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Abstract. In this paper we develop an abstract theory of adequacy. In the
same way as the theory of consequence operations is a general theory of
logic, this theory of adequacy is a general theory of the interactions and
connections between consequence operations and its sound and complete
semantics. Addition of axioms for the connectives of propositional logic
to the basic axioms of consequence operations yields a unifying frame-
work for different systems of classical propositional logic. We present an
abstract model-theoretical semantics based on model mappings and the-
ory mappings. Between the classes of models and theories, i.e., the set of
sentences verified by a model, it obtains a connection that is well-known
within algebra as Galois correspondence. Many basic semantical proper-
ties can be derived from this observation. A sentence A is a semantical
consequence of T if every model of T is also a model of A. A model
mapping is adequate for a consequence operation if its semantical infer-
ence operation is identical with the consequence operation. We study
how properties of an adequate model mapping reflect the properties of
the consequence operation and vice versa. In particular, we show how
every concept of the theory of consequence operations can be formulated
semantically.
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1. Introduction

Currently there exists a variety of different logics and each of these logics
can be defined through different axioms, rules or semantics. There has been a
great effort to provide a general framework for all these logics [4]. The syntac-
tical theory of consequence operations (see, e.g., [15–17]) is such a framework.
A similar degree of generality has been achieved in semantics by the devel-
opment of abstract model theory [1,2]. Surma [14] was the first to study the
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interaction between consequence operations and semantics using an axiom-
atic approach. However, apart from the work of Surma, there has been little
effort to study what is common to all relations of adequacy between syntax
and semantics. In the present contribution we develop such a theory of ade-
quacy for consequence operations on the syntactical side and abstract model
theory. We study how certain properties of consequence operations determine
properties of its adequate semantics and vice versa. Another main aim of the
paper is to show how syntactical concepts can be formulated semantically.
Such a formulation clearly depends on the class of consequence operations and
semantics considered. In particular, we treat adequacy for classical proposi-
tional logic.

After presenting the basic axioms for consequence operations and some
basic notions of logic, we state axioms for the connectives of classical prop-
ositional logic. The resulting concept of propositional consequence operation
covers all systems of classical logic. By employing semantics based on rela-
tively maximal sets, we can prove the completeness of many logics in a much
more simplified way [3,17]. We review some of these results and show that
every finitary propositional consequence operation is complete with respect to
classical logic [17].

In Sect. 3, we present an abstract semantics [7,9] which has the same
degree of generality as consequence operations. The set of structures on which
the semantics is based on is not specified. It could be any non-empty set.
As a consequence, our semantical framework covers many different systems,
such as valuation semantics, semantics based on maximally consistent sets,
and probability semantics. Roughly speaking, a model mapping Mod assigns
to every formula the set of structures that verify it. The theory Th(N) of
a model N is the set of all sentences verified by N . Mod and Th form a
Galois correspondence [6]—a relation that is well-established within algebra
[5,6]. This observation is of main importance because many semantical facts
derive immediately from the theory of Galois correspondences. The semanti-
cal consequence operation is given by the mapping Th ◦ Mod. It turns out
that a sentence A is a semantical consequence of a set of sentences T , if and
only if every model of T is a model of A. We study a special class of model
mappings for propositional consequence operations. This class, ‘propositional
model mappings’, has the Negation property and the Conjunction property.
Finally, we review an alternative approach towards abstract semantics that is
based on deductively closed sets instead of models [10].

In the last section, we develop a theory of adequacy that can be applied to
many different kinds of logic. A semantics is adequate for Cn iff Cn is identical
with the semantical inference operation Th ◦ Mod. After studying adequacy
in its most general form, we investigate how properties of Mod reflect prop-
erties of Cn and vice versa. We treat the cases where Cn is a propositional
consequence operation and where Mod is a propositional model mapping. Fur-
thermore, we determine for every basic notion of the theory of consequence
operations a semantical equivalent.
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2. Syntax

In this section, we outline the theory of consequence operations and the theory
of propositional consequence operations.

2.1. Consequence Operations

2.1.1. Basic Framework. Let Av be a countable infinite set of propositional
variables and f1, . . . , fn be a set of propositional connectives. A formal lan-
guage is the smallest set closed under f1, . . . , fn and containing Av.

Suppose that L is a formal language, that T, T ′ ⊆ L, and that A,B ∈ L.
The axioms given in [15] are equivalent to those given in

Definition 2.1. A mapping Cn : 2L → 2L is a consequence operation or closure
operator iff for every T, T ′:

1. T ⊆ Cn(T ) (Reflexivity) and
2. if T ⊆ Cn(T ′), then Cn(T ) ⊆ Cn(T ′) (Transitivity).

Corollary 2.2. Cn is a consequence operation iff for every T, T ′:
1. T ⊆ Cn(T ),
2. Cn((Cn(T )) ⊆ Cn(T ) (Idempotency), and
3. if T ⊆ T ′, then Cn(T ) ⊆ Cn(T ′) (Monotonicity).

For the remainder of this article, suppose that Cn is a consequence oper-
ation.

A consequence operation is structural [11] if it is closed with respect to
substitution. Uniform and simultaneous substitution of an arbitrary formula
for a propositional variable within a valid inference, yields also a valid infer-
ence. The validity of an inference consequently does not depend on the content,
but only on the form, i.e., on the kind and order of the occurring connectives. A
mapping e : Av → L is called substitution. Every substitution can be extended
to an endomorphism he : L → L, i.e., to a uniform and simultaneous substitu-
tion.

Definition 2.3. Cn is structural iff he(Cn(T )) ⊆ Cn(he(T )) for every substi-
tution e.

Definition 2.4.

Cn is stronger than Cn′ (Cn′ ≤Cn) iff for all T : Cn′(T )⊆Cn(T ).
Cn is properly stronger than Cn′ (Cn′ < Cn) iff Cn is stronger than
Cn′ and there is some T such that Cn′(T ) ⊂ Cn(T ).

Basic concepts of logic can be defined within the theory of consequence
operations.

Definition 2.5. 1. Cn is consistent iff Cn(∅) 	= L.
2. Cn is finitary iff for each T ⊆ L: Cn(T ) =

⋃{Cn(T ′) : T ′ ⊆ T and T ′ is
finite}.

