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Abstract

I provide a fairly systematic analysis of when quantities that are vari-
ant under a dynamical symmetry transformation should be regarded as
unobservable, or redundant, or unreal; of when models related by a dy-
namical symmetry transformation represent the same state of affairs; and
of when mathematical structure that is variant under a dynamical sym-
metry transformation should be regarded as surplus. In most of these
cases the answer is ‘it depends’: depends, that is, on the details of the
symmetry in question. A central feature of the analysis is that in order
to draw any of these conclusions for a dynamical symmetry it needs to be
understood in terms of its possible extensions to other physical systems,
in particular to measurement devices.

1 Introduction: the dynamical conception of sym-
metry

In physical practice, symmetry is for the most part a dynamical notion: a dy-
namical symmetry is a transformation that takes solutions of the equations of
motion to other solutions. Such a notion has obvious practical applications in
dynamical problems, such as the solution of the equations of motion and the
identification of conserved quantities, but the significance of symmetry seems
to transcend this: from symmetries, it is often said, we can infer consequences
about what can be observed (symmetry-variant quantities are said to be unob-
servable), about what parts of theories do and do not do work (symmetry-variant
quantities are sometimes said to be ‘redundant’; symmetry-variant structures
to be ‘surplus’), about representation (symmetry-related models are often taken
to play the same representational role) and about modality (symmetry-related
situations are at least sometimes treated as the same situation differently de-
scribed).

Just what these inferences really are supposed to be, and why they are jus-
tified — if indeed they are — is a vexed question. They cannot apply without
some qualifications and restrictions: in an austere sense, a quite arbitrary per-
mutation of the space of solutions is a symmetry, and even when we restrict
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attention to transformations which are closer to physical practice, still problem-
atic examples abound. To borrow an example from Belot (2013): the orbit of a
planet around the Sun is well modelled by the central-force model, in which we
idealise the sun as at rest and exerting a centrally directed inverse-square force
on the planet.1 This theory has the familiar rotational and time-translation
symmetries (boost and translational symmetry are broken by the fixed loca-
tion of the Sun) but in addition, it has ‘Lenz-Runge symmetries’, somewhat
complicated and unintuitive velocity-dependent transformations of the planet’s
position that do not leave its distance from the Sun invariant. Unless we make
the desparate move of supposing that the distance of a planet from the sun is
neither observable nor physically significant, none of our theses seem to apply
to this symmetry.

Of course one can try to rule out such counter-examples by narrowing the
scope of symmetries to which the theses of unobservability, representational
equivalence and the like are supposed to obtain, but it is not easy to see how
this could be done, much less what principled justification there could be for
doing it. To quote from two influential recent criticisms of drawing metaphysical
and epistemic conclusions from the dynamical conception of symmetry (whose
starting points differ sharply):

[T]he ways of encoding the content of laws that are most appealing
to mathematicians and physicists appear to lead to notions of [dy-
namical] symmetry that are coolly indifferent to considerations of
representational equivalence (Belot, ibid)

[T]he notion [of symmetry] is often defined in purely formal, mathe-
matical terms, so that whether a given transformation is a symmetry
of a given set of laws depends just on the formal and mathematical
features of those laws and their models. But why should those fea-
tures of the laws have anything to do with metaphysics, with what’s
real? It’s not obvious[.] (Dasgupta 2016)

A common response to this problem is to look for some substantive additional
requirement for a transformation to count as a symmetry, along with the formal
requirement that it takes solutions to solutions. There are two broad classes of
strategy. The first (the ‘epistemic strategy’) effectively builds unobservability of
symmetry transformations into the definition of a symmetry: symmetries are re-
quired to leave all observable properties of the system invariant. Ismael and van
Fraassen (2003) and Dasgupta (2016) propose definitions explicitly along these
lines; some advocates of the ‘primitive ontology’ approach to scientific meta-
physics (e. g. Allori et al (2008) and Allori (2013)) propose something closely
related (they require that symmetries leave relevant facts about the ‘primitive
ontology’ invariant, and if one grants their account of scientific epistemology2

then observations supervene only on the primitive ontology). The second (the

1It is even better modelled if we work in center-of-mass coordinates, but I avoid this
complication for expository convenience.

2One should not; cf Wallace (2018).
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‘representational strategy’) instead builds the representational equivalence of
symmetry-related models into the definition, usually by requiring that symme-
tries are automorphisms of the appropriate mathematical space of models (hence
preserve all structure, and thus all representation-apt features, of a model).
This strategy has been widely explored in the philosophy-of-spacetime litera-
ture, where symmetries are often taken to be diffeomorphisms that preserve
‘absolute structure’; see, e. g. , Earman (1989) and references therein. (The
preservation of representational equivalence is also built directly into Healey’s
(2009) definition of a ‘theoretical symmetry’.)

