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Abstract

The asymptotic limit theorems of information theory permit
a concise formulation of Bernard Baars’ global workspace/global
broadcast picture of consciousness, focusing on how networks of
unconscious cognitive modules are driven by the classic ‘no free
lunch’ argument into shifting, tunable, alliances having variable
thresholds for signal detection. The model directly accounts for
the punctuated characteristics of many conscious phenomena,
and derives the inherent necessity of inattentional blindness and
related effects.
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1 Introduction: Cognition as ‘language’

A perhaps oversuccinct summary of Baars’ global workspace model of conscious-
ness attributes the phenomenon to a shifting array of unconscious cognitive
modules that unite to become a global broadcast having a tunable perception
threshold not unlike a theater spotlight (e.g., Baars, 1988, 2005; Baars and
Franklin, 2003). We can uncover much of this basic mechanism from a remark-
ably simple application of the asymptotic limit theorems of information theory,
once a broad range of cognitive processes is recognized as inherently character-
ized by ergodic information sources – generalized languages, if you will (Wallace,
2000). This allows mapping physiological unconscious cognitive modules onto
an abstract network of interacting information sources, permitting a simplified
mathematical attack based on phase transitions in network topology.
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Atlan and Cohen (1998) argue, in the context of a cognitive paradigm for the
immune system, that the essence of cognitive function involves comparison of a
perceived signal with an internal, learned or inherited picture of the world, and
then, upon that comparison, choice of one response from a much larger reper-
toire of possible responses. That is, cognitive pattern recognition-and-response
proceeds by an algorithmic combination of an incoming external sensory sig-
nal with an internal ongoing activity – incorporating the internalized picture of
the world – and triggering an appropriate action based on a decision that the
pattern of sensory activity requires a response.

More formally, incoming sensory input is mixed in an unspecified but sys-
tematic algorithmic manner with a pattern of internal ongoing activity to create
a path of combined signals x = (a0, a1, ..., an, ...). Each ak thus represents some
functional composition of the internal and the external. An application of this
perspective to a standard neural network is given in Wallace (2005, p. 34).

This path is fed into a highly nonlinear, but otherwise similarly unspecified,
decision oscillator, h, which generates an output h(x) that is an element of one
of two disjoint sets B0 and B1 of possible system responses. Let

B0 ≡ {b0, ..., bk},

B1 ≡ {bk+1, ..., bm}.

Assume a graded response, supposing that if

h(x) ∈ B0,

the pattern is not recognized, and if

h(x) ∈ B1,

the pattern is recognized, and some action bj , k + 1 ≤ j ≤ m takes place.
The principal objects of formal interest are paths x which trigger pattern

recognition-and-response. That is, given a fixed initial state a0, we examine
all possible subsequent paths x beginning with a0 and leading to the event
h(x) ∈ B1. Thus h(a0, ..., aj) ∈ B0 for all 0 < j < m, but h(a0, ..., am) ∈ B1.

For each positive integer n, let N(n) be the number of high probability
grammatical and syntactical paths of length n which begin with some particular
a0 and lead to the condition h(x) ∈ B1. Call such paths ‘meaningful’, assuming,
not unreasonably, that N(n) will be considerably less than the number of all
possible paths of length n leading from a0 to the condition h(x) ∈ B1.

While combining algorithm, the form of the nonlinear oscillator, and the
details of grammar and syntax, are all unspecified in this model, the critical
assumption which permits inference on necessary conditions constrained by the
asymptotic limit theorems of information theory is that the finite limit
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H ≡ lim
n→∞

log[N(n)]

n

(1)

both exists and is independent of the path x.
Call such a pattern recognition-and-response cognitive process ergodic. Not

all cognitive processes are likely to be ergodic, implying that H, if it indeed
exists at all, is path dependent, although extension to nearly ergodic processes,
in a certain sense, seems possible (e.g., Wallace, 2005, pp. 31-32).

