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ABSTRACT.  This paper discusses how to define logics as deductive limits of
sequences of other logics.  The case of da Costa’s hierarchy of increasingly
weaker paraconsistent calculi, known as Cn, 1≤n≤ ω, is carefully studied.
The calculus Cω, in particular, constitutes no more than a lower deductive
bound to this hierarchy, and differs considerably from its companions.  A long
standing problem in the literature (open for more than 35 years) is to define
the deductive limit to this hierarchy, that is its greatest lower deductive bound.
The calculus Cmin, stronger than Cω, is first presented as a step towards this
limit.  As an alternative to the bivaluation semantics of Cmin presented there-
upon, possible-translations semantics are then introduced and suggested as
the standard technique both to give this calculus a more reasonable seman-
tics and to derive some interesting properties about it.  Possible-translations
semantics are then used to provide both a semantics and a decision procedure
for CLim, the real deductive limit of da Costa’s hierarchy.  Possible-translations
semantics also make it possible to characterize a precise sense of duality:  as an
example, Dmin is proposed as the dual to Cmin.

KEY WORDS:  Deductive limits, possible-translations semantics, combination
of logics, translations between logical systems, non-classical logics.

1111.  The problem

While formulating the first important hierarchy of paraconsistent calculi, known as Cn,
1≤n<ω, da Costa [12] also introduced another calculus, Cω, axiomatized by exactly
those schemas common to all Cn. One may regard Cω as a kind of syntactic limit of the
calculi in the hierarchy.

Axiomatization.  The kernel of each of the calculi Cn includes the Intuitionistic Posi-
tive Calculus (Int+), which may be axiomatized by the following sch emas:

 (1) A → ( B → A )
 (2) ( A → B ) → ( ( A → ( B → C ) ) → ( A → C ) )
 (3) A → ( B → ( A ∧ B ) )
 (4) ( A ∧ B ) → A
 (5) ( A ∧ B ) → B
 (6) A → ( A ∨ B )
 (7) B → ( A ∨ B )
 (8) ( A → C ) → ( ( B → C ) → ( ( A ∨ B ) → C ) )

having as its only rule modus ponens (MP): A, A→B / B. Adding to (Int+) the excluded
middle, and the reduction of negations, respectively, in the following form:
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(9) A ∨ ¬ A
(10) ¬ ¬ A → A

one shall obtain Cω. Each Cn may now be constructed from Cω by the addition of two
schemas more:

(11n) B (n) → ( ( A → B ) → ( ( A → ¬ B ) → ¬ A ) )
(12n) ( A (n) ∧ B (n) ) → ( ( A ∧ B ) (n) ∧ ( A ∨ B ) (n) ∧ ( A → B ) (n) )

We remember that G ° abbreviates the formula ¬ ( G ∧ ¬ G ), that G n, 0≤n<ω, is re-
cursively defined by G 0

�G and G n + 1
� ( G n )°, and that G (n), 1≤n<ω, by G (1)

�G 1

and G (n + 1)
�G (n) ∧ G n + 1 . One may understand the formula G (n) as saying that the propo-

sition G is well-behaved, and so (11) may be regarded as a form of paraconsistent re-
ductio ad absurdum and (12) as regulating the propagation of well-behavior.

What about the semantics to the calculi CCCCn, 1111≤≤≤≤ n ≤≤≤≤ωωωω?  Arruda [3] has shown that
none of these calculi is characterizable by finite matrices. Nevertheless, they may be
characterized by non-truth-functional bivaluations. For a given Cn, n<ω, let vn be a
function from the well-formed formulas of Cn into { 0, 1} , such that:

 val[i] vn( A ∧ B ) = 1 ⇔  vn( A ) = 1 and vn( B ) = 1;
 val[ii] vn( A ∨ B ) = 1 ⇔  vn( A ) = 1 or vn( B ) = 1;
 val[iii] vn( A → B ) = 1 ⇔  vn( A ) = 0 or vn( B ) = 1;
 val[iv] vn( A) = 0 ⇒  vn( ¬ A) = 1;
 val[v] vn( ¬ ¬ A) = 1 ⇒  vn( A) = 1;
 val[vi] vn( An−1 ) =vn( ¬ An−1 )  ⇔  vn( An ) = 0;
 val[vii] vn( A ) =vn( ¬ A )  ⇔  vn( ¬ A°) = 1;
 val[viii] vn( A ) ≠ vn( ¬ A )  and vn( B ) ≠ vn( ¬ B )  ⇒  vn( A#B) ≠ vn( ¬ ( A#B) ) ,

where # ∈ { ∧ , ∨ , →} .

For each Cn, 1≤n<ω, we call the function vn  so defined an n-valuation. In [14]
and [17] the strong soundness and completeness of the semantics given by the set of all
such n-valuations is proven. These valuations also help us to show that each Cn is strictly
weaker than any of its predecessors, i.e. denoting by Th(S) the set of theorems of a cal-
culus S, we have:

Th(Cn ) ⊂ Th(Cm ) , if 1≤m<n<ω.