3. Cn is compact iff for each T ⊆ L: If Cn(T ) = L, then there exists a finite
T ′ ⊆ T such that Cn(T ′) = L.

4. T is a Cn-theory iff T = Cn(T ).
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5. T is Cn-consistent iff Cn(T ) 	= L.
6. T is Cn-complete iff for all A: If T ∪ {A} is consistent, then A ∈ Cn(T ).
7. T is Cn-maximally consistent iff T is consistent, and there does not exist

a consistent T ′ ⊃ T .
8. T is a Cn-axiom system for T ′ iff Cn(T ) = Cn(T ′).
9. A is in T Cn-independent iff A ∈ T and A 	∈ Cn(T\{A}).

10. A is a Cn-tautology iff A ∈ Cn(∅).

Although finitariness and compactness are in many cases equivalent, this
is generally not the case.

Lemma 2.6. Let Cn be finitary. Then: Cn is compact iff L has a finite
Cn-axiom system.

The next lemma facilitates the proof of Theorem 4.11.

Lemma 2.7. T is Cn-maximally consistent iff T is a consistent and complete
Cn-theory.

2.1.2. Completeness. To show that every propositional consequence operation
is complete with respect to classical logic, we employ semantics based on rel-
atively maximal sets. The set of its relatively maximal sets is an adequate
semantics for a finitary consequence operation (for the notion of adequacy,
refer to Definition 4.1 and especially the subsequent example). This fact hinges
essentially on the Lindenbaum Lemma. Consequently, by identifying a rela-
tively maximal set with its characteristic function, every finitary consequence
operation has a bivalent semantics. Furthermore, the set of relatively maximal
sets forms a minimal semantics, i.e., every semantics that does not contain
all relatively maximal sets, is not adequate. The framework of this section is
very general and can be applied to prove the completeness of many logics. The
results of this section can be found, e.g., in [3], [17, p. 25–28].

Definition 2.8. A set E is a closure system iff it is closed under intersection,
i.e., if D ⊆ E , then

⋂ D ∈ E .

The following fact is well-known (see, e.g., [6]) and implies that the clo-
sure system of all Cn-theories forms an adequate semantics for Cn.

Lemma 2.9. Every consequence operation Cn, i.e., closure operator, deter-
mines a closure system {T |Cn(T ) = T}. Conversely, every closure system E
determines a closure operator Cn through the condition:

A ∈ Cn(T ) iff A ∈ ⋂{T ′ ∈ E|T ⊆ T ′}.
Definition 2.10. G ⊆ E is a generator set of a closure system E iff for every
E ∈ E : E =

⋂
G′ for some G′ ⊆ G. A subset of E is a minimal generator set

iff it is not generated by one of its proper subsets. T is called completely meet
irreducible in E iff if T =

⋂
G′ for some G′ ⊆ E , then T ∈ G′.

The next lemma shows that for a consequence operation Cn, it is suf-
ficient to consider a generator set of the closure system of Cn. Hence, every
generator set also forms an adequate semantics for Cn.
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Lemma 2.11. Suppose that G is a generator set of E.
Then:

⋂{T ′ ∈ E|T ⊆ T ′} =
⋂{T ′ ∈ G|T ⊆ T ′}.

Definition 2.12. T is relatively Cn-maximal in A iff A /∈ T and if B /∈ T , then
A ∈ Cn(T ∪ {B}). T is relatively Cn-maximal iff it is relatively maximal in
some A ∈ L.

Observe that every relatively maximal set is a theory. We denote the set
of relatively Cn-maximal theories by RELMAX(Cn) and the set of relatively
maximal extensions of T by RELEXT (T ).

No relatively maximal set T can be generated by a set of closures not
containing T . This implies that if RELMAX(Cn) is a generator set, it is a
minimal generator set.

Lemma 2.13. T is relatively Cn-maximal iff it is completely meet irreducible
in the closure system given by Cn.

From the Lindenbaum Lemma, it follows that RELMAX(Cn) is a gen-
erator set.

Lemma 2.14 (Lindenbaum Lemma). Let Cn be finitary. For every T where
A /∈ T , there exists a T ′ ⊇ T that is relatively maximal in A.

The following lemma states that the set of all relatively maximal sets
forms a minimal adequate semantics for finitary consequence operations. As
already pointed out, it can be obtained by Lemma 2.13.

Lemma 2.15. If Cn satisfies the Lindenbaum Lemma, then RELMAX(Cn)
is a generator set of the closure system generated by Cn. Specifically, T =⋂

RELEXT (T ). Moreover, RELMAX(Cn) is a minimal generator set.

If Cn is finitary, then the Lindenbaum Lemma is valid. As a consequence,
RELMAX(Cn) is a generator set, and we have the following tool to prove
the completeness of finitary consequence operations.

Theorem 2.16. If Cn is finitary and RELMAX(Cn) is a subset of the closure
system generated by Cn′, then Cn′ ≤ Cn.

2.2. Propositional Consequence Operations

The concept of propositional consequence operation (see, e.g., [15], [17, p. 110])
covers all systems of classical propositional logic. Since it describes the con-
nectives of classical logic, the underlying language is the formal language gen-
erated by the connectives ¬,∧,∨,→. We denote this language by ‘LAL’ and
write ‘Cn(T,A1, . . . , An)’ instead of ‘Cn(T ∪{A1, . . . , An})’. It is fundamental
that every finitary, consistent, and structural consequence operation that sat-
isfies the conditions (¬), (∧), (∨), and (→), is identical with classical logic. We
sketch the proof in this section (for a detailed proof see, e.g., [17, pp. 123–127]).

2.2.1. Propositional Consequence Operations.

Definition 2.17. A consequence operation Cn is a propositional consequence
operation iff for A,B ∈ LAL and T ⊆ LAL:
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(¬) A ∈ Cn(T ) iff Cn(T,¬A) = LAL,
(∧) Cn(T,A ∧ B) = Cn(T,A,B),
(∨) Cn(T,A ∨ B) = Cn(T,A) ∩ Cn(T,B), and

(→) A → B ∈ Cn(T ) iff B ∈ Cn(T,A).

Example. A is a classical consequence of T iff for every Boolean valuation α: If
|=α T , then |=α A. We denote the classical consequence operation by Cn|=. It
can easily be verified that the classical consequence operation is a propositional
consequence operation.

In order to prove Theorems 4.8 and 4.14, we have to employ several
properties of propositional consequence operations.

