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Abstract

I point out a radical indeterminism in potential-based formulations
of Newtonian gravity once we drop the condition that the potential van-
ishes at infinity (as is necessary, and indeed celebrated, in cosmological
applications). This indeterminism, which is well known in theoretical
cosmology but has received little attention in foundational discussions,
can be removed only by specifying boundary conditions at all instants
of time, which undermines the theory’s claim to be fully cosmological,
i. e. , to apply to the Universe as a whole. A recent alternative formu-
lation of Newtonian gravity due to Saunders (Philosophy of Science 80
(2013) pp.22-48) provides a conceptually satisfactory cosmology but fails
to reproduce the Newtonian limit of general relativity in homogenous but
anisotropic universes. I conclude that Newtonian gravity lacks a fully
satisfactory cosmological formulation.

1 Introduction

Newtonian gravity in its original force-based formulation is defined for discretely
many particles by

ẍin(t) =
∑
m 6=n

Gmm
(xim(t)− xin(t))

|xn(t)− xm(t)|3
(1)

(mn is the mass of the nth particle and xn is its position vector at time t) or in
the continuum limit by

v̇i(x, t) =

∫
dx′ 3Gρ(x′, t)

x′i − xi

|x′ − x|3
(2)

where ρ is the mass density function, v(x, t) is the velocity of a test particle at
spacetime point x, t, and v̇(x, t) is the acceleration of that test particle, i. e. the
time derivative along the particle’s worldline.1

1Throughout this paper, Roman indices range from 1 to 3, and by definition Xi = Xi. (I
adopt no abstract index notation and intend Roman-indexed objects to be the components of
vectors and tensors in standard Cartesian coordinates.)
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As has long been known (see Norton (1999) for details of the history), this
theory becomes ill-defined in cosmological applications, where the distribution
of particles is homogeneous (i. e. , if the mass density on large scales is asymp-
totically constant). For in that circumstance, (1–2) become conditionally con-
vergent (the result of performing the sum depends on the order in which it is
carried out) and thus ill-defined.

The point can be illustrated by elementary means (again, as has long been
known). Consider a test particle a distance r from the central point O of a
sphere of matter of uniform density ρ. The integral (2) can be split into two
parts: one part that integrates over the matter in the smaller sphere of radius
r centred on O, and another part that sums over a series of spherical shells of
infinitesimal thickness, also centred on O and with radius R > r. It has been
known since Newton that the force on a test particle external to a uniform sphere
of matter is the same as would be the case if that matter were concentrated at
the centre of the sphere, and that the force on a test particle inside a uniform
spherical shell is zero. So the second part of that integral is zero, and the total
acceleration of the particle is

v̇i(r) = −4

3
πGρrr̂i = −4

3
πGρri. (3)

Allowing the radius of the sphere to increase without limit makes no difference
to this argument, suggesting that (3) is also the correct acceleration for a test
particle in an infinite medium of density ρ. But in such a medium, the idea of
a ‘centre’ becomes ill-defined, as the matter can be decomposed into concentric
spheres around an arbitrary centre.

As has been repeatedly observed, however2, this indeterminacy in the abso-
lute acceleration has no actually observable consequences. For what is observ-
able is (at most) the relative acceleration of two test particles, not the absolute
acceleration relative to an unobservable background. And given two test parti-
cles with vector positions xi1, xi2, the relative acceleration is

v̇i(x1)− v̇i(x2) = −4

3
πGρ(xi1 − xi2) (4)

which depends on the separation of the particles but not on the location of the
origin.

This suggests that in Newtonian cosmology properly formulated, only rela-
tive and not absolute accelerations matter — or put another way, that the split
between inertial motion and acceleration under gravity is arbitrary. The most
straightforward way to see this mathematically is to shift from the force-based
to the potential-based formulation of Newtonian physics, in which the dynamics
are given by

v̇i(x, t) +∇iΦ(x, t) = 0; ∇2Φ(x, t) = 4πGρ(x, t) (5)

2See, e. g. , McCrea and Milne (1934), Narlikar (1963), Davidson and Evans (1973), Evans
(1974), Malament (1995), Norton (1995), Ellis and Dunsby (1997).
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(the latter being Poisson’s equation). These equations are invariant under the
transformations

(xi, t)→ (x′i, t) = (xi + ai(t), t) (6)

Φ→ Φ′; Φ′(x′, t) = Φ(x, t)− äi(t)xi + V (t). (7)

where the ai(t) and V (t) are arbitrary smooth functions of time. These are ar-
bitrary time-dependent spatial translations; the transformation law for Φ gener-
ates a time-dependent but spatially independent acceleration that compensates
for the effect of the translation.

