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1 Introduction

In recent work on the Everett (Many-Worlds) interpretation of quantum me-
chanics, it has increasingly been recognized that any version of the interpretation
worth defending will be one in which the basic formalism of quantum mechanics
is left unchanged. Properties such as the interpretation of the wave-function as
describing a multiverse of branching worlds, or the ascription of probabilities to
the branching events, must be emergent from the unitary quantum mechanics
rather than added explicitly to the mathematics. Only in this way is it possible
to save the main virtue of Everett’s approach: having an account of quantum
mechanics consistent with the last seventy years of physics, not one in which the
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edifice of particle physics must be constructed afresh (Saunders 1997, p. 44).1

Of the two main problems generally raised with Everett-type interpreta-
tions, the preferred-basis problem looks eminently solvable without changing
the formalism. The main technical tool towards achieving this has of course
been decoherence theory, which has provided powerful (albeit perhaps not con-
clusive) evidence that the quantum state has a de facto preferred basis and that
this basis allows us to describe the universe in terms of a branching structure
of approximately classical, approximately non-interacting worlds. I have argued
elsewhere (Wallace 2001a, 2001b) that there are no purely conceptual problems
with using decoherence to solve the preferred-basis problem, and that the in-
exactness of the process should give us no cause to reject it as insufficient. In
particular, the branching events in such a theory can be understood, literally,
as replacement of one classical world with several — so that in the Schrödinger
Cat experiment, for instance, after the splitting there is a part of the quantum
state which should be understood as describing a world in which the cat is alive,
and another which describes a world in which it is dead. This multiplication
comes about not as a consequence of adding extra, world-defining elements to
the quantum formalism, but as a consequence of an ontology of macroscopic
objects (suggested by Dennett 1991) according to which they are treated as
patterns in the underlying microphysics.

This account applies to human observers as much as to cats: such an ob-
server, upon measuring an indeterminate event, branches into multiple observers
with each observer seeing a different outcome. Each future observer is (initially)
virtually a copy of the original observer, bearing just those causal and structural
relations to the original that future selves bear to past selves in a non-branching
theory. Since (arguably; see Parfit (1984) for an extended defence) the existence
of such relations is all that there is to personal identity, the post-branching ob-
servers can legitimately be understood as future selves of the original observer,
and he should care about them just as he would his unique future self in the
absence of branching.

This brings us on to the other main problem with the Everett interpretation,
1This is by no means universally recognized. Everett-type interpretations can perhaps be

divided into three types:

(i) Old-style “Many-Worlds” interpretations in which worlds are added explicitly to the quan-
tum formalism (see, e. g. , DeWitt (1970) and Deutsch (1985), although Deutsch has
since abandoned this approach; in fact, it is hard to find any remaining defendants of
type (i) approaches).

(ii) “Many-Minds” approaches in which some intrinsic property of the mind is essential to
understanding how to reconcile indeterminateness and probability with unitary quan-
tum mechanics (see, e. g. , Albert and Loewer (1988), Lockwood (1989, 1996), Donald
(1997), and Sudbery (2000)).

(iii) Decoherence-based approaches, such as those defended by myself (Wallace 2001a, 2001b),
Saunders (1995, 1997, 1998), Deutsch (1996, 2001), Vaidman (1998, 2001) and Zurek
(1998).

For the rest of this paper, whenever I refer to “the Everett interpretation”, I shall mean
specifically the type (iii) approaches. This is simply for brevity, and certainly isn’t meant to
imply anything about what was intended in Everett’s original (1957) paper.
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the concept of probability. Given that the Everettian description of measure-
ment is a deterministic, branching process, how are we to reconcile that with the
stochastic description of measurement used in practical applications of quantum
mechanics? It has been this problem, as much as the preferred basis problem,
which has led many workers on the Everett interpretation to introduce explicit
extra structure into the mathematics of quantum theory so as to make sense of
the probability of a world as (for instance) a measure over continuously many
identical worlds. Even some proponents of the Many-Minds variant on Everett
(notably Albert and Loewer 1988 and Lockwood 1989, 1996), who arguably
have no difficulty with the preferred-basis problem, have felt forced to modify
quantum mechanics in this way.

It is useful to identify two aspects of the problem. The first might be called
the incoherence problem: how, when every outcome actually occurs, can it even
make sense to view the result of a measurement as uncertain? Even were this
solved, there would then remain a quantitative problem: why is that uncertainty
quantified according to the quantum probability rule (i. e. , the Born rule), and
not (for instance) some other assignment of probabilities to branches?

Substantial progress has also been made on the incoherence problem. In my
view, the most promising approach is Saunders’ ‘subjective uncertainty’ theory
of branching: Saunders argues (via the analogy with Parfittian fission) that an
agent awaiting branching should regard it as subjectively indeterministic. That
is, he should expect to become one future copy or another but not both, and
he should be uncertain as to which he will become. (Saunders’ strategy can be
found in Saunders (1998), and in the longer version of the current paper.) An
alternative strategy has been suggested by Vaidman (1998, 2001): immediately
after the branching event (before we actually see the result of the measurement)
the agent knows that he is determinately in one branch or another but is simply
ignorant as to which one.

If progress is being made on the incoherence problem, the quantitative prob-
lem is all the more urgent. In this context it is extremely interesting that David
Deutsch has claimed (Deutsch 1999) to derive the quantum probability rule from
decision theory: that is, from considerations of pure rationality. It is rather sur-
prising how little attention his work has received in the foundational community,
though one reason may be that it is very unclear from his paper that the Ev-
erett interpretation is assumed from the start.2 If it is tacitly assumed that his
work refers instead to some more orthodox collapse theory, then it is easy to see
that the proof is suspect; this is the basis of the criticisms levelled at Deutsch
by Barnum et al, (2000). Their attack on Deutsch’s paper seems to have been
influential in the community; however, it is at best questionable whether or not

2Nonetheless it is assumed:

However, in other respects he [the rational agent] will not behave as if he believed
that stochastic processes occur. For instance if asked whether they occur he will
certainly reply ‘no’, because the non-probabilistic axioms of quantum theory
require the state to evolve in a continuous and deterministic way. [Deutsch
1999, pp. 13; emphasis his.]
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it is valid when Everettian assumptions are made explicit. (This matter will be
discussed further below.)

If the Everettian context is made explicit, Deutsch’s strategy can be re-
constructed as follows. Assuming that the outcome of a measurement can in
some sense be construed as uncertain (that is, that Saunders’, Vaidman’s, or
some other strategy resolves the incoherence problem), then the ‘quantitative
problem’ splits into two halves:

1. What justifies using probabilities to quantify the uncertainty at all?

2. Why use those specific probabilities given by the Born rule?

Fairly obviously, the first of these is not really a quantum-mechanical prob-
lem at all but a more general one — and one which decision theory is designed
to answer. In decision theory, we start with some general assumptions about
rationality, and deduce that any agent whose preferences between actions sat-
isfies those assumptions must act as if they allocated probabilities to possible
outcomes and preferred those actions that maximized expected utility with re-
spect to those probabilities. Roughly speaking, this is to define the probability
assigned to X by the agent as the shortest odds at which the agent would be
prepared to bet on X occurring.

Deutsch’s strategy is to transfer this strategy across to quantum theory:
to start with axioms of rational behavior, apply them to quantum-mechanical
situations, and deduce that rational agents should quantify their subjective un-
certainty in the face of splitting by the use of probability. What is striking
about the quantum-mechanical version of decision theory, though, is that ra-
tional agents are so strongly constrained in their behavior that not only must
they assign probabilities to uncertain events, they must assign precisely those
probabilities given by the Born Rule. This discovery might be called Deutsch’s
theorem, since it is the central result of Deutsch’s paper.