Indeed, the formula ( G m−1∧ ¬ G m−1) (m), or the axioms (11m) and (12m), for instance, hold
in Cm but do not hold in any Cn , n>m≥1.

As the axioms of Cω come from the axioms of a given Cn if we simply erase the
schemas (11n) and (12n), exactly the ones dealing with well-behavior, it may seem that a
non-truth-functional bivaluation for Cω would be obtained if we erased clauses val[vi] to
val[viii] of vn. That is far from true. A complicated, but adequate bivaluation semantics
for Cω, or ω-valuation, is provided in [16]. Let’s call a semi-valuation for Cω a function
s from the wffs of Cω into {0, 1} , such that:

 sval[i] s ( A ∧ B ) = 1  ⇔  s ( A ) = 1  and s ( B ) = 1 ;
 sval[ii] s ( A ∨ B ) = 1  ⇔  s ( A ) = 1  or s ( B ) = 1 ;
 sval[iii] s ( A) = 0  ⇒  s ( ¬ A) = 1 ;
 sval[iv] s ( ¬ ¬ A) = 1  ⇒  s ( A) = 1 ;
 sval[v] s ( A → B ) = 1  ⇒  s ( A ) = 0  or s ( B ) = 1 ;
 sval[vi] s ( B ) = 1  ⇒  s ( A → B ) = 1 .



3

An ω-valuation vω is defined to be a semi-valuation such that the following clause also
holds:

 sval[vii] For all A1, …, An , and all B not of the form C→ D,
vω(A1→(A2→…→(An→B)…))=0  ⇒

there is a semi-valuation s such that s(Ai)=1 and s(B)=0, 1≤i≤n .

With the awkward definitions given above, while one might well regard Cω as a
syntactic limit of the hierarchy Cn, one should not also regard the former calculus as a
semantic limit of the latter.

Clauses val[i] to val[iii] of an n-valuation inform us that all purely positive clas-
sical schemas are valid in each Cn, n<ω. Such is no longer true in Cω. It is not hard to
see, for instance, that the formula A ∨ (A→B), which we shall call Dummett’s Law (DL),
is not valid in Cω, though it obviously holds in each Cn, n<ω.

So why should we call CCCCωωωω the limit of the hierarchy CCCCn, after all?  Under a very rea-
sonable account, we would require that the limit-calculus of that hierarchy, which we
shall call CLim hereafter, has as theorems all and only those theorems which are common
to all calculi Cn, 1≤n<ω, that is:

(Req 1) Th (CLim) = I
ω<≤n

Th
1

 (Cn) .

Clearly, Cω is not CLim.
But we do not wish to regard the notion of theoremhood as the cornerstone of

our definition of a limit-calculus, as we understand that the notion of derivability, re-
flected on the consequence operators of our logics, is much more fundamental. Here, in
a very general perspective, a logic L# will be seen simply as a set (of formulas) L# en-
dowed with a consequence operator, Con#: ℘ (L#)→℘ (L#). Now, the set L of formulas
of all Cn coincide. We will require that CLim should be such that, given any subset Γ of L
we have that:

(Req 2) )()(
1

Γ=Γ
ω<≤
I
n

nLim
ConCon

CC
.

It is immediate to see that (Req 1) is but a particular case of (Req 2), for Th (S ) =
ConS ( ∅ ) .

2222.  First step toward the solution

What if we precisely added (DL) to Cω as a new axiom schema? With this very simple
change we obtain a new calculus that we shall call Cmin . Now we may finally show that
Cmin is, by its turn, closer to the semantic limit of the hierarchy Cn, 1≤n<ω, once it is
characterized exactly by the clauses val[i] to val[v] of an n-valuation —and so it is a
kind of a minimal paraconsistent calculus containing all purely positive classical sche-
mas. Let’s call min-valuations the functions vmin subjected to these clauses, and let’s
define the consequence relation, �min, as usual.

THEOREM 2.1  Let Γ∪ {A} be a set of formulas of Cmin. Then:
Γ �min  A ⇒  Γ �min  A .

One just has to check that all axioms (1) to (10) plus (DL) assume only the value 1 in any
min-valuation, and that (MP) preserves validity. This proves soundness.
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For completeness we need an auxiliary lemma. Let ∆∪ {G} be a set of formulas
of Cmin . Call ∆ a G-saturated set if ∆ �/ min G and for any formula A of Cmin such that
A ∉∆  we have ∆∪ {A} �min G . First note that any consistent set Γ of formulas of Cmin

such that Γ �/ min G may be extended to a G-saturated set by the usual Lindenbaum-Asser
construction. Now we can prove:

LEMMA 2.2  Let ∆∪ {G} be a set of formulas of Cmin with ∆ a G-saturated set. Then:

���� for any formula A in Cmin , ∆∆∆∆ ����min A ⇔⇔⇔⇔ A∈∈∈∈∆∆∆∆ .
Consequence of axioms (1) and (2), with (MP).