In normal (i. e. , non-cosmological) applications of Newtonian gravity, we
impose a boundary condition

lim
|x|→∞

Φ(x, t) = 0 (8)

which serves to eliminate the gauge freedom in the equation for Φ, and to restrict
the arbitrary translations ai(t) to include only time-independent translations
and velocity boosts. But if we drop this assumption then Newtonian gravity
becomes a theory in which only relative acceleration is well-defined, and absolute
acceleration is pure gauge.

In this form, the theory lends itself naturally to a geometric interpretation,
according to which the inertial structure of spacetime is not the absolute struc-
ture of Galilean spacetime (Anderson 1967; Stein 1967; Earman 1970; Friedman
1983) but determined locally by the matter distribution. This move is often ac-
companied by a differential-geometric reformulation of the theory — so-called
Newton-Cartan theory — to replace the potential with a nonflat affine connec-
tion (see, e. g. , Malament (2012) and references therein). Knox (2014) argues
that even in its standard potential formulation Newtonian gravity is already
a theory of dynamically-determined inertial structure; Saunders (2013) goes
further and argues that inertial structure can be entirely eliminated in New-
tonian physics; in Wallace (2016a) I argue (from the currently-unfashionable
coordinate-transform route to defining physical theories; cf Wallace (2016b))
that the transformation law (7) for Φ means that it is already a connection.

To see this further, consider a smooth distribution of test particles with
velocities vi(x, t). The relative acceleration of infinitesimally close test particles
is given by

∇j v̇i(x, t) = ∇j∇iΦ(x, t) (9)

and from a geometric perspective, this is a geodesic deviation equation and
identifies the symmetric matrix Ωji = ∇i∇jΦ as the (nontrivial part of the)
spacetime curvature. Poisson’s equation is now

Ωii = 4πGρ (10)

which may be thought of as a nonrelativistic version of the Einstein field equa-
tion Rµν = 8πGTµν .

However, neither reconceptualising Newtonian gravity geometrically, nor re-
formulating it differential-geometrically, is required to apply it to cosmology:
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the simple potential-based form is already suitable (and the reformulations do
not change the conclusions of this paper). In particular, the relative acceleration
law (4) corresponds to a potential

Φ(x) =
2

3
πGρ|x|2 + bix

i + V (11)

which also satisfies ∇2Φ = 4πGρ for spatially constant ρ. Translations now
just serve to change the linear term in (11), which is equivalent to changing the
centre around which the quadratic is defined, but have no effect on the relative
accelerations.

So this seems to put Newtonian cosmology on a very satisfactory foot-
ing. And indeed, this approach to cosmology was developed by Heckmann
and Schucking (1955, 1956), brought to wider attention by Szekeres and Rankin
(1977) and is now the standard framework for cosmology where relativistic ef-
fects may be neglected (see, e. g. , Ellis (1971) for a comparison of relativistic and
nonrelativistic cosmology); it also seems to have received widespread consensus
in philosophy of physics (see, e. g. , Malament (1995), Norton (1995), Pooley
(2013), Knox (2014)).

All seems well. The only trouble is: that boundary condition on Φ was there
for a reason.

2 Non-uniqueness of solutions to Poisson’s equa-
tion

Let’s review the normal route towards establishing equivalence of force-based
and potential-based formulations of gravity (or indeed electrostatics). Given two
solutions to Poisson’s equation Φ1,Φ2, it follows that their difference (Φ2−Φ1)
satisfies Laplace’s equation,

∇2(Φ2 − Φ1) = 0. (12)

The operator ∇2 is rotationally invariant and so elementary functional analysis
(see, e. g. , Jackson (1999, p.95) for details) tells us that the most general solution
to Laplace’s equation defined over all space is

F (x) =

∞∑
l=0

l∑
m=−l

Aml |x|lY lm(x̂) (13)

for arbitrary constants Aml (where the Y lm are spherical harmonics). So if Φ1

and Φ2 also satisfy the boundary condition (8) (so that (Φ2−Φ1) tends to zero
at spatial infinity), we must have Φ2 − Φ1 = 0 everywhere, and so Poisson’s
equation has a unique solution. When we also observe that

K(x) = G
1

|x|
(14)
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satisfies
∇2K(x) = 4πδ(x) (15)

(where δ is the Dirac delta function), we can write that general solution in closed
form as

Φ(x) =

∫
dx′ ρ(x′)K(x− x′) =

∫
dx′G

ρ(x′)

|x− x′|
(16)

and, upon differentiation, recover Newton’s force law (2) (and thence (1), if we
specialise to a mass density that is a sum of delta functions).