Invoking the spirit of the Shannon-McMillan Theorem, it is possible to de-
fine an adiabatically, piecewise stationary, ergodic information source X asso-
ciated with stochastic variates Xj having joint and conditional probabilities
P (a0, ..., an) and P (an|a0, ..., an−1) such that appropriate joint and conditional
Shannon uncertainties satisfy the classic relations

H[X] = lim
n→∞

log[N(n)]

n
=

lim
n→∞

H(Xn|X0, ..., Xn−1) =

lim
n→∞

H(X0, ..., Xn)

n
.

This information source is defined as dual to the underlying ergodic cognitive
process, in the sense of Wallace (2000, 2005).

The essence of ‘adiabatic’ is that, when the information source is param-
eterized according to some appropriate scheme, within continuous ‘pieces’ of
that parameterization, changes in parameter values take place slowly enough
so that the information source remains as close to stationary and ergodic as
needed to make the fundamental limit theorems work. By ‘stationary’ we mean
that probabilities do not change in time, and by ‘ergodic’ (roughly) that cross-
sectional means converge to long-time averages. Between ‘pieces’ one invokes
various kinds of phase change formalism, for example renormalization theory in
cases where a mean field approximation holds (Wallace, 2005), or variants of
random network theory where a mean number approximation is applied. More
will be said of this latter approach below.

Recall that the Shannon uncertainties H(...) are cross-sectional law-of-large-
numbers sums of the form−

∑
k Pk log[Pk], where the Pk constitute a probability

distribution. See Cover and Thomas (2006), Ash (1990), or Khinchin (1957) for
the standard details.
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2 No free lunch: a little information theory

Messages from an information source, seen as symbols xj from some alphabet,
each having probabilities Pj associated with a random variable X, are ‘encoded’
into the language of a ‘transmission channel’, a random variable Y with symbols
yk, having probabilities Pk, possibly with error. Someone receiving the symbol
yk then retranslates it (without error) into some xk, which may or may not be
the same as the xj that was sent.

More formally, the message sent along the channel is characterized by a
random variable X having the distribution

P (X = xj) = Pj , j = 1, ...,M.

The channel through which the message is sent is characterized by a second
random variable Y having the distribution

P (Y = yk) = Pk, k = 1, ..., L.

Let the joint probability distribution of X and Y be defined as

P (X = xj , Y = yk) = P (xj , yk) = Pj,k

and the conditional probability of Y given X as

P (Y = yk|X = xj) = P (yk|xj).

Then the Shannon uncertainty of X and Y independently and the joint
uncertainty of X and Y together are defined respectively as

H(X) = −
M∑
j=1

Pj log(Pj)

H(Y ) = −
L∑

k=1

Pk log(Pk)

H(X,Y ) = −
M∑
j=1

L∑
k=1

Pj,k log(Pj,k).

(2)
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The conditional uncertainty of Y given X is defined as

H(Y |X) = −
M∑
j=1

L∑
k=1

Pj,k log[P (yk|xj)]

(3)

For any two stochastic variates X and Y , H(Y ) ≥ H(Y |X), as knowledge
of X generally gives some knowledge of Y . Equality occurs only in the case of
stochastic independence.

Since P (xj , yk) = P (xj)P (yk|xj), we have

H(X|Y ) = H(X,Y )−H(Y )

The information transmitted by translating the variable X into the channel
transmission variable Y – possibly with error – and then retranslating without
error the transmitted Y back into X is defined as

I(X|Y ) ≡ H(X)−H(X|Y ) = H(X) +H(Y )−H(X,Y )

(4)

Again, see Ash (1990), Cover and Thomas (2006) or Khinchin (1957) for
details. The essential point is that if there is no uncertainty in X given the
channel Y , then there is no loss of information through transmission. In general
this will not be true, and herein lies the essence of the theory.

Given a fixed vocabulary for the transmitted variable X, and a fixed vocabu-
lary and probability distribution for the channel Y , we may vary the probability
distribution of X in such a way as to maximize the information sent. The ca-
pacity of the channel is defined as

C ≡ max
P (X)

I(X|Y )

(5)
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subject to the subsidiary condition that
∑
P (X) = 1.

