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Abstract

Using as a starting point recent and apparently incompatible conclu-
sions by Simon Saunders (Philosophy of Science 80 (2013) pp.22-48) and
Eleanor Knox (British Journal for the Philosophy of Science 65 (2014)
pp.863-880), I revisit the question of the correct spacetime setting for
Newtonian physics. I argue that understood correctly, these two theories
make the same claims both about the background geometry required to
define the theory, and about the inertial structure of the theory. In doing
so I illustrate and explore in detail the view — espoused by Knox, and
also by Harvey Brown (Physical Relativity, OUP 2005) — that inertial
structure is defined by the dynamics governing subsystems of a larger
system. This clarifies some interesting features of Newtonian physics, no-
tably (i) the distinction between using the theory to model subsystems
of a larger whole and using it to model complete Universes, and (ii) the
scale-relativity of spacetime structure.

1 Introduction

Long after it was superseded as a fundamental theory, the spacetime setting
for Newtonian physics remains contested. To Newton himself, it was an ab-
solute space, and an absolute time, and so an absolute standard of rest and
of motion. Later pre-relativistic developments (see Barbour 2001, chapter 12)
gave a central role to the concept of inertial frame, thus abandoning an ab-
solute standard of rest but maintaining a distinction between accelerated and
nonaccelerated motion. The theory of relativity led philosophers, for a while, to
regard spacetime background as a straightforward philosophical error (cf Ear-
man 1989, pp.6-7); in modern times it has been rehabilitated (Anderson (1964,
1967, 1971), Stein (1967), Trautman (1966), Earman (1970, 1974), Earman and
Friedman (1973)), and the theory formulated in a ‘Galilean’ spacetime with ab-
solute affine structure but no standard of absolute rest (a spacetime, that is,
which embeds the notion of ‘inertial frame’, and the relations between different
inertial frames, as part of its structure). More recently still (Malament 1995,
Norton 1995), considerations of cosmology have led to linear acceleration —
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but not rotation — also to be regarded as relative, and have brought to the
fore Cartan and Friedrich’s formulation of Newtonian gravity (‘Newton-Cartan
gravity’) as a theory of dynamical geometry (Cartan 1923; Friedrichs 1928; see
Malament (2012) for a modern presentation), in analogy to the general theory
of relativity.

My starting point in this paper is a pair of papers by Simon Saunders (2013)
and Eleanor Knox (2014). Both argue for a spacetime setting different from
Galilean spacetime in which linear acceleration is relative, even outside the cos-
mological context. But from this common starting point they reach — at first
sight — strikingly different conclusions. To Knox, Newtonian gravity — cos-
mological or not — must properly be understood as a theory where the natural
motions of particles under gravity are taken as inertial, and so it is a theory of
dynamical spacetime geometry even before Cartan’s and Friedrich’s reformula-
tion. To Saunders, acceleration is relative throughout Newtonian physics (not
just in Newtonian gravity), and the theory properly understood needs no no-
tion of inertial structure, dynamical or otherwise. It seems, therefore, that these
two authors are led to profoundly different conclusions about the geometry of
spacetime in Newtonian physics, and indeed different conclusions about which
spacetime that is: for Saunders, ‘Maxwellian’ spacetime; for Knox, Newton-
Cartan spacetime.

This is not the case: understood correctly, the two versions of Newtonian
physics are the same, or nearly so, both conceptually and mathematically, and
so the arguments of Knox and Saunders can both be seen as pointing us towards
the true geometry of Newtonian physics. But the path required to establish this
is winding and requires consideration of the definition of inertial frames, of the
distinction between a theory of an isolated subsystem of a larger universe and of
a universe as a whole, and of the distinction between the background geometric
notions required to define a theory and the emergent facts about its geometry
that derive from its dynamics. Central in the argument is Knox’s spacetime
functionalist view (a close relative of views developed by Harvey Brown; cf
Brown (1997, 2005, 2009)) that what defines spacetime structure is the inertial
motion of bodies and more generally the local form of the physics in inertial
frames.

In sections 2–5 I begin with traditional Galilean-covariant formulations of
Newtonian mechanics and show in full generality that such theories, regarded
as theories of the Universe as a whole, are unstable: they are empirically equiv-
lalent to theories in which linear acceleration and not just velocity is relative.
Saunders’ reformulation of Newtonian mechanics, which I call ‘vector relation-
ism’, exemplifies this general argument and, as such, may be formulated on a
spacetime whose background geometry is too impoverished to support a pre-
ferred standard of unaccelerated motion. Yet when we consider the physics
of subsystems of a Newtonian universe, a notion of inertial motion reemerges,
and indeed it is precisely the notion of inertial frame, inertial trajectory and
inertial geometry that Knox takes to be what defines spacetime structure. So
Saunders’ theory, understood via Knox’s spacetime functionalism, is after all a
theory with inertial structure, and that structure is local, and dynamical, when-
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ever the forces involved in the theory are, like gravitation, universal. And as a
corollary, the geometric setting of a Newtonian subsystem of the universe is, at
least for some purposes, best taken after all to be Galilean spacetime.

In sections 6–9 I turn to Knox’s approach to Newtonian physics. I eschew
the traditional differential-geometry presentations of Newtonian and Newton-
Cartan gravity to develop an account of Maxwellian spacetime, and of connec-
tions on Maxwellian spacetime, in terms of the preferred coordinatisations of
that spacetime, and, derivatively, in terms of affine spaces and bundles of those
spaces. From this perspective, the distinction between ‘standard’ potential-
based formulations of Newtonian gravity and the Newton-Cartan theory is just
a matter of a preferred boundary condition, and that when that condition is
lifted the Newtonian potential can be identified via its transformation prop-
erties as a component of a Maxwellian connection.The inertial structure pre-
viously identified in Saunders’ vector relationism is also naturally represented
as a Maxwellian connection, and its dynamical equation as a geodesic devia-
tion equation for that connection, so that the mathematical as well as concep-
tual distance between Knox’s and Saunders’ positions largely evaporates. The
machinery of potential-based Newtonian mechanics can now be applied to en-
rich our understanding of inertial structure; it turns out that Knox’s spacetime
functionalism entails that inertial structure ought properly to be understood as
scale-relative, so that systems of different sizes experience different spacetime
geometries. (The formal, mathematical parts of these equivalence are discussed
in a coordinate-free differential-geometric framework byWeatherall (2016b).)

A word on notation: Greek-letter subscripts and superscripts range over
(0, 1, 2, 3); Roman-letter subscripts and superscripts i, j range over (1, 2, 3). In
both cases these are actual subscripts, not abstract indices (as found in, e. g. ,
Wald (1984)). As such, an equation like xi = ∂iV is well-formed, and simply
abbreviates x1 = ∂1V, x

2 = ∂2V, x
3 = ∂3V . For Roman indices in particular,

by definition I take xi = xi; hence, Roman indices can be raised and lowered
freely. I adopt the Einstein summation convention; x schematically labels the
triple (x1, x2, x3), and |x| ≡

√
xixi.

2 Newtonian mechanics and Galilean spacetime

Newtonian N -particle dynamics, expressed in coordinate form, has these dy-
namical equations:

ẍin(t) = − 1

mn

∑
k 6=n

∂iVnk(|xn(t)− xk(t)|), (1)

where Vnk(r) = Vkn(r). The dynamical symmetry group of these equations is
the Galilei group,

t′ = t+ τ ; x′i(t′) = Rijx
j(t) + ai + bit (2)

for arbitrary vectors ai, bi, arbitrary scalar τ and arbitrary rotation matrix
Rij . (Spatial translation symmetry is entailed by the fact that the forces ∂iVnk
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depend only of differences of absolute positions; rotational symmetry, by the fact
that the force is a gradient of a rotationally invariant function; time translation
symmetry, by the time-invariance of the forces and masses.)