The structure of the paper is as follows. Section 2 gives an unambiguous def-
inition of Deutsch’s quantum games, and derives some preliminary results about
them; section 3 describes the decision-theoretic assumptions Deutsch makes. In
section 4 I run through Deutsch’s proof of the Born rule; section 5 gives an
alternative proof of my own, from slightly different assumptions. Sections 6
and 7 deal with possible criticisms of Deutsch’s approach (section 6 reviews the
criticisms made by Barnum et al ; section 7 describes a possible problem with
the proof not discussed either by Barnum et al or by Deutsch). Section 8 is the
conclusion.

An extended version of this paper (Wallace 2002) is available online.

2 Quantum measurements and quantum games

In this section, I will define Deutsch’s notion of a ‘quantum game’ — effectively
a bet placed on the outcome of a measurement. Though I follow Deutsch’s
definition of a game, my notation will differ from his in order to resolve some
ambiguities in the definition (first identified by Barnum et al, 2000).
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Informally, a (quantum) game is to be a three-stage process: a system is
prepared in some state; a measurement of some observable is made on that
state; a reward, dependent on the result of the measurement, is paid to the
player. Formally, we will define a game (in boldface) thus:

A game is an ordered triple 〈|ψ〉 , X̂,P〉, where:

• |ψ〉 is a state in some Hilbert space H (technically the Hilbert
space should also be included in the definition, but has been
omitted for brevity);

• X̂ is a self-adjoint operator on H;

• P is a function from the spectrum of X̂ into the real numbers.

Technically this makes a game into a mathematical object; but obviously
we’re really interested in physical processes somehow described by that object.
We say that a given process instantiates some game 〈|ψ〉 , X̂,P〉 if and only if
that process consists of:

1. The preparation of some quantum system, whose state space is described
by H, in the state (represented by) |ψ〉;

2. The measurement, on that system, of the observable (represented by) X̂;

3. The provision, in each branch in which result ‘x’ was recorded, of some
payment of cash value P(x).

We’ll define a game (not in boldface) as any process which instantiates a game.
The distinction between games and games may seem pedantic: the whole

strategy of mathematical physics is to use mathematical objects to represent
physical states of affairs, and outside the philosophy of mathematics there is
seldom if ever a need to distinguish between the two. However, it’s crucial to
an understanding of Deutsch’s proof to notice that the instantiation relation,
between games and games is not one-to-one. Quite the reverse, in fact: many
games can instantiate a given game (unsurprisingly: there are many ways to
construct a measuring device), and (perhaps more surprisingly) a single game
instantiates many games. We can define an equivalence relation ' between
games: G ' G′ iff G and G′ are instantiated by the same game.

To explore the properties of ', we need to get precise about what physical
processes count as measurements. Since we are working in the Everett frame-
work, we can model a measurement as follows: let Hs be the Hilbert space of
some subsystem of the Universe, and He be the Hilbert space of the measure-
ment device;3 let X̂ be the observable to be measured.

Then a measurement procedure for X̂ is specified by:
3In practice, the Hilbert space He would probably have to be expanded to include an

indefinitely large portion of the surrounding environment, since the latter will inevitably
become entangled with the device.
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1. Some state |M0〉 of He, to be interpreted as its initial (pre-measurement)
state; this state must be an element of the preferred basis picked out by
decoherence.

2. Some basis |λi〉 of eigenstates of X̂, where X̂ |λi〉 = xi |λi〉 .

3. Some set {|M;xi;α〉} of “readout states” of Hs ⊗ He, also elements of
the decoherence basis, at least one for each state |λa〉. The states must
physically display xi, in some way measurable by our observer (e. g. , by
the position of a needle).

4. Some dynamical process, triggered when the device is activated, and de-
fined by the rule

|λi〉⊗|M0〉 −→
∑
α

µ(λi;α) |M;xi;α〉 (1)

where the µ(λi;α) are complex numbers satisfying
∑
α |µ(λi;α)|2 = 1.

What justifies calling this a ‘measurement’? The short answer is that it is the
standard definition; a more principled answer is that the point of a measurement
of X̂ is to find the value of X̂, and that whenever the value of X̂ is definite,
the measurement process will successfully return that value. (Of course, if the
value of X̂ is not definite then the measurement process will lead to branching
of the device and the observer; but this is inevitable given linearity.)

Observe that:

1. We are not restricting our attention to so-called “non-disturbing” mea-
surements, in which |M;xi〉 = |λi〉⊗|M′;xi〉 . In general measurements
will destroy or at least disrupt the system being measured, and we allow
for this possibility here.

2. The additional label α allows for the fact that many possible states of the
measurement device may correspond to a single measurement outcome.
Even in this case, of course, an observer can predict that whenever |ψ〉 is
an eigenstate of X̂, all his / her future copies will correctly learn the value
of X̂. In practice most realistic measurements are likely to be of this form,
because the process of magnifying microscopic data up to the macro level
usually involves some random processes.

3. Since a readout state’s labelling is a matter not only of physical facts
about that state but also of the labelling conventions used by the observer,
there is no physical difference between a measurement of X̂ and one of
f(X̂), where f is an arbitrary one-to-one function from the spectrum of
X̂ onto some subset of <: a measurement of f(X̂) may be interpreted
simply as a measurement of X̂, using a different labelling convention.
More accurately, there is a physical difference, but it resides in the brain
state of the observer (which presumably encodes the labelling convention
in some way) and not in the measurement device.
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To save on repetition, let us now define some general conventions for games:
we will generally use X̂ for the operator being measured, and denote its eigen-
states by |λi〉; the eigenvalue of |λi〉 will be xi. (We allow for the possibility of
degenerate X̂, so that may have xi = xj even though i 6= j.) We write σ(X̂)
for the spectrum of X̂, and P̂X(x) for the projector onto the eigensubspace of
X̂ with eigenvalue x; thus,

X̂ =
∑

x∈σ(X)

x P̂X(x). (2)

For a given game G = 〈|ψ〉 , X̂,P〉, we also define the weight map WG : < →
< by

WG(c) =
∑

x∈P−1{c}

〈ψ| P̂X(x) |ψ〉 (3)

(that is, the sum ranges over all x ∈ σ(X̂) such that P(x) = c). It is readily
seen that for any game instantiating G, WG(c) is the weight of the payoff c: that
is, the sum of the weights of all the branches in which payoff c is given. Because
of this we can refer without confusion to WG(c) as the weight of c. (Recall that
the weight of a branch is simply the squared modulus of the amplitude of that
branch (relative to the pre-branching amplitude, of course); thus if the state of
a measuring device following measurement is∑

i

αi |M;xi〉 , (4)

then the weight of the branch in which result xi occurs is |αi|2.)
We can now state and prove the:

Equivalence Theorem

1. Payoff Equivalence (PE):

〈|ψ〉 , X̂,P · f〉 ' 〈|ψ〉 , f(X̂),P〉 (5)

where f : σ(X̂) → <.