Lemma 2.18. Let Cn be a propositional consequence operation. Then:
1. If A,A → B ∈ T , then B ∈ Cn(T ).
2. {A,¬A} is not Cn-consistent.
3. A,B ∈ Cn(A ∧ B) and A ∧ B ∈ Cn(A,B).
4. B ∈ Cn(A ∨ B,¬A) and A ∨ B ∈ Cn(A) ∩ Cn(B).
5. A → B ∈ Cn(B) and A → B ∈ Cn(¬A).

The following closure properties of relatively maximal sets play a key
role in proving that every propositional consequence operation is complete
with respect to classical logic (for a proof see [17, p. 125–126]).

Lemma 2.19. Let Cn be a propositional consequence operation and T be rela-
tively Cn-maximal. Then:

1. A ∈ T iff ¬A /∈ T .
2. A ∧ B ∈ T iff A ∈ T and B ∈ T .
3. A ∨ B ∈ T iff A ∈ T or B ∈ T .
4. A → B ∈ T iff A /∈ T or B ∈ T .

Consistency and completeness can be formulated in a familiar way within
the theory of propositional consequence operations.

Lemma 2.20. Let Cn be a propositional consequence operation. Then:
1. T is Cn-consistent iff there is no sentence A such that A, ¬A ∈ Cn(T ).
2. T is Cn-complete iff for all sentences A, A ∈ Cn(T ) or ¬A ∈ Cn(T ).

2.2.2. The Completeness of Finitary Propositional Consequence Operations.
If Cn is a finitary propositional consequence operation, then the set of all its
maximally consistent sets is a generator set of {T |Cn(T ) = T}. Consequently,
this set is an adequate semantics for Cn. By MAX(Cn) we denote the set of
all maximally Cn-consistent sets, and by EXTMAX(T ), we denote the set of
all maximally consistent extensions of T .

Theorem 2.21. Suppose that Cn is a propositional consequence operation.
Then, MAX(Cn) = RELMAX(Cn). In particular, T =

⋂
EXTMAX(T ).

In addition, if Cn satisfies the Lindenbaum Lemma, then MAX(Cn) is a min-
imal generator set of the closure system {T |Cn(T ) = T}.
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Proof. MAX(Cn) = RELMAX(Cn) follows from Lemmas 2.19 (1) and 2.20.
Since Cn satisfies the Lindenbaum Lemma, it is according to Lemma 2.15
MAX(Cn) a minimal generator set. �

According to Theorem 2.16, for completeness of Cn relative to classical
logic, it is sufficient that RELMAX(Cn) is a subset of RELMAX(Cn|=) =
MAX(Cn|=). I.e., for every relatively maximally consistent set T , there is a
Boolean valuation α such that T = {A ∈ LAL| |=α A}. This fact hinges essen-
tially on Lemma 2.19 and is not very difficult to prove by induction on the
complexity of formulas.

Theorem 2.22. Let Cn be a finitary propositional consequence operation. Then,
Cn|= ≤ Cn, i.e., classical consequence is the weakest propositional consequence
operation.

Moreover, every finitary, structural, and consistent propositional conse-
quence operation is identical with classical logic (for a proof, see [17, p. 127]).

Theorem 2.23. There is no structural and consistent consequence operation
Cn such that Cn|= < Cn.

Corollary 2.24. If Cn is a finitary, structural, and consistent propositional
consequence operation, then Cn = Cn|=.

3. Semantics

The basic framework of this section is that of abstract model theory (see, e.g.,
[7,9]). As observed, for instance, by Cohn [6, p. 205], abstract model theory can
be based on a Galois correspondence between models and its theories. To be
as general as possible, the set of structures Str is not specified. The following
relation-based construction of Galois correspondences is attributed to Birkhoff
(first edition of [5], 1940). The starting point of the construction is a satisfac-
tion relation |=Str on Str × L. The corresponding polarities [5] are the model
mapping Mod and the theory mapping Th. Between Mod and Th, it obtains
a Galois correspondence. All theorems of the present section derive from the
theory of Galois correspondences. The mapping Th ◦ Mod, for instance, is a
consequence operation. It is the semantical consequence operation.

Propositional model mappings are obtained by adding axioms for the
connectives of propositional logic. As we shall see in Sect. 4.3, they induce
propositional consequence operations. At the end of this section, we review
an alternative approach towards abstract semantics that is based on theories
instead of models [10].

3.1. Model Mappings and Semantical Inference Operations

Let Str be an arbitrary non-empty set and L be a formal language.
The class of models Mod(T ) of T is the set of all models that satisfy T .

The semantical theory Th(M) of M is the set of all sentences that are satisfied
by M .
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Definition 3.1. Let |=Str be a binary relation on Str × L.
1. Mod : 2L → 2Str is the |=Str-model mapping iff

Mod(T ) = {N ∈ Str|N |=Str A for all A ∈ T}.
2. Th : 2Str → 2L is the |=Str-theory mapping iff

Th(M) = {A ∈ L|N |=Str A for all N ∈ M}.

Example. The following model mappings serve as examples throughout the
article.

Str1 = {α : α is a Boolean valuation}
Str2 = {M : M is a maximally consistent set of classical propositional
logic}
Str3 = {p : p is a one-place probability function on LAL}1

Mod1(A) = {α :|=α A}
Mod2(A) = {M : A ∈ M}
Mod3(A) = {p : p(A) = 1}
As already pointed out, if two mappings are defined by a binary relation

in the way described above, then they form a Galois correspondence [5].

Theorem 3.2. The mappings Mod and Th form a Galois correspondence
between 2L and 2Str, i.e.,

1. For every two elements of 2L with T ⊆ T ′ and for every two elements of
2Str with M ⊆ M ′

Mod(T ′) ⊆ Mod(T ) and Th(M ′) ⊆ Th(M) . (3.1)

2. For any T ∈ 2L and M ∈ 2Str

T ⊆ Th(Mod(T )) and M ⊆ Mod(Th(M)) . (3.2)

Mappings that satisfy (3.1) are called antitone. The following conse-
quences are well-known within the theory of Galois correspondences.

Lemma 3.3. 1. M ⊆ Mod(T ) iff T ⊆ Th(M).
2. Th(Mod(Th(M))) = Th(M).
3. Mod(Th(Mod(T ))) = Mod(T ).

Lemma 3.4. 1. Mod(
⋃

Ti) =
⋂

Mod(Ti).
2. Th(

⋃
Ti) =

⋂
Th(Ti).