The natural spacetime setting for a theory with dynamical symmetry group
G also has symmetry group G. In this paper I will take the spacetime structure
for a theory to be defined by the coordinate-transformation laws of its dynamical
symmetries: given a group G of bijections of R4, a G-structured space is a set S
together with a nonempty set of bijections from S to R4 (the ‘coordinatisations’
of S), such that (i) if f is a coordinatisation and ϕ ∈ G then ϕ · f is also a
coordinatisation; (ii) conversely, if f and f ′ are coordinatisations then f ′ ·f−1 ∈
G. (I develop this way of characterising spacetime structure, which differs from
the more familiar differential-geometric methods used in philosophy of physics
but is widely used in mainstream physics, in Wallace (2016b); note that at least
locally, this is the standard way to characterise the structure of a differentiable
manifold, taking G to be the group of diffeomorphisms of R4.)

In particular, Galilean spacetime is a set equipped with coordinatisations
related by elements of the Galilei group. We can pick out invariant properties of
this spacetime simply by looking for features unaffected by Galilean coordinate
transforms. For instance, the temporal distance between two points (t, x1, x2, x3)
and (t′, x′1, x′2, x′3) is (t − t′) and can readily be seen to be invariant under
Galilean transformations. The (squared) spatial distance between those two
points, |x− x′|2 = (xi − x′i)(xi − x′i), is invariant only if t = t′, so only spatial
distances between simultaneous events are well-defined. Similarly, the notion of
a straight line is well-defined, as a set S of points can be characterised as

f(S) = {xµ : xµ = xµ0 + vµλ, λ ∈ R} (3)

(for some xµ0 , v
µ) with respect to coordinatisation f only if it can be so charac-

terised by any coordinatisation. So the family of straight lines is also an invariant
structure — one way to characterise the affine structure of the spacetime.

Since the group of Galilei transformations (2) is a subgroup of the diffeomor-
phism group, we can consistently regard Galilean spacetime as a manifold by
treating the Galilean coordinatisations as charts, which lets us define differential-
geometric entities like vectors and tensors, but the additional structure defined
by the preferred Galilean coordinatisations allows us to make distinctions be-
tween vector fields that are finer than the differential structure alone permits.
In particular, we can define a vector as spatial if its coordinatisation is (0, vi)
in any Galilean coordinate system, since these vectors transform like

(0, vi)→ (0, Rijv
j) (4)

under Galilean transformations. Similarly, the timelike vectors, with coordinati-
sation (1, vi), transform like

(1, vi)→ (1, Rijv
j + bi) (5)

and so again form a well-defined subset. (The choice here of +1 for the zero
component is just for convenience.)
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In fact, we can use these transformation properties to define spatial and
timelike vectors: A spatial (resp.timelike) vector is an assignment of a triple vi

to each coordinate system, such that triples in coordinate systems related by a
Galilei transformation (2) are related by vi → Rijv

j (resp. vi → Rijv
j + bi).

In differential geometry, vectors are localised to points of the manifold (ge-
ometrically speaking they are elements of the tangent space to a point). But
since the transformation rules (4–5) are independent of (t, x), it is well-defined
(i. e. , independent of a choice of Galilean coordinate system) whether two vec-
tors have the same coordinates, and so we can use this to consistently identify
vectors at different spacetime points, and so drop the need to regard vectors
as spatiotemporally localised. (This points to a coordinate-free way to define
Galilean spacetime without differential geometry: it can be defined as an affine
space with additional structure on the space of vectors.)

3 Vector relationism and Maxwellian spacetime

Here are three commonplaces about Newtonian physics. Firstly, it is translation-
invariant, which means — loosely — that a system’s position in absolute space
is irrelevant to the rest of its dynamics. Secondly, it is boost-invariant, which
means — equally loosely— that a system’s velocity with respect to absolute
space is likewise irrelevant. And thirdly, it is governed by second-order equations
of motion, which means that the system’s instantaneous configuration and the
rate of change of that configuration, both at some fixed time, determine the
system’s entire dynamical history.

A system with translation but not boost invariance might be a system in
which absolute space remained relevant even as a system’s location in space was
impossible to discern. A world with a universal frictional force, for instance,
is a world where a system’s velocity relative to absolute space has a direct dy-
namical role to play. And a system governed by dynamics higher than second
order might be one in which absolute space remained relevant even though a
system’s instantaneous absolute-space position and absolute-space velocity were
both dynamically irrelevant. But these three facts about Newtonian dynamics,
collectively, tell us that a system’s location (though not necessarily its orienta-
tion) in absolute space is ultimately dispensable.

Spelling this out in a fairly general setting: the instantaneous configuration
of a spatially located system can be decomposed as (α, r), where r encodes the
location of the system in absolute space (say, via the location of the centre of
mass, or of some arbitrarily selected particle), and α encodes the relational facts
about the system (say, via the vector displacements from the centre of mass, or
from the arbitrarily selected particle, to all the other particles). Then since the
equations of motion are second-order, there must be functions F ,G such that

α̈ = F(α, α̇, r, ṙ); r̈ = G(α, α̇, r, ṙ). (6)

Since both translations and boosts are symmetries, and since accelerations trans-
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form trivially under both, we must have

F(α, α̇, r + a, ṙ + b) = F(α, α̇, r, ṙ) (7)

for quite arbitrary a, b — which is to say that F is quite independent of r or ṙ.
So there is a self-contained dynamics for the relational information that makes
no reference to the dynamics of the system as a whole in absolute space: no
information about the absolute-space location of the system is needed to study
the remaining degrees of freedom.

(Notice that this does not follow solely from the translation symmetry. Try-
ing the analogous move for, say, rotational symmetry allows us to write down
a dynamics for the relational degrees of freedom, but where that dynamics de-
pends on the overall angular momentum of the system. A self-contained dynam-
ics arises only if some further stipulation is made about that angular momentum
— such as by setting it to zero, as in the relational dynamics developed by Bar-
bour and co-workers (Barbour and Bertotti 1982; Barbour 1982; Barbour 2012).
It is the invariance of the dynamics both under a time-dependent symmetry, and
under a constant ‘boost’ with respect to that symmetry, that gives rise to the
result.)

We can apply this recipe fairly directly in the case of Newtonian mechanics:
the centre of mass of the system,

xiCOM ≡
∑
nmnx

i
n∑

nmn
, (8)

can readily be seen to satisfy

ẍiCOM (t) = 0. (9)

and so the relational quantities xin − xiCOM satisfy

ẍin(t)− ẍiCOM (t) =
1

mn

∑
k 6=n

∇iVnk(|xn(t)− xk(t)|). (10)

(Note that these N equations determine only N−1 independent equations, since
xCOM is a function of x1, . . . xN ). As predicted, (10) is a closed system for the
relative vector positions (since xn − xk = (xn − xCOM ) − (xk − xCOM )), and
equation (9) can be dropped as irrelevant to the empirically accessible dynamics.

Saunders (2013) reaches this dynamical system by considering instead the
N(N − 1) (non-independent) equations obtained by taking pairwise differences
of the Newtonian equations:

ẍin(t)−ẍim(t) = − 1

mn

∑
k 6=n

∂iVnk(|xn(t)−xk(t)|)+ 1

mm

∑
k 6=m

∂iVmk(|xm(t)−xk(t)|).

(11)
In this format, it is transparent that this is a well-defined dynamics for the
vector displacements between particles; hence we might call it vector relationism.
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Saunders’ formulation also has the advantage of being well defined in certain
contexts — like Newtonian cosmology — in which the number of particles is
infinite and the centre of mass is not well defined.

These equations (in either Saunders’ formulation or the centre-of-mass ver-
sion) are invariant under the larger Maxwell group1 of symmetries,

t′ = t+ τ ; x′i(t′) = Rijx
j(t) + ai(t), (12)

where now ai(t) is an arbitrary smooth vector function of time, generating arbi-
trary time-dependent translations. So the natural spacetime setting for vector
relationism is Maxwellian spacetime,2 which can be defined via the Maxwell
group in exactly the same way that Galilean spacetime was defined in section 2,
via a collection of coordinatisations related by Maxwell transformations. This
spacetime has less structure than Galilean spacetime: the temporal metric, and
same-time spatial metric, remain well-defined, but straight lines are not invari-
ant under generic time-dependent translations and so do not pick out invariant
structure. It still permits a distinction between spatial vectors (with coordinati-
sation (0, vi)) and timelike vectors (with coordinatisation (1, vi)); their trans-
formation properties are now

Spatial: vi → Rijv
j ; Timelike: vi → Rijv

j + ȧi(t). (13)

Notice that the spatial vector transformation rule remains time-independent, so
that we can continue to say of vectors at distinct spacetime points whether or not
they are the same in a well-defined manner; the timelike vector transformation
rule is dependent on time, so that timelike vectors at simultaneous events can
be meaningfully compared but timelike vectors at different times cannot. So
timelike vectors need to be thought of as defined at particular times but not
particular locations in space.