2. Measurement Equivalence (ME):

〈|ψ〉 , X̂,P〉 ' 〈Û |ψ〉 , X̂
′
,P ′〉 (6)

where

• Û is a unitary transformation;

• X̂ and X̂
′
satisfy ÛX̂ = X̂

′
Û ;

• P and P ′ agree on σ(X̂).
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(Note that we allow Û to connect different Hilbert spaces here.
If Û transforms a fixed Hilbert space, the result simplifies to

〈|ψ〉 , X̂,P〉 ' 〈Û |ψ〉 , Û X̂Û
†
,P〉. ) (7)

3. General Equivalence (GE): G ' G′ iff WG = WG′ .

Proof:

1. Recall that our definition of a measurement process involves a set of states
|M;xi〉 of the decoherence-preferred basis, which are understood as read-
out states — and that the rule associating an eigenvalue xi with a readout
state |M;xi〉 is just a matter of convention. Change this convention, then:
regard |M;xi〉 as displaying f(xi) — but also change the payoff scheme:
replace a payoff P · f(x) upon getting result x with a payoff P(x). These
two changes replace the game 〈|ψ〉 , X̂,P·f〉 with 〈|ψ〉 , f(X̂),P〉— but no
physical change at all has occurred, just a change of labelling convention.
Hence 〈|ψ〉 , X̂,P · f〉 ' 〈|ψ〉 , f(X̂),P〉.

2. For simplicity, let us assume that X̂ and X̂
′
act on different Hilbert spaces

H and H′. (This assumption can be relaxed either by a trivial change of
the proof, or directly by realizing Û in two steps, via an auxiliary Hilbert
space.)

Because ÛX̂ = X̂
′
Û , it must be possible to label the eigenstates |µ1〉 , . . . |µn′〉

of X̂
′
so that for a ≤ n, Û |λi〉 = |µi〉 and X̂

′
|µi〉 = xi |µi〉 . Now, with-

out loss of generality take |ψ〉 =
∑n
i=1 αi |λi〉, and consider the following

physical process:

(a) Prepare the system represented by H in state |ψ〉, and the system
represented byH′ in some fixed state |0′〉, so that the overall quantum
state is

|ψ〉 ⊗ |0′〉 ⊗ |M0〉 (8)

where |M0〉 is the initial state of some measurement device for H′.

(b) Operate on H⊗H′ with some unitary transformation realizing |φ〉⊗
|0′〉 → |0〉⊗Û |φ〉, where |φ〉 is an arbitrary state of H and |0〉 is some
fixed state of H. (That such a transformation exists is trivial.)

(c) Discard the system represented byH. (This step is just for notational
convenience.) The system retained is now in state Û |ψ〉 ⊗ |M0〉.

(d) Measure X̂
′
using the following dynamics:

|µi〉 ⊗ |M0〉 −→ |M;xi; a〉 (9)

where for each i, |M;xi; i〉 is a readout state giving readout xi. (The
extra i index is only there to allow for degeneracy, and can be dropped
if X̂

′
is non-degenerate.)
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(e) The final state is now

n∑
i=1

αi |M;xi; i〉 . (10)

In the branches where result xi is recorded, give a payoff P ′(xi).

This process can be described as follows: in steps (a)–(c) we prepare the
state Û |ψ〉 of H′, using an auxiliary system represented by H. In step (d)
we measure the operator X̂

′
on that state, and in step (e) we provide a

payout P ′. This is an instantiation of the game 〈Û |ψ〉 , X̂
′
,P ′〉.

However, suppose we just treat steps (b)–(d) as a black box process. That
process realizes the transformation(

n∑
i=1

αi |λi〉

)
⊗ |0′〉 ⊗ |M0〉 −→

n∑
i=1

αi |M;xi; i〉 , (11)

which — by definition of measurement — is a measurement of X̂ on the
state |ψ〉, using a measurement device with initial state |0〉 ⊗ |M0〉.
This observation means that the process (a)–(e) can also be described in
another way: in step (a) we prepare the state |ψ〉 of H; in steps (b)–
(d) we measure the operator X̂ on that state (using an auxiliary system
represented by H′); in step (e) we provide a payout P. (Note that the
measurement of Û |ψ〉 gives, with certainty, some result x1, . . . xn, so there
is no physical difference between providing payoff P and payoff P ′.) Thus
the process is an instantiation of the game 〈|ψ〉 , X̂,P〉.
There is no physical difference between the two descriptions of (a)– (e);
there is simply a change in how we choose to describe the process. It
follows that 〈|ψ〉 , X̂,P〉 ' 〈Û |ψ〉 , X̂

′
,P ′〉.

3. For each n, let Hn
0 be some n-dimensional Hilbert space with self-adjoint

operator K̂, having eigenstates |κ1〉 , . . . |κn〉 with K̂ |κi〉 = i |κi〉. (Techni-
cally we should distinguish between the K̂ for different n, but no ambiguity
will result from this abuse of notation.)

If G = 〈|ψ〉 , X̂,P〉 is any game with n distinct payoffs — that is, elements
in the range of P — c1, . . . cn with non-zero weights w1, . . . wn (plus any
number of ‘possible’ payoffs with zero weight), we will show that G is
equivalent to the ‘canonical’ game 〈|ψ0〉 , K̂,P0〉, where

• |ψ0〉 is a state in Hn
0 ;

• |ψ0〉 =
∑n
i=1

√
wi |κi〉;

• P0(i) = ci.

This will be sufficient to prove GE. We proceed as follows:
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(a) Let H be the Hilbert space of G (i. e. , the Hilbert space on which
X̂ acts) and let S be the direct sum of all eigenspaces of X̂ which
have nonzero overlap with |ψ〉. If Û is the embedding map of S into
H, and P|S is the restriction of P to the spectrum of X̂|S , then it
follows from ME that

G ' 〈|ψ〉 , X̂|S ,P|S〉. (12)

We may therefore assume, without loss of generality, that S = H;
that is, that |ψ〉 has non-zero overlap with all eigenstates of X̂.

(b) Also without loss of generality, we may assume the eigenstates of X̂
ordered so that the first n1 give payoff c1, the next n2 give payoff c2,
and so on. (We know each ni is non-zero, by (a).) Then we can write
|ψ〉 as

|ψ〉 =
N∑
i=1

αi |λi〉 , (13)

where each αi is non-zero.
Now define the normalized vectors |µ1〉 , . . . |µn〉 by

|µ1〉 =
α1 |λ1〉+ · · ·+ αn1 |λn1〉√

|α1|2 + · · ·+ |αn1 |2
, (14)

|µ2〉 =
αn1+1 |λn1+1〉+ · · ·+ αn2 |λn2〉√

|αn1+1|2 + · · ·+ |αn2 |2
, (15)

etc. Then by definition of WG , wi ≡WG(ci), we now have

|ψ〉 =
n∑
i=1

√
wi |µi〉 . (16)

(c) Define f by f(x) = i whenever x is the eigenvalue of an eigenstate
leading to payoff ci. By PE,

G ' 〈|ψ〉 , f(X̂),P · f−1〉. (17)

f(X̂) is an operator which has the |µi〉 as eigenstates: f(X̂) |µi〉 =
i |µi〉 .

(d) Finally, let Û be a unitary map from Hn
0 to H, given by Û |κi〉 = |µi〉 .

Since ÛK̂ = f(X̂)Û , we have by ME

G ' 〈
n∑
i=1

√
wi |κi〉 , K̂,P · f−1〉 (18)

which is the canonical game above.
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Before moving on, it’s necessary to cover one further ramification to his concept
of ‘game’ (and ‘game’): compound games. A compound game is obtained from
an existing game by replacing some or all of its consequences with new games.
(For instance, we might measure the spin of a spin-half particle, and play one
of two possible games according to which spin we obtained.)4

3 Decision theory

To complete our goal of deriving the Born rule, we will need to introduce some
decision-theoretic assumptions about agents’ preferences between games. Fol-
lowing Deutsch, we do so by introducing a value function: a map V from the
set of games to the reals, such that if some game’s payoff function is constant
and equal to c, then the value of that game is c. (For convenience, we write
‘V(|ψ〉 , X̂,P)’ in place of ‘V(〈|ψ〉 , X̂,P〉)’.)