Both strategies would have the disappointing consequence of making at
least some of the theses about symmetry trivial. if symmetry is definition-
ally observation-preserving, for instance, we can infer nothing substantive about
what is observable by learning that a theory has a symmetry, since the only way
to learn that would have been via deductions about observability; if symmetry
is definitionally structure-preserving, we cannot learn about surplus structure
via symmetry. But more importantly, both appear in conflict with physical
practice. This is most sharply apparent for the epistemic strategy: as Dasgupta
freely admits, “on our epistemic approach, symmetry-to-reality reasoning in-
volves not just mathematical analysis, but also considerations that reach into
the philosophy of perception and mind. A far cry from the purely mathematical
gloss it is often given!” Since the definition of symmetry in physics pretty clearly
does not reach at all into the philosophy of perception and mind, and indeed
frequently involves identifying symmetries in contexts far from the directly-
observable world, ‘symmetry’ in the epistemic-strategy sense is at any rate not
what physicists mean when they talk about symmetry.

Matters are somewhat more subtle for the representational approach. It
is, for example, perfectly possible to formulate Newtonian physics as a theory
whose models are N -tuples of paths in R4, in which case the mathematical struc-
ture of a model includes many features (the x-component of the vector linking
a particle to the spatial coordinate origin at time=0, for instance) that are not
invariant under the Galilean symmetries. But it is possible to reformulate New-
tonian physics on a more sparsely-structured space (‘Galilean spacetime’; see,
e. g. , Weatherall (2017)) for which the Galilean symmetries coincide with the
automorphisms. And having made such a reformulation, we can maintain that
the reformulated theory is the truer representation of the physics, and that in
the original R4 formulation, models are representationally equivalent whenever
they are symmetry-related even though not all their mathematical structure is
preserved under the symmetry transformation.

But what makes such a reformulation appropriate? The answer, in the
history of physics, is pretty much always based on identifying a dynamical sym-
metry under which some of the structure of the original models is variant: that
is, it is based on the assumption that structure variant under a dynamical sym-
metry is surplus. The Galilean-spacetime reformulation is preferable to the
original formulation precisely because the automorphisms match the dynamical
symmetries. (Earman (1989) makes this argument explicit.)

(As another, more technical example, U(1) gauge theory can be formulated,
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and historically was formulated, as a theory of a 4-vector field on spacetime.
That theory has gauge symmetries as dynamical symmetries, and those symme-
tries do not preserve the mathematical structure of the theory: for instance, the
property of having divergence zero is not gauge-invariant. The theory can be re-
formulated as a connection on a fibre bundle, and now the gauge symmetries are
structure-preserving bundle automorphisms — but the rationale for the refomu-
lation was precisely because the dynamical symmetries were not automorphisms
in the original formulation.)

So the representational strategy, too, does not seem to do justice to the
notion of symmetry actually used in physics: insofar as it is correct, it is only
because we have carried out reformulations, and/or drawn conclusions about
when models are representationally equivalent, based on a prior, dynamical
notion of symmetry.

Only the dynamical approach, I think, can really do justice to the notion
of symmetry as we find it in physics. And so my goal in this paper is to
defend the claim that epistemic and (indirectly) metaphysical conclusions can
after all be drawn from the presence of a dynamical symmetry, at least in some
circumstances, and — more importantly — to clarify how that can even be
possible. To preview the core claims:

(i) observation is itself a dynamical notion, so a dynamical symmetry can have
consequences for what is observable just when that symmetry encompasses
the physical processes of measurement;

(ii) models in physics are almost always used to describe subsytems of a larger
universe, so the interpretational significance of a symmetry depends not
just on the dynamics of the system itself but on (explicit or tacit) assump-
tions about what happens to the symmetry when the system interacts with
other systems.

The structure of the paper is as follows. After outlining (section 2) the main
mathematical concepts I will use, in section 3 I give sharp versions of four theses
about symmetries in the literature: that they are unobservable, that they give
rise to representationally-equivalent models; that they are a guide to surplus
structure; that they do not represent genuinely different possibilities. In sec-
tions 4-5 I analyse the consequences of assuming that a dynamical symmetry of
a system applies also to the mechanical processes used to observe that system,
and establish a version of the thesis about unobservability. In sections 6-7 I
use these results, and the broader framework developed in sections 4-5, to as-
sess the remaining three theses. In sections 8–10 (which in large part can be
read independently and can be skipped on a first reading) I consider three com-
plications: time-dependent symmetries such as those found in gauge theories;
quantum theory; cosmology. Section 11 is the conclusion. For the most part I
restrict myself to the comparatively-elementary example of point-particle clas-
sical mechanics, though sections 8–10 consider more advanced examples from
quantum mechanics and field theory.

4



This paper is one of a series of three papers considering symmetries of iso-
lated systems. The second and third (Wallace 2019a, 2019b) presuppose the
results of this paper and explore in more detail how dynamically-isolated sub-
systems of larger systems can be modelled, how in turn isolated systems can
and should be interpreted as subsystems of unspecified larger systems, and the
interplay of those ideas with the interpretation of a system’s symmetries (the
two papers focus, respectively, on examples from particle mechanics and from
field theory).

2 Elements of classical mechanics and group the-
ory

For the most part, in this paper I consider classical (i. e. , non-quantum) systems:
this is mostly for grounds of exegetical convenience, though there are a few
additional subtleties in the quantum case which I discuss in section 9. In this
section I lay out some basic assumptions about classical mechanics which I draw
upon throughout the paper (readers already familiar with the subject might
want to skim this section to get familiar with my conventions, or else skip it
entirely).