(For context, if we further weakened the spacetime structure by moving from
the Maxwell to the Leibniz group — with transformation rule

t′ = t+ τ ; x′i(t′) = Rij(t)x
j(t) + ai(t) (14)

for arbitrary smooth function Rij(t) taking values in the rotation matrices, the
spatial and timelike vectors would transform like

Spatial: vi → Rij(t)v
j ; Timelike: vi → Rij(t)v

j + Ṙij(t)x
j + ȧi(t), (15)

1Terminology varies here; Saunders (2013) calls it the ‘Newtonian group’; Duval (1993)
calls it the ‘Milne group’ after McCrea and Milne (1934) (cf (Bain 2004, p.351)); Ehlers
(1999) calls it the ‘Heckmann-Schücking group’ after Heckmann and Schücking (1955, 1956).
My terminology follows Earman (1989); it is not intended to imply any priority claim for the
historical Maxwell.

2Again, terminology proliferates: Saunders prefers Newton-Huygens spacetime, reserving
‘Maxwellian spacetime’ for a specifically differential-geometric characterisation of the space
(and arguing that Newton and Huygens deserve priority, a claim that lies outside the scope of
this paper); Weatherall (2016b) compromises on ‘Maxwell-Huygens spacetime’, although he
does have in mind a differential-geometric characterisation of the space.
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so that spatial vectors at different times, and timelike vectors at different space-
time points, cannot be invariantly compared.)

To sum up: given a dynamics which is Galilei-covariant, there is always
another dynamics that is Maxwell-covariant and which agrees with the Galilei-
covariant theory on everything except the motion of the centre of mass — and
the latter is in principle undetectable from within the system. So there is some-
thing unstable about the idea that any dynamical theory could have Galilean
spacetime as its natural spacetime setting: once such a theory’s dynamical sym-
metries include both time-independent translations and boosts, nothing empiri-
cal can argue against further extending it to consider arbitrary time-dependent
translations.3

4 Recovering the Galilei group: dynamics of sub-
systems

In traditional formulations of Newtonian physics, a central role is played by
inertial frames: unaccelerated, non-rotating reference frames. The Galilean
symmetry of the theory is said to describe the fact that we can move from
one inertial frame to another by — but only by — applying a translation, a
velocity boost, or a rotation. And the inertial structure is coded in Galilean
spacetime by means of the affine structure of that spacetime, which as we have
seen distinguishes straight from curved spacetime trajectories.

Maxwellian spacetime has no such distinction between straight and curved
lines, no distinction between accelerated and non-accelerated reference frames;
all it can do is distinguish the rotating from the non-rotating reference frames.
On this basis Saunders argues that Newtonian physics needs no concept of
inertial frame:

I am suggesting a reading [of Newtonian physics] . . . in which the
concept of inertial motion in the usual sense may not even be de-
fined . . . Corollary VI frees the theory from the need to give any
operational significance to the notion of inertial frame. (Saunders
2013, p.25)

(Here ‘Corollary VI’ refers to Newton’s result that the motions of bodies among
themselves is unaffected if the bodies are all subjected to the same acceleration.)

We have seen that this is quite correct if we are considering the motion of
the Universe as a whole, and indeed if we are considering the movements among
themselves of the bodies of any isolated system. It is not quite correct in general:
once we consider the movements of isolated systems relative to one another, the
concept of an inertial frame recurs, as does the Galilean symmetry group.

To spell this out, suppose we consider some subsystem of the Universe: say,
that consisting of the first K particles, where the total number N of particles
is much larger than K.(For simplicity I assume a Universe of finitely many

3Knox (2014) identifies the same instability from a somewhat different starting point.
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particles, though my conclusions can be carried over to the infinite case.) I will
say that the subsystem is

• dynamically autonomous if there is a closed set of equations for the coor-
dinates xi1, . . . x

i
K ;

• dynamically isolated if, in addition, that closed set of equations is the same
set that would apply if those K particles were alone in the Universe.4

For instance, consider electrostatics: K charged particles interacting under the
Coulomb force. The first K particles might be isolated if they were located
at a very great distance from all other charged matter. If they were not so
distant, but were located in the vicinity of a distribution of charge so large as
to be scarcely affected by the N particles, the system would not be isolated
but might be autonomous: the electric field of the remaining particles could be
treated as a (perhaps time-dependent) background field. Clearly, autonomy and
isolation are approximate notions and depend, to any degree of approximation,
upon the positions of the particles not straying outside some region; only in
idealisation could we treat their dynamical equations as exact and applicable
irrespective of the particles’ positions.

When can either occur? Adopting a vector notation, and labelling the sub-
system particles as particles 1 through K, the acceleration of a body in the
subsystem relative to the centre of mass XCOM of the entire Universe is

ẍn(t)− ẌCOM (t) =
1

mn

(
Fintn + Fextn

)
(16)

where

Fintn = −
k=K∑

k=1,k 6=n

∇Vnk(|xn − xk|); Fextn = −
∑
k>K

∇nk(|xn − xk|). (17)

Dynamical autonomy is then the requirement that the evolutions of the bodies
outside the system are sufficiently independent of those inside the system that
they may be taken as a fixed background, so that Fextnm may be regarded as a
function of xn.

From (16) we deduce

ẍCOM − ẌCOM =

∑
k≤K Fext(xk)∑

k≤K mk
(18)

and, subtracting,

ẍn − ẍCOM =
1

mn
Fintn +

(
1

mn
Fextn (xn)−

∑
k≤K Fext(xk)∑

k≤K mk

)
. (19)

4Autonomy is much the more general notion, and remains well-defined even after arbitrary
changes of coordinates; non-equilibrium statistical mechanics, for example, is to a large extent
the search for autonomous dynamics for the collective coordinates that describe many-body
systems averaged over large numbers of their consituents. I develop this point in Wallace
(2015).
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Dynamical isolation is then the further requirement that the second term in
(19) approximately vanishes,

1

mn
Fn(xn)−

∑
k≤K Fext(xk)∑

k≤K mk
' 0, (20)

for the whole range of dynamically relevant values for the xm. We can then
idealise this term as vanishing exactly for all xn, and the dynamics of the sub-
system will be the same as they would be if that subsystem were alone in the
Universe. The condition for this term to vanish is

mnF
ext
n ' constant, independent of n. (21)

To get some insight into when this might plausibly occur, we can write the
Newtonian potential (with only slight loss of generality) as

Vnk(r) = mnmkVU (r) + qnqkVN (r) (22)

where we assume the ratio qn/nn is not constant. The potential term VU de-
termines universal forces: the relative acceleration of a particle under the uni-
versal acceleration alone is independent of its mass. (There could be multiple
non-universal forces; I omit them for simplicity.) Then

Fextn = −mn

∑
k>K

mk∇VU (|xn − xk|)− qn
∑
k>K

qk∇VN (|xn − xk|) (23)

and the condition for a dynamically isolated subsystem is∑
k>K

mk∇VU (|x− xk|) ' constant ≡ FU ;
∑
k>K

qk∇VN (|xn − xk|) ' 0. (24)

The subsystem equations of motion are then

ẍn − ẍCOM = Fintn ; ẍCOM − ẌCOM = FU , (25)

with the equations for the subsystem degrees of freedom alone being the same
as if the subsystem were alone in the Universe.