The idea of the function is that a rational agent prefers a game G to another
G′ just if V(G) > V(G′). V(G) can be thought of, in fact, as the ‘cash value’ of G
to the agent: s/he will be indifferent between playing G, and receiving a reward
with a cash value of V(G). (It follows that a game whose payoff function is
constant must have V(G) equal to that constant value; hence the requirement.)

Deutsch now imposes the following restrictions on V.

Dominance: If P(x) ≥ P ′(x) for all x, then

V(|ψ〉 , X̂,P) ≥ V(|ψ〉 , X̂,P ′). (19)

Substitutivity: If Gcomp is a compound game formed from some game G
by substituting for its consequences c1, . . . cn games G1, . . .Gn such that
V(Gi) = ci, then Gcomp ' G.

Weak additivity: If k is any real number, then

V(|ψ〉 , X̂,P + k) = V(|ψ〉 , X̂,P) + k. (20)

Zero-sum: For given payoff P, let −P be defined by (−P)(x) = −(P(x)). Then

V(|ψ〉 , X̂,−P) = −V(|ψ〉 , X̂,P). (21)

As with any set of decision-theoretic assumptions, the idea is that any ra-
tional set of preferences between games must be given by some value function
which satisfies these constraints: to violate any one of them is to be irrational
in some way.

4Formally,

• a simple game is just a game as defined above;

• a compound game of rank n is a triple 〈|ψ〉 , X̂,P〉, where P is a map from σ(X̂)
into the set of simple games and compound games of rank n− 1;

• A compound game is any physical process instantiating a compound game;

although in fact we will not ever need to be so formal.
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Specifically, Dominance says that if one game invariably leads to better
rewards than another, take the first game. Substitutivity says that, if an
agent is indifferent between getting a definite reward c and playing some game,
s/he should also be indifferent between a chance of getting c and the same
chance of playing that game.

We can motivate Weak additivity like this: consider any physical process
which first instantiates G = 〈|ψ〉 , X̂,P〉, and then delivers a reward of value k
with certainty. This is physically equivalent to measuring |ψ〉 and then receiving,
sequentially, two rewards on getting result xa: one of cash value P(xa) and one
of value k. This reward is equivalent to a single one of value P(xa) + k and so
the physical process realizes 〈|ψ〉 , X̂,P + k〉.

Now, suppose that the fixed reward k is received before playing (the game
instantiating) G. By Substitutivity, the agent is indifferent between receiving
k then playing G, and receiving k then receiving V(G). But the latter process is
just that of receiving a ‘lump-sum’ payment of V(G) + k.

Zero-sum can be motivated as follows: if I and someone else who shares my
exact preferences play some sort of game in which any gain to one is balanced
by a loss to the other, it seems reasonable to assume that if one of us actively
wants to play (that is, expects to benefit), the other must actively want not to
play (that is, expects to lose out).

Now suppose G = 〈|ψ〉 , X̂,P〉, and that I play G′ = 〈|ψ〉 , X̂,P −V(G)〉 with
my alter ego acting as banker; he is thus playing −G′ = 〈|ψ〉 , X̂,V(G)− P〉.

But by Weak additivity, I am indifferent to playing G’ (V(G′) = 0). It
follows that my alter ego must be indifferent to playing −G′, and hence (applying
the lemma again) that Zero-sum holds. (I am grateful to Simon Saunders for
this argument.)

In fact, both Weak additivity and Zero-Sum are special cases of the
following general principle:

Additivity:

V(|ψ〉 , X̂,P + P ′) = V(〈|ψ〉 , X̂,P〉) + V(〈|ψ〉 , X̂,P ′〉). (22)

This can be motivated as follows: suppose I know some measurement is to
be carried out, and I want to pay to buy tickets entitling me to a bet on that
measurement. Each bet is represented by some payoff function P, to which I
might imagine assigning a cash value (the largest value I’ll pay for the ticket
which allows me to make the bet.) If I assume that the price I’d pay for a given
ticket doesn’t depend on which tickets I’ve already bought, Additivity follows.

Deutsch doesn’t in fact assume Additivity (though I don’t think there’s any
deep significance to this) but it will allow us to simplify his proof considerably.
In practice, Additivity is essentially equivalent to the conjunction of Weak
additivity, Zero-Sum and Substitutivity: the first two allow us to prove
Additivity for games with two possible outcomes, and the third allows us to
build up multi-outcome games from two-outcome ones.
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All of these assumptions are essentially independent of quantum mechanics,
and they already allow us to do quite a lot of decision theory: in fact, we can
prove the

Probability representation theorem: If V is a value function
which satisfies Additivity and Dominance, V is given by

V(|ψ〉 , X̂,P) =
∑

x∈σ(X)

Pr
ψ,X

(x)P(x) (23)

where the Prψ,X(x) are real numbers between 0 and 1 which depend
on |ψ〉 and X̂ but not on P, and where∑

x∈σ(X)

Pr
ψ,X

(x) = 1. (24)

(The essential idea of the proof is that we define the probability of a mea-
surement outcome as the shortest odds we’d accept on its occurrence, and use
Additivity to prove this is consistent; see the appendix for the full proof.)

In fact, this result shows that the decision-theoretic axioms we are adopting
are actually quite strong: they imply, for instance, that it’s rational to bet the
mortgage on a one-in-a-million chance of winning the GNP of Europe. They
seem reasonable as long as we restrict our attention to betting with small sums,
however. (And, as I show in Wallace (2002), it is possible to improve Deutsch’s
results by substantially weakening his decision-theoretic assumptions.)

Nonetheless, the Representation Theorem is still far short of the Born rule.
No link has been made between the probabilities Prψ,X(x) and the weight of the
branches, and in fact the Representation Theorem is consistent with different
agents (that is, different value functions) assigning very different probabilities
to the same event.

The connection to quantum theory comes in entirely through the last as-
sumption made:

Physicality: Two games instantiated by the same physical process have the
same value; that is, G ' G′ → V(G) = V(G′).

The motivation for this, obviously, is that real agents have preferences between
games, not games. I return to this point in section 7.

4 Deutsch’s proof

We are now in a position to state and prove

Deutsch’s Theorem: If V is a value function which satisfies Physi-
cality, Weak additivity, Substitutivity, Dominance, and Zero-
sum, then V is given uniquely by the Born rule:

V(|ψ〉 , X̂,P) =
∑

x∈σ(X)

〈ψ| P̂X(x) |ψ〉 P(x) ≡
∑

c∈P[σ(X)]

cWG(c).

(25)
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The proof given below follows Deutsch’s own proof rather closely (although
some minor changes have been made for clarity or to conform to my notation
and terminology.) In particular, though Deutsch often uses PE and ME (parts
1 and 2 of the Equivalence Theorem) he never derives the 3rd part, GE. As
such, I make no use of it here (though see section 5).

As usual, |λa〉 will always denote an eigenstate of X̂ with some eigenvalue
xa. It will be convenient, for each operator X̂, to define the function idX as
the restriction of the identity map id(x) = x to the spectrum of X̂; note that
idf(X) · f = f · idX . Because of PE, if we can prove the theorem for P = idX we
can prove it for general P:

〈|ψ〉 , X̂,P〉 ' 〈|ψ〉 ,P(X̂), idX〉. (26)

We will therefore take idX as the ‘default’ payoff function, and will write just
〈|ψ〉 , X̂〉 in place of 〈|ψ〉 , X̂, idX〉.