 (i) A ∧∧∧∧ B ∈∈∈∈∆∆∆∆ ⇔⇔⇔⇔ A ∈∈∈∈∆∆∆∆ and B ∈∈∈∈∆∆∆∆ . From ����, axioms (3), (4), (5) and (MP).

 (ii) A ∨∨∨∨ B ∈∈∈∈∆∆∆∆ ⇔⇔⇔⇔ A ∈∈∈∈∆∆∆∆ or B ∈∈∈∈∆∆∆∆ . From ����, axioms (6), (7), (8) and (MP).

 (iii) A→→→→B ∈∈∈∈∆∆∆∆ ⇔⇔⇔⇔ A ∉∉∉∉∆∆∆∆ or B ∈∈∈∈∆∆∆∆ . From ����, (ii), axioms (1), (DL) and (MP).

 (iv) A ∉∉∉∉∆∆∆∆ ⇒⇒⇒⇒  ¬¬¬¬ A ∈∈∈∈∆∆∆∆ . From ����, axiom (9) and (MP).

 (v) ¬¬¬¬¬¬¬¬ A ∈∈∈∈∆∆∆∆ ⇒⇒⇒⇒  A ∈∈∈∈∆∆∆∆ . From ����, axiom (10) and (MP).

COROLLARY 2.3  The characteristic function of a G-saturated set of formulas of Cmin

gives a min–valuation.

Indeed, let ∆ be a G-saturated set and define a function v  such that, for any formula A of
Cmin , v(A)=1 if A∈∆ , and v(A )=0 otherwise. Then it’s easy to see that (i) to (v) satisfy,
respectively, val[i] to val[v].

THEOREM 2.4  Γ �min  A ⇒  Γ �min A .
Given a formula A in Cmin such that Γ �/ min A , one may, by Lindenbaum-Asser’s con-
struction, extend Γ to an A-saturated set ∆. As ∆ �/ min A , then, by LEMMA 2.2 ����, A ∉∆ .
By COROLLARY 2.3, the characteristic function of ∆ is such that for any B∈∆ , v(B)=1,
while v(A )≠1. So, ∆ �/ min A , and in particular Γ �/ min A . This proves completeness.

Comparison of CCCCωωωω and CCCCmin.  So far, we have the following situation:

Th (Cω) ⊂ Th (Cmin) ⊆ Th (CLim) .

If Cmin is not the limit-calculus of Cn , it is at least closer to it than Cω . Surely Cmin and
Cω share some properties, such as the uncharacterizability by finite matrices.

Given any Cn , n<ω, we may define the strong negation of a formula G, denoted
by ~(n)G , as ¬ G ∧ G (n) . It is easy to prove that this negation has all the properties of
classical negation (cf. [13]) and so, for example, the formula G ∧ ~(n)G  trivializes Cn .
However, in Cω or Cmin no such negation is definable. Actually, following a suggestion
of Alves [1], we may prove:

PROPOSITION 2.5  Neither Cω nor Cmin are finitely trivializable, i.e. no finite set of for-
mulas may be added to any of these calculi so as to trivialize it.

This is an immediate consequence of the following facts:
Fact 2.5.1: In all matrices with which Cmin is provably sound, the ordering relation ≤ bet-

ween its values defined as “a ≤ b iff a → b takes a distinguished value” is a pre-
order.
Just verify it’s reflexive and transitive.

Fact 2.5.2: If Cmin were finitely trivializable, the ordering defined in Fact 2.5.1 would admit
a least element.
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Indeed, supposing Fin to be a formula such that, for any formula G, Cmin ∪
{ Fin} �G, then by the Deduction Theorem one has that Cmin�Fin→G . There
is a min-valuation v and a value a such that v(Fin)=a. Let p be an atomic varia-
ble not occurring in Fin , and v’ a min-valuation such that v’(p)=b for some va-
lue b and v’(q)=v(q)  for all q atomic and different from p. Then v’(Fin)=a. In
particular, one has that Cmin�Fin→p , so v’(Fin→p )=a→b . But a→b  takes a
distinguished value, so a ≤ b for all b.

Fact 2.5.3: There are sound matrices for Cmin not having the property in Fact 2.5.2.
Define the truth-values to be all the cofinite subsets of the natural numbers, Ù ,
and Ù  itself to be the only distinguished value. The connectives are defined as:
v(A→B)=v(A)C ∪ v(B); v(A ∨ B )=v(A) ∪ v(B); v(A ∧ B)=v(A) ∩ v(B);

