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ABSTRACT. Building on previous work of A. Camacho, we give necessary and sufficient 
conditions for the existence of a cardinal utility function to represent, through summation, 
a preference relation on sequences of alternatives. 

1. I N T R O D U C T I O N  

Till recently, there were mainly three ways to derive cardinal utility. One 

is the approach, using strength of preference as a primitive. A second 
approach uses lotteries. Thirdly there is the approach where alternatives 
have several coordinates, and the utility function is a sum of  coordinate 
functions. 

Recently Camacho came with a new approach, the repetitions 

approach.  For  a careful exposition of  this approach, a comparison to 
other approaches, and an explanation of its intuitive virtues, the reader is 

referred to Camacho [1-4]. The purpose of this paper is to use the ideas 

of  Camacho to give a set of  necessary and sufficient conditions, alternative 
to his set, and to give some supplement to his work. Where Camacho 
works with finite sequences, we use infinite sequences with tails e0 ("zero"); 
in Section 3 we shall show that our set-up is in fact equivalent to 
Camacho's. We only work with these infinite sequences for their con- 
venience in our present mathematical work. 

We assume we have a nonempty set ~ '  of  alternatives, with one special 
element e0, the "receive nothing" alternative. By 5~ c d ~ we denote the 
set of  those infinite sequences x = (xj)j~, for which 

N~ ,= sup ({0} w {j  ~ ~ ' x j  # ~o}) 

is finite, so x has a"tail",  constant ~0. Furthermore we assume a binary 
relation ~ on 5~, called preference relation, present. Usual notations are 
x ~ y f o r y  ~ x, x > - y f o r x  ~ y &  n o t y  ~ x, x < y f o r y  ~- x, and 
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x ~ y for x ~ y & y ~ x. ~ is a weak order if it is transitive and 

complete (x ~ y or y ~ x, for all x, y ~ X). 

Our purpose is to find a function 

u : d  ~ ~ s.t. x ~ y iff X/= l [u(xj) - u(ys) ] /> O. 

For  such a function to exist, ~ must certainly satisfy the following four 

axioms, as can be checked straightforwardly and is not elaborated here. 

A X I O M  1. ~ is a weak order. 

A X I O M  2 (The Permutation Axiom). For  all x, y ~ X, N ~ N, permu- 

tations ~ on { 1 . . . .  , N}, s.t. xj = Y~u) for all j ~< N, xj = yj for all 

j > N ; w e h a v e x  g y .  

(A reordering of  alternatives does not change desirability). 

A X I O M  3 (The Independence Axiom). For  all x, y, x ' ,  y '  ~ Y', i ~ N, s.t. 

xi = y~, x[ = y;, xj = xj and yj = yj for all j ~ i, we have 

x ~ y ~ x ' ~ y ' .  
(The preference between x and y is independent of  coordinates i at 

which x and y are equal.) 

A X I O M  4 (The Archimedean Axiom). For  all x, y, v, w ~ Y" with x >- y, 

v ; > - w ,  there exists M e N  s.t. p ~ q where PkNx+j = Xj for all 

0 ~< k ~ M -  1, 1 <<. j ~ Nx, PMNx+j = Wj for all 1 ~< j ~ Nw, and 

p,  = a0 for all n > MNx + Nw; and where qlNy+i = Yi for all 

0 ~< l ~ M -  1, 1 ~ i <. Ny, q~iNy+i= v~ for all 1 ~ i ~ Nv, and 

q,, = a0 for all m > MNy -k N~. 
(The difference between v and w can be compensated by a sufficient 

number  of  differences between x and y.) 

Constructions such as that  o f p  above will more often be carried out in 
the sequel. One can imagine the "untailed" part  of  p to consist of  M 
replicas of  the "untailed" part  of  x, followed by one replica of  the 
"untailed" par t  of  w. Axiom 4 has not been used by Camacho,  but he 
indicated it more  or less in Section 2.1, page 364, (d), in [3]. 