But now suppose that the boundary condition is dropped. (It’s not optional
to drop it in cosmology: if ρ is constant, no solution to Poisson’s equation will
satisfy it.) Then the solution of Poisson’s equation is indeterminate up to a quite
arbitrary solution of Laplace’s equation. Some such solutions are harmless: the
l = 0 term in (13) just corresponds to adding a constant to the potential; the
l = 1 terms to adding the linear terms we have already considered. But adding
a term like

∆Φ(x, y, z, t) = Λ(t)(2z2 − x2 − y2) (17)

(for arbitrary smooth Λ) has observable physical consequences: it changes the
relative accelerations. So once the boundary condition is dropped, Newtonian
gravity becomes radically underdetermined.

To spell this out further, consider again the matrix Ωij = ∇j∇iΦ responsible
for generating geodesic deviation. We can decompose this matrix into its trace
and traceless parts:

Ω = Ωii; Eij = Ωij −
1

3
δijΩ. (18)

Recall that the matrix gets physical meaning through geodesic deviation, i. e. the
relative acceleration of infinitesimally close test particles. Given a swarm of
infinitesimally close such particles initially comoving, Ω, the scalar curvature,
generates uniform contraction of the swarm. Eij , the Newtonian Weyl tensor,
generates volume-preserving shear transformations.

Ω is fixed locally by Poisson’s equation, Ω = 4πGρ. But absent a boundary
condition, Eij is vastly underdetermined ρ. Given a dynamically valid Eij , we

can replace it with Eij + ∇j∇iΨ, where Ψ is a quite arbitrary — and very
possibly time-dependent — solution of Poisson’s equation.

Something similar occurs in Maxwellian electrodynamics, where Gauss’s law
∇·E = 4πρq couples the divergence of the electric field E to the charge density ρq
and likewise needs boundary conditions for a unique solution. There, however,
it suffices to fix that boundary condition at a single time: because the rate of
change of E is determined by the magnetic field B and the current distribution
J through

Ė−∇×B = 4πJ (19)

we can dynamically determine E at later times from its initial value. (An equiv-
alent way to say this is that ∇ ·E− 4πρq is a conserved quantity in electrody-
namics, so that Gauss’s law need be imposed only once.) So in electrodynamics,
the boundary condition can plausibly be thought of just as a contingent initial
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condition. In Newtonian gravity it needs to be specified — and can be specified
arbitrarily — at all times, not just the initial time.

Full general relativity also follows the electrodynamic model. There, the
Weyl tensor has ten components: five ‘electric’ components corresponding to
the Eij of Newtonian gravity, and another five ‘magnetic’ components. And
the two sets are related by analogues of (19). It is the vanishing of the mag-
netic components in the nonrelativistic limit that renders Newtonian cosmology
indeterministic. (See Ellis and Dunsby (1997) for further discussion.)

Now, in some cases there are ‘natural’ choices of boundary conditions (for
whatever that is worth). In the special case of a homogeneous and isotropic uni-
verse (as in the simplest cosmologies), it is natural to require that the relative
accelerations are likewise homogeneous and isotropic. With this additional stip-
ulation — which amounts to the condition that the Eij vanish — we can recover
the potential (11). But this condition must be understood as additional to the
dynamical equations and, more importantly, does not extend to the (physically
more realistic) cases where exact isotropy and homogeneity fail.

For instance, there are well-known generalisations of isotropic and homo-
geneous cosmology to the homogeneous and non-isotropic case, and it is of
interest to extend these generalisations to the Newtonian regime (see, e. g. ,
Narlikar (1963), Szekeres and Rankin (1977)). But now the physical motivation
for eliminating the Eij is obscure.