Now suppose that observers not part of the subsystem nonetheless wish to
study its dynamics, and in particular its dynamical symmetries. That is: they
are interested in which transformations of the coordinates of the bodies in the
subsystem alone leave the subsystem equations of motion invariant. We know
that the equations for xn − xCOM are invariant under the Maxwell group, but
we need to preserve not only these equations but the equation for xCOM −
XCOM . And this latter equation is invariant only under the Galilei group: to a
good approximation XCOM is unaffected by transformations of the subsystem
coordinates alone, as is FU , so we need ẍCOM to be invariant, which requires
constant or linear-in-time translations. (We could read the same conclusion
directly off the equations (16).)
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The dynamical symmetries of the subsystem include time-independent trans-
lations and rotations, time translation, and velocity boosts. But they do not
include arbitrary time-dependent translations. Corollary VI notwithstanding,
these are not dynamical symmetries of isolated subsystems of a larger universe.
The dynamics of that isolated subsystem, as studied from without, is a dynamics
with a well-defined and dynamically relevant notion of inertial frame.

So: the notion of an inertial frame, though useless when applied to the Uni-
verse as a whole, has a clear operational significance when applied to an isolated
subsystem of the Universe. There is no need for such frames in the formulation
of the theory — no need, that is, for Galilean spacetime as a background for
the theory — but they emerge naturally for subsystems, defined dynamically
by the distribution of everything not in the subsystem.

Now consider two isolated subsystems, and assume that neither has an ap-
preciable dynamical effect on the other, so that we can consider both evolving
against the background dynamical effects of the rest of the Universe. For the
systems to be isolated, the non-universal forces must be negligible, and the uni-
versal forces must be constant, across the spatial extent of both subsystems.
Their centres of mass x1,COM and x2,COM will then satisfy

ẍi,COM − ẌCOM = FU (xi,COM ) (26)

where FU (x) is the universal relative acceleration from the rest of the Universe
on a system at location x, and hence

ẍ1,COM − ẍ2,COM = FU (x1,COM )− FU (x2,COM ). (27)

If there are no universal forces, then, the concept of an inertial frame is
global: a coordinate system is inertial for one isolated system iff it is inertial
for another. In the presence of universal forces, inertial frames become locally
defined: an inertial frame for one system may be accelerating (though may not
be rotating) relative to an inertial frame for another.

Though it lies rather outside the main thrust of this paper, pretty much
the same story applies for inertial structure in Barbour and Bertotti’s relational
dynamics, in which time-dependent rotations as well as translations are among
the symmetries of the equations of motion. The difference is that whereas
in vector relationism there is an absolute standard of rotation, so that inertial
frames can be defined simply by the motion of their centres of mass, in Barbour-
Bertotti theory the standard of rotation, as well as that of inertial motion, is
determined by the matter distribution.

Nonetheless, it is so determined: for a subsystem to be isolated in Barbour-
Bertotti theory, it must be nonrotating relative to the reference frames in which
the angular momentum of the Universe is zero. The inertial frames are then
those in which (i) the origin is moving along an inertial trajectory, i. e. a trajec-
tory of a test particle that feels only the universal forces, and (ii) the axes are
nonrotating in this dynamically-defined sense.

And this is, of course, pretty much what Mach (1883) had in mind: not a
universe with no inertial structure, but a universe where the matter distribution
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determines the inertial structure. With respect to the linear-acceleration part
of that structure, the determination may (if there are universal forces) be local;
with respect to the rotational part, it is always global, with two subsystems
that are nonrotating relative to the inertial frame also nonrotating relative to
one another.

5 Knox on inertial structure

The picture of inertial structure in Saunders’ version of Newtonian dynamics
that I have developed is simply a playing out, in the Newtonian context, of the
general account of spacetime structure developed by Knox and Brown. It is
most explicitly developed in Knox (2013), and goes as follows:

A Identify the inertial frames in a theory:

In Newtonian theories, and in special relativity, inertial frames
have at least the following three features:

1. Inertial frames are frames with respect to which force free
bodies move with constant velocities.

2. The laws of physics take the same form (a particularly sim-
ple form) in all inertial frames.

3. All bodies and physical laws pick out the same equivalence
class of inertial frames (universality).

(Knox 2013, p.349)

By “the laws of physics”, Knox means the non-gravitational (i. e. , non-
universal) interactions (here she follows Brown (1997, p.76): “Ultimately,
it is because of certain symmetry properties of the non-gravitational in-
teractions that . . . the metric means operationally what it means.”). By
‘force free bodies’ she means those bodies that do not feel the non-universal
interactions.

B Define the inertial trajectories as the trajectories of the force-free bodies.

C Define ‘spacetime structure’ functionally, as by definition that structure
picked out by those inertial trajectories.

I digress to make two observations about Knox’s (and, indirectly, Brown’s)
framework in the light of the detailed case study that Saunders-style Newtonian
mechanics has provided. Firstly, Knox writes that

[O]ne may worry that frames fitting [Knox’s] definition may not exist
in regions of spacetime that are not well-behaved (near black holes,
for example). I don’t intend here for the fulfilment of [my] defini-
tion of inertial frame everywhere to be a necessary condition for our
empirical access to spacetime. Rather, the definition of an inertial
frame here should fix our interpretation of the theory, thus allowing
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us to determine the force-free trajectories. Once determined, we can
acknowledge inertial trajectories in regions where our full notion of
inertial structure breaks down. (Knox 2013, p.349)

This plays out in the Newtonian context, never mind black holes. Some inertial
trajectories may be inertial only by courtesy, if the universal force field varies
so rapidly in the vicinity of the trajectory that no realistic subsystem could
actually by isolated. More specifically, a given inertial trajectory determines an
inertial frame for a given test subsystem if (a) that subsystem is small enough
that FU does not vary significantly over its volume; (b) that subsystem is dy-
namically insignificant enough, relative to its surroundings, that back-reaction
on those surroundings can be neglected. (And indeed, this scale-relativity of the
validity of inertial frames plays out in the relativistic contexts Knox considers,
too: spacetime near (astrophysical) black holes has tidal forces sufficient to rip
apart most macroscopic bodies, but negligible on the scale of, e. g. , radioactive
particles.)

Secondly, the analysis of section 4 plays out perfectly well even in the absence
of non-universal forces. A pair of gravitationally co-orbiting bodies, for instance,
can perfectly well survey the inertial structure defined by the remainder of the
matter distribution, provided that inertial structure is defined by universal forces
whose variation across the inter-body distance can be neglected relative to the
bodies’ mutual attraction. Indeed, the Earth-Moon system thus surveys the
inertial structure defined by the Sun. Newtonian gravity — let alone general
relativity — is rich enough that even its own interactions in microcosm can
define inertial frames and inertial trajectories.

(Brown (1997, pp.76–77) questions the coherence of the vacuum solutions
of general relativity on the grounds that they lack the non-gravitational inter-
actions he believes necessary to define local inertial structure, and thus make
operational sense of the metric field. But I suspect that this (i) conflates ‘no
non-gravitational interactions’ with ‘no non-gravitational matter’ — dust or,
less phenomenologically, a free field, lacks non-gravitational interactions but
could provide operational significance to the metric via subsystem dynamics;
(ii) underestimates the complexity of general relativity and the availability of
gravitational waves, black holes and the like that can themselves survey the
inertial structure.)

Returning to the main theme, Knox calls her approach spacetime function-
alism (Knox 2015), and the name is apt: as is standard with functionalism,
it identifies a property by its functional / structural properties, and is entirely
neutral as to how they are instantiated. In particular, there is no reason that
the spacetime structure picked out by her account need be ontologically self-
subsistent. If the movements of test particles are determined by some indepen-
dent dynamical entity (as is typically supposed for the metric field of general
relativity) then that independent entity is the realiser of the spacetime role,
but in a theory where material trajectories supervene entirely on the distribu-
tion of matter, the realiser will be a certain structural feature of the matter
distribution.
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The latter is the case in Saunders’ version of Newtonian dynamics. There,
no spacetime structure at all is needed in the formulation of the theory; all that
is needed is relative vector accelerations. So the inertial structure discovered in
section 4 is a spacetime structure instantiated entirely by the relational dynamics
of the matter particles: no additional structure needs to be posited (beyond
those features required to formulate Saunders’ relational dynamics, such as a
standard of rotation and an instantaneous spatial geometry).