Now one just has to check that all axioms of Cmin assume but the distinguished
value Ù, for any given valuation, and that (MP) preserves validity. The only
difficult case is that of the axiom ¬¬ A→A , especially if v(A)≠Ù. In this case,
v(¬ A) = v(A)C ∪ {n∈ Ù : n≥ max(v(A)C )+2}, and v(¬¬ A) = v(¬ A)C ∪ {n∈ Ù :
n≥ max(v(¬ A)C )+2}. But then, v(¬ A )C = v(A) ∩{n∈ Ù : n≤ max(v(A)C)+1},
and so max(v(¬ A)C ) = max(v(AC ))+1, hence v(¬¬ A) = [v(A )∩{n∈ Ù : n≤
max(v(AC ))+1}] ∪ {n∈ Ù : n≥ max(v(AC ))+3}. Notice also that v(A)=v(A ) ∪
{n∈ Ù : n≥ max(v(AC ))+1}. By some simple set-theoretical manipulations one
finally obtains v(¬¬ A) = v(A) \{max(v(AC ))+2}. It is now easy to verify that
in this situation ¬¬ A→A is satisfied (and, by the way, A→¬¬ A is not satisfi-
ed —perhaps these infinitary matrices will validate only the theorems of Cmin?).

The ordering relation in the case of the matrices above turns to be the subset
relation, ⊆ , that clearly has not a minimal element in the set of values considered.

In [14] and [17], decision procedures using quasi-matrices were provided to each
Cn, n<ω. As one might expect from the intricated semantic characterization of Cω given
above, quasi-matrices for Cω usually are very complicated (cf. [16]). Once more, this is
not the case for Cmin. A decision procedure for a formula G in Cmin is easily obtained
from the method of quasi-matrices for some Cn, n<ω, if one simply erases all steps
dealing with well-behavior, considering instead the following algorithm:

Let A be some subformula of G or the negation of some proper subformula of G.
Then, evaluating A in a line k of a quasi-matrix for G:

[.#.] If A has form B#C, where # is any binary connective, evaluate it classically.
[¬¬¬¬ ] If A has the form ¬ B, and the value of B in k is 0, write 1 under A in this line; if

the value of B in k is 1, bifurcate this line and write 0 in the first part and, in the
second, write 1.

To show the adequacy of this procedure, we prove that, for a given formula G:

PROPOSITION 2.6  Given a bivaluation for Cmin there is a line of a quasi-matrix for G
that corresponds to it.

PROPOSITION 2.7  Given a line of a quasi-matrix for G, there is a bivaluation for Cmin

corresponding to it.

A possible-worlds semantics for Cω was proposed by Baaz [4], and it seems that
only some minor modifications might be in order to turn this semantics adequate for
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Cmin . We will not investigate this problem here. It should be observed, however, that
possible-worlds semantics for each Cn, n<ω, have still not been produced.

How can a formula and its negation both be true?  We believe the semantics just
given to Cmin does not help much to explain its paraconsistent behavior. We introduce in
the following a new kind of semantics with various interesting properties:

 (a) it sheds some light upon the paraconsistent behavior of Cmin;
 (b) it provides a truth-functional interpretation for the connectives of Cmin;
 (c) it gives a simple decision procedure for Cmin;
 (d) it makes it possible to semantically characterize CLim, the real limit-calculus of Cn.

3333.  New semantics for CCCCmin

We first introduce some terminology from the theory of translations between logics (cf.
[9]). In the end of section 1. we have proposed to see a logic L# as a structure of the
form <L#, Con#>, where L# is a set, and Con# a consequence operator on L#. Now, a
translation from the logic L1 into the logic L2 is defined as a homomorphism between
these structures, that is, a map ∗ : L1→L2 , such that, given Γ∪{ A} ⊆ L1:

A ∈ Con1( Γ )  ⇒  A* ∈ Con2( Γ* ).

Such a map is called a conservative translation if the converse also holds. Of course, if
we have, for a given calculus S, L1 = L2 = wffs of S , Con1 denoting its syntactic conse-
quence relation and Con2 a proposed semantic consequence relation, where ∗  is the
identity function, then showing that ∗  is a translation is showing soundness, and showing
that ∗  is conservative is showing completeness.

Now consider the “weak-strong” logic WS
3, given by the following three-valued

matrices:

Here T and T– are the distinguished values. One may interpret the value T– as “true by
default,” i.e., by lack of evidence to the contrary. Given two propositions connected by
a conjunction, a disjunction or an implication then the matrices above mean that in these
cases we can never be completely sure —the evaluation of ∧ , ∨  or → will not return the
value T. We have two negations, ¬ s and ¬ w : we call the first one strong, and observe
that it has a classical behavior, changing definitely the status of propositions —from
distinguished to non-distinguished and vice-versa; the other one we call weak, and ob-
serve that there is a situation in which we can neither confirm nor disconfirm a proposi-
tion —negating a proposition true by default, this negation will return another proposi-
tion of the same status.

Now let’s define the set Tr of all functions ∗  from the formulas of Cmin into the
formulas of WS

3  subjected to the following clauses:

Tr 1. for atomic p, p* = p , (¬ p)* = ¬ w p;
Tr 2. (¬ A )* = ¬ s A*  or (¬ A )* = ¬ w A* , for non-atomic A;
Tr 3. ( A # B )* = A* #B* ,  where # ∈ { ∧ , ∨ , →} .