The critical trick of the Shannon Coding Theorem for sending a message with
arbitrarily small error along the channel Y at any rate R < C is to encode it in
longer and longer ‘typical’ sequences of the variable X; that is, those sequences
whose distribution of symbols approximates the probability distribution P (X)
above which maximizes C.

If S(n) is the number of such ‘typical’ sequences of length n, then

log[S(n)] ≈ nH(X)

where H(X) is the uncertainty of the stochastic variable defined above. Some
consideration shows that S(n) is much less than the total number of possible
messages of length n. Thus, as n → ∞, only a vanishingly small fraction of
all possible messages is meaningful in this sense. This observation, after some
considerable development, is what allows the Coding Theorem to work so well.
In sum, the prescription is to encode messages in typical sequences, which are
sent at very nearly the capacity of the channel. As the encoded messages become
longer and longer, their maximum possible rate of transmission without error
approaches channel capacity as a limit. Again, the standard references provide
details.

This approach can be, in a sense, inverted to give a ‘tuning theorem’ variant
of the coding theorem.

Telephone lines, optical wave guides and the tenuous plasma through which
a planetary probe transmits data to earth may all be viewed in traditional
information-theoretic terms as a noisy channel around which we must structure
a message so as to attain an optimal error-free transmission rate.

Telephone lines, wave guides and interplanetary plasmas are, relatively speak-
ing, fixed on the timescale of most messages, as are most sociogeographic net-
works. Indeed, the capacity of a channel, is defined by varying the probability
distribution of the ‘message’ process X so as to maximize I(X|Y ).

Suppose there is some message X so critical that its probability distribution
must remain fixed. The trick is to fix the distribution P (x) but modify the
channel – i.e., tune it – so as to maximize I(X|Y ). The dual channel capacity
C∗ can be defined as

C∗ ≡ max
P (Y ),P (Y |X)

I(X|Y )

(6)

But

C∗ = max
P (Y ),P (Y |X)

I(Y |X)
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since

I(X|Y ) = H(X) +H(Y )−H(X,Y ) = I(Y |X).

Thus, in a purely formal mathematical sense, the message transmits the
channel, and there will indeed be, according to the Coding Theorem, a channel
distribution P (Y ) which maximizes C∗.

One may do better than this, however, by modifying the channel matrix
P (Y |X). Since

P (yj) =

M∑
i=1

P (xi)P (yj |xi),

P (Y ) is entirely defined by the channel matrix P (Y |X) for fixed P (X) and

C∗ = max
P (Y ),P (Y |X)

I(Y |X) = max
P (Y |X)

I(Y |X).

Calculating C∗ requires maximizing the complicated expression

I(X|Y ) = H(X) +H(Y )−H(X,Y )

which contains products of terms and their logs, subject to constraints that
the sums of probabilities are 1 and each probability is itself between 0 and 1.
Maximization is done by varying the channel matrix terms P (yj |xi) within the
constraints. This is a difficult problem in nonlinear optimization. However, for
the special case M = L, C∗ may be found by inspection:

If M = L, then choose

P (yj |xi) = δj,i

where δi,j is 1 if i = j and 0 otherwise. For this special case

C∗ ≡ H(X)

with P (yk) = P (xk) for all k. Information is thus transmitted without error
when the channel becomes ‘typical’ with respect to the fixed message distribution
P (X).

If M < L matters reduce to this case, but for L < M information must be
lost, leading to Rate Distortion limitations.

Thus modifying the channel may be a far more efficient means of ensuring
transmission of an important message than encoding that message in a ‘natural’
language which maximizes the rate of transmission of information on a fixed
channel.