Classical mechanics, in the abstract, characterises a system’s dynamical his-
tory as a time-indexed collection of configurations. In the classic example of
point-particle mechanics (with, say, N particles), a configuration is a specifi-
cation of the locations of each of the point particles, and is mathematically
represented by an ordered N -tuple of points in 3-dimensional Euclidean space.
The collection of all such N -tuples is configuration space, which I denote by Q.
More abstract (say, field-theoretic, or extended-body) systems have configura-
tion spaces with different mathematical representations: the configuration space
of a rigid-body system, for instance, is given by a point representing the center-
of-mass position of the system and a triple of orthogonal vectors representing
its orientation.

A history of the system is then a smooth function q : R → Q, assigning to
each time t the configuration q(t) of the system at that time. The dynamical
equations of Newtonian mechanics distinguish dynamically possible from dy-
namically impossible histories; these equations are second-order in time, and so
take the form3

FJ(q̈(t), q̇(t), q(t)) = 0 (1)

for some functions FJ . (Here as usual q̇(t) and q̈(t) denote, respectively, the first
and second derivative of q with time.) The particular form of these equations
depends on the system in question: for Newtonian point-particles moving under
gravity, for instance, they encode Newton’s second law and the inverse-square
law. In that case, and in most elementary cases, the dynamics are deterministic,

3For simplicity I ignore the possibility of explicit time dependence in the dynamics; it
can be incorporated without substantive changes to my arguments, at the cost of a more
cumbersome notation.
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which means that (1) can be solved for q̈ in terms of q and q̇:

q̈(t) = F(q(t), q̇(t)). (2)

Given q(t) and q̇(t), q̈(t) is then fixed; normally4 this allows us to integrate
the equations forward and backwards to determine a unique history. Because
these equations are second-order, however, even for a deterministic system the
configuration at time t is insufficient to determine future or past configurations:
additional information about the rate of change of the configuration is required.
The state of the system at time t is the ordered pair (q(t), q̇(t)) of the system’s
configuration and its velocity: the space of all such pairs is the state space of
the system, which I denote by S.5 In a deterministic system, the state of the
system at one time uniquely determines its state at past and future times.

Given a theory in this form, a (dynamical) configuration symmetry is a
bijection of Q which maps solutions to solutions: that is, if q → gq is the map,
then gq(t) solves the equations of motion iff q(t) does. The bijection induces a
bijection on the space of states (called the tangent lift) in a natural way:

q̇(t0)→ d

dt
(gq(t))

∣∣∣∣
t=t0

(3)

(note that this depends only on q(t0) and q̇(t0)). For instance, spatial translation
has no effect on velocity; spatial rotation rotates the velocity vectors as well as
moving the configuration.

The requirement for g to be a symmetry can be characterised directly on
state space too, it is a symmetry provided that gx(t) solves the equations of
motion on state space iff x(t) does. The class of bijections of S satisfying
this requirement contains some transformations that are not tangent lifts of
configuration symmetries (the Lenz-Runge symmetries have this feature).

The class of dynamical symmetries (whether understood as configuration
symmetries or directly as state-space symmetries) forms a group in the math-
ematical sense: the trivial map id, taking each point to itself, is obviously a
symmetry; if g, h are symmetries then so is gh; the inverse of a symmetry is
also a symmetry. It is often helpful to think of this group abstractly (i. e. , just
in terms of its algebraic structure) and to distinguish the group from its action
via transformations. Some more terminology: given a group G, an action R of
the group on a space S is a collection6 of bijections R(g) : S → S satisfying
R(g)R(h) = R(gh) for any g, h ∈ G. I write e for the identity in a group (so

4There are subtleties in doing so in certain systems (see Earman (1986) for detailed dis-
cussion) but those subtleties are normally ‘unphysical’ in the sense that they mark a failure
of the system to correctly represent real-world physics after a certain time; in any case, I set
these complications aside.

5Technically-minded readers will recognise that this simplifies some of the geometry: the
state space is better described as the tangent bundle TQ over the configuration space Q.
These details will not matter for what follows.

6Technical detail: G should be a Lie group, S should be a differentiable manifold, and the
map (g, x) → R(g)x should be a diffeomorphism.
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that if R is an action, R(e) = id). For simplicity, I normally assume that the
group action is free: that is, if R(g)x = x, then g = e.

This notation is unavoidably somewhat abstract, but (as I noted in the in-
troduction) for most purposes it will suffice to consider one concrete example:
the case of Newtonian point particles (I will occasionally refer to other, more
complicated, examples below, but readers unfamiliar with the physics of these
examples may wish to skim them and focus on the Newtonian case). For def-
initeness, I will consider N particles moving under the inverse-square law of
Coulomb electromagnetism, where the nth particle has a charge qn and a mass
mn, where the nth particle exerts a force on the mth particle proportional to
qn × qm divided by the square of the distance between them, and where each
particle has an acceleration directly proportional to the sum of the forces upon it
and inversely proportional to its own mass. There are two classes of dynamical
symmetry of this theory:

Galilean spacetime symmetries: the transformation induced by translating
all the particles by a common vector, or rotating them by a common
amount, or by increasing their velocities by a common amount, or by
translating each of their trajectories by a common amount in time, is a
symmetry. (Strictly, the last two require a slight generalisation of our
definition, which I omit for simplicity.)