∧∧∧∧ T T– F
T T– T– F
T– T– T– F
F F F F

∨∨∨∨ T T– F
T T– T– T–

T– T– T– T–

F T– T– F

→→→→ T T– F
T T– T– F
T– T– T– F
F T– T– T–

¬ s ¬ w

T F F
T– F T–

F T T
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We say the pair PT = <WS
3 , Tr > gives a possible-translations semantics to Cmin. If �3

denotes the consequence relation in WS
3 , and Γ∪ {A} is a set of formulas of Cmin, we

define the PT-consequence relation, �PT , as:

Γ �PT  A ⇔
def

 for all ∗ ∈ Tr, we have Γ* �3 A*.

We will call a possible translation of a formula A in Cmin any image of it through
some function in Tr. We may immediately prove the following:

THEOREM 3.1  (Soundness) Γ �min A ⇒  Γ �PT A .

Given a formula A, it is evident that the total number of its possible translations is finite —
in fact, it is 2n, where n is the number of negation symbols in A. So here one just has to
test all possible translations of each axiom, from (1) to (10) and (DL), and then verify that
all possible translations of (MP) preserve validity.

This result assures us that each ∗  in Tr is indeed a translation from Cmin into WS
3,

in the sense precised above. We may present a stronger result relating the possible-trans-
lations semantics to the bivaluation semantics presented in section 2.

THEOREM 3.2  (Convenience) Given a translation ∗  in Tr and a valuation w in WS
3 ,

then the function v such that, for every formula A in Cmin ,
v(A)=1 ⇔ w(A*) ∈ {T, T–},

is a min-valuation.

Immediate, just verify that val[i] to val[v] hold.

Note that THEOREM 3.1 is also provable as a corollary of THEOREM 3.2.

THEOREM 3.3  (Representability) Given a min-valuation vmin, there is a translation ∗  in
Tr and a valuation w in WS

3  such that, for every formula A in Cmin,
w(A*) ∈ {T, T–} ⇔ vmin(A)=1.

Define p* as p, and define the valuation w for atomic p as
w(p*)=T iff v(¬ p)=0;
w(p*)=T – iff v(p)=1 and v(¬ p)=1;
w(p*)=F iff v(p)=0.

Define (¬ p)* as ¬ w p*, and (A#B)* as A* # B*. For non-atomic A, define (¬ A)* as ¬ wA* if
v(A )=v(¬ A), and define it as ¬ sA* otherwise. Now one just has to check that these defini-
tions work.

COROLLARY 3.4  (Completeness) Γ �PT A  ⇒ Γ  �min A .

Thus “weaving” together all the translations in Tr, as we would do with sheaves,
we have eventually obtained a conservative translation from Cmin into the structure PT.

The new decision procedure for Cmin is immediate. Given a formula G in Cmin,
we just have to make all possible translations of it, and test each of them using the ma-
trices of WS

3. There is an obvious relation between this method and the one of quasi-
matrices:

PROPOSITION 3.5  Given a formula G of Cmin and a quasi-matrix for it, QMG,

 (i) for given w and * in PT there is a line k of QMG  that corresponds to them;
From THEOREM 3.2 and PROPOSITION 2.6.

 (ii) for each line k of QMG  there are corresponding w  and * in PT.
From PROPOSITION 2.7 and THEOREM 3.3.
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So the apparent superiority of the new testing method over the one with quasi-
matrices seems to consist in adding new columns instead of bifurcating the lines. We
restore truth-functionality if we only allow each formula of Cmin to be interpreted as a
conjunction of all its possible translations.

A nice application of the possible-translations semantics for Cmin is to help to
easily show the following:

PROPOSITION 3.6  No negated formula is a theorem of Cmin (and, consequently, of Cω).

Argument 3.6.1: For any given negated formula ¬ G one may find a valuation w and a trans-
lation * such that w((¬ G )*)=F.

Just pick a w such that w(p)=T– for any atomic p, and then translate every
negated subformula ¬ A of G as ¬ w A*, while translating ¬ G itself as ¬ s G*.

Argument 3.6.2: There are models of Cmin in which no negated formulas are valid.
Indeed, one such model is given in Fact 2.5.3 above.

Either of the arguments above prove PROPOSITION 3.6. A modified version of
Argument 3.6.1 was used in [11] to prove that negated formulas are also not theorems
of any Cn, unless they have well-behaved subformulas.

4444.  Not the limit!

It seems the particular axioms (11n) and (12n) of Cn can play tricks on us. Using both
of them we may prove, for example, some forms of De Morgan Laws that we cannot
prove without them.