THE REPETITIONS APPROACH 

Our  ma in  result: 

35 

T H E O R E M  1.1. The  following two assert ions are equivalent:  

1.1. (i) "There  exists u: ~r --* N s.t. 

x 3 y ~ :c9=~ [u(xj)  - u(yj ) ]  /> 0 ."  

1.1. (ii) " 3  satisfies ax ioms 1 to 4." 

Fur the rmore ,  if (i) holds, then u can be replaced by fi: sd --, ~ if  and 

only if real T and posit ive o- exist s.t. fi = r + au. 

The  implicat ion (i) ~ (ii) is s t ra ightforward.  In the next section we 

assume (ii), and derive (i), and the " F u r t h e r m o r e  . . ." s ta tement .  

2. PROOF OF THEOREM 1.1 

Assume Axioms  1 to 4 are satisfied. We define an equivalence relat ion E 

on Y" by xEy if rl {jfxj = //} It = [] {J]Yj = /~} n for  all/~ # ~0 in sd. By 

[x] we denote  the equivalence class { y e 5F] yEx}, and [X] . .=  {[x][x e 5F }. 

By the pe rmuta t ion  Ax iom we have E __G_ ~ .  We m a y  write [x] = 
Zy=,n j [a j ] ,wi thn ,  n j~  N f o r a l l j , { x i : i ~  N} = {~j: 1 ~< j ~< n} w {a0}; 

and nj = I] {i: xi = c9} n if c9 ~ c~~ for  all j ,  and ~j ~ ~k i f j  # k. We define 
[x] + [y], and n[x] for  n ~ N u {0} in the usual way. The  opera t ion  + on 

[ f ]  is associative and commuta t ive ,  has neutral  e lement  [(~0, a0, . . .)]. 

We define the b inary  relat ion 3 '  on [2F] by Ix] 3 '  [Y] if there exist 

v ~ Ix], w e [y], s.t. v ~ w. By Axioms  1 and 2 this is iff v ~ w for  all 

v ~ [x], w ~ [y]. So we have x 3 Y ~:~ [x] 3 '  [Y]. The  nota t ions  ~ ' ,  >- ' ,  
', ~ '  are as usual.  We have, for  all x, y, v, w ~ f :  

L E M M A  1'. 3 '  is a weak order.  

L E M M A  2'.  x 3 Y ~=~ [x] 3 '  [Y]- 

L E M M A  3'. (Additivity). [x] 3 '  [Y] ~=~ [x] + [v] 3 '  [Y] + [v]. 
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Proof .  @l, . . . , vN v, x l ,  . . . , xN; ~o . . . .  ) ~ [x] + [v]; ( V l , . . . , v N ,  
Yl, �9 - - , YN~, ~o, . . .) e [y] + [v]; ( a o , . . .  , co, x~, . . . , x~;  ~o, . . .) (first 

N~ coordinates  co) e [x]; @ , . . . ,  c~ ~ Yl, �9 �9 �9 YN,, ~0 . . . .  ) (first Nv coordinates  
~o) ~ [y]. N o w  apply independence o f  7 ,  N~ times; then L emma  2'. 

L E M M A  4'. ( A r c h i m e d e a n A x i o m f o r  7 " ) .  I f [x]  ~ '  [y], [v] >-'  [w], then 

M ~ tN exists s.t. M [ x ]  + [w] ~ '  M [ y ]  + [v]. 

Proof .  Define p,  q as in Axiom 4. Then  p ~ M [ x ]  + [w], q e M[ y] + [v]. 
Apply Axiom 4, and Lemma  2'. �9 

These four  lemmas enable us to apply Theorem 3.2.1.1 of  Kran tz  et al. 

[5]. In this we do not  need commuta t iv i ty  o f  + .  

T H E O R E M  2.1. Fo r  any binary relation ~ '  on [of] the following two 
assertions are equivalent. 