Permutation symmetries: If any two particles have the same charge and
mass, the transformation that permutes them is a symmetry.

3 Four theses about symmetry

To ensure a clear target for later analysis, here I give fairly precise formulations
of four common (though contested) claims about symmetry. The first makes
sharp what I mean by symmetries being unobservable.

The Unobservability Thesis: Given a family of models of a system which
are related by a symmetry transformation, it is impossible to determine
empirically which model in fact represents the system.

The Unobservability Thesis is sometimes stated in more metaphysical terms, as
the claim that quantities or properties that are ‘symmetry-variant’ — that is,
that have values that are not invariant under a symmetry transformation of the
system — are unobservable. I will argue that at least in some circumstances,
and under some natural intepretations, that claim is false.

The next two theses both concern the way representation works in a theory
with symmetry.

The Representational Equivalence Thesis: Given a family of models of a
theory which are related by a symmetry transformation, insofar as one
model successfully represents a system, so do all the others.
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The Surplus Structure Thesis: Given a theory with a symmetry transfor-
mation, insofar as the symmetry falls short of being an automorphism of
the mathematical structures used to define the theory’s models, then this
points to aspects of that structure which are redundant, do no represen-
tational work, and can be removed from the theory without loss.

These two are clearly closely related: insofar as the Representational Equiva-
lence Thesis holds, then analytically any symmetry-variant structure does no
representational work; conversely, once surplus structure is removed, symme-
tries preserve all mathematical structure, and plausibly mathematical models
represent only via such structure. (Both should be distinguished from the much
stronger claim that, given a symmetry, one should quotient out by that symme-
try in order to understand the theory properly: that claim seems to me highly
implausible in full generality in view of how ubiquitously modern mathematics
deploys structures with nontrivial automorphism groups but in any case I shall
have little to say about it.)

The final claim concerns the modal status of symmetries:

The Modal Equivalence Thesis: Two states of affairs related by the action
of a symmetry transformation are really the same state of affairs, differ-
ently described.

Its relation to the Representational Equivalence thesis is subtle, as we will see
in section 7.

4 Observations from within a system

Most physical systems we study in physics are simply not rich enough to model
the process of measurement — indeed, hardly any are. The most straightforward
model of the Earth-Sun system, for instance, has only six degrees of freedom
(three coordinates of position for the centers of mass of each of the two bodies)
and it makes little sense to imagine how any physical process in that system
could deserve to be called a ‘measurement’. But for the moment suppose that
we do have a sufficiently rich system, and ask what we can infer about the
measurability of a symmetry.

The standard model for measurement in physics is the measurement of one
system’s state by encoding it in another system’s. It goes like this:

1. The system being measured (the ‘target system’) has some unknown initial
state, represented by a point in its state space.

2. The system doing the measurement (the ‘measurement device’) is placed
in some ‘ready’ state, independent of what state the target system starts
off in. (If it were not independent, the observer would have to have in-
formation about the result of the measurement even before making it,
defeating the purpose of the measurement.)
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3. The target system and the measurement device are then allowed to in-
teract for a while. As a consequence, the post-interaction state of the
measurement device now depends functionally on the pre-measurement
state of the target system.

4. If that functional dependence is non-trivial (that is, if the measurement de-
vice’s post-interaction state sometimes varies according to what the target
system’s pre-interaction state was) then the measurement has succeeded
to at least some degree.

Here we are considering measurements within a single complicated system, but
any such system can be decomposed into subsystems — a measurement, in
this context, is a correlation established between the pre-measurement value of
some ‘target’ quantity and the post-measurement value of a different ‘readout’
quantity, given that the pre-measurement value of that second quantity was in
the fixed ‘ready’ state.

To see how this plays out in a system with a dynamical symmetry, it will be
helpful to get a little more formal. Given a group G and an action R of G on a
space S, we can define the orbits of the action as the equivalence classes of S
under the relation: x is related to x′ iff x′ = R(g)x for some g ∈ G. Suppose we
arbitrarily pick a single point φO inside each orbit O: then any point x ∈ O can
be expressed as x = R(g)φO for some group element g, and hence, that point
can be represented by the ordered pair (O, g). (Since we are assuming that the
group acts freely on S — which is to say: R(g)x = R(h)x iff g = h — then
the representation will be unique; if we had not made this assumption, multiple
pairs might correspond to the same point, but each pair would still pick out a
unique point.) I write x ∼ (O, g) to denote x = R(g)φO.

The value of this representation is that the action of G has a very simple form:
if x ∼ (O, g), so that x = R(g)φO, then R(h)x = R(h)R(g)φO = R(hg)φ ∼
(O, hg). Hence the action of the group is just:

R(h)(O, g) = (O, hg). (4)

We have effectively decomposed the space into its G-invariant part, represented
by an orbit, and its G-variant part, represented by an element of G itself.

