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Abstract

The Modern Evolutionary Synthesis formalizes the role of
variation, heredity, differential reproduction and mutation in
population genetics. Here we explore a mathematical struc-
ture, based on the asymptotic limit theorems of communi-
cation theory, that instantiates the punctuated dynamic re-
lations of organisms with their embedding environments, in-
cluding the possibility of the transfer of heritage information
between different classes of organisms. In essence, we provide
something of a formal roadmap for the modernization of the
Modern Synthesis.
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1 Introduction

Richard Lewontin’s [1] review of the recent book by Fodor
and Piattelli-Palmarini [2] neatly summarizes the predomi-
nant evolutionary paradigm, the ‘Modern Synthesis’.

The modern skeletal formulation of evolution by
natural selection consists of [several] principles that
provide a purely mechanical basis for evolutionary
change, stripped of its metaphorical elements:

(1) The principle of variation: among indi-
viduals in a population there is variation in
form, physiology, and behavior.

(2) The principle of heredity: offspring re-
semble their parents more than they resemble
unrelated individuals.

(3) The principle of differential reproduc-
tion: in a given environment, some forms are
more likely to survive and produce more off-
spring than other forms...

(4) The principle of mutation: new herita-
ble variation is constantly occurring.

Tellingly, Lewontin asserts
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The trouble with this outline is that ...[t]here is
an immense amount of biology that is missing.

The synthesis itself, minus that immense amount of biology,
has been formalized, and hence frozen, into the elaborate ap-
paratus of mathematical population genetics that some find
quite elegant (e.g., [3]). But mathematical fashion – elegance,
after all, is in the eye of the beholder – is not quite the same
as science.

The omission of the role of embedding environment in the
development of organisms (e.g., epigenetic effects such as her-
itable stress-induced gene methylation) and the omission of
other interactions between organism and embedding environ-
ment (e.g., niche construction sensu Odling-Smee et al. [4]) –
severely limits the biological relevance of that synthesis. Here,
following [5-7], we will describe genes, environment, and gene
expression, in terms of information sources that interact and
affect each other through a broadly coevolutionary crosstalk
having quasi-stable ‘resilience’ modes in the sense of Holling
[8, 9].

This implies, among other things, that internal dynamics,
for example the ‘large deviations’ described in [10], can trig-
ger ecosystem shifts that, in turn, create selection pressure on
organisms. The aerobic transition seems a most telling exam-
ple. External factors may also trigger punctuated ecosystem
shifts that can entrain organisms: volcanism, meteor strikes,
ice ages, and the like.

But the story doesn’t end with niche construction or catas-
trophe.

Recently Sun and Caetano-Anolles [11] claimed evidence
for deep evolutionary patterns embedded in tRNA phyloge-
nies, calculated from trees reconstructed from analyses of data
from several hundred tRNA molecules. They argue that an
observed lack of correlation between ancestries of amino acid
charging and encoding indicates the separate discoveries of
these functions and reflects independent histories of recruit-
ment. These histories were, in their view, probably curbed
by co-options and important take-overs during early diversifi-
cation of the living world. That is, disjoint evolutionary pat-
terns were associated with evolution of amino acid specificity
and codon identity, indicating that co-options and take-overs
embedded perhaps in horizontal gene transfer affected differ-
ently the amino acid charging and codon identity functions.
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These results, they claim, support a strand symmetric ancient
world in which tRNA had both a genetic and a functional role
[12].

Clearly, ‘co-options’ and ‘take-overs’ are, perhaps, most
easily explained as products of a prebiotic serial endosymbio-
sis, instantiated by a Red Queen between significantly, per-
haps radically, different precursor chemical systems.

Witzany [13] also takes a broadly similar ‘language’ ap-
proach to the transfer of heritage information between dif-
ferent kinds of proto-organisms. In that paper he reviews
a massive literature, arguing that not only rRNA, but also
tRNA and the processing of the primary transcript into the
pre-mRNA and the mature mRNA seem to be remnants of
viral infection events that did not kill their host, but trans-
ferred phenotypic competences to their host and changed both
the genetic identity of the host organism and the identity of
the former infectious viral swarms. His ‘biocommunication’
viewpoint investigates both communication within and among
cells, tissues, organs and organisms as sign-mediated interac-
tions, and nucleotide sequences as code, that is, language-like
text. Thus editing genetic text sequences requires, similar
to the signaling codes between cells, tissues, and organs, bi-
otic agents that are competent in correct sign use. Otherwise,
neither communication processes nor nucleotide sequence gen-
eration or recombination can function. From his perspective,
DNA is not only an information storing archive, but a life
habitat for nucleic acid language-using RNA agents of viral
or subviral descent able to carry out almost error-free edit-
ing of nucleotide sequences according to systematic rules of
grammar and syntax.