Stage 1 Let |ψ〉 = 1√
2
(|λ1〉+ |λ2〉). Then V(|ψ〉 , X̂) = 1

2 (x1 + x2).

From Weak additivity and PE, we have

V(|ψ〉 , X̂, idX) + k = V(|ψ〉 , X̂, idX + k) = V(|ψ〉 , X̂ + k, idX) (27)

Similarly, Zero-Sum together with another use of PE gives us

V(|ψ〉 ,−X̂) = −V(|ψ〉 , X̂), (28)

and combining (27) and(28) gives

V(|ψ〉 ,−X̂ + k) = −V(|ψ〉 , X̂) + k. (29)

Now, let f be the function of reflection about the point 1/2(x1 + x2). Then
f(x) = −x+x1 +x2. Provided that X̂ is non-degenerate and that the spectrum

of X̂ is invariant under the action of f , the operator Ûf , given by Ûf X̂Û
†
f =

f(X̂) is well-defined and leaves |ψ〉 invariant. ME then gives us

V(|ψ〉 ,−X̂ + x1 + x2) = V(|ψ〉 , X̂). (30)

Combining this with (29), we have

V(|ψ〉 , X̂) = −V(|ψ〉 , X̂) + x1 + x2, (31)

which solves to give V(|ψ〉 , X̂) = 1
2 (x1 + x2), as required.

In the general case where X̂ is degenerate, or has a spectrum which is not
invariant under the action of f , let S be the span of {|λ1〉 , |λ2〉} and let V :
S → H be the embedding map. ME then gives us

〈|ψ〉 , X̂|S〉 ' 〈|ψ〉 , X̂〉, (32)

14



and the result follows.
Deutsch refers to this result, with some justice, as ‘pivotal’: it is the first

point in the proof where a connection has been proved between amplitudes
and probabilities. Note the importance in the proof of the symmetry of |ψ〉
under reflection, which in turn depends on the equality of the amplitudes in the
superposition; the proof would fail for |ψ〉 = α |λ1〉+ β |λ2〉 , unless α = β.

Stage 2 If N = 2n for some positive integer n, and if |ψ〉 = (1/
√
N)(|λ1〉 +

· · ·+ |λN 〉), then

V(|ψ〉 , X̂,P) = (1/N)(x1 + · · ·+ xN ). (33)

The proof is recursive on n, and I will give only the first step (the general-
ization is obvious). It relies on the method of forming composite games, hence
on Substitutivity. Define:

• |ψ〉 = (1/2)(|λ1〉+ |λ2〉+ |λ3〉+ |λ4〉);

• |A〉 = (1/
√

2)(|λ1〉+ |λ2〉); |B〉 = (1/
√

2)(|λ3〉+ |λ4〉);

• yA = (1/2)(x1 + x2); yB = (1/2)(x3 + x4).

• Ŷ = yA |A〉 〈A|+ yB |B〉 〈B| .

Now, the game G = 〈|ψ〉 , Ŷ 〉 has value 1/4(x1 + x2 + x3 + x4), by Stage 1.
In the yA branch, a reward of value 1/2(x1 + x2) is given; by Substitutivity
the observer is indifferent between receiving that reward and playing the game
GA = 〈|ψ〉 , X̂〉, since the latter game has the same value. A similar observation
applies in the yB branch.

So the value to the observer of measuring Ŷ on |ψ〉 and then playing either
GA or GB according to the result of the measurement is 1/4(x1 +x2 +x3 +x4).
But the physical process which instantiates this sequence of games is just(

4∑
i=1

1
2
|λi〉

)
⊗ |M0〉 →

4∑
i=1

1
2
|M;xi〉 , (34)

which is also an instantiation of the game 〈|ψ〉 , X̂〉; hence, the result follows.

Stage 3 Let N = 2n as before, and let a1, a2 be positive integers such that
a1 + a2 = N . Define |ψ〉 by |ψ〉 = 1√

N
(
√
a1 |λ1〉+

√
a2 |λ2〉). Then

V(|ψ〉) =
1
N

(a1x1 + a2x2). (35)

Without loss of generality (because of ME) assume H is spanned by |λ1〉,
|λ2〉. LetH′ be anN−dimensional Hilbert space spanned by states |µ1〉 , . . . |µN 〉,
and define:

• Ŷ =
∑N
i=1 i |µi〉 〈µi|.
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• f(i) = x1 for i between 1 and a1, f(i) = x2 otherwise.

• V̂ : H → H′ by

V̂ |λ1〉 =
1
√
a1

a1∑
i=1

|µi〉 and V̂ |λ2〉 =
1
√
a2

N∑
i=a1+1

|µi〉 . (36)

Then since f(Ŷ )V̂ = V̂ X̂, we have

〈|ψ〉 , X̂,P〉 ' 〈V̂ |ψ〉 , f(Ŷ ), idf(Y )〉 ' 〈V̂ |ψ〉 , Ŷ , f · idY .〉 (37)

Since in fact V̂ |ψ〉 is an equal superposition of all of the |µi〉, the result now
follows from Stage 2.

Deutsch then goes on to prove the result for arbitrary N (i. e. , not just
N = 2n); however, that step can be skipped from the proof without consequence.

Stage 4 Let a be a positive real number less than 1, and let |ψ〉 =
√
a |λ1〉 +√

1− a |λ2〉. Then V(|ψ〉) = ax1 + (1− a)x2.

Suppose, without loss of generality, that x1 ≤ x2, and make the following
definitions:

• G = 〈|ψ〉〉.

• {an} is a decreasing sequence of numbers of form an = An/2n, where An
is a positive integer, and such that limn→∞ an = a. (This will always be
possible, as numbers of this form are dense in the positive reals.)

• |ψn〉 =
√
an |λ1〉+

√
1− an |λ2〉.

• |φn〉 = (1/
√
an)(

√
a |λ1〉+

√
an − a |λ2〉 .

• Gn = 〈|ψn〉〉.

• G′n = 〈|φn〉〉.

Now, from Stage 3 we know that V(Gn) = anx1 +(1−an)x2. We don’t know
the value of G′n, but by Dominance we know that it is at least x1. Then, by
Substitutivity, the value to the observer of measuring |ψn〉, then receiving x2

euros if the result is x2 and playing G′n if the result is x1, is at least as great as
the V(Gn).

But this sequence of games is just an instantiation of G, for its end state is
one in which a reward of x1 euros is given with amplitude a and a reward of x2

euros with amplitude
√

1− a. It follows that V(G) ≥ V(Gn) for all n, and hence
that V(G) ≥ ax1 + (1− a)x2.

A similar argument with an increasing sequence establishes that V(G) ≤
ax1 + (1− a)x2, and the result is proved.
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Stage 5 Let α1, α2 be complex numbers such that |α1|2 + |α2|2 = 1, and let
|ψ〉 = α1 |λ1〉+ α2 |λ2〉. Then V(|ψ〉) = |α1|2x1 + |α2|2x2.

This is an immediate consequence of ME and Stage 4: let Û =
∑
i exp(iθi) |λi〉 〈λi|;

then Û leaves X̂ invariant and so 〈Û |ψ〉 , X̂〉 ' |ψ〉 , X̂〉; but the eigenstate Û |ψ〉
has only positive real coefficients, and so its value is given by Stage 4.

Stage 6 If |ψ〉 =
∑
i αi |λi〉, then V(|ψ〉) =

∑
i |αi|2xi.

This last stage of the proof is simple and will not be spelled out in de-
tail. It proceeds in exactly the same way as the proof of Stage 2: any n-term
measurement can be assembled by successive 2-term measurements, using Sub-
stitutivity.