PROPOSITION 4.1  The following are the only forms of De Morgan Laws provable in
each Cn, 1≤n<ω:

(DM1) ¬ (A ∧ B)→(¬ A ∨¬ B); (DM3) ¬ (¬ A ∧ B)→(A ∨¬ B);
(DM2) ¬ (A ∧¬ B)→(¬ A ∨ B); (DM4) ¬ (¬ A ∧¬ B)→(A ∨ B).

Note: The syntactic proofs surely require some skill from the reader.

None of them is provable in Cn without the axiom (11n).

Just consider the following matrices:

where � and � are distinguished.

None of them is provable in Cn without the axiom (12n).

Just consider the same matrices above, changing only the conjunction for:

.

∧∧∧∧ ���� ���� ����

���� � � �

���� � � �

���� � � �

∨∨∨∨ ���� ���� ����

���� � � �

���� � � �

���� � � �

→→→→ ���� ���� ����

���� � � �

���� � � �

���� � � �

¬¬¬¬
J

���� �

���� �

���� �

∧∧∧∧ ���� ���� ����

���� � � �

���� � � �

���� � � �
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Of course, one does not really need to give independence proofs to show these
formulas to be not valid in Cmin. We have two semantics and decision procedures already
at our disposal. The formula (DM1), for instance, may be shown to be not valid, either:

•  if we pick atomic variables p and q as A and B and choose a min-valuation vmin, such
that:

vmin(p)=vmin(q)=1, vmin(¬ p)=vmin(¬ q)=0 and vmin(¬ (p ∧ q))=1,

or
•  if we pick atomic variables p and q as A and B and choose a translation ∗  and a

valuation w such that:
(¬ p)* = ¬ w p, (¬ q)* = ¬ w q, (¬ ( p ∧ q ) )* = ¬ w ( p ∧ q ) and w(p) =w(q) =T.

Let’s give one more full example of those semantics in action, now to prove that:

PROPOSITION 4.2  (A ∧¬ A) → ¬¬( A ∧¬ A) is not a theorem of Cmin, though it is indeed
a theorem of any Cn,  and consequently of CLim.

To see why this formula is provable in any Cn, just take a look at the clause val[vii], in 1. On
the other side, let’s turn to the quasi-matrix of the formula (p ∧¬ p)→¬¬( p ∧¬ p) in Cmin:

Line 4 tells this formula not to be a tautology of Cmin. Of course this line cannot appear in a
quasi-matrix for any Cn. Now let’s consider the possible translations of this formula:

1111 (p ∧¬ wp)→¬ s¬ s(p ∧¬ wp);
2222 (p ∧¬ wp)→¬ w¬ s(p ∧¬ wp);
3333 (p ∧¬ wp)→¬ s¬ w(p ∧¬ wp);
4444 (p ∧¬ wp)→¬ w¬ w(p ∧¬ wp);

Line � of the 3333rd translation shows this formula once more to be invalid in Cmin. The ca-
nonical connection established in PROPOSITION 3.5 between the two procedures above will
tell the reader, for instance, how to transform lines 4 and 5 of the quasi-matrix above into,
respectively, the pairs <3333,�> and <4444,�> of PT, and, conversely, how to transform the pairs
<1111,�> and <3333,�> of PT into the lines 2 and 4 of the quasi-matrix.

Thence, the situation has turned out to be the following:

Th (Cω) ⊂ Th (Cmin) ⊂ Th (CLim).

We conclude that the calculus Cmin too, though very interesting by itself, is not
the desired limit-calculus of Cn.

An idea.  Let’s construct from each Cn the calculus Bn, just erasing axiom (12n). So
even though we still have paraconsistent reductio ad absurdum, we have no propagation
of well-behavior. The third part of PROPOSITION 4.1 guarantees us that no De Morgan
Laws are valid in any Bn. Given a specific Bn, it’s not hard to prove that an adequate

1

2

3

4

p ¬¬¬¬ p p ∧∧∧∧ ¬¬¬¬ p ¬¬¬¬((((p ∧∧∧∧ ¬¬¬¬ p)))) ¬¬¬¬¬¬¬¬((((p ∧∧∧∧ ¬¬¬¬ p)))) ((((p ∧∧∧∧ ¬¬¬¬ p)))) →→→→¬¬¬¬¬¬¬¬((((p ∧∧∧∧ ¬¬¬¬ p))))

0 1 0 1 0 1

1

0 0 1 0 1

1 1
0

1

1

0

1

1

0

1 5

�

�

�

T

T –

p

F

T –

T –

1111

T –

T –

T –

2222

T –

T –

F

3333

T –

T –

T –

4444

T –
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non-truth-functional semantics for it is provided if we just erase clause val[viii] of an n-
valuation.

Perhaps Cmin is indeed a limit-calculus of the hierarchy Bn, 1≤n<ω? To con-
vince oneself of the negative answer to this question, one should just observe that the
clause val[vii] is still present for any calculus Bn, and so (A ∧¬ A) → ¬¬( A ∧¬ A) is
still provable in any Bn. Will Cmin be characterized as the limit-calculus of some further
weakening of the calculi Bn? We cannot answer this question at this time.