Koonin et al. [14] and Vetsigian et al. [15] take a roughly
similar tack, without, however, invoking biocommunication:
Koonin et al. postulate a Virus World that has coexisted with
cellular organisms from deep evolutionary time, and Vetsigian
et al. suggest a long period of vesicle crosstalk symbiosis driv-
ing standardization of genetic codes across competing popu-
lations, leading to a ‘Darwinian transition’ representing path
dependent lock-in of genetic codes.

In particular, before the lock-in of the precursor of the cur-
rent genetic code (e.g., [16-18]), vesicle structure may have
been rather more plastic than today, permitting analogs to
gene transfer between quite different prebiotic organisms.

Synthesizing these considerations, we introduce a fifth Prin-
ciple:

(5) The principle of environmental interac-
tion: individuals and groups engage in pow-
erful, often punctuated, dynamic mutual re-
lations with their embedding environments
that may include the exchange of heritage
material between markedly different organ-
isms.

We begin with the reexpression of some familiar biological
phenomena as information sources, leading to a formal math-
ematical structure that expresses these extensions.

2 Ecosystems as information sources

We first consider a simplistic picture of an elementary preda-
tor/prey ecosystem. Let X represent the appropriately scaled
number of ‘predators’, Y the scaled number of ‘prey’, t the
time, and ω a parameter defining their interaction. The model
assumes that the ecologically dominant relation is an inter-
action between predator and prey, so that dX/dt = ωY and
dY/dt = −ωX

Thus the predator populations grows proportionately to the
prey population, and the prey declines proportionately to the
predator population.

After differentiating the first and using the second equation,
we obtain the simple relation d2X/dt2 + ω2X = 0 having
the solution X(t) = sin(ωt);Y (t) = cos(ωt). Thus X(t)2 +
Y (t)2 = sin2(ωt) + cos2(ωt) ≡ 1.

In the two dimensional phase space defined by X(t) and
Y (t), the system traces out an endless, circular trajectory in
time, representing the out-of-phase sinusoidal oscillations of
the predator and prey populations.

Divide the X − Y phase space into two components – the
simplest coarse graining – calling the halfplane to the left of
the vertical Y -axis A and that to the right B. This system,
over units of the period 1/(2πω), traces out a stream of A’s
and B’s having a single very precise grammar and syntax:
ABABABAB...

Many other such statements might be conceivable, e.g.,

AAAAA..., BBBBB..., AAABAAAB..., ABAABAAAB...,

and so on, but, of the obviously infinite number of pos-
sibilities, only one is actually observed, is ‘grammatical’:
ABABABAB....

More complex dynamical system models, incorporating dif-
fusional drift around deterministic solutions, or even very
elaborate systems of complicated stochastic differential equa-
tions, having various domains of attraction, that is, different
sets of grammars, can be described by analogous symbolic
dynamics ([19], Ch. 3).

Rather than taking symbolic dynamics as a simplification
of more exact analytic or stochastic approaches we generalize
symbolic dynamics to a more comprehensive information dy-
namics. Ecosystems may not have identifiable sets of stochas-
tic dynamic equations like noisy, nonlinear mechanical clocks,
but, under appropriate coarse-graining, they may still have
recognizable sets of grammar and syntax over the long-term:
The turn-of-the seasons in a temperate climate, for many nat-
ural communities, looks remarkably the same year after year:
the ice melts, the migrating birds return, the trees bud, the
grass grows, plants and animals reproduce, high summer ar-
rives, the foliage turns, the birds leave, frost, snow, the rivers
freeze, and so on.

Suppose it possible to empirically characterize an ecosys-
tem at a given time t by observations of both habitat pa-
rameters such as temperature and rainfall, and numbers of
various plant and animal species.

Traditionally, one can then calculate a cross-sectional
species diversity index at time t using an information or en-
tropy metric of the form H = −

∑M
j=1(nj/N) log[(nj/N)],
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and N ≡
∑M

j=1 nj where nj is the number of observed indi-
viduals of species j and N is the total number of individuals
of all species observed (e.g., [20]).