3. Mod(∅) = Str.

The mapping Th ◦ Mod : 2L → 2L is the semantical inference opera-
tion. Th ◦ Mod is a consequence operation. Mod ◦ Th is a closure operator.
This is an immediate consequence of the fact that Mod and Th form a Galois
correspondence.

1 A mapping p: L → [0, 1] is called a one-place probability function iff p satisfies the following
postulates:

P (A) = 1 for some A ∈ L,
P (A) ≤ P (B) whenever A |= B,
P (A ∨ B) = P (A) + P (B), if |= ¬(A ∧ B).
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Theorem 3.5. Th ◦ Mod is a consequence operation. Moreover, Mod ◦ Th is a
closure operator.

Proof. Reflexivity is given by the left side of (3.2). For monotonicity,
observe that if T ⊆ T ′, then by (3.1) Mod(T ′) ⊆ Mod(T ). Hence, by
(3.1) Th(Mod(T )) ⊆ Th(Mod(T ′)). Idempotency is obtained by setting
M = Mod(T ) in Lemma 3.3 (2). The proof for Mod ◦ Th is analogous. �

The set of all semantical theories is the closure system of the closure
operator Th ◦Mod and the set of all axiomatic classes is the closure system of
the closure operator Mod ◦ Th.

Definition 3.6. T is a semantical theory iff T = Th(M) for some M ⊆
Str. By THE, we denote the set of all semantical theories.
M is called an axiomatic class iff M = Mod(T ) for some T ⊆ L. By
AXC, we denote the set of all axiomatic classes.

Lemma 3.7. THE (resp. AXC) is the closure system of Th ◦ Mod (resp.
Mod ◦ Th).

Proof. Every Th(M) is closed under Th ◦Mod, since according to Lemma 3.3
Th(Mod(Th(M))) = Th(M). Since T = Th(Mod(T )) and Mod(T ) ⊆ Str,
the claim follows. The proof for AXC is analogous. �

A sentence A is a semantical consequence of a set T , if and only if every
model of T is a model of A. Since THE is the closure system of Th ◦ Mod, it
is according to Lemma 2.9, A ∈ Th(Mod(T )) iff A ∈ ⋂{T ′ ∈ THE|T ⊆ T ′}.

Lemma 3.8. The following three conditions are equivalent.

1. A ∈ Th(Mod(T )).
2. Mod(T ) ⊆ Mod(A).
3. A ∈ ⋂{T ′ ∈ THE|T ⊆ T ′}.

Example. The semantical inference operations of our exemplary model map-
pings are given by:

A ∈ FMod1(T ) iff for every Boolean valuation α: If |=α T , then |=α A.
A ∈ FMod2(T ) iff for every classical maximally consistent set M : If T ⊆
M , then A ∈ M .
A ∈ FMod3(T ) iff for every probability function p: If p(B) = 1 for every
B ∈ T , then p(A) = 1.

Although they are generated by rather different model mappings, each
of the above inference operations is identical with classical logic. The (non
trivial) fact that FMod3 is classical logic is well-known in the area of probabil-
ity semantics [12, Theorem 5.3]. Here, we give a proof that makes use of our
general results concerning completeness (Sect. 2.1.2).

Theorem 3.9. Each of the consequence operations FMod1, FMod2, and FMod3

is identical with classical logic.
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Proof. For FMod2, this follows from Lemma 2.21. For FMod3 observe that the
semantical theories of probability functions are closed under classical conse-
quence. The set of all theories of Boolean valuations generates the set of all
classical theories. Since every Boolean valuation is a probability function, the
set of all theories of Boolean valuations generates the closure space generated
by the set of all probability functions. Therefore, by Lemma 2.11, FMod3 is
classical logic. �

The operation Mod is a bijection from THE to AXC. The inverse of
Mod is Th. Moreover, Mod is a dual isomorphism2 between these two sets
(see, e.g., [5]). Mod inverts the order of THE, i.e., larger theories correspond
to smaller classes of models and vice versa.

Theorem 3.10. The mappings Mod and Th determine a dual isomorphism
between THE and AXC.

We conclude this section with a general remark concerning an alternative
approach towards semantics that is based on theories of models, rather than
models [10].

Since Th(M) =
⋂{Th({N})|N ∈ M} (Lemma 3.4 (2)), {Th({N})|N ∈

Str} is a generator set of the closure system THE. A generator set uniquely
determines a consequence operation (Lemma 2.11). Consequently, from the
point of view of the consequence operation Th ◦Mod, instead of working with
a set of models, one can also work with the set of their theories {Th({N})|N ∈
Str}. Moreover, since the set of all relatively maximal theories (or completely
meet irreducible theories, or totally prime theories) is a minimal generator set,
if a logic is minimally generated, it is sufficient to consider relatively maxi-
mal theories. Abstract connectives are then interpreted as closure conditions
on relatively maximal sets (see also Remark 1 below). This approach leads
to interesting results concerning intuitionistic and classical propositional logic.
One can give, for instance, elegant semantical characterizations of intuitionistic
and propositional consequence operations [10, Theorem 3.2].

However, this approach is not feasible if we move to first-order logic.
If we identify models with their theories, we cannot distinguish between ele-
mentary equivalent models, i.e., models that have the same first-order theory.
As a consequence, many important concepts and results of first-order logic
become inaccessible. Isomorphy of models and categoricity of theories3 are
excluded from this framework. Moreover, the theorem of Löwenheim–Skolem
which permits a model-theoretical characterization of first-order logic [7] can-
not be obtained.

3.2. Propositional Model Mappings

We have seen that Th ◦ Mod is a consequence operation. It is natural to ask
which properties of Mod are sufficient for Th ◦ Mod being a propositional

2 A mapping I : R → S is dual isomorphism between two partially ordered sets (R, ≤) and
(S, ≤) iff I is a bijection and for all r, r′ ∈ R: r ≤ r′ iff I(r) ≥ I(r′).
3 A theory T is categorical iff every two models of T are isomorphic.
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consequence operation. This question is dealt with in Theorem 4.9. We call
these model mappings ‘propositional model mappings’. However, the fact that
Th ◦ Mod is a propositional consequence operation does not imply that Mod
is a propositional model mapping.

Definition 3.11. Mod is a propositional model mapping iff

1. Mod(¬A) = Mod(A)c 4 (Negation property),
1. Mod(A ∧ B) = Mod(A) ∩ Mod(B) (Conjunction property),
2. Mod(A ∨ B) = Mod(A) ∪ Mod(B), and
3. Mod(A → B) = Mod(¬A) ∪ Mod(B).