This suggests that the gulf between Saunders’ and Knox’s conceptions of
Newtonian gravity may not be as large as it might appear. To see the details,
however, we will need to move beyond the essentially approximate, emergent
characterisation of inertial structure developed in section 4 and connect vector
relationism to the sharp, precise — if formal — notion of inertial structure found
in Newton-Cartan theory.

6 Connections on Maxwellian spacetime

Galilean and Maxwellian spacetime, characterised as I have done in sections
2–3 via classes of coordinatisations, are also differential manifolds, and so in
both cases we can define on them an affine connection, with a particular choice
of connection characterised, relative to a coordinate system, by a collection of
Christoffel symbols Γµντ . However, the mathematical function of a connection is
to define a parallel transport rule — recall that the change in components of a
vector V µ parallel-transported along an infinitesimal displacement δxµ is

δV µ = −ΓµντV
νδxτ (28)

— and the background geometry of these spacetimes already allows a parallel-
transport rule to be defined in many cases.

In Galilean spacetime, indeed, we have seen that the question of whether
two vectors at different spacetime points are the same — that is, have the
same components in a given Galilean coordinate system — is coordinate-system-
independent. So we can naturally define a vector field along a line as parallel-
transported iff vectors at different points on the line have the same coordinates.
The connection thus determined has Christoffel symbols Γµντ = 0. As a sanity
check, we can apply the general transformation law for Christoffel symbols —
As a sanity check on our analysis, we can apply the general transformation rule
for the Christoffel symbols under a coordinate transformation (x0, x1, x2, x3)→
(X0, X1, X2, X3),

Γ′αβγ =
∂Xα

∂xσ
∂xµ

∂Xβ

∂xν

∂Xγ
Γσµν −

∂2Xα

∂xµ∂xν
∂xµ

∂Xα

∂xν

∂Xβ
, (29)

in the particular case of the Galilei group, whereupon we find that if all the
Christoffel symbols vanish in one Galilean coordinate system, they vanish in all
such systems. So we can equally well define the natural connection on Galilean
spacetime as the unique connection with vanishing Christoffel symbols.
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The same trick does not quite work in Maxwellian spacetime, because as we
have seen, the transformation rule for timelike vectors is time-dependent, and
so timelike vectors at different times cannot be invariantly compared. But:

1. The spatial translation group is a well-defined subgroup of the Maxwell
group and can be used to transport any vector in an arbitrary purely-
spatial direction: in a Maxwell coordinate system, the components of a
vector are unchanged by this transport, so (from the parallel-transport
rule (28) a connection compatible with this rule satisfies Γµνi for arbitrary
spacetime indices µ, ν and spatial index i.

2. Similarly, since purely spacelike vectors can be invariantly compared even
if they are at different times, there is a well-defined sense of parallel trans-
port of spacelike vectors; reproducing this rule imposes Γµiν = 0.

3. Finally, the temporal component of any vector field is invariant under
Maxwell transformations. We can then consistently require that this com-
ponent of a parallel-transported vector field is constant, which imposes
Γ0
ντ = 0.

Putting these three together, the only nonvanishing components of an affine con-
nection compatible with the existing parallel-transport structure are the three
components Γi00, and we define a Maxwellian connection as a connection where
all other Christoffel symbols vanish. Again as a sanity check, we can apply (29)
in the particular case of the Maxwell group: if the connection is Maxwellian
with respect to the first coordinate system, we find that in the second coordi-
nate system

Γ′i00 = RijΓ
j
00 − äi (30)

and all other Γ′µσν vanishing. So the condition “all Christoffel symbols vanish
except possibly Γi00” is invariant under the action of the Maxwell group, and
so defines a coordinate-independent property of a connection on Maxwellian
spacetime.

In fact, this rather general Christoffel formalism is overkill. Stepping back
for a moment: an affine connection is the right geometric object to define par-
allel transport on a general differentiable manifold; that is, on a space whose
Kleinian symmetry group is the full diffeomorphism group. And requiring that
the parallel-transport equation (28) holds in arbitrary coordinate systems in the
manifold’s atlas suffices to derive the transformation law (29). But we are con-
cerned only with a parallel-transport rule on Maxwellian spacetime, and such
a rule need only hold in arbitrary Maxwellian coordinate charts. So we could,
directly, define a Maxwellian connection as a parallel-transport rule specifically
for timelike vectors vi:

vi(x+ δx, t+ δt) = vi(x) + δtAi(x, t) (31)

or equivalently as a derivative operator on timelike vector fields

(∇v)i(x, t) =
∂vi

∂t
(x, t) +Ai(x.t) (32)
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Requiring the left hand side of (31) to transform as a vector under the Maxwell
group gives the transformation rule for the connection coefficients Ai:

A′i(x′, t′) = RijA
j(x, t)− äi(t); (33)

this could also be read off from the identification

Γi00 = Ai. (34)

Just as the Christoffel coefficients appear to be the coordinates of a tensor
but actually have a different transformation law, so the Maxwellian connection
coefficients appear to be, but are not, the coordinates of a spatial vector field.

We can divide the geodesics of a Maxwellian connection into spatial and
timelike. The former are simply the straight lines with respect to the affine
structure of the instantaneous spaces. For the latter, we can reparametrise any
such geodesic γµ(τ) so that γ0(τ) = t. The geodesic equation is then simply

γ̈i +Ai = 0 (35)

and the family of such geodesics fully characterise the connection.
Returning temporarily to the generally covariant formalism, the curvature

ωαβγδ of the connection is readily determined to be

ωi0j0 = −ωi00j = ∂jΓ
i
00, (36)

all other components vanishing. The geodesic deviation equation, which gives
the relative acceleration of two test particles initially comoving with velocity
V µ a distance δxν from one another to be ωσµνµV

µδxν , lets us interpret ωi0j0δx
j

as the relative acceleration of two non-spatial geodesics separated by spatial
distance δx.

Again, the full curvature is overkill to describe the local curvature of a con-
nection on Maxwellian spacetime. We may as well define that directly as

Ωij(x, t) = ∂jA
i(x, t). (37)

Its geometric significance is entirely characterised by the geodesic deviation
equation: given two geodesics through infinitesimally close points (x, t) and
x + δx, t), their relative acceleration is −Ωijδx

j . (This can be read directly off
(35), without needing to go via the generally-covariant formalism.)

The Maxwellian curvature transforms under Maxwell transformations like

Ω′ij (x′, t′) = RikΩkl (x, t)(R−1)lj (38)

—exactly like a spatial tensor. It satisfies the Bianchi identity

∂kΩij − ∂jΩik = 0 (39)

and it is easy to verify that it the curvature at a given time determines the
Maxwellian connection at that same time up to an arbitrary constant, and
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indeed that any spatial 2-tensor field satisfying the Bianchi identity is the cur-
vature of a connection fixed up to that constant.

If Ωij is symmetric, the connection is irrotational, so-called because a group
of initially co-moving test particles may spread out or be sheared by geodesic
deviation but will not be placed into rotation. In this case the vector field ∂jA

i

is curl-free and so the connection can be written (uniquely up to an arbitrary
constant factor) as

Ai(x, t) = ∂iΦ(x, t). (40)

The potential term Φ transforms under the Maxwell group like

Φ′(x′, t′) = Φ(x, t)− äi(t)xi + f(t) (41)

where ai = ai and f is arbitrary. Just as Ai looks like, but is not, a vector field,
so Φ looks like, but is not, a scalar field. (Geometrically, it is helpful to think
of Φ as an arbitrary representation of a curl-free connection rather than as an
entity in itself.)