Now let’s take S to be the state space of our system. The Unobservability
Thesis concerns whether it is possible to distinguish experimentally between
situations that differ only by the action of the symmetry. In this notation,
this is to say: can we measure the value of g from within the system? Since our
‘readout’ quantity must be independent of g, it follows that it must be a function
of O alone, so that the question is: is there a dynamically possible measurement
process that encodes the value of g in some function of O? Intuitively, if the
action of G is a symmetry, the answer must be ‘no’, but we should establish this
more carefully.

Now we assume that the system has some time-independent, deterministic
dynamics, with equations of motion represented by some one-parameter family
U(t) of bjiections of S, satisfying U(t + s) = U(t)U(s). The solutions to the
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dynamics are then functions x : R → S satisfying U(t)x(s) = x(s + t). The
group action is a dynamical symmetry if, for any x ∈ G and any path x(t) in S,
x(t) is a model of the theory (i. e. , satisfies its equations of motion) iff gx(t) is.7

Let’s see how the dynamics looks in the orbit/group representation of state
space. An initial state (O, g) evolves over some time t to a subsequent state
(O′, g′), where O′ and g′ are determined by O, g and t. So there must be
functions α and β such that the evolution has form

U(t)(O, g) = (α(O, g, t), β(O, g, t)). (5)

Suppose we evolve the system for time t and then apply a symmetry h: then
the final state will be

hU(t)(O, g) = (α(O, g, t), hβ(O, g, t)). (6)

If instead we apply the symmetry and then evolve the system, we get

U(t)(O, hg) = (α(O, hg, t), β(O, hg, t)). (7)

But if the action is a dynamical symmetry, these must be equal, so that we have

α(O, hg, t) = α(O, g, t) β(O, hg, t) = hβ(O, g, t). (8)

Adjusting notation slightly, this is to say that the dynamics can be expressed
as

U(t)(O, g) = (α(O, t), gβ(O, t)). (9)

So the future evolution of O depends only on the present value of O, with no
additional dependence on g. In other words: there is a self-contained dynamics
for the invariant degrees of freedom of the system that is quite independent of
the G-variant features.

We can now see why no measurement internal to a system can distinguish
whether a symmetry has been applied to the whole system. Such a measurement,
we have argued, would have to have the form

(O0, g)→ (O(g), g′) (10)

where O0 is some g-independent state and O(g) has some functional dependence
on g. But O(g) depends only on O0 and, despite the notation, is not functionally
dependent on g at all.

So the Unobservability thesis is a straightforward consequence of the dy-
namics — if we assume that we are considering a system rich enough to model
its own dynamics, and that the system is measuring itself rather than being
observed from outside.

7This is a slightly restrictive formulation, ruling out as it does time-dependent symmetries
like Galilean boosts, and time translation itself. This is for technical convenience; both can be
incorporated, but at a significant cost in complexity. Specifically, we could define a symmetry
group by a group G, a time-indexed family of actions Rt of G on configuration space, and
an action r of G on the real line, such that t → σ(t) solves the equations of motion iff
t → Rt(g)σ(r(g)t) does; and we could drop the automatic presupposition of time translation
symmetry by replacing the one-parameter dynamical map U(t) with a two-parameter map
U(t, t0). I leave it to the reader to verify that my results go through mutatis mutandis under
this approach.
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5 Symmetries of systems and subsystems

In practice, it hardly ever makes sense for the models we use in physics to
imagine that the model includes its own measurement processes. In virtually all
cases the measurement process, if any, is external to the system, and it is not
normally modelled explicitly unless we are actually in the business of designing
lab apparatus. So the consequences of the previous section for symmetries of
realistic systems are indirect. Nonetheless they are there, as we can see by
considering some of the examples where dynamical symmetries clearly do not
entail anything about observability.

Consider first the Lenz-Runge example I discussed in the Introduction, which
is a symmetry of the central force problem — for concreteness, let’s suppose
we’re using that problem to model the Sun-Earth system. A measurement of
that system might, for instance, record the distance of the Earth from the Sun
at some given time. Without any commitment at all to the details of the physics
of that measurement process, we know it must have a schematic form something
like8

Earth at distance r from Sun; device ready

−→ Earth at distance r from Sun; device records r.

Suppose that some instance of the Lenz-Runge symmetry, imagined to be ap-
plied before the measurement, changes r to 2r. Then the measurement process
will leave the device in some ‘2r’ state. On the other hand, since the symmetry
transformation acts only on the Earth and Sun, and is not even well-defined for
whatever mixture of optics and mechanics implements the measurement process,
applying the transformation after the measurement leaves the measurement de-
vice in the ‘r’ state. Which is to say, the Lenz-Runge transformation is not
a symmetry of the combined system of measurement device plus Earth-Sun
system.

A second example: (classical9) vacuum electrodynamics (that is, the theory
of electromagnetic fields in the absence of charge) has a conformal symmetry
in addition to the spacetime symmetries: it has no absolute notion of length or
time, and the map x, t → λx, λt, applied to spacetime points, takes solutions
to solutions. The Unobservability Thesis would seem to imply that radiation
frequency is undetectable, so that no observation can distinguish visible light
from X-rays, and this is obviously absurd. But it is obvious why it is absurd:
because the conformal symmetry is only a symmetry of radiation in the absence
of matter, and ceases to be a symmetry of systems in which matter is present.