This is not the approach to be taken here. Quite the con-
trary, in fact. Suppose it possible to coarse grain the ecosys-
tem at time t according to some appropriate partition of the
phase space in which each division Aj represent a particu-
lar range of numbers of each possible species in the ecosys-
tem, along with associated parameters such as temperature,
rainfall, and the like. What is of particular interest to our
development is not cross sectional structure, but rather lon-
gitudinal paths, that is, ecosystem statements of the form
x(n) = A0, A1, ..., An defined in terms of some natural time
unit of the system. Thus n corresponds to an again appropri-
ate characteristic time unit T , so that t = T, 2T, ..., nT .

To reiterate, unlike the traditional use of information the-
ory in ecology, the central interest is in the serial correlations
along paths, and not at all in the cross-sectional entropy cal-
culated for of a single element of a path.

Let N(n) be the number of possible paths of length n that
are consistent with the underlying grammar and syntax of the
appropriately coarsegrained ecosystem: spring leads to sum-
mer, autumn, winter, back to spring, etc., but never some-
thing of the form spring to autumn to summer to winter in a
temperate ecosystem.

The fundamental assumptions are that – for this chosen
coarse-graining – N(n), the number of possible grammatical
paths, is much smaller than the total number of paths possi-
ble, and that, in the limit of (relatively) large n,

H = limn→∞
log[N(n)]

n
(1)

both exists and is independent of path.
This is a critical foundation to, and limitation on, the mod-

eling strategy and its range of strict applicability, but is, in
a sense, fairly general since it is independent of the details of
the serial correlations along a path.

Again, these conditions are the essence of the parallel with
parametric statistics. Systems for which the assumptions are
not true will require special nonparametric approaches. We
are inclined to believe, however, that, as for parametric sta-
tistical inference, the methodology will prove robust in that
many systems will sufficiently fulfill the essential criteria.

This being said, not all possible ecosystem coarse-grainings
are likely to work, and different such divisions, even when
appropriate, might well lead to different descriptive quasi-
languages for the ecosystem of interest. The example of
Markov models is relevant. The essential Markov assump-
tion is that the probability of a transition from one state at
time T to another at time T + ∆T depends only on the state
at T , and not at all on the history by which that state was
reached. If changes within the interval of length ∆T are plas-
tic, or path dependent, then attempts to model the system as

a Markov process within the natural interval ∆T will fail, even
though the model works quite well for phenomena separated
by natural intervals.

Thus empirical identification of relevant coarse-grainings
for which this body of theory will work is clearly not trivial,
and may, in fact, constitute the hard scientific core of the
matter.

This is not, however, a new difficulty in ecosystem theory.
Holling [9], for example, explores the linkage of ecosystems
across scales, finding that mesoscale structures – what might
correspond to the neighborhood in a human community – are
ecological keystones in space, time, and population, which
drive process and pattern at both smaller and larger scales
and levels of organization.

Levin [21] argues that there is no single correct scale of ob-
servation: the insights from any investigation are contingent
on the choice of scales. Pattern is neither a property of the
system alone nor of the observer, but of an interaction be-
tween them. Pattern exists at all levels and at all scales, and
recognition of this multiplicity of scales is fundamental to de-
scribing and understanding ecosystems. In his view there can
be no ‘correct’ level of aggregation: we must recognize explic-
itly the multiplicity of scales within ecosystems, and develop
a perspective that looks across scales and that builds on a
multiplicity of models rather than seeking the single ‘correct’
one.

Given an appropriately chosen coarse-graining, whose se-
lection in many cases will be the difficult and central trick
of scientific art, suppose it possible to define joint and condi-
tional probabilities for different ecosystem paths, having the
form P (A0, A1, ..., An), P (An|A0, ..., An−1), such that appro-
priate joint and conditional Shannon uncertainties can be de-
fined on them. For paths of length two these would be of the
form

H(X1, X2) ≡ −
∑

j

∑
k P (Aj , Ak) log[P (Aj , Ak)]

H(X1|X2) ≡ −
∑

j

∑
k P (Aj , Ak) log[P (Aj |Ak)],

(2)

where the Xj represent the stochastic processes generating
the respective paths of interest.