7 Knox on Newtonian gravity

Following Knox (2014), let’s consider the familiar potential-based form of New-
tonian gravity, which in coordinate-based notation would be written

v̇i(x, t) + ∂iV (x, t) = 0 (42)

∂i∂iV (x, t) = 4πρ(x, t) (43)

where ρ is the mass density and v̇i is the acceleration of a particle at spacetime
point (x, t). For this to be a closed dynamical theory we also need equations
for ρ; one possibility is to include discretely many particles with positions xin(t)
and masses mn moving on test-particle trajectories, so that

ρ(x, t) =
∑
n

mnδ(x− xn(t)) (44)

but this has the awkward feature that V is singular at all the particle positions,
so an alternative is to the continuum limit of a dust of infinitesimal-mass parti-
cles, whose velocities are represented by a vector field v(x, t); elementary fluid
dynamics now gives

∂i(v
iρ) +

∂ρ

∂t
= 0 (45)

and

v̇i =
∂vi

∂t
+ vj∂jv

i. (46)

In either case, the dynamical symmetry group for this dynamical system is the
Maxwell group.5 ρ transforms like a scalar, and vi like a spatial vector, under

5Actually, it is slightly larger, and also includes certain correlated scale transformations of
space and time; for simplicity I set these aside.
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these transformations; V transforms like

V ′(x′, t′) = V (x, t) + äi(t)x
i + f(t) (47)

for some arbitrary f . This is the transformation law of the potential for an
irrotational Maxwell connection, and so — on the coordinate-based way of rep-
resenting a physical theory, in which to be a geometric object of type X is to
transform like an object of type X — V is the potential for an irrotational
Maxwell connection. Once this is seen, we can recognise ∂i∂iV as the scalar
part of the curvature of that connection, and rewrite (42–43) as

∇vi = 0 (48)

Ω[∇]ii = 4πρ (49)

where ∇ is an irrotational Maxwell-affine connection and Ω[∇]ij is its curvature.
The theory written in this way is Newton-Cartan gravity.

In an island Universe (that is: one with a finite number of particles, or with
finite total mass in the continuum case) we can impose a boundary condition

lim
|x|→∞

V (x, t) = 0. (50)

This reduces the symmetry group of the theory to the Galilei group, since if V
is constant under (47) then äi(t) = 0; as such, it reintroduces absolute inertial
structure to the theory in at least a formal sense. (Mathematically speaking, it
also fixes V to be

V (x, t) =

∫
dx′ 3

ρ(x′)

|x− x′|
(51)

and so establishes equivalence with the force-based formalism.) Knox makes
this absolute structure explicit by continuing (in effect) to work with the larger
Maxwellian symmetry group but introducing a split V = V0 + V1, where V0 is
required to be flat:

∂j∂
iV0 = 0. (52)

As a consequence, V1 transforms as a scalar (any two irrotational Maxwell con-
nections differ by the spatial gradient of a scalar field, just as any two affine
connections differ by a tensor field), satisfies

∂i∂iV1(x, t) = 4πρ(x, t), (53)

and may be interpreted (at least formally) as generating a force which causes
test particles to deviate from the trajectories defined by the flat connection. If
the matter density tends to zero sufficiently quickly we can also require that
V1 tends to zero at spatial infinity. (This is incompatible with (53) if the mass
density does not drop off sufficiently quickly.)

Knox makes two — persuasive — criticisms of this decomposition, and
(equivalently) of imposing the boundary condition (50):
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1. What does it actually gain us? Sure, we can decompose the connection
into a flat and a curved part; in island-universe contexts we can even do
it uniquely. But why bother? (She analogises it to our freedom to choose
electromagnetic gauges, and our unwillingness to single out one gauge as
preferred.)

2. The total connection defined by V has operational significance: it deter-
mines the inertial trajectories and the inertial frames. The connection
defined by V0 alone, by contrast, is operationally irrelevant and cannot
be determined empirically short of surveying the entire mass distribution
(and not even then, in cosmological contexts where the mass distribution
is asymptotically nonzero). Knox does not make this point — although
Brown and Pooley (2006, fn.25) say something similar — but there is a
close analogy with the splitting of the general-relativistic metric into flat
and non-flat parts, in the spin-2-field approach to general relativity (Feyn-
man 1964). 6

(There is a purely technical problem with removing the boundary condition,
not generally acknowledged in the philosophy-of-spacetime literature but well
known in cosmology: with no boundary condition at all, equation (49) radically
underdetermines Φ and renders the theory viciously indeterministic. I discuss
this issue, and the threat it poses to cosmological interpretations of Newtonian
physics, in Wallace (2016a); for the purposes of this paper, I assume that some
weaker boundary condition is specified that fixes a unique solution to (49) up
to Maxwellian transformations.)

Knox’s argument for dropping the boundary condition does not presuppose
her functionalist analysis of spacetime structure, but fits naturally with it. Once
it is observed that the absolute structure is not (modulo the technical problem
above) required to formulate the theory, then the residual case for retaining it
is that inertial structure plays some necessary conceptual role in understand-
ing Newtonian gravitation. But whatever that role is, it is not (on Knox’s
functionalism) to represent spacetime’s inertial structure; that role is played
by the Newton-Cartan connection, and the residual role for the unobservable
background connection is obscure.

6It’s worth noting that my treatment of the theory is somewhat heterodox in its use
of coordinate-transform methods. Conventional presentations, including Knox’s, formulate
potential-based Newtonian gravity on a spacetime equipped with a flat connection, so that V
generates deviations from that connection; the move to a spacetime with a nonflat connection
and no separate V field is then a move to a different sort of mathematical object (whether it
is the same physical theory is a moot point; cf Weatherall (2016a)). The coordinate-transform
approach has the virtue of making fewer physics-opaque mathematical distinctions; formulated
this way, potential-based Newtonian gravity was a theory with a nonflat connection all along,
and Newton-Cartan gravity is not a reformulation of that theory but a mere relabelling.

19



8 Vector relationism and Newton-Cartan the-
ory

Let’s now return to Saunders’ vector-relationism theory. We saw in sections 4–5
that it contains an emergent inertial structure, which we can probe by means of
subsystems small compared to the lengthscales over which the universal force
from the rest of the Universe varies significantly and located in regions where
non-universal forces are negligible. This can be idealised by introducing inertial
test particles, which do not interact via the non-inertial forces and which have
negligible mass, and so negligible back-effect on the relative motions of other
particles.

Writing vi(x, t) for the velocity of a test particle at spacetime point (x, t),7

we have from Saunders’ relative-acceleration equation (11)

v̇i(x, t)− v̇i(y, t) =
∑
n

mn {(∂iVU (|x− xn(t)|)− ∂iVU (|y − xn(t)|)} (54)

for the relative acceleration of any two test particles. (This equation needs to be
treated carefully (i. e. , distributionally) if, as in the case of Newtonian gravity,
the potential function diverges at the origin.)

The acceleration of a (non-test) particle also at (x, t) differs from the ac-
celeration of a test particle at that location by the action of the non-universal
force, again via Saunders’ relative-acceleration equation:

ẍin(t)− v̇i(xn(t), t) = qn
∑
k 6=n

qk∂iVN (|xn(t)− xk(t)|). (55)

So we can see dynamics in Saunders’ theory as breaking down into two com-
ponents: the first determines the relative motions of the test particles under
the universal force; the second determines the motions of the actual particles
relative to the test particles. We can think of the test particles as defining
an idealisation of the dynamically-emergent family of inertial frames, relative
to which the particles move. In the limit as the universal forces become neg-
ligible, the relative accelerations of any two test particles tend to zero and
this dynamically-emergent inertial structure becomes global; if there are non-
negligible universal forces, the inertial structure is local and widely separated
inertially-moving particles can undergo relative acceleration.

We can get further insight into the inertial structure by (i) defining the
potential function

WU (x, t) =
∑
n

mnVU (|x− xn(t)|) (56)

so that the relative acceleration of test particles is given by

v̇i(x, t)− v̇i(y, t) = ∂iWU (x, t)− ∂iWU (y, t) (57)

7This is a mild abuse of notation; we can perfectly well have multiple test particles at the
same point, with different velocities. However, we are interested in their acceleration, which
is velocity-independent.

20



and (ii) taking the infinitesimal limit of the relative acceleration,

∂j v̇
i(x, t) = ∂i∂jWU (x, t) ≡ Ωij(x, t). (58)

The matrix Ωij is clearly symmetric and satisfies

∂jΩik − ∂iΩjk = 0, (59)

and transforms under Maxwell transformations as a spatial 2-tensor. Via (58) it
encodes the entire universal-force part of the theory, and the potential function
VU can be recovered from it up to a physically irrelevant linear term. We can
then think of a given vector-relationist dynamics as given by such a tensor
together with an expression for the non-universal force.