8Nothing about the concept of measurement actually requires the post-measurement Earth-
Sun distance to equal the pre-measurement distance, but obviously any practically realistic
measurement process will have this feature.

9Quantum electrodynamics is conformally invariant to leading order in the absence of
charged particles, but that invariance is violated by quantum corrections, due to loop effects
where particle-antiparticle pairs are created (and, indirectly, due to anomalous breaking of
the conformal symmetry).
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Here is the general point: we have defined symmetries as transformations on
the state spaces of isolated systems: those systems have self-contained dynamics
and symmetries preserve the solutions of those dynamics. But while there is a
temptation in the foundational literature to regard such isolated systems as
proposed models of the entire Universe,10 in real physical practice the vast
majority of ‘isolated system’ models are used to model certain subsystems of
the Universe under the idealisation that (at least on certain timescales, at least
to a certain degree of accuracy) they are dynamically independent of other
systems. (The previous two examples illustrate this: the central force problem,
and vacuum electrodynamics, are scientifically interesting because (respectively)
one body’s gravitational effect often dominates all others within a certain region,
and because electromagnetic waves often exist for a time in regions with little
matter present — not because of an abstract curiosity about distant possible
worlds containing only two bodies, or containing no matter at all.)

So if an isolated system has a symmetry group G, what happens to the sym-
metry when the assumption of isolation fails - for instance, when a measurement
device interacts with the system? We can consider three substantively different
possibilities. Firstly, G might be subsystem-specific: it has no extension to a
symmetry of the combined system. This is the case for the Lenz-Runge sym-
metry of the central-force model: if we introduce another system (say, another
planet passing close to the first, or a non-gravitational measurement device)
then it doesn’t really even make sense to ask how the Lenz-Runge symmetry
affects this system, and even if we did come up with some arbitrary way of
applying the transformation to the second planet, there is no reason at all to
expect it to be a symmetry. The same applies to the conformal symmetries of
vacuum electromagnetism.

Secondly, it might be that G is also a dynamical symmetry of the second
system, with action R2, and that the combined action R1 × R2 makes G into
a dynamical symmetry of the combined system: in this case, the symmetry
group is subsystem-global. For instance, if we consider our Newtonian system
of N point particles to be a subsystem of a larger system of particles, then the
boost, translation and rotation symmetries are subsystem-global: by performing
them on the whole of the combined system we still take solutions to solutions,
but this is not the case if we, say, translate only the particles in the original
subsystem but leave untranslated the particles in the new system with which
they are interacting. (More generally, global symmetries in the usual physics
sense — for instance, the global U(1) symmetry of an ungauged complex scalar
field — are subsystem-global.)

Thirdly, it might be that the action R1×id, where G acts trivially on the sec-
ond system, makes G into a dynamical symmetry of the combined system. In this
case, the symmetry group is subsystem-local. For instance, in the Newtonian-
particle case, permutation symmetry is subsystem-local: a permutation of N
identical particles is a symmetry whether or not those N particles are interact-

10In Wallace (2019a) I call this the ‘Cosmological Assumption’, and critique it more thor-
oughly.
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ing with other particles. (For a more advanced example (cf Wallace (2019b)) in
gauge theory the group of gauge transformations which vanish at the boundary
of a given system is subsystem-local.)

In this third case, it will often be the case that G also acts on the second
system as a subsystem-local symmetry. In this case the combined symmetry
group of the total system will be G × G: G can be applied, independently, to
either system.

More complicated cases can occur, where different symmetries have different
extendibility properties. Taking the second system as fixed, we can categorise
individual symmetries as follows:

• g is extendible if there is a dynamical symmetry g̃ of the combined system
which has the form g̃ = g × g′, i. e. which has a well-defined restriction to
the original system that is equal to g.

• If extendible, g is subsystem-local if it has an extension g̃ = g × id.

It is clear that the extendible symmetries form a group Gext ⊂ G, and the
subsystem-local symmetries form a subgroup Gloc ⊂ Gext of that group. We
can then define the subsystem-global symmetry group as the quotient group
Ggl = Gext/Gloc; elements of Ggl are equivalence classes of symmetries that differ
by a subsystem-local symmetry, so that their action on the system is defined
only up to a subsystem-local transformation. (In principle, this decomposition
might be different when the system is coupled to a different system; in practice
this does not normally occur, and for expository convenience I will usually ignore
this subtlety.)

It should be clear that an inextendible symmetry has no implications at
all for whether symmetry-variant quantities can be observed: by definition, as
soon as an additional system is coupled to the original system, the symmetry
is lost. By contrast, subsystem-local and subsystem-global symmetries have
strong implications for what can and cannot be measured. For in both of these
cases, by incorporating system and measurement device into a larger system,
we can apply our previous results about measurements internal to a system.