The essential content of the Shannon-McMillan Theorem is
that, for a large class of systems characterized as information
sources, a kind of law-of-large numbers exists in the limit of
very long paths, so that

H[X] = limn→∞
log[N(n)]

n =
limn→∞H(Xn|X0, ..., Xn−1) =

limn→∞
H(X0,X1,...,Xn)

n+1 .
(3)
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Taking the definitions of Shannon uncertainties as above,
and arguing backwards from the latter two equations, it is
indeed possible to recover the first, and divide the set of all
possible temporal paths of our ecosystem into two subsets, one
very small, containing the grammatically correct, and hence
highly probable paths, that we will call ‘meaningful’, and a
much larger set of vanishingly low probability [22].

Basic material on information theory can be found in any
number of texts [22-24]..

3 Genetic heritage as an information
source

Adami et al. [25] make a case for reinterpreting the Darwinian
transmission of genetic heritage in terms of a formal informa-
tion process. They assert that genomic complexity can be
identified with the amount of information a sequence stores
about its environment: genetic complexity can be defined in
a consistent information-theoretic manner. In their view, in-
formation cannot exist in a vacuum and must be instantiated.
For biological systems information is instantiated, in part, by
DNA. To some extent it is the blueprint of an organism and
thus information about its own structure. More specifically, it
is a blueprint of how to build an organism that can best sur-
vive in its native environment, and pass on that information
to its progeny. Adami et al. assert that an organism’s DNA
thus is not only a ‘book’ about the organism, but also a book
about the environment it lives in, including the species with
which it co-evolves. They identify the complexity of genomes
by the amount of information they encode about the world in
which they have evolved.

Ofria et al. [26] continue in the same direction and ar-
gue that genomic complexity can be defined rigorously within
standard information theory as the information the genome of
an organism contains about its environment. From the point
of view of information theory, it is convenient to view Dar-
winian evolution on the molecular level as a collection of in-
formation transmission channels, subject to a number of con-
straints. In these channels, they state, the organism’s genome
codes for the information (a message) to be transmitted from
progenitor to offspring, subject to noise from an imperfect
replication process and multiple sources of contingency. In-
formation theory is concerned with analyzing the properties
of such channels, how much information can be transmitted
and how the rate of perfect information transmission of such
a channel can be maximized.

Adami and Cerf [27] argue, using simple models of genetic
structure, that the information content, or complexity, of a ge-
nomic string by itself (without referring to an environment)
is a meaningless concept and a change in environment (catas-
trophic or otherwise) generally leads to a pathological reduc-
tion in complexity.

The transmission of genetic information is thus a contex-
tual matter involving operation of an information source that,
according to this perspective, must interact with embedding
(ecosystem) structures. Such interaction is, as we show below,

often highly punctuated, modulated by mesoscale ecosystem
transitions via a generalization of the Baldwin effect akin to
stochastic resonance, i.e., a ‘mesoscale resonance’[5, 6].

4 Gene expression as an information
source

Wallace and Wallace [5, 6], following the footsteps of [28, 29],
argue at some formal length that a ‘cognitive paradigm’ is
needed to understand gene expression, much as Atlan and
Cohen [30] invoke a cognitive paradigm for the immune sys-
tem.

Cohen and Harel [28] assert that gene expression is a reac-
tive system that calls our attention to its emergent properties,
i.e., behaviors that, taken as a whole, are not expressed by
any one of the lower scale components that comprise it. The
essential point is that cellular processes react to both inter-
nal and external signals to produce diverse tissues internally,
and diverse general phenotypes across various scales of space,
time, and population, all from a single set or relatively narrow
distribution of genes.

Chapter 1 of [7] provides detailed justification of a cognitive
paradigm for gene expression that we will not repeat here.

The essential point, from the perspective of this paper, is
that a broad class of cognitive phenomena can be character-
ized in terms of a dual information source that can interact
with other such sources: Atlan and Cohen [30] argue that the
essence of cognition is comparison of a perceived external sig-
nal with an internal, learned picture of the world, and then,
upon that comparison, the choice of one response from a much
larger repertoire of possible responses. Such reduction in un-
certainty inherently carries information, and it is possible to
make a very general model of this process as an information
source [31].