But we have seen that any such tensor has a geometric interpretation: it is
the curvature of an irrotational connection, and indeed (58) can be interpreted
as the geodesic deviation equation for that connection. So universal forces in
Saunders’ framework can be thought of as inducing a spacetime curvature on
the Maxwell spacetime on which the theory is defined, such that bodies move on
the geodesics of the irrotational connection with that curvature in the absence
of non-universal forces. The indeterminacy of the linear term in that connection
simply reflects the Maxwellian symmetry of Saunders’ dynamics. (This result
is established in a coordinate-free differential-geometric setting by Weatherall
(2016b).)

If we specialise to the case of pure gravity, Saunders’ theory becomes

∂j v̇
i(x, t) =

∫
dx′ 3∂j∂

i ρ(x′)

|x− x′|
(60)

where
ρ(x) =

∑
k

mkδ(x− xk). (61)

Carrying out the differentiation in (60),8 we get

∂j v̇
i(x, t) = 4πρ(x, t)δij +

∫
dx′ 3ρ(x′, t)

(
δij

|x− x′|3
− 3

(xi − x′i)(xj − x′j)
|x− x′|5

)
.

(62)
Saunders’ theory is therefore specified completely by the geodesic-deviation
equation (58) (plus, in the presence of non-universal forces, a Newtonian equa-
tion for the deviation of real particles’ trajectories from geodesic motion).

But now the difference between Newton-Cartan gravity and Saunders’ theory
fades into invisibility. Introducing a potential V to define the connection whose

8It helps to regularise the singularity in 1/|x| by inserting a factor e−ε/r and take ε →
0 after the differentiation has been performed. The validity of this manipulation can be
established either by delicate considerations of the topology on an appropriate distribution
space, or just by confirming directly that the integrand of (58) is indeed the distributional
derivative of ρ(x′)/|x− x′|.
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curvature is ∂j v̇
i (that is, ∂i∂jV = ∂j v̇

i), we obtain

∂j∂
iV (x, t) = 4πρ(x, t)δij +

∫
dx′ 3ρ(x′, t)

(
δij

|x− x′|3
− 3

(xi − x′i)(xj − x′j)
|x− x′|5

)
(63)

which specifies the connection uniquely up to the usual arbitrary linear and
constant terms. That connection satisfies ∂i∂

iV = 4πρ, and so it defines a legal
Newton-Cartan connection. And conversely (as I show in Wallace (2016a)), if
we choose as boundary condition for Newton-Cartan gravity

lim
|x|→∞

V (x, t)

|x|2
=

2

3
πρ̄(t), (64)

where ρ̄(t) is the spatially averaged mass density at time t, then any solution to
Poisson’s equation satisfies (63).

8.1 Inertial structure in Newton-Cartan gravity

Mathematically speaking, there is no real distinction between Newton-Cartan
gravity (or Newtonian potential-based gravity, which in the formalism of this
paper is the same thing) and vector relationism: both are built using Maxwellian
spacetime as a background; both have dynamics which can be expressed as a set
of inertial trajectories defined by the matter distribution and in turn constrain-
ing the matter distribution via a matter dynamics according to which material
particles follow those trajectories except when acted on by non-gravitational
forces.

As such, my analysis of inertial structure as explored via subsystems of the
Universe, carried out in section 4 for vector relationism, now carries over directly
to Newton-Cartan gravity; in that context it can be seen as filling in the details
— outlined by Knox — of how it is that the Newton-Cartan connection defines
the spacetime geometry in that theory. (Recall that for Knox, it is insufficient
that it has the mathematical form of a connection, and insufficient that we
simply declare that the theory is one with dynamical spacetime: to count as
spacetime the connection needs to describe the inertial frames.)

The machinery of the Newton-Cartan connection actually allows us to re-
formulate some of the earlier discussion in a helpful way (from here on I write
“gravitational” synonymously with my earlier “universal”). To begin with, re-
call that a subsystem is isolated if (i) the external non-gravitational forces are
negligible, and (ii) the external gravitational forces are approximately constant.
The latter condition amounts to requiring that ∂j∂

iV ' 0 across the system,
which in idealisation (where we remove the environmental matter to infinity and
impose this requirement everywhere in space) this is the boundary condition

lim
|x|→∞

V (x, t) = bi(t) · xi + c(t) (65)

for some given functions bi and c. In particular, if we work in locally inertial
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coordinates for the subsystem, this becomes

lim
|x|→∞

V (x, t) = c(t), (66)

which (up to a dynamically irrelevant constant) is exactly the boundary condi-
tion normally placed on Newtonian potentials, and exactly the condition that
Knox rejected in her move from Galilean-covariant to Maxwell-covariant formu-
lations of gravity. And either condition suffices to make the split between inertial
and gravitational structure for the subsystem perfectly well-defined: the inertial
structure is specified by a flat connection satisfying that boundary condition.

This in no way undermines Knox’s (and Malament’s (1995), and Norton’s
(1995)) objection to any such split. But those objections applied when we were
considering Newtonian gravity as a theory of the whole Universe. The split
is perfectly well defined when we are considering the theory of a subsystem
embedded in a wider Universe. Furthermore, in that context the flat part of
the connection has a straightforward operational meaning: it is the background
inertial structure against which the interactions internal to the subsystem play
out. That background inertial structure is invariant under Galilean, though not
more general Maxwellian, transformations; in that sense, Galilean spacetime
remains the right setting for Newtonian mechanics where it is used to analyse
an isolated subsystem of a larger system.

(Note that once gravitationally interacting systems are included in the de-
termination of inertial frames, there is more to this observation than the simple
mathematical fact that a Maxwellian connection is locally Galilean, or the phys-
ical fact that the non-gravitational laws are Galilei-covariant. The existence of
solutions of the gravitational field equations that satisfy lim|x|→∞ V (x) = 0
is also required. (Something similar occurs in general relativity; cf Wallace
(2009).)

This idea of a ‘background inertial structure’ may seem odd. Shouldn’t
spacetime just have an inertial structure, once and for all? Not if ‘spacetime
structure’ is to be understood in terms of inertial frames, and inertial frames
are to be understood in turn in terms of the dynamics of subsystems. The
Earth-Moon system, for instance, is not usefully thought of as evolving in the
inertial structure set by the whole Universe, including Earth and Moon them-
selves; rather, the inertial frames relevant for that system are determined by
the gravitational effects of the rest of the matter in the Universe (most saliently
the Sun).

This might be called a scale relativity of inertial structure (and thus, on
Knox’s functionalism, of spacetime geometry). The inertial structure seen
by (i. e. , relevant to) the Earth-Moon system does not include the effects on
geodesics of the Earth and Moon themselves: that is an additional interaction
between Earth and Moon layered on top of the geometry defined by the Sun.
But the inertial structure seen by a system on the surface of the Earth does
include the Earth’s (and the Moon’s) contribution.

Scale relativity of inertial structure is actually quite common in applications
of Newtonian gravity. Consider, for instance, the dynamics of the stars in the
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Galaxy.9 To first approximation we treat them as a continuous dust, as in sec-
tion 7, and thus deduce a smoothly varying Galactic gravitational potential.
But in reality, there are finitely many stars, and so the potential of the Galaxy
is much spikier. And close encounters between stars — “collisions” in the ter-
minology of galactic dynamics, though there is no physical collision — cause
deviation in the evolution of the actual Galactic distribution away from what
the dust theory would predict.

A standard way to handle this (in somewhat crude form) is to break the grav-
itational potential m/|x| of each star into two parts: a near-field part covering
(say) the potential within 10 parsecs of the star, and a long-range part covering
the rest. The total potential VLR generated by the long-range terms for each
star is taken as a background potential, determining a background Maxwellian
connection; it is, in effect, a smoothing out of the exact potential V . The near-
field terms then allow for scattering events between close stars, against that
overall background: the trajectory of a star is given by an expression like

ẍi(t) = −∂iVLR(x) + collision terms. (67)

With some care, this approach can be parleyed up into the Boltzmann-Vlasov
equation, which governs the evolution of a stellar distribution under both long-
range interaction with its own smoothed-out connection and short-range col-
lisions. Knox’s functionalist recipe tells us that it is the averaged connection
determined by VLR, not the exact potential V , that plays the role of inertial
structure for this system.