Example. Mod1 and Mod2 are propositional model mappings. Mod3 is not a
propositional model mapping.

Remark 1 (Semantics based on maximally consistent sets). The closure
operator Th ◦ Mod is determined by the generator set {Th(N)|N ∈ Str}
(Lemma 2.11). Each set Th(N) is maximally consistent (Theorem 4.11). Hence,
the closure conditions stated for relatively maximal sets in [10, Definition 3.1]
are equivalent with those below. Because N ∈ Mod(A) iff A ∈ Th(N), Defi-
nition 3.11 is also equivalent with those conditions.

1. A ∈ Th(N) iff ¬A /∈ Th(N).
2. A ∧ B ∈ Th(N) iff A ∈ Th(N) and B ∈ Th(N).
3. A ∨ B ∈ Th(N) iff A ∈ Th(N) or B ∈ Th(N).
4. A → B ∈ Th(N) iff A /∈ Th(N) or B ∈ Th(N).

Consequently, for propositional model mappings the approach taken here
and in [10] are equivalent.

4. Adequacy

A semantical system is adequate with respect to a consequence operation, if
and only if both yield the same theorems5. This leads to a concept of ade-
quacy that does not dependent upon the kind of logic considered. We study
the interaction between a consequence operation and its adequate semantics
in its most general form. We show how all concepts defined in the framework
of consequence operations (Definition 2.5) can be expressed semantically. We
then investigate adequacy for propositional consequence operations. However,
only if we require Mod to be a propositional model mapping, we obtain famil-
iar connections between semantics and syntax of classical logic. As a main
result, we shall see that every consequence operation that has an adequate
propositional model mapping is a propositional consequence operation but not
vice versa.

4 Mod(A)c = Str\Mod(A).
5 The relation of adequacy between a consequence operation and our semantics has been
introduced by Kleinknecht [8].
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4.1. Adequacy for Consequence Operations

Definition 4.1. Let Mod be a model mapping and Cn be a consequence oper-
ation. Mod is Cn-adequate6 iff Cn = Th ◦ Mod.

Example. The closure system of all Cn-theories forms an adequate semantics
for Cn (compare Lemma 2.9). Let Str = {X ⊆ L|Cn(X) = X}, X |=Str B
iff B ∈ X. Then: X ∈ Mod(T ) iff T ⊆ X, and Th(X) = X. Furthermore,
A ∈ Cn(T ) iff A ∈ ⋂{X ∈ Str|T ⊆ X}.

Satisfiability and logical truth are semantical equivalents for consistency
and tautology.

Definition 4.2. 1. T is Mod-satisfiable iff Mod(T ) 	= Mod(L).
2. T is maximally Mod-satisfiable iff there does not exist a Mod-satisfiable

T ′ ⊃ T .
3. A is a Mod-logical truth iff Str ⊆ Mod(A).

Each notion in Definition 2.5 can be expressed semantically if the concept
of adequate model mapping is used as a link between syntax and semantics.
Since THE and AXC are dually isomorphic (Theorem 3.10), we have the
following picture (see also [13]). Cn(L) is the largest set in THE and corre-
sponds therefore to the smallest set of AXC. Because Mod is antitone, this
set is Mod(L). Since the correspondence is one to one, all consistent sets corre-
spond to model classes different from Mod(L). Maximally consistent sets are
next in the ordering within THE and correspond consequently to sets of the
form M ∪Mod(L), such that all members of M are elementary equivalent. The
converse need not be true. Observe further that since Mod(Cn(T )) = Mod(T ),
maximally consistent sets and consistent and complete sets have the same mod-
els. Each theory that is not maximal, corresponds to a subset of the remaining
axiomatic classes inversely ordered. On the lower end of THE, Cn(∅) corre-
sponds to Str. We obtain

Theorem 4.3. Let Mod be Cn-adequate. Then:

1. T is Cn-consistent iff T is Mod-satisfiable.
2. A is a Cn-tautology iff A is a Mod-logical truth.
3. T is a Cn-theory iff there exists an M ⊆ Str such that T = Th(M).
4. The consequence operation Cn is consistent iff Mod(L) 	= Str.
5. T is a Cn-axiom system for T ′ iff Mod(T ) = Mod(T ′).
6. T is maximally Cn-consistent iff T is maximally Mod-satisfiable.

Proof. (1) Since L = Cn(L), we obtain by Lemma 3.3 Cn(T ) = L iff
Mod(Cn(T )) = Mod(Cn(L)) iff Mod(T ) = Mod(L). (2) follows from
Mod(∅) = Str (Lemma 3.4). (3) is given by Lemma 3.7. For (4) observe

6 Adequacy of Mod with respect to Cn corresponds to the completeness and soundness of
the logic frame (Str, L, |=str, Cn) in the sense of [7]. Instead of considering a set of axioms
and inference rules A as in the definition of logic frame of [7], we consider here a consequence
operation Cn.
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that Cn(∅) = L iff Mod(∅) = Mod(L). Since Mod(∅) = Str, the claim fol-
lows. (5) is an immediate corollary of the fact that Mod(T ) = Mod(Cn(T ))
(Lemma 3.3). �

Let M ⊆ Str and N,N ′ ∈ Str. With the help of the following notion, a
semantical formulation for completeness can be given.

Definition 4.4. N , N ′ are elementary equivalent (N ≡ N ′) iff Th({N}) =
Th({N ′}).

The following result states that a set is complete, if and only if any two
“consistent” models of this set satisfy exactly the same formulas.

Theorem 4.5. T is Cn-complete iff for every N,N ′ such that N,N ′ ∈
Mod(T )\Mod(L): N ≡ N ′.

Proof. =⇒: Let N,N ′ ∈ Mod(T )\Mod(L), A ∈ L.

Case 1: {A} ∪ T is consistent. By completeness A ∈ Cn(T ), i.e., Mod(T ) ⊆
Mod(A), and hence N,N ′ ∈ Mod(A).

Case 2: {A} ∪ T is inconsistent. By Lemma 4.3 Mod(L) = Mod({A} ∪ T ) =
Mod(A) ∩ Mod(T ). Hence, since N,N ′ /∈ Mod(L), N,N ′ /∈ Mod(A).