Cognitive pattern recognition-and-selected response, as
conceived here, proceeds by convoluting an incoming external
‘sensory’ signal with an internal ‘ongoing activity’ – which in-
cludes, but is not limited to, the learned picture of the world
– and, at some point, triggering an appropriate action based
on a decision that the pattern of sensory activity requires
a response. It is not necessary to specify how the pattern
recognition system is trained, and hence possible to adopt a
weak model, regardless of learning paradigm, which can it-
self be more formally described by the Rate Distortion Theo-
rem. Fulfilling Atlan and Cohen’s criterion of meaning-from-
response, we define a language’s contextual meaning entirely
in terms of system output.

The model is as follows.
A pattern of ‘sensory’ input, say an ordered sequence

y0, y1, ..., is mixed in a systematic (but unspecified) al-
gorithmic manner with internal ‘ongoing’ activity, the se-
quence w0, w1, ..., to create a path of composite signals x =
a0, a1, ..., an, ..., where aj = f(yj , wj) for some function f .
This path is then fed into a highly nonlinear, but otherwise
similarly unspecified, decision oscillator which generates an
output h(x) that is an element of one of two (presumably)
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disjoint sets B0 and B1. We take B0 ≡ {b0, ..., bk}, B1 ≡
{bk+1, ..., bm}.

Thus we permit a graded response, supposing that if h(x) ∈
B0 the pattern is not recognized, and if h(x) ∈ B1 the pattern
is recognized and some action bj , k + 1 ≤ j ≤ m takes place.

The principal focus of interest is those composite paths
x which trigger pattern recognition-and-response. That is,
given a fixed initial state a0, such that h(a0) ∈ B0, we ex-
amine all possible subsequent paths x beginning with a0 and
leading to the event h(x) ∈ B1. Thus h(a0, ..., aj) ∈ B0 for
all 0 ≤ j < m, but h(a0, ..., am) ∈ B1.

For each positive integer n let N(n) be the number of gram-
matical and syntactic high probability paths of length n which
begin with some particular a0 having h(a0) ∈ B0 and lead to
the condition h(x) ∈ B1. We shall call such paths meaningful
and assume N(n) to be considerably less than the number
of all possible paths of length n – pattern recognition-and-
response is comparatively rare. We – again – assume that the
longitudinal finite limit H ≡ limn→∞ log[N(n)]/n both exists
and is independent of the path x. We will – not surprisingly
– call such a cognitive process ergodic.

Note that disjoint partition of state space may be possible
according to sets of states which can be connected by mean-
ingful paths from a particular base point, leading to a natural
coset algebra of the system, a groupoid. This is a matter of
some importance pursued at length in [7].

It is thus possible to define an ergodic information source X
associated with stochastic variates Xj having joint and con-
ditional probabilities P (a0, ..., an) and P (an|a0, ..., an−1) such
that appropriate joint and conditional Shannon uncertainties
may be defined which satisfy the relations above.

This information source is taken as dual to the ergodic cog-
nitive process.

Again, the Shannon-McMillan Theorem and its variants
provide ‘laws of large numbers’ which permit definition of
the Shannon uncertainties in terms of cross-sectional sums
of the form H = −

∑
Pk log[Pk], where the Pk constitute a

probability distribution.

Different quasi-languages will be defined by different divi-
sions of the total universe of possible responses into various
pairs of sets B0 and B1. Like the use of different distortion
measures in the Rate Distortion Theorem, however, it seems
obvious that the underlying dynamics will all be qualitatively
similar.

Nonetheless, dividing the full set of possible responses into
the sets B0 and B1 may itself require higher order cogni-
tive decisions by another module or modules, suggesting the
necessity of choice within a more or less broad set of pos-
sible quasi-languages. This would directly reflect the need
to shift gears according to the different challenges faced by
the organism or organic subsystem. A critical problem then
becomes the choice of a normal zero-mode language among
a very large set of possible languages representing accessible
excited states. This is a fundamental matter which mirrors,
for isolated cognitive systems, the resilience arguments appli-
cable to more conventional ecosystems, that is, the possibility
of more than one zero state to a cognitive system. Identifi-

cation of an excited state as the zero mode becomes, then,
a kind of generalized autoimmune disorder that can be trig-
gered by linkage with external ecological information sources
representing various kinds of structured stress.

In sum, meaningful paths – creating an inherent grammar
and syntax – have been defined entirely in terms of system
response, as Atlan and Cohen propose, a formalism that can
easily be applied to the stochastic neuron in a neural network
[23].