The same thing happens on a still larger scale. A galaxy is a huge, com-
plicatedly structured system with a very deep gravity well; from the point of
view of a star in that galaxy, the galaxy’s contribution to the inertial structure
dominates that of the rest of the Universe. But to the cosmologist, the galaxy
is a point particle in a gas of galaxies. From the point of view of the galaxy as
a whole, the relevant inertial structure is the connection defined by the distri-
bution of matter across the whole Universe: averaged, that is, not over parsecs
but over megaparsecs.

Something similar also occurs in general relativity, although there caution is
needed because the equations are nonlinear and so we cannot simply decompose
the metric field into components and attribute them to different subsystems.
In particular, consider gravity waves. It is absolutely standard in astrophysical
applications to talk about a gravity wave as propagating through some region of
spacetime, in exactly the same way that an electromagnetic wave so propagates.
If spacetime is definitionally given by the metric field, this does not literally make
sense: the gravity wave is a disturbance of spacetime, not in spacetime. What
is meant mathematically speaking is that we have linearised the Einstein field
equations around some solution g0:

g(x) = g0(x) + δg(x) (68)

9For technical references see Binney and Tremaine (2008) and references therein.
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so that the perturbation δg satisfies a wave equation. The spacetime through
which the wave is taken to propagate is that defined by g0, not that defined by
g — and again, a functionalist account licenses us to regard g0 and not g as
determining the true inertial structure for the gravity wave, and for any matter
scattering off it. (I discuss the embedding of self-gravitating subsystems into
larger systems in general relativity in more detail in Wallace (2009).)

Scale-relativity of spacetime structure is not mentioned explicitly in Knox’s,
and Browns’, own discussions of spacetime structure, probably because (as noted
previously) they confine their analyses to non-gravitational interactions, which
are typically extremely short-range, and so tend to probe the finest-grained
features of the gravitational potential. But when that restriction is dropped, it
seems to be a natural consequence of Knox’s spacetime functionalism — and a
welcome consequence, fitting naturally with usage in contemporary astrophysics.

9 Reconciling Knox and Saunders

I have argued that there is essentially no difference between Newton-Cartan
theory (Knox’s preferred understanding of Newtonian dynamics) and Saunders’
relational version of Newtonian dynamics: at the formal level the latter can be
reformulated as the former; at the substantive level, the inertial structure of
Saunders’ theory is well-defined and coincides with that defined by the Newton-
Cartan connection.

Knox and Saunders themselves disagree:

Saunders and I arrive at different conclusions (Knox 2014, p.875)

What is the relation between a theory of gravity (and other forces)
formulated in Maxwell space-time, and one based on Newton-Cartan
spacetime? In the latter there is a notion of parallelism for time-
like as well as spacelike vectors. That notion, we must conclude, is
dispensable, to be derived, if at all, by fixing of gauge. Saunders
2013, p.46

The appearance of disagreement has, I think, two sources. The first is tech-
nical: the standard presentations of Newton-Cartan spacetime and Maxwellian
spacetime look very different, partly because the former is standardly cast in the
language of differential geometry whereas the latter (in particular, its rotation
standard) is very awkward in that language, and partly because in Newton-
Cartan theory, the connection does double duty, imposing both the rotation
standard (a piece of absolute structure) and the inertial structure (something
dynamical and contingent). One purpose of my somewhat idiosyncratic pre-
sentation of Newton-Cartan theory is to emphasise the fact that the Newton-
Cartan connection is naturally understood as an additional piece of structure
added to Maxwellian spacetime; indeed, as the Maxwellian version of the affine
connection.
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The second is more important: Knox and Saunders are operating with very
different conceptions of the physical content of Newton-Cartan spacetime. In
Saunders’ view, to include spacetime structure in a theory is to add that struc-
ture as part of the theory’s basic posits. And since Newtonian dynamics can be
formulated in an empirically adequate way without any reference to spacetime
structure, that structure should not be reified: it is ‘unneeded surplus struc-
ture’ (Saunders 2013, p.46). Similarly, Saunders suggests that Newton-Cartan
gravity allows the drawing of unphysical distinctions between possibilities:

Take possible worlds each with only a single, structureless parti-
cle. Depending on the connection, there will be infinitely-many dis-
tinct trajectories, infinitely-many distinct worlds of this kind. But in
[Saunders’ version of Newtonian dynamics], as in Barbour-Bertotti
theory, there is only one such world — a trivial one, in which there
are no meaningful predications of the motion of the particle at all.
Only for worlds with two or more particles can distinctions among
motions be drawn. From the point of view of the latter theories, the
fault lies with introducing a non-trivial connection curvature with-
out any source, unrelated to the matter distribution. At a deeper
level, it is with introducing machinery — a standard of parallelism
for time-like vectors, defined even for a single particle — that from
the point of view of a relationalist conception of particle motions is
unintelligible.

These comments presuppose a conception of spacetime like that of Friedman
(1983), Earman (1989), or Maudlin (2012) — a conception according to which
the spacetime structure is conceptually and ontologically independent of mat-
ter, and where the connections between the two — the equations that link
the connection to the mass distribution, and that state that test particles follow
geodesics except when deflected by non-gravitational forces — are laws of nature
and not conceptual truths. On this conception, a “Newton-Cartan spacetime”
is just an arbitrary distribution of matter on Maxwellian spacetime, plus an
arbitrary Maxwellian connection. Some of those spacetimes — the ones where
the scalar curvature is proportional to the mass density and where the motion
of particles is given in terms of geodesics — are nomically possible, and others
are not, but they are equally legitimate as metaphysical possibilities. And then,
indeed, that spacetime structure looks like surplus structure, and these claims
about the spacetime background for a single particle look inappropriate.

But this is not Knox’s (nor Brown’s) interpretation of the Newton-Cartan
connection. To Knox, the connection’s interpretation as inertial structure is
derivative on the matter dynamics; the geodesic equation for particles defines
the connection rather than asserting a lawlike relationship between independent
entities. So the Newton-Cartan connection is defined in the single-particle world
— if at all — by the counterfactuals as to how other particles would move if they
were added to that world. Insofar as these counterfactuals are indeterminate
(perhaps because a Humean view of laws (Lewis 1973, 1986) is assumed), so is
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the Newton-Cartan connection; in any event, Newton-Cartan theory a la Knox
draws its distinctions no finer than Newtonian mechanics a la Saunders.

10 Conclusions

Newtonian physics, regarded as the physics for the Universe as a whole (or
for an isolated subsystem as observed from within that subsystem) needs only
Maxwellian spacetime as background geometry; in particular, no affine structure
need be specified in advance to make sense of its dynamics.

However, a Newtonian dynamical system does determine an inertial struc-
ture, which gets its operational significance from the behaviour of isolated sub-
systems of that system and its mathematical representation as a connection
compatible with the Maxwellian background. If we adopt Knox’s functionalist
approach to spacetime structure, the spacetime geometry of Newtonian physics
is then just this connection — albeit the effective spacetime geometry experi-
enced by a given system may instead be a coarse-graining of that geometry.

Furthermore, the dynamics of those isolated subsystems, as expressed rela-
tive to that inertial structure, is Galilean- rather than Maxwell-covariant, and
so Galilean spacetime remains the right setting for the Newtonian dynamics of
isolated systems as studied from outside those systems.

These conclusions follow whether we begin with Newton’s theory in long-
range-force form and follow Saunders in reformulating it to speak only of relative
accelerations, or instead begin with Newton’s theory in potential form and follow
Knox in relaxing its boundary conditions and so dropping its background inertial
structure. As such, the apparent discrepancy between Knox’s and Saunders’
conception of Newtonian physics masks underlying, implicit agreement.
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