5 Alternate form of Deutsch’s proof

A slight change of Deutsch’s assumptions allows us to simplify the theorem and
its proof. In this section we will be concerned with:

Deutsch’s Theorem (variant form): If V is any value function
satisfying Physicality, Dominance and Additivity, it will be
given by the Born Rule.

The proof proceeds via part 3 of the Equivalence Theorem (General Equiv-
alence), which Deutsch did not use in his own proof. We define the expected
utility of a game by EU(G) =

∑
cWG(c) c, where the sum ranges over the

distinct payoffs made.
As with Deutsch’s own proof, we hold fixed the observable X̂ to be measured,

and suppose P(x) = idX by default: this allows us to write 〈|ψ〉〉 for 〈|ψ〉 , X̂,P〉.
In this case, we also write EU(|ψ〉) for EU(G).

Stage 1 If G is an equally-weighted superposition of eigenstates of X̂, V(|ψ〉) =
EU(ψ).

Without loss of generality, suppose |ψ〉 = (1/N)(|λ1〉+ · · ·+ |λN 〉). Assume
first that all the xa are distinct, let π be an arbitrary permutation of 1, . . . , N ,
and define Pπ by Pπ(xa) = xπ(a). Then by Additivity,∑

π

V(|ψ〉 , X̂,Pπ) = V(|ψ〉 , X̂,
∑
π

Pπ) = (n− 1)!
∑
i

xi (38)

since
∑
π Pπ is just the constant payoff function that gives a payoff of (n −

1)!(x1 + · · ·+ xN ) irrespective of the result of the measurement.
But each of the n! games 〈|ψ〉 , X̂,Pπ〉 is a game in which each payoff xi

occurs with weight 1/N . Hence, by GE, all have equal value, and that value is
just V(|ψ〉). Thus, n!V(|ψ〉) = (n− 1)!(x1 + · · ·+ xN ), and the result follows.

If the xi are not all distinct, construct a sequence of operators X̂m with
eigenstates xm,n all distinct, so that for each n {xm,n} is an increasing sequence
tending to xn. By Dominance this forces V(|ψ〉 , X̂) ≥ EU(|ψ〉); repeating
with a decreasing sequence proves the result.
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Stage 2 If |ψ〉 =
∑
i ai |λi〉, where the ai are all rational, then V(|ψ〉) =

EU(|ψ〉).

Any such state may be written

|ψ〉 = (1/
√
N)
∑
i

√
mi |λi〉 , (39)

where the mi are integers satisfying
∑
imi = n. Such a game associates a

weight mi/N to payoff xi.
But now consider an equally-weighted superposition |ψ′〉 of N eigenstates

of X̂ where a payoff of x1 is given for any of the first m1 eigenstates, x2 for
the next m2, and so forth. Such a game is known (from stage 1) to have value
(1/N)(m1x1 + · · · + mNxn) ≡ EU(|ψ〉). But such a game also associates a
weight mi/N to payoffs of value xi, so by GE we have 〈|ψ〉〉 ' 〈|ψ′〉〉 and the
result follows.

Stage 3 For all states |ψ〉 which are superpositions of finitely many eigenstates
of X̂, V(|ψ〉) = EU(|ψ〉).

By GE, it is sufficient to consider only states

|ψ〉 =
∑
i

αi |λi〉 (40)

with positive real α1. Let |µi〉, (1 ≤ i ≤ N), be a further set of eigenstates of X̂,
orthogonal to each other and to the |λi〉 and with eigenstates yi distinct from
each other and all strictly less than all of the xi (that we can always find such
a set of states, or reformulate the problem so that we can, is a consequence of
GE). For each i, 1 ≤ i ≤ N , let ani be an increasing series of rational numbers
converging on α2

i , and define

|ψn〉 =
∑
i

√
ani |λi〉+

∑
i

√
α2
i − ani |µi〉 . (41)

It follows from stage 2 that V(|ψn〉) = EU(|ψn〉), and from Dominance
that for all n, V(|ψ〉) ≥ V(|ψn〉). Trivially limn→∞EU(|ψn〉) = EU(|ψ〉), so
V(|ψ〉) ≥ EU(|ψ〉). Repeating the construction with all the yi strictly greater
than all the xi gives V(|ψ〉) ≤ EU(|ψ〉), and the result follows. 2

6 Critique

Barnum, Caves, Finkelstein, Fuchs and Schank, in their critique of Deutsch’s
paper (Barnum, Caves, Finkelstein, Fuchs, and Schack 2000), make three ob-
jections:

1. Deutsch claims to derive probability from the non-probabilistic parts of
quantum mechanics and decision theory. But the non-probabilistic part
of decision theory already entails probability.
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2. Deutsch’s proof is technically flawed and contains a non sequitur.

3. Gleason’s Theorem renders Deutsch’s proof redundant.

Responding on Deutsch’s behalf to these objections provides a useful analysis
of the concepts and methods of his proof, and will be the topic of this section.

We begin with Barnum et al ’s claim that the non-probabilistic part of de-
cision theory already entails probabilities. They are referring results like the
‘Probability representation theorem’ quoted in section 3, by which we deduce
that a rational agent confronted with uncertainty will always quantify that un-
certainty by means of probabilities.5 Since this theorem can be proved with
no reference to quantum theory (in particular, with no use of the Physicality
assumption), it certainly is not the case that Deutsch can claim to have de-
rived the very concept of probability. (Of course, the representation theorem
certainly makes no mention of the Born rule; Deutsch can still claim to have de-
rived the specific probability rule in question.) In fact, Barnum et al ’s criticism
can be sharpened: Deutsch cannot claim, either, to have deduced the existence
of uncertainty from his starting-point, for the decision-theoretic assumptions
he makes apply only to a situation where uncertainty is already present. (In
the language of section 1 this is to say that Deutsch’s work arguably solves the
Quantitative Problem but not the Incoherence problem.)

What of Barnum et al ’s second criticism, of Deutsch’s proof itself? Trans-
lating their objections into my notation, their concern is basically that Deutsch
assumes, without justification, the rule V(|ψ〉 , X̂) = V(Û |ψ〉 , Û X̂Û

†
) (this is, in

effect, their equation (13), which they believe Deutsch requires as an additional
assumption).

Of course, (13) is a direct consequence of Physicality (via ME). The reason
that this argument is unavailable to Barnum et al is that they treat the measure-
ment process as primitive: to them (in this paper at any rate) a measurement
is axiomatically specified by the operator being measured, and consideration of
the physical process by which it is measured is irrelevant.

This brings up an interesting ambiguity in the phrase “non-probabilistic part
of quantum mechanics”, used in both papers. Barnum et al regard quantum me-
chanics in essentially the Dirac-von Neumann paradigm: there are periods where
the dynamics are unitary and deterministic, followed by periods of stochastic
evolution, corresponding to measurements and where the probabilities are given
by the Born rule. In this framework, the “non-probabilistic part” naturally
means the unitary, deterministic part, and the resulting theory is physically in-
complete, in the sense that it does not describe even physically what happens
during a measurement. This is the context in which they are able to offer what
is effectively an alternative collapse rule (their equation (14)) which contradicts
the Born rule.

To Deutsch, though, “quantum mechanics” means Everettian quantum me-
chanics, which is (at least from a God’s-eye view) a deterministic theory. As

5In fact, they quote a related, but stronger result due to L. J. Savage, which may be found
in Savage (1972) and is discussed in my (2002).
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such, to Deutsch the “non-probabilistic part of quantum mechanics” means the
whole of quantum mechanics, and there is no space for additional collapse rules
— but there is also no axiomatic concept of measurement, hence the need for
measurement neutrality to be either assumed or argued for.