5 Interacting information sources

Here we model the interaction of these information sources:
embedding environment, genetic heritage (possibly across dif-
ferent organisms), and cognitive gene expression, using a
straightforward formalism similar to that invoked both for
nonequilibrium thermodynamics and traditional studies of co-
evolution (e.g., [32]).

Consider a block matrix of crosstalk measures between a
set of information sources.

Use inverse measures Ij ≡ 1/Ij , j 6= m as parameters for
each of the other blocks, writing Im = Im(K1...Ks, ...Ij ...), j 6=
m, where the Ks represent other relevant parameters.

Now segregate the Ij according to their relative rates of
change. Cognitive gene expression would be among the most
rapid, followed by ecosystem dynamics and evolutionary se-
lection.

The dynamics of such a system, becomes a recursive net-
work of stochastic differential equations, similar to those used
to study many other highly parallel dynamic structures [33].

Letting the Kj and Im all be represented as parameters
Qj , (with the caveat that Im not depend on Im), one can
define a ‘disorder’ measure analogous to entropy in nonequi-
librium thermodynamics, following the arguments of [5-7],
Sm
I ≡ Im −

∑
iQi∂Im/∂Qi to obtain a complicated recursive

system of phenomenological ‘Onsager relations’ stochastic dif-
ferential equations,

dQj
t =

∑
i[Lj,i(t, ...∂S

m
I /∂Q

i...)dt +
σj,i(t, ...∂S

m
I /∂Q

i...)dBi
t]

= Lj(Q
1, ..., Qn)dt+

∑
i σ(t, Q1, .., Qn)dBi

t,
(4)

where we have collected terms and expressed both the recip-
rocal I’s and the external K’s in terms of the same Qj .

The index m ranges over the crosstalk and we could al-
low different kinds of ‘noise’ dBi

t, having particular forms of
quadratic variation which may, in fact, represent a projection
of environmental factors under something like a rate distor-
tion manifold [34].

There are several obvious possible dynamic patterns for this
system:
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1. Setting equation (4) equal to zero and solving for station-
ary points gives attractor states since the noise terms preclude
unstable equilibria.

2. This system may converge to limit cycle or pseudoran-
dom ‘strange attractor’ behaviors in which the system seems
to chase its tail endlessly within a limited venue – the tradi-
tional Red Queen.

3. What is converged to in both cases is not a simple state
or limit cycle of states. Rather it is an equivalence class, or
set of them, of highly dynamic information sources coupled by
mutual interaction through crosstalk. Thus ‘stability’ in this
structure represents particular patterns of ongoing dynamics
rather than some identifiable static configuration.

Here we become deeply enmeshed in a system of highly
recursive phenomenological stochastic differential equations
(as, e.g., [35]), but in a dynamic rather than static manner.
The objects of this dynamical system are equivalence classes
of information sources and their crosstalk, rather than simple
‘stationary states’ of a dynamical or reactive chemical system.
Imposition of necessary conditions from the asymptotic limit
theorems of communication theory has beaten the mathemat-
ical thicket back one full layer.

It is of some interest to compare our results to the work
of Diekmann and Law [32], who invoke evolutionary game
dynamics to obtain a first order canonical equation for coevo-
lutionary systems having the form

dsi/dt = Ki(s)∂Wi(s
′
i, s)|s′i=si .

(5)

The si, with i = 1, ..., N denote adaptive trait values in a
community comprising N species. The Wi(s

′
i, s) are measures

of fitness of individuals with trait values s′i in the environment
determined by the resident trait values s, and the Ki(s) are
non-negative coefficients, possibly distinct for each species,
that scale the rate of evolutionary change. Adaptive dynamics
of this kind have frequently been postulated, based either on
the notion of a hill-climbing process on an adaptive landscape
or some other sort of plausibility argument.

When this equation is set equal to zero, so there is no time
dependence, one obtains what are characterized as ‘evolution-
ary singularities’ or stationary points.