⇐=: Suppose that {A}∪T is consistent. Let N ∈ Mod(T∪{A})\Mod(L). Then
by supposition for all N ′ ∈ Mod(T )\Mod(L), N ≡ N ′. Hence, N ∈ Mod(A),
N ′ ∈ Mod(A). Since for every N ′′ ∈ Mod(L), N ′′ ∈ Mod(A), Mod(T ) ⊆
Mod(A). �

As a corollary, we obtain

Corollary 4.6. If T is maximally Cn-consistent, then T = Th({N}) for some
N ∈ Str.

Proof. Let T be maximally consistent. By Lemma 2.7, T is a consistent and
complete theory.
Since T is a theory, by Lemma 4.3 Part 3, T = Th(M) for some M ⊆ Str. Since
Th(M) = T is consistent, it is according to Lemma 4.10 (3) M ⊃ Mod(L).
Let N,N ′ ∈ M\Mod(L). Since according to (3.2), M\Mod(L) ⊆ Mod(Th(M))
= Mod(T ), it follows from Theorem 4.5 that Th({N}) = Th({N ′}).
Hence, Th((M\Mod(L)) ∪ Mod(L)) =

⋂{Th({N ′}) : N ′ ∈ M\Mod(L)} ∩
Th(Mod(L)) = Th({N}) ∩ L = Th({N}). �

The converse is not true because there may be structures N such that
Th(N) is not maximal.

4.2. Adequacy for Propositional Consequence Operations

The definition of propositional consequence operations concerns the connec-
tives of LAL. Hence, if Cn is a propositional consequence operation, we can
establish relations between semantics and syntax that involve these connec-
tives.
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Theorem 4.7. Let Cn be a propositional consequence operation and let Mod
be Cn-adequate. Then:

1. A ∈ Cn(T ) iff Mod(T ∪ {¬A}) is not Mod-satisfiable.
2. Let A ∈ T . A is in T Cn-independent iff T\{A} ∪ {¬A} is Mod-satisfi-

able.
3. Mod(A) ∩ Mod(¬A) = Mod(LAL).

Proof. (1) follows immediately from the fact that for every propositional con-
sequence operation, it holds that A ∈ Cn(T ) iff {¬A} ∪ T is not consistent.
(2) is obtained by (1). (3) is obtained by the fact that {A,¬A} is an axiom
system for LAL (Lemma 2.18) and Theorem 4.3 part 5. �

Theorem 4.8. Let Cn be a propositional consequence operation and let Mod
be Cn-adequate. Then:

1. Mod(A ∧ B) = Mod(A) ∩ Mod(B).
2. Mod(A ∨ B) ⊇ Mod(A) ∪ Mod(B).
3. Mod(A → B) ⊇ Mod(¬A) ∪ Mod(B).

Proof. For Mod(A ∧ B) = Mod(A) ∩ Mod(B):
(⊆) By Lemma 2.18, A ∈ Th(Mod(A∧B)) and B ∈ Th(Mod(A∧B)). Hence,
Mod(A ∧ B) ⊆ Mod(A) and Mod(A ∧ B) ⊆ Mod(B).
(⊇) By Lemma 2.18, A ∧ B ∈ Th(Mod(A,B)), so that Mod({A} ∪ {B}) ⊆
Mod(A∧B). Since Mod({A}∪{B}) = Mod(A)∩Mod(B), the theorem holds.
For Mod(A ∨ B) ⊇ Mod(A) ∨ Mod(B):
By Lemma 2.18 (3), A ∨ B ∈ Th(Mod(A)) and A ∨ B ∈ Th(Mod(B)). Hence,
Mod(A) ⊆ Mod(A ∨ B) and Mod(B) ⊆ Mod(A ∨ B).
For Mod(A → B) ⊇ Mod(¬A) ∪ Mod(B):
Since Mod(¬A) ∪ Mod(B) ⊆ Mod(A → B) if A → B ∈ Th(Mod(B)) and
A → B ∈ Th(Mod(¬A)), application of Lemma 2.18 yields the claim. �

It is not generally true that Mod(A ∨ B) ⊆ Mod(A) ∪ Mod(B). This
requires the Negation property. For the probability semantics FMod3 it does
not hold. There are probability functions p and formulas A such that p(¬A) =
p(A) = 1

2 , but for every probability function p it is p(A ∨ ¬A) = 1.

4.3. Adequacy for Propositional Model Mappings

To obtain familiar connections between semantics and syntax of classical
logic, we have to demand that Mod is a propositional model mapping (Def-
inition 3.11). The Negation property Mod(¬A) = Mod(A)c is of special
importance. This property does not follow from the fact that Th ◦ Mod is
a propositional consequence operation. However, if we presuppose the Nega-
tion property, then Mod is a propositional model mapping is equivalent to
Th ◦ Mod is a propositional consequence operation.

First, we observe that if a propositional model mapping is adequate
for some consequence operation Cn, then Cn is a propositional consequence
operation.
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Theorem 4.9. If Mod is a propositional model mapping, then the inference
operation Th ◦ Mod is a propositional consequence operation. Furthermore,
Th ◦ Mod is consistent.

Proof. • We have A ∈ Th(Mod(T )) iff Mod(T ) ⊆ Mod(A) iff Mod(T ) ∩
Mod(A)c = ∅ iff Mod(T ) ∩ Mod(¬A) = ∅ iff Mod(T ∪ {¬A}) = ∅ iff
Th(Mod(T ∪ {¬A})) = LAL.

• C ∈ Th(Mod(T, {A∧B})) iff Mod(T ∪{A∧B}) ⊆ Mod(C) iff Mod(T )∩
Mod(A ∧ B) ⊆ Mod(C) iff Mod(T ) ∩ Mod(A) ∩ Mod(B) ⊆ Mod(C) iff
Mod(T ∪ {A,B}) ⊆ Mod(C) iff C ∈ Th(Mod(T, {A,B})).

• C ∈ Th(Mod(T, {A∨B})) iff Mod(T ∪{A∨B}) ⊆ Mod(C) iff Mod(T )∩
Mod(A∨B) ⊆ Mod(C) iff Mod(T )∩ (Mod(A)∪Mod(B)) ⊆ Mod(C) iff
(Mod(T )∩Mod(A))∪(Mod(T )∩Mod(B)) ⊆ Mod(C) iff Mod(T∪{A}) ⊆
Mod(C) and Mod(T ∪ {B}) ⊆ Mod(C) iff C ∈ Th(Mod(T, {A})) ∩
Th(Mod(T, {B})).