We have examined the two limits in which either the distributions of P (Y ) or
of P (X) are kept fixed. The first provides the usual Shannon Coding Theorem,
and the second a tuning theorem variant, i.e. a tunable, retina-like, Rate Dis-
tortion Manifold, in the sense of Glazebrook and Wallace (2009). These results
can be used to directly derive the famous ‘no free lunch’ theorem of Wolpert
and Macready (1995, 1997). As English (1996) states the matter,
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...Wolpert and Macready... have established that there exists no
generally superior function optimizer. There is no ‘free lunch’ in
the sense that an optimizer ‘pays’ for superior performance on some
functions with inferior performance on others... if the distribution of
functions is uniform, then gains and losses balance precisely, and all
optimizers have identical average performance... The formal demon-
stration depends primarily upon a theorem that describes how in-
formation is conserved in optimization. This Conservation Lemma
states that when an optimizer evaluates points, the posterior joint
distribution of values for those points is exactly the prior joint dis-
tribution. Put simply, observing the values of a randomly selected
function does not change the distribution...

[A]n optimizer has to ‘pay’ for its superiority on one subset of
functions with inferiority on the complementary subset...

Anyone slightly familiar with the [evolutionary computing] liter-
ature recognizes the paper template ‘Algorithm X was treated with
modification Y to obtain the best known results for problems P1 and
P2.’ Anyone who has tried to find subsequent reports on ‘promising’
algorithms knows that they are extremely rare. Why should this be?

A claim that an algorithm is the very best for two functions is a
claim that it is the very worst, on average, for all but two functions....
It is due to the diversity of the benchmark set [of test problems]
that the ‘promise’ is rarely realized. Boosting performance for one
subset of the problems usually detracts from performance for the
complement...

Hammers contain information about the distribution of nail-
driving problems. Screwdrivers contain information about the distri-
bution of screw-driving problems. Swiss army knives contain infor-
mation about a broad distribution of survival problems. Swiss army
knives do many jobs, but none particularly well. When the many
jobs must be done under primitive conditions, Swiss army knives are
ideal.

The tool literally carries information about the task... optimizers
are literally tools-an algorithm implemented by a computing device
is a physical entity...

Another way of stating this conundrum is to say that a computed solution
is simply the product of the information processing of a problem, and, by a
very famous argument, information can never be gained simply by processing.
Thus a problem X is transmitted as a message by an information processing
channel, Y , a computing device, and recoded as an answer. By the argument of
this section, there will be a channel coding of Y which, when properly tuned, is
most efficiently transmitted by the problem. In general, then, the most efficient
coding of the transmission channel, that is, the best algorithm turning a problem
into a solution, will necessarily be highly problem-specific. Thus there can be no
best algorithm for all sets of problems, although there will likely be an optimal
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algorithm for any given set.

3 Dynamic networks of unconscious cognitive
modules

Based on the no free lunch argument of the previous section, it is clear that dif-
ferent challenges facing a conscious entity must be met be different arrangements
of basic cognitive faculties. It is now possible to make a very abstract picture
of the brain, not based on its anatomy, but rather on the linkages between
the information sources dual to the basic physiological and learned unconscious
cognitive modules (UCM) that form Baars’ global workspace/global broadcast.
That is, the remapped brain network is reexpressed in terms of the information
sources dual to the UCM. Given two distinct problems classes (e.g., playing ten-
nis vs. interacting with a significant other), there must be two different ‘wirings’
of the information sources dual to the physiological UCM, as in figure 1, with
the network graph edges measured by the amount of information crosstalk be-
tween sets of nodes representing the dual information sources. A more formal
treatment of such coupling can be given in terms of network information theory
(Cover and Thomas, 2006), as done in Wallace (2011).

The emergence of a closely linked set of information sources dual to the
UCM into a global workspace/broadcast system itself depends on the underly-
ing network topology of the dual information sources and on the strength of the
couplings between the individual components of that network. For random net-
works the results are well known, based on the work of Erdos and Renyi (1960).
Following the review by Spenser (2010) closely (see, e.g., Boccaletti et al., 2006,
for more detail), assume there are n network nodes and e edges connecting the
nodes, distributed with uniform probability – no nonrandom clustering. Let
G[n, e] be the state when there are e edges. The central question is the typical
behavior of G[n, e] as e changes from 0 to (n − 2)!/2. The latter expression
is the number of possible pair contacts in a population having n individuals.
Another way to say this is to let G(n, p) be the probability space over graphs
on n vertices where each pair is adjacent with independent probability p. The
behaviors of G[n, e] and G(n, p) where e = p(n − 2)!/2 are asymptotically the
same.