5555.  So where’s the limit?

What about some history first? Possible-translations semantics can be situated into the
more general setting of combinations of logics (for an overview, see [5], and for a cate-
gorial approach of possible-translations semantics, see [8]). One of us has initially pro-
posed possible-translations semantics as a way of combining logics with well-known
many-valued semantics so as to produce interpretations to some non-classical logics
(cf. [6]). A special case of possible-translations semantics is society semantics (cf. [10]).
Possible-translations semantics based on three-valued logics and adequate for inter-
preting slightly stronger versions of the calculi Cn may be found in [7] and [11], and the
hierarchy Cn itself is studied in [18].

For each Cm, 1 ≤ m< ω, we may define PTm, a possible-translations semantics
based on three-valued matrices with three conjunctions, three disjunctions, three impli-
cations and two negations, together with convenient restrictions over the functions in
Trm. Let’s denote the consequence relation defined in PTm as �m. So, for a given for-
mula A we would theoretically have a maximum of 2n ....3c + d + i  possible translations,
where n is the number of negations in the formula A, c the number of conjunctions, d of
disjunctions, i of implications. We collect these translations into a set PT(A). But re-
member that for each Cm this set may be restricted and diminished by the conditions
over the translations in Trm. Thus, denoting by Pt(A ,  m) the set of all possible-transla-
tions of a formula A  in a calculus Cm, we actually have, for any given 1≤m <n< ω:

(1) Pt(A ,  m) ⊆ Pt(A ,  n) ⊆ PT(A) .

Making use of these possible-translations semantics for Cn, we may now make
explicit PTLim, a possible-translations semantics for CLim. It is the pair < { Cn } 1≤n <ω,
{ ∗ n } 1≤n <ω>, where each function ∗ n is an identity map from the formulas of CLim into
the formulas of Cn. The consequence relation in PTLim is obviously defined as:

Γ �Lim  A ⇔
def

 for all ∗ n , we have Γ∗ n  �n  A∗ n , i.e. for all n, we have Γ �n  A.

In such a way, one may refer to the calculus CLim and to the formulas validated in it.
One can indeed provide a decision procedure for the formulas of CLim. Indeed, as a con-
sequence of (1), the set defined as:

Pt(A ,  Lim )� U
ω<≤n

Pt
1

 (A ,  n)

is finite, and we know its content. So we may effectively test all the formulas in it with
the three-valued matrices above mentioned (see [11] or [18]).

The reader should note that while the possible-translations offered for Cmin in
section 3. was obtained through the suitable combination of an infinite number of frag-
ments of WS

3 (and similarly in the case of Cn, mentioned above), the possible-translations



11

semantics just proposed for CLim made use of an infinite number (of possible-translations
semantics) of different logics, viz. all the Cn, for n<ω. The whole procedure, neverthe-
less, is quite the same.

How could we define a non-truth-functional semantics of bivaluations for CLim?
Should we maintain clause val[vii] and just erase clauses val[vi] and val[viii] of an n-
valuation? And how could we characterize axiomatically CLim? Would it be possible to
define a strong negation in this calculus, and how? These questions are still open.

Another limit.  So far we have been able to define semantically CLim, the greatest de-
ductive lower bound of the hierarchy Cn, 1≤n<ω. Surely, now we can look for deduc-
tive upper bounds for this same hierarchy. C1 would be such an upper bound, as it is
strictly stronger than any of the other calculi which follow it.

But let us note that both da Costa and Jaśkowski, commonly held as the founders
of paraconsistent logic, intended their paraconsistent calculi to be so strong as to contain
most classical schemas and rules compatible with their paraconsistent character (see [13]
and [15]). One such a maximal paraconsistent calculus extending each Cn was devised
by Sette (see [22]), and is known as P1. It is interesting to note that P1 is also a three-
valued calculus.

Bearing in mind the objective of approximating the calculus C1 to the classical,
a first obvious strengthening we might propose would be the addition to it as a new ax-
iom of the schema (AN): A→¬¬ A. Given a calculus Cn, for 1≤n<ω, we define Cn

¬¬

by the axioms of Cn plus (AN). A possible-translations semantics for a slightly stronger
version of the hierarchy Cn

¬¬ , 1≤n<ω, was presented in [7], and the model-theoretic
properties of a first-order calculus with equality based on C1

¬¬  was studied by Alves [2].
The greatest deductive lower bound for the hierarchy Cn

¬¬ , 1≤n<ω, may be obtained as
above.

Nevertheless, the calculus P1 does not extend any Cn
¬¬ , for (AN) is not a theo-

rem of P1. It is possible although to define another three-valued maximal paraconsistent
calculus, this time extending the strengthened new hierarchy —and consequently also
the previous hierarchy. Such a calculus was called P2 and was first introduced by Morten-
sen, in [20], and then rediscovered by one of us, in [18], where one may also learn which
axioms may be added to any Cn so as to obtain P1 and P2.  Mortensen has also
raised the question as to whether there could exist other maximal three-valued paracon-
sistent logics “sufficiently similar” yet distinct from P1 and P2. The answer is definitely
affirmative: We finish this section noting that in [19] the reader may find the axiomati-
zation and the truth-tables of nothing but 213 such logics.

