PETER WAKKER

THE REPETITIONS APPROACH TO
CHARACTERIZE CARDINAL UTILITY

ABSTRACT. Building on previous work of A. Camacho, we give necessary and sufficient
conditions for the existence of a cardinal utility function to represent, through summation,
a preference relation on sequences of alternatives.

1. INTRODUCTION

Till recently, there were mainly three ways to derive cardinal utility. One
is the approach, using strength of preference as a primitive. A second
approach uses lotteries. Thirdly there is the approach where alternatives
have several coordinates, and the utility function is a sum of coordinate
functions.

Recently Camacho came with a new approach, the repetitions
‘approach. For a careful exposition of this approach, a comparison to
other approaches, and an explanation of its intuitive virtues, the reader is
referred to Camacho [1-4]. The purpose of this paper is to use the ideas
of Camacho to give a set of necessary and sufficient conditions, alternative
to his set, and to give some supplement to his work. Where Camacho
works with finite sequences, we use infinite sequences with tails o, (“zero™);
in Section 3 we shall show that our set-up is in fact equivalent to
Camacho’s. We only work with these infinite sequences for their con-
venience in our present mathematical work.

We assume we have a nonempty set o of alternatives, with one special
element o', the “receive nothing” alternative. By & < ™ we denote the
set of those infinite sequences x = (x;);y, for which

N, = sup ({0} U {je N:x; # o))

is finite, so x has a‘“tail”, constant ¢°. Furthermore we assume a binary
relation 2= on &, called preference relation, present. Usual notations are
xxXyfory=x,x>yforx 2y&noty > x, x < yfory > x, and
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x~yfor x 2y&y = x. > is a weak order if it is transitive and
complete (x = y or y >= x, for all x, y € X).
Our purpose is to find a function

ured - Rst.ox zyiff L2, [u(x;) — u(y;)] = 0.

For such a function to exist, 2= must certainly satisfy the following four
axioms, as can be checked straightforwardly and is not elaborated here.

AXIOM 1. = is a weak order.

AXIOM 2 (The Permutation Axiom). For all x, ye ¥, N € N, permu-
tations 7 on {I,..., N}, s.t. x; = y,, for all j < N, x; = y; for all
j > N; we have x ~ y.

(A reordering of alternatives does not change desirability).

AXIOM 3 (The Independence Axiom). For all x, y, x', v € &, i e N, s.t.
X, =y, X =y, x;=x/ and y; =y for all j#i we have
xFyex Y.

(The preference between x and y is independent of coordinates i at
which x and y are equal.)

AXIOM 4 (The Archimedean Axiom). For all x, y,v, w € & with x > y,
v > w, there exists M eN st p>q where pw,; = x; for all
0<k<M-1,1<j<N, pun+j=wforall 1 <j< N, and
p,=o for all n > MN,+ N,; and where qu; =y, for all
0<I<SM-1,1<i<N, gunq+i = for all 1 <i< N,, and
g, = o forall m > MN, + N,.

(The difference between v and w can be compensated by a sufficient
number of differences between x and y.)

Constructions such as that of p above will more often be carried out in
the sequel. One can imagine the “‘untailed” part of p to consist of M
replicas of the “untailed” part of x, followed by one replica of the
“untailed” part of w. Axiom 4 has not been used by Camacho, but he
indicated it more or less in Section 2.1, page 364, (d), in [3].
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Our main result:

THEOREM 1.1. The following two assertions are equivalent:

1.1. (i) “There exists u: &/ — R s.t.
x =y 52, u(x) — u(y)] > 0.

1.1. (il) “= satisfies axioms 1 to 4.”

Furthermore, if (i) holds, then u can be replaced by #: & — R if and
only if real T and positive o exist s.t. # = 7 + ou

The implication (i) = (ii) is straightforward. In the next section we
assume (ii), and derive (i), and the “Furthermore . . .” statement.

2. PROOF OF THEOREM 1.1

Assume Axioms 1 to 4 are satisfied. We define an equivalence relation £
on Z by xEy if | {jlx; = B}| = [{jly, = B}| forall B # «”in /. By
[x] we denote the equivalence class { y € &'| yEx}, and [¥] := {[x]|x € Z'}.
By the permutation Axiom we have £ < ~. We may write [x] =
7 el withn, n,e Nforallj, {x:ie N} = {o: 1 < j<n}u{a}
andn, = || {i: x, = o;} | ifo; # o’ forallj,and o; # a,ifj # k. We define
[x] + [y], and n[x] for n € N U {0} in the usual way. The operation + on
[Z] is associative and commutative, has neutral element [(°, o°, . . .)].