2.1. (i) "There  exists ~b: [of] ~ R s.t. [x] ~ '  [y] r q~([x]) >~ q~([y]) 

and s.t. qS([x] + [y]) = q~([x]) + ~b([y]), for  all x, y ~ of." 

2.1. (ii) "%j' is a weak order  that  satisfies additivity and the Archi- 
medean Axiom."  

Fur thermore ,  another  funct ion/}  satisfies (i) if and only if positive a exists 

s.t. = 
Proof .  By Theorem 3.2.1.1 o f  Kran tz  et al. [5]. No te  for  this that,  if  

[w] 7 '  [v] and [x] >-'  [ y], then by repeated applicat ion o f  Lemmas  1' and 
3', [x] + [w] ~ '  [y] + [w] ~ '  [y] + [v]. So still the result o f  Lemma  4' 

holds, with M = 1. �9 

L E M M A  5. Let  ~ be a binary relation on of, %J' one on [~r], s.t. 
x ~ y ,*~ [x] ~ '  [y]. Then  Assert ion 2.1. (i) implies Assert ion 1.1. (i) with 

for  ~ ,  by the definition u(~) .'= qS([~, ~0 . . . .  ]). And  then Assert ion 1.1. 
(i) with ~ for  ~ implies Assert ion 2.1. (i) by the definition 

 k(xy=, = nj[u( j) - u @ ) ] .  

Proof .  Let  Assert ion 2.1. (i) be satisfied. Define u as above.  Then  
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x ~ y <=> [x] %f' [y] <=> (N = max {Nx, Ny}) EN=I l[x:] ~ '  
~-f' ~];=1 l[y/] <=~ EN=I ~6[(xj, , 0 , . . . ) ]  >~ Ejv=l ~b[(y/, ~0, . . . ) ]  <=> 

<=> E~-I [u(xj) - u(y/)] /> 0: Assert ion 1.1. (i). 

�9 . 
Next  let Assert ion 1.1. (i) be satisfied, with ~ for 9 .  Define q~ as above. 

Then  q~([x] + [y]) = q~([x]) + q~([y]) for  all x, y. And 

q~(ET: , nj[~j]) >~ q~(E~=, m;[/~i]) <=> ET=, ni[u(~j) -- u(~~ >~ 
~> Eg% 1 m~[u(fl~) -- u@)]  ~> {let x (~ / l  ,0+ ,  / = a s for  all 

1 <<. j <<. n, 1 <~ nj <~ n s , x a  = ~ 0 f o r a l l a  > s  

y analogously f rom m, i, 3i i.s.o, n, j ,  as} E~I  [u(xj) - 
- -  /.,/(yj)] > 0 <:=I> X ~ y ~ [X] ' ~ t  [ y ]  ~ '~7=1 nj[o~j] ~t 
"~" ~.,iml mi[fli]: Assert ion 2.1. (i). �9 

N o w  we can complete the p roo f  o f  Theorem 1.1. Assertion (ii) there 

implies Assert ion 2.1. (ii), as we saw by Lemmas  1' to 4'. Thus it implies 
Assert ion 2.1. (i). Lemma 5 now gives Assert ion 1.1. (i). Tha t  function u, 
satisfying 1.1. (i), can be replaced by any fi = z + au for  real z and 

positive a, is s traightforward.  Conversely, suppose u in 1.1. (i) can be 

replaced by ft. Then  derive q~ f rom u as in Lemma 5, and analogously 
f rom ~. By Theorem 2.1 we get that  ~ = aq~ for  a positive real a. This can 
only be if fi = z + au with z = ~(~0) _ au(~O). 

3. EQUIVALENCE OF OUR SET-UP WITH CAMACHO'S 

First we formulate  some consequences of  Axioms 1 to 4, which directly 
follow from Theorem 1.1. 