Understanding the difference between Deutsch’s conception of QM, and that
of Barnum et al, is also central to seeing why the latter regard Gleason’s Theo-
rem as so central here.6 For if we are looking for a probabilistic rule to describe
what happens at collapse, then Gleason’s Theorem tells us that this rule must
be the Born Rule, provided only that its probabilities are non-contextual. As
an added bonus, it proves that the physical state must be a (pure or mixed)
Hilbert-space state, which in principle allows the state to be regarded simply as
an epistemic notion (summarizing an agent’s ignorance).

The situation is rather different in the Everett interpretation. Here it is the
physical state that is our starting point, and the structure of a measurement is
derived rather than postulated. As such, there is no logical space for a deduction
of the state from the observables.

Nonetheless, might Gleason’s Theorem provide us with the Born rule in the
Everett interpretation also? It could be used in the following three-step proof
of (the variant form of) Deutsch’s theorem:

1. We begin by proving:

Non-contextuality: If V is a value function satisfying Dom-
inance, Additivity and Physicality, then

V(|ψ〉 , X̂,P) =
∑

x∈σ(X)

V(|ψ〉 , P̂X(x), idPX(x))P(x). (42)

(See the Appendix for the proof.)

2. Gleason’s Theorem now tells us that

V(|ψ〉 , P̂X(x), idPX(x)) = Tr(ρP̂X(x)), (43)

where ρ is dependent on |ψ〉 but not on X̂.

3. Let S be the one-dimensional Hilbert space spanned by |ψ〉, and let Û be
the embedding map of S into H. Then |ψ〉 〈ψ| Û = Û1, and so

〈|ψ〉 , 1, id1〉 ' 〈|ψ〉 , |ψ〉 〈ψ| , id|ψ〉〈ψ|〉, (44)

by ME. But since id1 is a constant, the LHS game has value 1, hence so
does the RHS one. In turn this forces Pr(1) = 1, which is given only by
ρ = |ψ〉 〈ψ|.)

6Recall that Gleason’s Theorem tells us that for any map f from the projectors on a Hilbert

space of 3+ dimensions to [0, 1], such that if {P̂ i} is an complete orthonormal set of projectors

then
∑

i
f(P̂ i) = 1, there exists some density operator ρf such that f(P̂ ) = Tr(P̂ ρf ).
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Although this proof is valid,7 it certainly does not obviate the importance
of Deutsch’s proof:

1. Even applying probabilistic notions to branching requires decision theory,
to justify quantifying uncertainty by means of probability. (To be sure,
the use of decision theory to justify probabilities long predates Deutsch.)

2. The central insight in Deutsch’s work (other than the observation that
decision theory allows us to get clear exactly how probabilities apply to the
Everett interpretation) is that ‘games’ do not correspond one-to-one with
physical situations — in my exegesis this is represented by the Equivalence
Theorem, of course. Steps 1 and 3 in the proof above rely heavily on that
theorem, without which Gleason’s Theorem falls short of establishing the
Born rule.

3. More prosaically, the proof in this section is vastly more complex than
Deutsch’s own proof. Proving Non-contextuality from the decision-
theoretic axioms is scarcely simpler than proving Deutsch’s theorem itself
(since most of the hard work goes into proving the Equivalence Theorem,
which both utilize) and that is before deploying Gleason’s Theorem, the
proof of which is far from trivial.

Gleason’s Theorem, then, seems to offer little or no illumination of, or improve-
ment to, Deutsch’s proof.

7 Measurement Neutrality

We have seen that Deutsch’s proof rests upon the observation that many games
— i. e. , triples 〈|ψ〉 , X̂,P〉 — correspond to a single physical game. This is
possible because we are treating measurement, not as primitive, but as a physical
process.

But this being so, there is a converse issue to address. Two different physical
games can instantiate the same game; what of an agent who prefers one to the
other? Such an agent’s preferences would not be represented effectively by a
function V on games.

Ruling this out is equivalent to assuming:

Measurement neutrality: A rational agent is indifferent between two physi-
cal games whenever they instantiate the same game.

The measurement neutrality assumption is hidden by Deutsch’s (and my)
notation. In effect it is the assumption that, provided that a given physical
process fits the definition of a measurement of X̂ on |ψ〉, the details of how that
measurement is done don’t matter for decision-making purposes. I will give two
examples to show why — despite appearances — it is not an altogether trivial
assumption.

7It isn’t valid in two-dimensional Hilbert spaces, of course — but it would be disingenuous
to claim this as an advantage for Deutsch’s proof. That proof (and my variant on it) makes
extensive use of auxiliary systems, of arbitrarily high dimension.
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Firstly, observe that is the explanation as to why Deutsch’s theorem (which
is, after all, a provable theorem) nonetheless has no implications for the proba-
bility problem in ‘hidden-variable’ theories, such as the de Broglie-Bohm theory
(Bohm 1952; Holland 1993). For in such theories, the physical state of a system
is represented not just by a Hilbert-space vector |ψ〉, but also by some set ω of
hidden variables, so that the overall state is an ordered pair 〈|ψ〉 , ω〉. (In the
de Broglie-Bohm theory, for instance, ω is the position of the corpuscles.) It is
thus possible for two physical processes to agree as to the measurement carried
out, the payoff given, and the Hilbert-space state, but to disagree as to ω —
hence a rational agent might prefer one process to the other.

To see how this might happen in practice, specialize to the de Broglie-Bohm
theory, and to position measurements. Suppose, in particular, that we consider
a measurement of the spatial position of a particle in one dimension, and assume
that the quantum state is |ψ〉 = (1/

√
2)(|x〉 + |−x〉), where |x〉 and |−x〉 are

eigenvectors of position with eigenvalues x and −x respectively, and that the
payoff function is idX . Stage 1 of Deutsch’s proof (page 14) establishes that
the value of this game is zero, relying in the process on the invariance of |ψ〉
under reflection about the origin; but unless the corpuscle state is also invariant
about reflection, this argument cannot be expected to apply to the de Broglie-
Bohm theory. And in fact, the corpuscle position cannot be invariant under
reflection, except in conditions so extreme as to break the connection between
outcomes and the Hilbert-space state entirely, for the possible outcomes of the
measurement are ±x and so the corpuscle must have one of those two positions.8

Secondly, even in the context of the Everett interpretation measurement
neutrality rules out the strategy of regarding all branches as equiprobable, in-
dependently of their amplitudes. For suppose I play a game where I measure
a spin-half particle and gain money if the result is ‘spin-up’ but lose money
otherwise. Measurement device #1 (improbably) results in one branch for the
spin-up result and one branch for the spin-down result; device #2 incorporates a
quantum random-number generator triggered by a spin-up result, so that there
are a trillion spin-up branches and only one spin-down one. The equiprobability
strategy tells me that I am as likely to gain as to lose if I use device #1, but
almost certain to win if I use device #2 — yet measurement neutrality tells me
that each is as good as the other.

(To be sure, this particular result is already implied if we adopt Saunders’
subjective-uncertainty (‘SU’) viewpoint on quantum-mechanical branching (in
which, recall, the correct attitude of an agent prior to branching is to expect that
they will experience one of the outcomes, but to be uncertain as to which.) For
device #2 is really just device #1, followed by the triggering of the randomizer,
and so the SU description of its function is: “either spin-up will occur, or spin-
down. If it’s spin-up, some random process will occur in the innards of the

8We could, of course, try to get round this problem by considering a probability distribution
over hidden variables and requiring the distribution to be symmetric. Fairly clearly, this forces
a distribution assigning probability 0.5 to both +x and −x. A Deutsch-style argument can
now be applied, and yields the unedifying conclusion that if the particle is at position +x 50
% of the time, it is rational to bet at even odds that it will be found there when measured.
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measuring device (but it won’t affect my winnings.)” Looked at this way, the
equiprobability assumption is already in trouble.)