• A → B ∈ Th(Mod(T )) iff Mod(T ) ⊆ Mod(A → B) iff Mod(T ) ⊆
Mod(¬A) ∪ Mod(B) iff Mod(T ) ⊆ Mod(A)c ∪ Mod(B) iff Mod(T ) ∩
Mod(A) ⊆ Mod(B) iff Mod(T∪{A})⊆Mod(B) iff B∈Th(Mod(T, {A})).

• Suppose that Th ◦ Mod is not consistent. Then A,¬A ∈ Th(Mod(∅)),
so that Mod(∅) ⊆ Mod(A) ∩ Mod(A)c. Since Mod(∅) = Str 	= ∅ and
Mod(A) ∩ Mod(A)c = ∅, Th ◦ Mod is consistent. �

Remark 2 (Continuation of Remark 1). We can also use the alternative def-
inition of propositional model mappings concerning closure properties of the
sets Th(N) (Remark 1). Theorem 4.9 then becomes a special case of Theorem
3.2 (1) of [10]. However, as the proof of this part of the theorem was left to
the reader in [10], we proved it above.

Example. Since Mod1 and Mod2 are propositional model mappings, by Theo-
rem 4.9, FMod1 and FMod2 are propositional consequence operations. However,
Mod3 is not a propositional model mapping, so that we cannot apply Theo-
rem 4.9 to establish that FMod3 is a propositional consequence operation.

In the presence of the Negation property familiar semantical equiva-
lents of syntactical concepts can be given. Consistency of T is equivalent to
Mod(T ) 	= ∅. Th(N) is maximally consistent for every N ∈ Str.

The following theorem requires that Mod(A) ∩ Mod(¬A) = ∅.

Theorem 4.10. Suppose that Mod is Cn adequate and let Mod be a proposi-
tional model mapping. Then

1. Mod(LAL) = ∅.
2. T is Cn-consistent iff Mod(T ) 	= ∅.
3. Th(M) is consistent iff M 	= ∅.
4. T is complete iff for N,N ′ ∈ Mod(T ): N ≡ N ′.

Proof. (1) is a corollary of Theorem 4.3 part 3. For (3): If M = ∅ = Mod(LAL),
then Th(M) = Th(Mod(LAL)) = LAL. If M 	= ∅, then since M ⊆
Mod(Th(M)), Mod(Th(M)) 	= Mod(LAL). (4) follows from Mod(LAL) = ∅
and Theorem 4.5. �
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To show that a set is maximally consistent, if and only if it is the the-
ory of a single model, the Negation property is needed. The completeness of
Th({N}) requires that Mod(A) ∪ Mod(¬A) = Str.

Theorem 4.11. Suppose that Mod is Cn adequate and let Mod be a proposi-
tional model mapping. Then

1. Th({N}) is complete.
2. T is maximally consistent iff there exists an N ∈ Str such that T =

Th({N}).

Proof. For (1), let B /∈ Cn(Th({N})). Then B /∈ Th({N}), so that N /∈
Mod(B). Then, since Mod(B) ∪ Mod(¬B) = Str, N ∈ Mod(¬B). Hence,
¬B ∈ Th({N}), so that ¬B ∈ Cn(Th({N})).

For (2): The direction from left to right is stated in Corollary 4.6. Con-
versely, it is sufficient to show that Th({N}) is a consistent and complete
theory. For consistency, observe that since {N} 	= ∅, Th({N}) is consistent
(Lemma 4.10 (3)). Part (1) of the present theorem states that Th({N}) is
complete. �

That this semantical formulation is not possible without Mod(A) ∪
Mod(¬A) = Str becomes obvious, if we consider the probability semantics
Mod3. The theory of some probability functions p is not complete and hence
not maximally consistent. There are formulas A such that p(A) 	= 1 and
p(¬A) 	= 1.

The Negation property guarantees that every consistent set can be ex-
tended to a maximally consistent set.

Corollary 4.12. Let Mod be Cn-adequate and T consistent. Then there exists
a maximally consistent T ′ such that T ⊆ T ′.

Proof. Let N ∈ Mod(T ). Then T ′ = Th({N}) is maximally consistent. �
The converse of Theorem 4.9 is not true. The fact that Th ◦ Mod is a

propositional consequence operation does not imply the Negation property:
First, if Th ◦ Mod is a propositional consequence operation, then Mod(A) ∩
Mod(¬A) = ∅ is equivalent with Mod(LAL) = ∅. Yet, the consistency of
Th ◦ Mod does not imply Mod(LAL) = ∅. I.e., Mod(LAL) 	= Str, does not
imply Mod(LAL) = ∅. Second, the consistency of a propositional Th ◦ Mod
does not imply Mod(A) ∪ Mod(¬A) = Str.

The key tool to invent counterexamples to the converse of Theorem 4.9 is
the following lemma which was proposed by one of the anonymous reviewers.
It is essentially a reformulation of the fact that every generator set deter-
mines the same consequence operation as the corresponding closure system
(Lemma 2.11). If the theory of a model is closed under the consequence oper-
ation Th ◦ Mod, this model can be added to the set of structures without
changing the consequence operation.

Lemma 4.13. Let Str, Str′ be nonempty sets, and let |=Str, |=Str′ be satisfac-
tion relations. Let Mod, Mod′ and Th, Th′ be the corresponding mappings.
Then the following statements are equivalent:
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1. Th ◦ Mod = Th′ ◦ Mod′.
2. For every N ∈ Str′\Str, Th(N) is closed with respect to Th ◦ Mod.

Proof. (1) ⇒ (2) Th(N) is closed with respect to Th′ ◦ Mod′ = Th ◦ Mod.
(2) ⇒ (1) If Th(N) is closed with respect to Th ◦ Mod, then there exists an
M ⊆ Str such that Th(M) = Th(N). �

Example. Suppose that Th ◦ Mod is a propositional consequence operation.
The following consequence operations are counterexamples to the converse of
Theorem 4.9.

1. The set L is closed under Th ◦ Mod, so we can add structures N such
that Th(N) = L, without changing the consequence operation. In this
case, Mod(A) ∩ Mod(¬A) 	= ∅.

2. The set Th(Mod(∅)) is closed but in general not complete, so we can
add structures N such that Th(N) = Th(Mod(∅)) without changing the
consequence operation. In this case, Mod(A) ∪ Mod(¬A) 	= Str.