Consider first the case of a subsystem-global symmetry. Using our orbit
notation, we can write the combined state of target system and measurement
device as (O, g;O′, g′), with O and O′ being orbits in the target system state
space and the measurement-device state space respectively. The action of a
symmetry transformation h is then

(O, g;O′, g′)→ (O, hg;O′, hg′). (11)

Importantly, since the symmetry acts simultaneously on the two systems, the
symmetry-invariant information about the combined system is not exhausted by
O and O′ but also includes the relational quantity g′−1g. If we now prepare the
measurement device in some fixed ‘ready’ state (so that both O′ and g′ are held
fixed, independent of O and g), then because this relational quantity covaries
with the target system’s variant quantity g, it is perfectly possible to measure g.
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In this sense, variant properties of a system can after all be measured. However,
because the measurement proceeds only via the relational quantity g′−1g, any
such measurement is always reinterpretable as a measurement of that relational
quantity. If the measurement device had instead been prepared in the alternative
ready state (O′, hg′), then the measurement process would be a measurement
of h−1g rather than of g — and there would be no further measurement to be
done that could determine whether it had been so prepared, because that pair
of measurements would jointly consist of a measurement of a G-variant quantity
of the combined system from within that system, which we have seen to be
impossible.

Being able to measure G-variant quantities in even this thin sense might
seem counterintuitive, but a little reflection shows that it fits our everyday and
scientific practice. The speedometer of my car (which operates via interactions
between my car and its environment) does indeed measure my car’s velocity,
in the sense that different velocities give rise to different measurements; the
GPS on my phone measures my location in just the same sense. But in both
cases, the measurement can equally be described as a measurement of a relative
quantity (my car’s velocity relative to the road; my location relative to selected
coordinates on the Earth), and in neither case can the measurement determine
the quantity independently of the equivalent quantity for the Earth.

(Note also that nothing in this analysis turns on whether the information
about the system is encoded in the variant or the invariant degrees of freedom of
the measurement device; in either case, we can establish a functional dependence
on a g-variant quantity of the target system; in both cases, that functional
dependence is reinterpretable as a functional dependence on an invariant relation
between system and measurement device.)

What if the symmetry is subsystem-local? Then things are simpler: now the
symmetry-invariant information about the combined system is exhausted by
(O,O′), and (by our previous results) no measurement can determine either g
or g′. So quantities variant under a subsystem-local symmetry are unobservable.

We can extend this to more complicated symmetry groups straightforwardly.
Taking the symmetry group G as fixed, a given physical quantity (formally: a
given map from S to some other space X, such as {0, 1} for properties or R for
real-valued quantities) can be classified as

• locally variant if it is variant under the action of a subsystem-local element
of G;

• globally variant if it is invariant under the action of a subsystem-local
subgroup of G, but variant under the action of a subsystem-global element
of G;

• invariant if it is invariant under all extendible elements of G.

We have now established a fairly precise version of the Unobservability The-
sis:
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• Invariant quantities are observable (or, at least, there is no symmetry-
induced bar to observing them);

• Globally variant quantities are observable from a measurement device out-
side the system, but those observations are always reinterpretable as obser-
vations of an invariant relation between system and measurement device;

• Locally variant quantities are unobservable.

Applied to our core examples, we can see that variant spatial quantities like
center-of-mass position, orientation, and center-of-mass velocity are observable,
but only via processes reinterpretable as measurements of invariant spatial quan-
tities; on the other hand, no measurement can distinguish two states that differ
by a particle permutation. This is satisfactorily in accord with our pre-theoretic
understanding in both cases.

I pause to make two observations. Firstly, our analysis does not assume
that we know how to model a given measurement device. All it needs is the
assumption that the measurement device, too, is bound by the symmetry. That
assumption is fallible, of course — if we were to discover a set of physical
processes that allowed us to probe a system but without conforming to some
symmetry of the system, we could indeed measure symmetry-variant properties
of that system (and not just in the thin sense discussed above). But this is
an advantage of the analysis, not a weakness: it is indeed impossible to know
infallibly whether a symmetry will turn out to be exact and universal, or just
obeyed by some systems in some contexts, and the history of physics repeatedly
displays examples of this. Consider parity, for instance: it is possible to measure
the orientation of one system relative to another, but only a device governed by
parity-violating interactions allows one to determine parity in a more absolute
sense.11

Secondly, several recent authors (notably Roberts (2008), but see also Das-
gupta (2016)) have noted that dynamical reasons prohibit us from encoding
variant features of a system in its invariant features. But this generally has not
been taken to resolve the question of unobservability, unless we make a suppos-
edly question-begging assumption — after all, variant features can be encoded
in other variant features. (Roberts, for instance, then appeals to anthropic fea-
tures of the sort of beings we are to complete the story). My dynamical analysis
shows that something more systematic can be said: for an isolated system there
is in an important sense only one variant quantity (represented by g in my
orbit-group notation) and it cannot be encoded in any way in any other inde-
pendent quantity. It is true that if we have multiple systems, there are multiple
independent quantities that are separately variant under the application of the
symmetry to subsystems, but these quantities can be measured, it is just that
the measurement is always reinterpretable as a measurement of an invariant
relation between systems. For a collection of particles moving under Newtonian
forces, for instance, the issue is not whether we can record the position of one

11There remain no subtleties in this case: see, e. g. , Huggett (2000), Pooley (2003), and
Saunders (2007) for more discussion.
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particle in the position of another: indeed we can, and it is useful to do so.
The issue is rather whether the center of mass position of the whole system can
be recorded in any independent degree of freedom; as we have seen, no such
recording process is physically possible.