We may also wish to consider small deviations from homogeneity. In cosmo-
logical perturbation theory, for instance, it is standard to decompose the matter
distribution as

ρ(x, t) = ρ̄(t) + εδρ(x, t) (20)

with ε small, and decompose Φ likewise into a sum of the homogeneous potential
and a perturbation,

Φ(x, t) =
2

3
πGρ̄(t)|x|2 + εδΦ(x, t), (21)

so that δΦ satisfies
∇2δΦ = 4πGδρ. (22)

Normally δρ is decomposed into Fourier modes,

δρk = exp(ikix
i), (23)

and we take

δkΦ = −4πG

kiki
exp(ikix

i). (24)

But nothing stops us adding a quite arbitrary solution of Laplace’s equation
to (24), so that the perturbation deviates wildly away from this form as ε is
increased.

This is a recognised problem in theoretical cosmology (for discussion see,
e. g. , Heckmann and Schücking (1955), Ellis and Dunsby (1997), Szekeres and
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Rainsford (2000), Rainsford (2001)), where it is normally solved by some com-
bination of physical good sense and appeal to the low-energy limit of general
relativity. But neither is really satisfactory if we want to understand Newtonian
physics as a well-defined cosmological theory in its own right.

3 Rehabilitating the force-based approach

Let’s review how we got into this mess. The usual force-based formulation of
Newtonian mechanics stipulates a unique absolute acceleration for particles. We
were led to reformulate it in terms of relative acceleration, and did so via the
potential formalism, in which we have the freedom to add linear terms to the
potential that leave the relative accelerations unchanged. But this reformulation
gave us too much freedom, in that it also permitted us to add terms to the
potential which changed the relative accelerations too. This suggests looking
again for a relative-acceleration-based formulation.

Saunders (2013) has provided an elegant formulation along these lines, albeit
with a rather different motivation. His theory (which I call here vector relation-
ism) is most simply expressed starting from the discrete form (1) of Newton’s
force law. Saunders observes that the equations can be rearranged into the
N(N − 1) equations for relative acceleration

ẍim(t)− ẍin(t) =
∑
k 6=m

Gmk
(xik(t)− xim(t))

|xk(t)− xn(t)|3
−
∑
k 6=n

Gmk
(xik(t)− xin(t))

|xk(t)− xm(t)|3
(25)

together with an equation for the centre of mass,

d2

dt 2

(∑
n x

i
n(t)mn∑
nmn

)
= 0. (26)

But the centre of mass is unobservable (at least when considering genuinely
isolated systems, and in particular for the Universe as a whole) and all of the
physics is contained within the difference equations (25). These equations re-
main well-defined even in the cosmological context: they may be resolved into
a two-body interaction plus a sum of tidal effects on those two bodies from the
other bodies, and the latter decrease with |x|3 at large distances. So Saun-
ders proposes simply dropping (26) and taking (25) to define Newtonian gravity
(he argues, in fact, that Newton himself must be read as tacitly adopting this
approach in order to make sense of the Principia).

I discuss Saunders’ vector relationism in detail in Wallace (2016a) (see also
Weatherall (2014) for discussion of its relation to Newton-Cartan gravity). For
our purposes, the important thing about it is that it provides unambiguous
predictions for the relative accelerations, and so is not plagued by the indeter-
minism of the potential theory.

To clarify the comparison with that theory, let’s obtain the continuum limit
of vector relationism. The relative accelerations of two test particles at positions
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x and y is given by

v̇i(x, t)− v̇i(y, t) =

∫
dx ′3ρ(x′, t)(F i(x− x′)− F i(y − x′)) (27)

where

F i(x) = G
xi

|x|3
. (28)

So the relative acceleration of infinitesimally close test particles is given by

∇j v̇i(x, t) =

∫
dx ′3ρ(x′, t)∇jF i(x− x′) (29)

Inserting a factor e−ε/|x| into F i(x) to regularise the singularity, differentiating,
and taking ε→ 0, we obtain

∇jF i(x) = 4πGδ(x)δij +
G

|x|5
(
3xixj − |x|2δij

)
≡ 4πGδ(x)δij +GDij(x) (30)

so that the relative acceleration is

∇j v̇i(x, t) =
4

3
πρ(x, t)δij +

∫
dx ′3ρ(x′, t)Dij(x− x′). (31)

If we compare (31) with (9), we recover Poisson’s equation for the scalar curva-
ture, but in addition we have a closed-form expression for the Newtonian Weyl
tensor,

Eij(x, t) = G

∫
dx′ 3ρ(x′)

3(xi − x′i)(xj − x′j)− |x− x′|2δij
|x− x′|5

. (32)

Unlike the scalar curvature, the expression for the Weyl tensor is highly nonlocal,
something to be expected given the action-at-a-distance theory with which we
began.

