if 0 < p~ < v < cr < ~" < 1. If 
0 =/x or v = tr or r = 1 then, strictly speaking, the associated outcomes ct or 3' or e 
should be suppressed. This does not affect the proof, where those fixed outcomes play 
no role anyhow. Therefore the conclusions also hold for those probabilities. 
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