3. FMod3 is identical with classical logic and consequently a propositional
consequence operation. Every Boolean valuation is a probability function.
Moreover, every theory of a probability function Th(p) is closed under
classical consequence. According to Lemma 4.13, classical consequence
does not change by adding probability functions to the set of all Boolean
valuations.

If we presuppose the Negation property Mod(¬A) = Mod(A)c, the con-
verse of Theorem 4.9 holds.

Theorem 4.14. If Th ◦ Mod is a propositional consequence operation, and
Mod satisfies the condition Mod(¬A) = Mod(A)c, then Mod is a proposi-
tional model mapping.

Proof. According to Lemma 4.8, it remains to show the following:
Mod(A ∨ B) ⊆ Mod(A) ∪ Mod(B):
Let N ∈ Mod(A∨B), and N 	∈ Mod(A). Then N ∈ Mod(¬A). By Lemma 2.18
(3), B ∈ Th(Mod({A∨B,¬A})) and therefore Mod({A∨B,¬A}) = Mod(A∨
B) ∩ Mod(¬A) ⊆ Mod(B). Thus, N ∈ Mod(B).
Mod(A → B) ⊆ Mod(¬A) ∪ Mod(B):
We have Mod(A → B) ⊆ Mod(¬A) ∪ Mod(B) iff Mod(A → B) ∩ Mod(A) ⊆
Mod(B) iff B ∈ Th(Mod(A → B,A)) iff A → B ∈ Th(Mod(A → B)). The
last statement holds because of reflexivity. �

Remark 3 (Continuation of Remark 1). Theorem 4.14 can be interpreted as a
special case of Theorem 3.2 (1) of [10]. An alternative proof of Theorem 4.14
consists of the observation that according to Remark 1, Theorem 4.14 is equiv-
alent to Lemma 2.19.
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4.4. Further Relationships between Propositional Mod and Propositional
Th ◦ Mod

We have shown that Mod is a propositional model mapping is stronger than
Th ◦ Mod is a propositional consequence operation. This gives rise to the fol-
lowing questions:

1. Are there weaker conditions for Mod than those of propositional model
mappings, such that these are sufficient and necessary for Th◦Mod being
a propositional consequence operation?

2. What additional properties must Th ◦ Mod have in order to guarantee
that Mod is a propositional model mapping?

3. If Mod is a propositional model mapping, then Th ◦ Mod is a proposi-
tional consequence operation. What additional properties does Th◦Mod
have?

In response to the first question, clearly, there are such weaker conditions.
Since Th◦Mod is definable in terms of Mod, that Th◦Mod is a propositional
consequence operation can simply be rewritten in terms of Mod. However, the
resulting conditions are too weak for establishing important and well-known
connections between syntax and semantics of classical logic. Theorems 4.10
and 4.11, for example, do not hold.

The answer to the second question is that there are no such proper-
ties. Lemma 4.13 shows that we can add to every set of structures, models of
deductively closed sets without changing the consequence operation. Among
them are models of the language LAL and models such that their theory is
not maximal. It is consequently not possible to express the Negation property
Mod(¬A) = Mod(A)c in terms of consequence operations. In fact, there are
common and important semantics for classical logic which do not satisfy the
condition Mod(¬A) = Mod(A)c. It is, for instance, the inference operation
FMod3, which is generated by probability semantics, identical with classical
logic. Yet—as already discussed—there are probability functions p and sen-
tences A such that p(A) 	= 1 and p(¬A) 	= 1. Consequently, semantics of
classical logic can be done without the Negation property and with models
that have no maximal theory.

We give a partial answer to question three. If we assume finitariness, then
the induced inference operation Th ◦ Mod is classical logic.

Theorem 4.15. Suppose that Mod is a propositional model mapping and Th ◦
Mod is finitary. Then Th ◦ Mod is identical with classical logic.

Proof. That Th ◦ Mod is stronger than classical logic follows from the fact that
Th ◦ Mod is a finitary propositional consequence operation (Theorem 4.9).
According to Theorem 2.22, such a consequence operation is complete. Con-
versely, observe that for every Boolean valuation α, there exists an N ∈ Str
such that Th(N) = {A| |=α A}. Define N such that Th(N) = Th(Mod({p ∈
Av| |=α p})). Then: A ∈ Th(N) iff |=α A. This can be seen by induction on
the complexity of formulas employing the truth-functionality of Mod (Mod is
a propositional model mapping). Observe that N is well defined, since Th(N)
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is maximally consistent. According to Theorem 2.16, classical logic is stronger
than Th ◦ Mod. �

5. Conclusions and Future Work

Within our framework of adequacy, we have studied the interactions and con-
nections between syntax and semantics. Semantics is based on the Galois cor-
respondence between models and theories, and syntax is given by the theory of
consequence operations. A semantics is adequate for a consequence operation
Cn, if and only if the semantical inference operation Th◦Mod is identical with
Cn. At first glance, it may be surprising that soundness (Cn(T ) ⊆ Th◦Mod(T )
for all T ) and completeness (Th ◦ Mod(T ) ⊆ Cn(T ) for all T ) are too weak
to establish important connections between standard semantics for classical
propositional logic and its sound and complete calculi. However, both, that a
contradiction has no model, and that a set is maximally consistent, if and only
if it is theory of a single model, require the Negation property Mod(¬A) =
Mod(A)c. This property is not implied by the fact that Cn = Th ◦ Mod is
a propositional consequence operation—although the converse is true. Con-
sequently, there are semantics for classical propositional logic, for instance,
probability semantics, that do not satisfy the Negation property.

It seems to be a worthy enterprise to extend the present work to other
logics such as first-order logic, higher-order logic and paraconsistent logic. The
first—but not simple—task is to define the suitable class of consequence opera-
tions for the logic in question. Thereafter, one has to investigate how this class
determines properties of its adequate semantics (Sect. 4.2). This leads to repre-
sentation theorems in the style of Theorems 4.9 and 4.14. The reverse question
can also be asked: what properties does a consequence operation have if a cer-
tain class of model mappings is adequate for it (Sect. 4.3)? There remains much
exploration to be done, how concepts of a certain class of consequence oper-
ations connect to concepts of its adequate semantics. Our general results of
Sect. 4.1, however, remain valid for every class of consequence operations and
model mappings. Although the basic semantical framework employed in this
contribution is rather general and widely applicable, it has certain limitations
because it is not suitable for nonmonotonic systems.
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