With this expression in hand, we can obtain a potential-theory boundary
condition that reproduces vector relationism. To do so, firstly define the average
density by

ρ̄(t) = lim
r→∞

1

(4/3)πr3

∫ |x|<r
dx 3ρ(x, t) (33)

assuming that it exists (if it doesn’t, even the relative-acceleration version of
Newtonian gravity is likely to be ill-defined). We can then write ρ(x, t) =
ρ̄(t) + δρ(x, t) and define

Φ(x, t) =
4

3
πGρ̄(t)|x|2 +G

∫
dx′ 3

δρ(x′, t)

|x− x′|
. (34)

For reasonably behaved deviations δρ from homogeneity (including as a special
case ‘island universes’ where ρ̄ = 0), this expression can be expected to converge,
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since the average of δρ over successively larger regions of space tends to zero.
Rigorous establishment of the convergence conditions lies beyond the scope of
this paper; I will assume some condition on δρ such that the integral converges,
and converges to some function strictly slower-growing than x2, so that the first
term in (34) dominates for large |x|.

We can readily confirm that

∇i∇jΦ(x, t) =
4

3
πG(ρ̄(t) + δρ(x, t))δij + Eij(x, t). (35)

In other words, Φ is a potential for the Newtonian geodesic deviation, satisfy-
ing Poisson’s equation. It is unique up to time-dependent linear terms (these
correspond to the time-dependent translation symmetry of the theory).

Now suppose we impose the following boundary condition on solutions Φ to
Poisson’s equation:

lim
|x|→∞

Φ(x, t)

|x|2
=

4

3
πGρ̄(t). (36)

By comparison with (13), we can see that two solutions satisfying this condition
differ by at most an unobservable linear term. Given our assumptions, (34) does
satisfy the condition, so any solution that satisfies it is equal to that potential
up to a linear term. We can then restate vector relationism as a boundary condi-
tion (36) on the standard potential-based version of the theory. (Note that this
condition serves inter alia to justify the perturbative expression (24).) How-
ever, the ultimate justification for what might otherwise seem a somewhat ad
hoc condition is the closed-form expression already obtained for the Newtonian
relative acceleration.

In particular, vector relationism gives a concrete value for the Weyl tensor in
homogeneous but non-isotropic universes. Namely, since (32) clearly3 vanishes
when ρ is constant (and does not depend on the velocity field, isotropic or
otherwise) then in homogeneous universes, Eij = 0.

In fact, this condition on the Weyl tensor for homogeneous and non-isotropic
universes has been (in effect) proposed before in previous force-based versions
of Newtonian cosmology, notably by Narlikar (1963) and Davidson and Evans
(Davidson and Evans 1973; Evans 1974). Those previous versions were devel-
oped in a somewhat heuristic way relying on physical intuition; Saunders’ vector
relationism can be usefully considered as a rigorous framework from which these
previous versions can be derived.

So: vector relationism replaces the pernicious indeterminism of the potential
theory with unambiguous predictions for the Weyl tensor, and in doing so lets
us derive a clean and physically motivated boundary condition for the potential.
And it does it all in a way that’s very true to the original structure of Newtonian
gravity. What’s not to like?

3If it’s not clear, note that a constant potential transforms like a scalar under rotations,
whereas the kernel of (32) transforms like a traceless matrix; these are orthogonal, so under
integration their product vanishes. (Or just evaluate the integral by brute force; à chacun son
goût.)
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Just this: those ‘unambiguous predictions’ are unambiguously in conflict
with general relativity.

4 Anisotropic cosmologies and their Newtonian
limits

The simplest anisotropic homogenous spacetime — the ‘Bianchi type I space-
time’ — has metric

ds 2 = dt 2 −
∑
i

A2
i (t)dX

idX i. (37)

(In this section I suppress the summation convention.) Comparing this to New-
tonian cosmology is awkward because the Bianchi spatial coordinate expands
with the spacetime whereas the Newtonian spatial coordinate measures fixed
spatial distance (in the terminology of fluid dynamics, the former uses La-
grangian rather than Eulerian coordinates). But by defining new spatial co-
ordinates xi = Ai(t)X

i, we can rewrite the Bianchi metric as

ds 2 = (1− 2Φ)dt 2 −
∑
i

dx idx i − 2
∑
i

Fixidtdx i (38)

where

Φ(x, t) =
1

2

∑
i

(Ȧi/Ai)
2(xi)2; Fi = Ȧi/Ai. (39)