D E F I N I T I O N .  We say ~ satisfies the Repet i t ions  A x i o m  if [x ~ y <=> 
x '  ~ y']  for  all x, y, x ' ,  y '  ~ Y" for which n, m ~ ~ exist s.t. x ~ y, 

m >~ Nx, m >>. Ny, X'km+g= X~ and Y'km+j = Y/ for  all 1 ~< j ~< m, 
0 ~< k ~< n - 1, xi' = y; = ~ 0 f o r a l l i  > nm. 

C O R O L L A R Y  1. Axioms 1 to 4 imply the Repeti t ions Axiom. 
Proof.  x ~ y <=> Z~-l [u(xj) --  u (y j ) ]  ~ 0 ~ n Z~=l [u(xj)  - 

u(y/)] >~ 0 <=> ~i~1 [u(xj) - u(yj )]  >~ 0 <=> x '  > y ' .  
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D E F I N I T I O N .  We say 7 satisfies the Rate of  Substitution Axiom if for 

all ~, /3, 7, 6 e ~ with (c~, c? . . . .  ) ~ (/~, e 0 , . . . )  and (?, c~ ~ . . . .  ) >- 

(6, c~~ there exists R(c~,/~, ?, 3 ) e  R s.t. for all x, y e 5f, n, 

m ~  N w {0}, A, B c N with A c~ B = q~, IIAH = n > 0, [IBI[ = m, 

x; = y ; f o r  a l l j C A  w B ,  x; = ~ a n d y ;  = fl for a l l j e A ,  x; = 6 and 

y; = ? for a l l j ~ B ,  we have x > - y i f f m / n  < R(a, f l , ? , 3 ) ,  x ~ y  iff 

m/n = R(~, fl, ?, 3), and x ~ y i f fm/n  > R(~, fl, 7, 6). 

C O R O L L A R Y  2. Axioms 1 to 4 imply the Rate  o f  Substi tution Axiom. 

Proof. Let, for c~, /3, y, c5 as above, R(c~,/3, 7, 3) = [u(e) - u(/~)]/ 

[u(~,) - u(6)] .  �9 

In Camacho  [2-4], also a nonempty  set d is the point  o f  departure,  but  

the set oafs ..= U~=l d "  o f  allfinite sequences o f  alternatives is considered. 

I f  x ~ d ", we say x has length n. There is assumed to be a binary 

(preference) relation ~ "  present on wf, such that  the restriction o f  9 "  to 

d "  is a weak order  for  every n ~ N, and such that  x ~ "  y for no x, y o f  

different length. F r o m  C a m a c h o ' s  set-up we can come to our  approach  as 

follows. Take  an arbi t rary element o f  d ,  denote  it as e0. Assign to every 

(xl . . . . .  x,)  e ~rf the element (xl, �9 �9 �9 , x, ,  c~ ~ . . .) o f  5F. A n d  write 

x ~ y if(x1 . . . .  , x,)  7 "  (Y~ . . . .  , y,) ,  with n = max {Nx, Ny}, for all 

x, y ~ Y(. 
Conversely, f rom our  set-up we can come to C a m a c h o ' s  set-up by 

defining x 7 "  Y whenever 

( x , , . . .  , x, ,  e0 . . . .  ) ~ (Yl . . . .  , y, ,  e0 . . . .  ), 

for  all x, y ~ ~ " ;  for all n e N. 

N o w  the combina t ion  o f  our  weak order  and independence Axioms for 
is equivalent to the combina t ion  o f  C a m a c h o ' s  weak order  and inde- 

pendence Axioms for 7 " .  Fo r  brevity we do not  elaborate that  here. Also, 
in the presence o f  weak orderness and independence, the permutat ion,  

repetition, and rate o f  substi tution Axioms in our  set-up are equivalent to 

those in C a m a c h o ' s  set-up. The key role in all this is played by the 

independence Axioms. 
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4. AN E X A M P L E  

In  th is  s ec t ion  we give a n  e x a m p l e  to  i l l u s t r a t e  the  necess i ty  o f  the  A r c h i -  

m e d e a n  A x i o m .  A l s o  this  s h o u l d  i l l u s t r a t e  whe re  we dev i a t e  f r o m  