Diekmann and Law contend that their formal derivation of
this equation satisfies four critical requirements:

1. The evolutionary process needs to be considered in a
coevolutionary context.

2. A proper mathematical theory of evolution should be
dynamical.

3. The coevolutionary dynamics ought to be underpinned
by a microscopic theory.

4. The evolutionary process has important stochastic ele-
ments.

Our equation (4) is similar, although we have taken a much
different route, one giving elaborate patterns of phase transi-

tion punctuation in a highly natural manner [7]. Champagnat
et al. [36], in fact, derive a higher order canonical approxi-
mation extending equation (5) that is closer to equation (4),
that is, a stochastic differential equation describing evolution-
ary dynamics. Champagnat et al. go even further, using a
large deviations argument to analyze dynamical coevolution-
ary paths, not merely evolutionary singularities. They con-
tend that in general, the issue of evolutionary dynamics drift-
ing away from trajectories predicted by the canonical equation
can be investigated by considering the asymptotic of the prob-
ability of ‘rare events’ for the sample paths of the diffusion.

By ‘rare events’ they mean diffusion paths drifting far away
from the canonical equation. The probability of such rare
events is governed by a large deviation principle: when a crit-
ical parameter (designated ε) goes to zero, the probability that
the sample path of the diffusion is close to a given rare path
φ decreases exponentially to 0 with rate I(φ), where the ‘rate
function’ I can be expressed in terms of the parameters of the
diffusion. This result, in their view, can be used to study long-
time behavior of the diffusion process when there are multiple
attractive evolutionary singularities. Under proper conditions
the most likely path followed by the diffusion when exiting a
basin of attraction is the one minimizing the rate function
I over all the appropriate trajectories. The time needed to
exit the basin is of the order exp(H/ε) where H is a quasi-
potential representing the minimum of the rate function I
over all possible trajectories.

An essential fact of large deviations theory is that the rate
function I which Champagnat et al. invoke can almost always
be expressed as a kind of entropy, that is, in the form I =
−
∑

j Pj log(Pj) for some probability distribution. This result
goes under a number of names; Sanov’s Theorem, Cramer’s
Theorem, the Gartner-Ellis Theorem, the Shannon-McMillan
Theorem, and so forth [37]. A detailed example is given in
[10].

These considerations lead very much in the direction of
equation (4) above, but now seen as subject to internally-
driven large deviations that are themselves described as in-
formation sources, providing I crosstalk parameters that can
trigger punctuated shifts between quasi-stable modes, in ad-
dition to resilience transitions driven by ‘catastrophic’ exter-
nal events or the exchange of heritage information between
different classes of organisms.

Equation (4) provides a very general statistical model that
combines Principle (5) – in concert with the possibility of
large deviations – with earlier theory.

6 Conclusions

We have reexpressed ecosystem dynamics, genetic heritage,
and (cognitive) gene expression producing phenotypes that
interact with the embedding ecosystem, all in terms of inter-
acting information sources. This instantiates Principle (5) of
the Introduction, producing a system of stochastic differen-
tial equations closely analogous to those used to describe more
traditional coevolutionary phenomena, subject to punctuated
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resilience shifts driven both by internal large deviations and
large-scale external perturbations.

That is, environments affect living things, and living things
affect their environments: Cyanobacteria created the aero-
bic transition, greatly changing the very atmosphere of the
planet. Organisms can, more locally, engage in niche con-
struction that changes the local environment as profoundly.
Environments select phenotypes that, in a sense, select en-
vironments. Genes record the result, as does the embedding
landscape. The system coevolves as a unit, with sudden, com-
plicated transitions between the quasiequilibria of equation
(4).

To reiterate, these transitions can be driven by internal
‘large deviation’ dynamics, as the aerobic transition, or by
external events, volcanic eruptions or meteor strikes, and so
on. Ecosystem resilience shifts entrain the evolution of in-
dividual organisms that, in turn, drive ecosystem resilience
transitions.

The introduction of Principle (5) to the Modern Synthesis
generates the complex system of equation (4), perhaps best
characterized by the term ‘evolution of ecosystems’. The es-
sential point is that the Modern Synthesis now requires mod-
ernizing, recognizing the importance and ubiquity of a mutual
interaction with the embedding ecosystem that includes the
possibility of the exchange of heritage information between
different classes of organisms.

Here we have, in the arguments leading to equation (4),
outlined a ‘natural’ means for implementing such a program,
based on the asymptotic limit theorems of communication
theory that provide necessary conditions constraining the dy-
namics of all systems producing or exchanging information, in
the same sense that the Central Limit Theorem provides con-
straints on systems that involve sums of stochastic variates.
That is, we provide the basis for a new set of statistical tools
useful in the study of ecological and evolutionary phenom-
ena. Statistics, however, is not science, and the fundamental
problems of data acquisition, ordination, and interpretation
remain.
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