We now assume that Ai varies slowly, so that d
dt (Ȧi/Ai) � Ȧi/Ai � 1, and

we restrict our attention to volumes such that the relative speed of comoving
particles at different points in the region are � 1, and to test particles whose
speed relative to a comoving particle is � 1. Under these assumptions the
contribution of Fi to the geodesic equation becomes negligible compared to
that of Φ and we can approximate the metric by

ds 2 = (1− 2Φ)dt 2 −
∑
i

dx idx i. (40)

This is the familiar Newtonian limit of general relativity (cf, e. g. , Wald (1984,
pp.74–90)), with Φ as the Newtonian potential. But Φ is not the isotropic
potential predicted by vector relationism: it has an anisotropic component,

Eij = δij(Ȧi/Ai)− δij
1

3

∑
k

(Ȧk/Ak). (41)

This conflict between the vanishing-Weyl-tensor prediction of force-based
approaches to Newtonian cosmology, and the nonvanishing Weyl tensor of the
Bianchi type I spacetime, has long been known in theoretical cosmology (see,
e. g. , Zeldovich (1965), Szekeres and Rankin (1977), Ellis and Dunsby (1997)).
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The relative-acceleration reformulation of Newtonian physics provides a concep-
tually rigorous way to derive that prediction but in no way resolves the conflict.
In anistropic cosmologies, there is a well-defined Newtonian limit, but it is a
potential-theory limit with a nontrivial Weyl tensor, and not vector relation-
ism.

5 Conclusion

There is nothing mysterious about boundary conditions in a physical theory,
where that theory is intended to describe subsystems of a larger universe and
the effect of that larger universe on the subsystem can be idealised to a fixed
background form. For instance, a system falling freely, and sufficiently small
that tidal forces across its length can be neglected, might be idealised as a
system with Φ =constant at infinity. A system stationary on the surface of the
Earth might be idealised as having boundary condition

lim
|x|→∞

Φ(x) = bix
i, (42)

representing the fact that the system is accelerating relative to the local inertial
frames. A system moving inertially, not small enough to neglect tidal forces, but
small enough to neglect the variations in those tidal forces, might be idealised
as having boundary condition

lim
|x|→∞

Φ(x) = Φ0(2z2 − x2 − y2) (43)

(this is the second-order term in the expansion of a 1/r potential, after a constant
term which can be discarded and a linear term corresponding to uniform free
fall).

Newtonian “cosmology”, as used in practice, can be consistently viewed the
same way. Given a region that is large and homogeneous — but small compared
to the horizon size — in a larger cosmology treated via general relativity, we can
read off a boundary condition for that region from the weak-field limit of the
cosmology and idealise it as a condition at infinity. So the Newtonian physics
of a patch in an isotropic universe has boundary condition Eij = 0 at infinity.
An anisotropic universe instead requires (41) as a boundary condition.

But a cosmological theory in the full sense is a theory not of a subsystem
with external boundary, but of the Universe as a whole. Such a system can-
not have boundary conditions imposed from without via considerations of its
environment.

Standard potential-based Newtonian cosmology is not suited as such a the-
ory: the need for boundary conditions specified independently at each instant
of time renders it radically indeterministic. Saunders’ reformulation of Newto-
nian gravity in terms of relative acceleration is conceptually suited to act as a
cosmology, but fails to match the predictions of general relativity away from the
exactly-isotropic case.
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Put another way: the move from relative-acceleration-based to potential-
based formulations of Newtonian gravity is not simply a reformulation of the
same theory. It genuinely increases the modelling capacity of the theory, and
that increase has cosmological applications. But it comes at a price: we have
to include boundary conditions derived from the theory’s embedding in some
larger theory.

I conclude, tentatively, that there is no fully satisfactory Newtonian cos-
mology. It is not that we lack any version of Newtonian gravity that remains
well-defined in cosmological contexts; indeed, we have two to choose from. One
of them is a self-contained cosmological theory — if Newton had constructed
a cosmology, surely it would have been this — but fails to reproduce the full
nonrelativistic limit of general relativity. The other reproduces that limit just
fine, but cannot in the full sense be regarded as cosmological.
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