C a m a c h o ' s  se t -up .  L e t  d = {c~ ~ fl, 7, 6, ~}, a n d  let  f :  ~/' ~ ~ be s.t. 

f (~0)  = 0 , f ( f l )  = l ,  f ( 7  ) = ,,/2, f ( 6 )  = x / 3 , f ( e )  = 1 + ,,/2 + ~/3. F o r  

x,  y e X ,  we have  x >- y i f  ZT= 1 [ f ( x s )  - f ( y j ) ]  > 0 or  ZT= 1 [ f ( x j )  - 

f ( y j ) ]  = 0 a n d  [ [ { j : x j =  e}[[ > I [ { J : Y j =  e}H. W e  have  x , ~ y  i f  

ZT=, [ f ( x j )  - f ( y j ) ]  = 0 a n d  [[ { j :  x s = e} [[ = H {J: Ys = e} H, w h i c h  c a n  
be  seen to  o c c u r  o n l y  i f  x E y ,  wi th  E as in Sec t ion  2. O f  cou r se  x ~ y i f  

x ;~ y o r  x ~ y. I t  c an  be  seen t h a t  ~ is a w e a k  o rde r ,  i t  sat isf ies the  

p e r m u t a t i o n  a n d  i n d e p e n d e n c e  A x i o m s .  Bu t  it  does  n o t  sa t i s fy  the  A r c h i -  

m e d e a n  A x i o m .  T o  see this ,  t ake  x = (e, e0, . . .), y = (fl, y, 6, e0, . . .), 

v = ( f l , ~~  . . . .  ), w = (~0, c~0 . . . .  ). T h e n  x ~ y ,  v > - w ,  b u t  fo r  al l  

M e N, a n d  p ,  q as  in A x i o m  4 we have  p -< q s ince 

E~_, [ f ( P s )  - f(qJ)] = M E~= 1 [ f ( x j )  - f ( y j ) ]  + f ( w )  - f ( v )  < O. 

So A x i o m  4 is v io l a t ed .  I t  c an  eas i ly  be  seen t h a t  ~ satisfies the  R e p e t i t i o n s  

A x i o m ,  th is  in  f ac t  is i m p l i e d  b y  A x i o m s  1 to  3. W e  f inal ly  s h o w  t h a t  

sat isf ies the  R a t e  o f  S u b s t i t u t i o n  A x i o m .  T o  every  fou r  #, v, o-, z in ~ '  s.t. 

(#,  ~0, . . .) ~ (v, ~0, . . .) a n d  (~, c~ ~ . . .) >- (z, ~0 . . . .  ), we  ass ign  

R(# ,  v, or, z) .'= [ f ( # )  --  f ( v ) ] / [ f ( r  - -  f (z) ] .  

Le t  t hen  x,  y e Y ' ,  n, m e  N w {0}, A,  B c N wi th  [[A[[ = n > 0, 

HB[I = m, xj = yj  fo r  a l l j C A  w B,  x s = # a n d y s  = v fo r  a l l j e A ,  

x s = z a n d  Ys = a fo r  a l l j  e B. I f  n o w  m / n  < R ( # ,  v, a ,  z) ,  t hen  

Z ~ l  [ f (x j )  - f ( Y s ) ]  = n [ f ( # )  - f(v)]  - m[/(~r) - f (z)]  > 0, 

so x >- y.  I f  m / n  > R ( # ,  v, or, z) ,  t hen  a n a l o g o u s l y  x -< y.  

R e m a i n s  the  case  m / n  = R ( # ,  v, a ,  z). 

A p p a r e n t l y  t hen  [ f ( # )  - f ( v ) ] / [ f ( ~ )  - f ( z ) ]  is r a t i o n a l .  T h e r e  are  on ly  

a few poss ib i l i t i e s  fo r  this:  e i the r  # = v, o r  # = ~ a n d  v = z. In  e i the r  case  

x ~ y fo l lows .  
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