6666.  A dual paracomplete calculus

Possible-translations semantics actually opens to us a new possibility of defining logical
systems. We may combine logics for specific needs. Do we have a group of interesting
logics whose semantical properties we wish to simultaneously preserve? Then look for a
way of combining their semantics. Do we want to build a paraconsistent calculus with a

                                               
  Actually, in [20], Mortensen introduced P2 under the name C0.2, but for some reason he insisted that
this logic should have only one designated value. Consequently, his completeness proof holds, but the
soundness of his system does not hold, for (MP) will not preserve validity. This problem is nevertheless
fixed if we pick two designated values, instead of one. More details may be found in [19].
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possible-worlds interpretation? Mix possible-worlds interpretations of intuitionistic cal-
culi, as shown in [7]. Do we want a logic that is paraconsistent only at the level of
propositions, but not in relation to complex propositions? Carnielli & Lima-Marques
[10] have indicated how to combine two copies of classical logic (by means of a particu-
larization of the possible-translations semantics —the so-called society semantics) so as to
obtain such a logic, and then have shown that the logic they obtained coincided with P1.

Possible-translations semantics have also been used to investigate the problem of
duality between logical systems (for an overview of this topic, see [21]). In [10], the
calculi P1  and I1  (for the latter, consult [23]) are shown to respect a precise definition
of duality. As pointed out by Sylvan [24], one should expect the dual of a paraconsis-
tent calculus to be a paracomplete calculus.  In [11] a hierarchy of paracomplete cal-
culi in some sense dual to a slightly stronger version of the hierarchy Cn is introduced.

And the dual to CCCCmin?  Intuitively, we would define Dmin, the dual to Cmin, as the logic
characterized by the possible-translations semantics obtained when we consider the set
Tr of translations subjected to the very same conditions Tr 1. to Tr 3. as in 3., and the
following three-valued matrices of VS

3 (instead of WS
3):

Here T is the only distinguished value. The interpretations to the values and connectives
above are “dual” to those given in 3.

This logic has some very interesting properties:

PROPOSITION 6.1  Dmin is not characterizable by finite matrices.

PROPOSITION 6.2  A non-truth-functional bivaluation for Dmin is obtainable from a
min-valuation just substituting clause val[iv]: vmin(A)=0 ⇒  vmin(¬ A)=1 for val[ivd]:
vmin(A)=1 ⇒  vmin(¬ A)=0, and substituting val[v]: vmin(¬¬ A)=1 ⇒  vmin(A)=1 for
val[vd]: vmin( ¬ ¬ A)=0 ⇒  vmin( A)=0.

PROPOSITION 6.3  A simple quasi-matrix procedure for Dmin is obtained if one only
substitutes the rule for negation in Cmin for:

[¬¬¬¬ ] If A is of the form ¬ B, and the value of B in a line k is 1, write 0 under A in
this line; if the value of B in a line k is 0, bifurcate this line and write 0 in
the first part and, in the second, write 1.

PROPOSITION 6.4  Dmin is axiomatized as Cmin, just substituting the schema (9): A ∨¬ A
for (9d): A → ( ¬ A → B ) , and substituting the schema (10): ¬ ¬ A → A  for (10d):
A → ¬ ¬ A.

The proofs of PROPOSITIONS 6.1 - 6.4 are entirely analogous to the case of Cmin

above. The semantics of Dmin also inform that:

                                               
  Justus Diller (personal communication) had already pointed out this possibility to one of the authors.

∧∧∧∧ T F+ F
T T F+ F+

F+ F+ F+ F+

F F+ F+ F+

∨∨∨∨ T F+ F
T T T T
F+ T F+ F+

F T F+ F+

→→→→ T F+ F
T T F+ F+

F+ T T T
F T T T

¬ s ¬ w

T F F
F+ T F+

F T T



13

PROPOSITION 6.5  The following formulas are not theorems of Dmin:

(i) A ∨ ¬ A (iii) ¬ ( A ∧ ¬ A ) ;
(ii) ¬ ¬ A → A (iv) ( A → B ) → ( ( A → ¬ B ) → ¬ A ) .

The fact that Dmin does not prove (i) and (ii) makes it a proper candidate to an-
swer to Brouwer’s well-known requirements for the Intuitionistic Logic. Some of the
more striking differences of Dmin from Heyting’s Intuitionistic Calculus (HIC) reside in
the dismissal of (iii) and (iv) by Dmin. So, while (HIC) rejects a part of positive logic,
while maintaining non-contradiction and reductio ad absurdum, Dmin rejects both non-
contradiction and reductio ad absurdum, while maintaining the whole of positive logic.
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