The instinctive response to measurement neutrality, nonetheless, is usually
that it is trivial — who cares exactly how a measurement device works, provided
that it works? What justifies this instinctive response is presumably something
like this: let A and B be possible measurement devices for some observable X̂,
and for each eigenvalue x of X̂ let the agent be indifferent between the x-readout
states of A and those of B. Then if the agent is currently planning to use device
A, he can reason, “Suppose I get an arbitrary result x. Had I used device B I
would still have got result x, and would not care about the difference caused in
the readout state by changing devices; therefore, I should be indifferent about
swapping to device B.”

The only problem with this account is that it assumes that this sort of
counterfactual reasoning is legitimate in the face of (subjective) uncertainty,
and this is at best questionable (see, e. g. , Redhead (1987) for a discussion,
albeit not in the context of the Everett interpretation).

For a defence secure against this objection, consider how the traditional
Dirac-von Neumann description of quantum mechanics treats measurement. In
that account, a measurement device essentially does two things. When con-
fronted with an eigenstate of the observable being measured, it reliably evolves
into a state which displays the associated eigenvalue. In addition, though, when
confronted with a superposition of eigenstates it causes wave-function collapse
onto one of the eigenstates (after which the device can be seen as reliably evolv-
ing into a readout state, as above).

In the Dirac-von Neumann description, it is rather mysterious why a mea-
surement device induces collapse of the wave-function. One has the impression
that some mysterious power of the device, over and above its properties as a
reliable detector of eigenstates, induces the collapse, and hence it is prima fa-
cie possible that this power might affect the probabilities of collapse (and thus
that they might vary from device to device) — this would, of course, violate
measurement neutrality. That this is not the case, and that the probabilities
associated with the collapse are dependent only upon the state which collapses
(and indeed are equal to those stipulated by the Born rule) is true by fiat in the
Dirac-von Neumann description.

It is a strength of the Everett interpretation (at least as seen from the SU
viewpoint) that it recovers the subjective validity of the Dirac-von Neumann
description: once decoherence (and thus branching) occurs, subjectively there
has been wave-function collapse. Furthermore there is no “mysterious power” of
the measurement device involved: measurement devices by their nature amplify
the superposition of eigenstates in the state to be measured up to macroscopic
levels, causing decoherence, and this in turn leads to subjective collapse.

But this being the case, there is no rational justification for denying measure-
ment neutrality. For the property of magnifying superpositions to macroscopic
scales is one which all measurement devices possess equally, by definition — so
if this is the only property of the devices relevant to collapse (after which the
system is subjectively deterministic, and so differences between measurement
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devices are irrelevant) then no other properties can be relevant to a rational
allocation of probabilities. The only relevant properties must be the state being
measured, and the particular superposition which is magnified to macroscopic
scales — that is, the state being measured, and the observable being measured
on it.

8 Conclusion

I have shown that Deutsch’s approach does indeed allow a derivation of the
Born rule, from the following premises:

1. The correctness of the Everett interpretation.

2. The validity of regarding quantum branching, within the Everett interpre-
tation, as uncertain (at least subjectively).

3. A fairly strong set of decision-theoretic axioms.

4. Measurement neutrality.

All four are needed. Without the Everett interpretation we cannot give a re-
alist description of QM which eschews hidden variables of any sort, objectively
stochastic dynamics, and an a priori privileged role for the observer. Without
some license for agents to regard quantum branching as uncertain we cannot
import classical decision theory into QM. Without decision theory itself we have
no license to transform uncertainty into probability, and none of the constraints
on those probabilities that allow Deutsch’s Theorem to be proven. And with-
out measurement neutrality we cannot draw any worthwhile conclusions from
Deutsch’s theorem, for it is the assumption that connects the value function V
with real decision-making.

All four are reasonable, however. The Everett interpretation’s various (non-
probabilistic) foundational problems appear tractable; work by Saunders, Vaid-
man and others seems to justify the application of uncertainty-based concepts
to branching; Deutsch’s decision theory, though based on quite strong axioms,
seems perfectly reasonable for small-scale betting;9 measurement neutrality is
at the least a plausible assumption, and may well be defensible by either of the
routes sketched out in section 7.

Deutsch’s own conclusion claims that “A decision maker who believes only
the non-probabilistic part of the theory, and is ‘rational’ in the sense defined
by a strictly non-probabilistic restriction of classical decision theory” will make
decisions according to the Born rule.” Tacit in Deutsch’s paper is that ‘the non-
probabilistic part of the theory’ means no-collapse quantum mechanics, Everett-
interpreted but without prior assumptions about probability; it is less clear
what the ‘non-probabilistic restriction of classical decision theory’ really means,
but if it simply means classical decision theory, shorn of explicit assumptions

9In any case, Deutsch’s decision theory can be very substantially weakened; see Wallace
(2002).
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about probabilities and applied to branching events as if they were uncertain-
outcome events, then his claim seems essentially correct. The implications for a
satisfactory resolution of the quantitative probability problem are then obvious
— and profoundly important.

Acknowledgements

For valuable discussions, I am indebted to Hannah Barlow, Katherine Brading,
Harvey Brown, Jeremy Butterfield, Adam Elga, Chris Fuchs, Hilary Greaves,
Adrian Kent, Chris Timpson, Wojciech Zurek, to all those at the 2002 Oxford-
Princeton philosophy of physics workshop, and especially to Simon Saunders and
David Deutsch. Jeremy Butterfield and Simon Saunders also made detailed and
helpful comments on the longer version of this paper.

Appendix: proofs of the Probability Representation Theorem and
Non-Contextuality

Lemma (Linearity): If V satisfies Additivity and Dominance,
then for any sets of real numbers {ai}Ni=1 and payoffs {Pi}Ni=1,

V(|ψ〉 , X̂,
N∑
i=1

aiPi) =
N∑
i=1

aiV(|ψ〉 , X̂,Pi). (45)

Proof of lemma: We will suppress X̂ and |ψ〉, writing just V(P) for V(|ψ〉,X̂,P).
Let a be any positive real number and let {kn} and {mn} be sequences of integers
such that {km/mn} is an increasing sequence tending to a. By Dominance and
Additivity we have mnV(aP) ≥ knV(P) for all n, and hence V(aP) ≥ aV(P).
Repeating this with a decreasing sequence, we get V(aP) = aV(P) for any a ≥ 0;
the extension to negative a is trivial (just use Zero-sum) and the full result
follows from Additivity. 2

Proof of representation theorem: For any x ∈ σ(X̂), define δx(y) as
equal to 1 when y = x, and equal to 0 otherwise. Any payoff function P for
σ(X̂) can be expressed uniquely as P =

∑
x∈σ(X) P(x)δx, and so by Linearity

we have V(P) =
∑
x∈σ(X) P(x)V(δx); setting Pr(x) = V(δx) establishes (23),

and putting P(x) = 1 for all x gives (24) as a special case. 2

Proof of Non-contextuality: By PE and Linearity we have

V(G) =
∑

x∈σ(X)

P(x)V(|ψ〉 , X̂, δx) =
∑

x∈σ(X)

P(x)V(|ψ〉 , δx(X̂), idδx(X)) (46)

and the result is proved upon observing that δx(X̂) = P̂X(x). 2
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