We define the binary relation =’ on [4] by [x] =" [ y] if there exist
ve[x], we[y],st. v = w. By Axioms 1 and 2 this is iff v = w for all
v € [x], w € [ ¥]. So we have x ;= y < [x] =" [y]. The notations </, >,
<’, =’ are as usual. We have, for all x, y, v, w e &~

LEMMA 1’. 2=’ is a weak order.
LEMMA 2". x = y < [x] = [].

LEMMA 3'. (Additivity). [x] =’ [y] < [x] + [¢] =" )] + [2].
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Proof. (w1, -+, Oy, Xiy o oo Xy, @ ) €[] + [U); (@ - -, vy,
Vis « - - ,yNy,fxo, el A [l (@l xy, L, Xy, ) (first
N, coordinates a’) e [x]; (&, . . ., &%, yy, . . ., vy, o, . . ) (first N, coordinates
o) € [ ¥]. Now apply independence of 3=, N, times; then Lemma 2.

LEMMA 4'. (Archimedean Axiomfor ="). If[x] >"{y], [v] >’ [w], then
M e N exists s.t. M[x] + [w] =" M[y] + [2].

Proof. Define p, q as in Axiom 4. Then p e M[x] + [w], g e M[y] + [v].
Apply Axiom 4, and Lemma 2. [ ]

These four lemmas enable us to apply Theorem 3.2.1.1 of Krantz et al.
[5]. In this we do not need commutativity of +.

THEOREM 2.1. For any binary relation &’ on [%] the following two
assertions are equivalent.

2.1. (i) “There exists ¢: [Z] — R s.t. [x] ' [¥] < ¢(x]) = ()
and s.t. ¢([x] + [y]) = ¢(x]) + ¢([y]), forall x, ye 2.”

2.1. (i) “%’ is a weak order that satisfies additivity and the Archi-
medean Axiom.”

Furthermore, another function ¢ satisfies (i) if and only if positive o exists
st. § = a¢.

Proof. By Theorem 3.2.1.1 of Krantz et al. {5]. Note for this that, if
[w] 2=’ [v] and [x] >’ [ y], then by repeated application of Lemmas 1" and
3, [x] + w] =" [y] + W] =" [y} + [v]. So still the result of Lemma 4’
holds, with M = 1. [ ]

LEMMA 5. Let & be a binary relation on &, ¥’ one on [Z], s.t.
x ¥ y < [x] Z [y]. Then Assertion 2.1. (i) implies Assertion 1.1. (i) with
£ for 3=, by the definition u(x) :== ¢([a, a°, . . .]). And then Assertion 1.1.
(i) with = for = implies Assertion 2.1. (i) by the definition

¢(2;=1 nj[“j]) = p2a nj[u(“j) - “(“0)]-

Proof. Let Assertion 2.1. (i) be satisfied. Define u as above. Then
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xFye[x]F [y (N—-max{Nx,N}) 11x]>’
Z 2L 1yl < L ollx; )]>2N1¢[(yj, sl
< X2, [u(x;) — u(y])] > 0 Assertlon 1.1. ().

Next let Assertion 1.1. (i) be satisfied, with = for }=. Define ¢ as above.
Then ¢([x] + [¥]) = ¢(xD) + ¢((y] for all x, y. And

d(EL, nlw)) = dEL mB) = Ty nlu(e) — u(@”)] >
> I, mlu(B) — u(@®)] < {let x(z/k;ll m)+n = a, for all

l<j<nl<n<nx= °foralla>22,nk;
y analogously from m, i, B;i.s.0. - 7, gy T2 (u(x) —
-yl 2 0= xFye[x]Z e T nly] &
= X m[B): Assertion 2.1. (i). [ |

Now we can complete the proof of Theorem 1.1. Assertion (ii) there
implies Assertion 2.1. (ii), as we saw by Lemmas 1" to 4’. Thus it implies
Assertion 2.1. (i). Lemma 5 now gives Assertion 1.1. (i). That function u,
satisfying 1.1. (i), can be replaced by any @ = t + ou for real 7 and
positive ¢, is straightforward. Conversely, suppose « in 1.1. (i) can be
replaced by i. Then derive ¢ from u as in Lemma 5, and analogously ¢
from #. By Theorem 2.1 we get that ¢ = ¢¢ for a positive real ¢. This can
only beif # = t + ou with T = #(0®) — ou(a®).

3. EQUIVALENCE OF OUR SET-UP WITH CAMACHO’S

First we formulate some consequences of Axioms 1 to 4, which directly
follow from Theorem 1.1.