For ‘real world’ biological and social structures, one can have p = f(e, n),
where f may not be simple or even monotonic. For example, while low e would
almost always be associated with low p, beyond some threshold, high e might
drive individuals or nodal groups into isolation, decreasing p and producing an
‘inverted-U’ signal transduction relation akin to stochastic resonance. Some-
thing like this would account for Fechner’s law which states that perception of
sensory signals often scales as the log of the signal intensity.

For the simple random case, however, we can parameterize as p = c/n. The
graph with n/2 edges then corresponds to c = 1. The essential finding is that
the behavior of the random network has three sections. If c < 1 all the linked
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Figure 1: By the no free lunch theorem, two markedly different problems will
be optimally solved by two different linkages of available unconscious cognitive
modules into different temporary global workspace/broadcast networks, here
represented by crosstalk among their dual information sources rather than the
physiological UCM themselves.
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subnetworks are very small, and no global broadcast can take place. If c = 1
there is a single large interlinked component of a size ≈ n2/3. If c > 1 then
there is a single large component of size yn – a global broadcast – where y is
the positive solution to the equation

exp(−cy) = 1− y.

(7)

Then

y =
W (−c/ exp(c)) + c

c
,

(8)

where W is the Lambert W function.
The solid line in figure 2 shows y as a function of c, representing the fraction

of network nodes that are incorporated into the interlinked giant component –
the global broadcast for interacting UCM. To the left of c = 1 there is no giant
component, and large scale – i.e., conscious – cognitive process is not possible.

The dotted line, however, represents the fraction of nodes in the giant com-
ponent for a highly nonrandom network, a star-of-stars-of-stars (SoS) in which
every node is directly or indirectly connected with every other one. For such a
topology there is no threshold, only a single giant component, showing that the
emergence of a giant component in a network of information sources dual to the
UCM – the emergence of consciousness – is dependent on a network topology
that may itself be tunable.

According to this argument, if the network topology becomes tuned, then a
sensory input parameterized by c with c < 1 can trigger a global broadcast.

One imagines a set of sensory inputs, C = {c1, ..., cj} affecting a highly
multidimensional structure of interacting UCM, represented abstractly here by
the network of their dual information sources. If the set is tuned by the no free
lunch theorem to maximize response to the ‘problem’ defined by a particular ci,
so that ci � 1 can trigger a global broadcast, then the other sensory inputs will
be inherently subject to inattentional blindness, a somewhat simpler picture
than that presented by Wallace (2007).

11



Figure 2: Fraction of network nodes in the giant component as a function of the
coupling parameter c. The solid line represents a random graph, the dotted line
a star-of-stars-of-stars network in which all nodes are interconnected, showing
that the dynamics of giant component emergence are highly dependent on an
underlying network topology that, for UCM, may itself be tunable. For the
random graph, a strength of c < 1 precludes emergence of an exciting sensory
signal into consciousness.
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4 Discussion and conclusions

An elementary tuning theorem variant of the Shannon Coding Theorem that
expresses the no free lunch argument allows construction of a simple version
of Bernard Baars’ global workspace/global broadcast model of consciousness.
Punctuated accession to consciousness, via sudden onset of a giant component,
and inattentional blindness, via the no free lunch restriction, emerge directly.
More complicated models are required to explore the nature of the phase tran-
sition implied by the solid line in figure 2 (Wallace, 2005), the effects of em-
bedding culture on inattentional blindness (Wallace, 2007), and the conundrum
presented by institutional or machine versions of consciousness that can support
multiple, interacting, global broadcasts (Wallace and Fullilove, 2008; Wallace,
2008, 2009, 2010).
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