DEFINITION. We say = satisfies the Repetitions Axiom if [x = y <
x" =yl forall x, y, x', y € ¥ for which n, m e N exist s.t. x = y,
m2N, m2=2N, X, =x and y,,;, =y for all 1 <j<m,
0<k<n-—1,x =y =adforali> nm

COROLLARY !. Axioms 1 to 4 imply the Repetitions Axiom.
Proof.  xzy<XZi(ul(x) —u(y)] 20 nIZ [u(x) —
u(y)l = 0<>2°°1[u(X) —u(y)]lZ20<=x"=y. N
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DEFINITION. We say = satisfies the Rate of Substitution Axiom if for
all o, B, 7, e/ with (¢, 0, ..) = (B, ...) and (y,a°% ...) >
(8, % ...), there exists R(x, f,7,8)eR st for all x, yeZ, n,
meNuU{0}, 4, Bc Nwith AnB=¢, |Ad| =n>0, |B|| =m,
x; =y forallj¢ AU B, x;=aand y, = f forall je 4, x;, = 6 and
y; = v for all je B, we have x > y iff m/n < R(a, f, v, 9), x = y iff
m/n = R(a, B, v, 9), and x < y iff m/n > R(a, B, y, d).

COROLLARY 2. Axioms 1 to 4 imply the Rate of Substitution Axiom.
Proof. Let, for o, B, y, 6 as above, R(a, 8,7, §) = [u(x) — u(B)]/
[u(y) — u(d)] u

In Camacho [24], also a nonempty set .o¢ is the point of departure, but
the set 27 := | )= /" of all finite sequences of alternatives is considered.
If x e o/, we say x has length n. There is assumed to be a binary
(preference) relation =" present on 47, such that the restriction of =" to
/" is a weak order for every n € N, and such that x =" y for no x, y of
different length. From Camacho’s set-up we can come to our approach as
follows. Take an arbitrary element of .«Z, denote it as o’. Assign to every

(x1, ..., x,) €% the element (x, ..., x,, % ...) of &. And write
xzEyif(x,...,x) 2" (..., withn = max {N,, N,}, for all
x,yeZ.

Conversely, from our set-up we can come to Camacho’s set-up by
defining x >=” y whenever

oo X 00 ) E (Ve ey e L),

for all x, y € &"; for all n e N,

Now the combination of our weak order and independence Axioms for
>= is equivalent to the combination of Camacho’s weak order and inde-
pendence Axioms for =". For brevity we do not elaborate that here. Also,
in the presence of weak orderness and independence, the permutation,
repetition, and rate of substitution Axioms in our set-up are equivalent to
those in Camacho’s set-up. The key role in all this is played by the
independence Axioms.
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4. AN EXAMPLE

In this section we give an example to illustrate the necessity of the Archi-
medean Axiom. Also this should illustrate where we deviate from
Camacho’s set-up. Let & = {o’, B, 7, 5, ¢}, and let f° &/ - R be s.t.
) = 0,/(B) = 1, /() = /2, /(8) = /3./(&) = 1 + /2 + /3. For
x, yeZ, we have x > y if 2, [f(x;)) — f(y)] > 0 or T2, [f(x;) —
N =0 and [{j:x; = e} > [{j:;= ¢} . We have x ~ y if
T2 [f(x) — f(y)] = Oand [ {j: x, = ¢} = | {j: y; = &} |, which can
be seen to occur only if xEy, with E as in Section 2. Of course x = y if
x > yorx = y It can be seen that = is a weak order, it satisfies the
permutation and independence Axioms. But it does not satisfy the Archi-
medean Axiom. To see this, take x = (g, 0% .. .),y = (B, 7, 6, &, .. ),
v=(80%..), w=(a..). Then x >y, v > w, but for all
M e N, and p, g as in Axiom 4 we have p < ¢ since

=1 [f(PJ) - f(q])] = szil [f(x/) - f(y])] + fw) — f(v) < 0.
So Axiom 4 is violated. It can easily be seen that = satisfies the Repetitions
Axiom, this in fact is implied by Axioms 1 to 3. We finally show that =
satisfies the Rate of Substitution Axiom. To every four g, v, g, 7 in & s.t.
(.. = (v, o .. )and (o, &, .. ) > (1, &, . . .), we assign

R(u, v, 6, 1) = [f(1) — fO/[f(0) — f(D)}.
Let then x, ye %, n, me N U {0}, 4, B < N with [|A| = n > 0,
IBl =m, x; =y, for all j¢ AU B, x; = p and y;=vforalljeA,
x; = tand y; = o for all j € B. If now m/n < R(u, v, o, 1), then

L2 [Ax) — )] = nlfw) — fO)] — m[f(o) — f()] >
sox > y. If m/n > R(u, v, 6, 1), then analogously x < y.
Remains the case m/n = R(y, v, o, 7).
Apparently then [ f(u) — f(v)l/[f(6) — f(x)]is rational. There are only
a few possibilities for this: either y = v,oru = oandv = 1. Ineither case
x = y follows.
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