6 Surplus structure and representational equiv-
alence

We can now give a fairly strong argument in favor of the Surplus Structure
thesis — which, recall, is that symmetry-variant structure (e.g., an absolute
rest frame) is surplus. For we have seen that no measurement process can
determine whether or not a symmetry transformation has been performed on
the combined system of target plus measurement device. Since the definition
of symmetry-variant structure is that it is variant under such a transformation,
it follows that there is no process by which it can be detected: no process,
for instance, that can determine whether or not a system is moving relative to
absolute space as opposed to moving relative to another system.

As a corollary, symmetry-variant structure can have no dynamical conse-
quences for structure which can be detected: if surplus structure influenced
the dynamical evolution of detectable quantities, it would itself be detectable
indirectly, and our highly abstract analysis of measurement would pick this up.

So: consider two formulations of a theory — one containing symmetry-
variant structure, one with that structure excised. (Here as usual, by ‘symme-
try’ I mean ‘subsystem-extendible dynamical symmetry’.) The second has all
the resources of the first as regards describing and predicting the phenomena,
which is to say that the symmetry-variant structures have no scientific work to
do. There are now well-known arguments for taking the excised theory as the
better representation of the physics: Ockhamist reasons based on the elimina-
tion of useless structure; semantic reasons based on the lack of any mechanism
by which we could describe what the variant structure represents; pragmatic
reasons based on the folly of including something demonstrably scientifically
redundant in a scientific theory.

(Møller-Nielsen (2017) resists these arguments on the grounds is that there
might in fact not exist a reformulation of the theory which eliminates the struc-
ture, so that we are stuck with the ‘surplus’ structure as the cost of using the
theory at all. (One might think, for instance, that to move from a Newtonian to
a Galilean spacetime requires mathematical creativity, and is not a guaranteed
possibility merely because Newtonian spacetime has symmetry-variant struc-
ture.) But I think this underestimates the powerful, general resources by which
structure can be substracted from mathematical theories. For instance, in an
extremely wide class of spacetime theories, methods dating back to Klein allow
the automorphism group of the theory to be widened to include whatever space-
time symmetry one wishes (see Wallace (2019d) and references therein; see also
Dewar (2019) for a general defense of the legitimacy of this approach.). In the
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admittedly very abstracted setting of category theory, a class of mathematical
models can be understood as defined by the transformations between models,
and removing symmetry-variant structure is as simple as enriching the class
of transformations. (See, e. g. , Weatherall (2016); note that this can be seen
as a generalisation of the Kleinian method.) In any case, the concern is fairly
theoretical: I am not aware of any theory in extant physics (even construing
‘extant’ fairly broadly) which does not have a well-understood reformulation
in which dynamical symmetries and automorphisms coincide, even if one es-
chews Kleinian and categorical tricks and insists on a more purist conception of
reformulation.12)

If the surplus-structure thesis is accepted on these grounds, the Represen-
tational Equivalence thesis follows fairly directly. Suppose M and M ′ are
symmetry-related models. Insofar as they are not isomorphic (with respect
to the notion of methematical isomorphism appropriate to the class of models
from which they are drawn), this can only be because there is surplus structure.
Once that structure is excised, symmetry-related models are guaranteed to be
mathematically isomorphic. And since the means by which mathematical mod-
els represent the physical is entirely structural (we have no other way to make
reference to mathematical objects, even assuming a background philosophy of
mathematics in which that would make sense) one model is representationally
adequate exactly insofar as the other is.

It is tempting to forge on to the Modal Equivalence thesis: if symmetry-
related models are representationally equivalent, how could a symmetry trans-
formation represent anything other than a mere redescription? We will see this
is far too quick, again for reasons that follow from the fact that physical theories
are virtually always used to describe isolated systems in a larger universe, not
the Universe as a whole.

7 Modal equivalence and the intrinsic/extrinsic
distinction

Does a symmetry transformation, applied to a system, bring about a different
possibility? The most common way to understand that question (see, e. g. , Be-
lot (2018)) is as a thesis about the entire Universe: if we apply a symmetry
transformation to a model of the Universe as a whole, does that bring about
a new possibility? Understood that way, it seems a rather abstract question,
turning as much on one’s general theory of modality as anything else: conven-
tionalists about modality, for instance (like Belot) could argue that this is partly

12The nearest I know to a counter-example (which lies well outside ‘extant physics’) occurs
in supersymmetry, a theorised extension to current quantum field theory: standard ‘N=1’
supersymmetry has a reformulation on ‘superspace’ which is analogous to the reformulation
of special relativity on Minkowski spacetime, but the superspace move does not appear to be
available for so-called ‘extended’ supersymmetry. The issue has not been extensively explored;
see Wess and Bagger (1983) and references therein for general features of supersymmetry, and
Menon (2018) for some preliminary philosophical considerations.
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a sociological point, to be answered by looking at the way physicists actually in
fact use the concept. But in accordance with the themes of this paper, I wish
to answer it more locally, and more naturalistically, by considering symmetry
transformations on isolated subsystems of a larger universe. In this case (which
is, in any case, the actual context in which physicists use the concept), if the
symmetry transformation is subsystem-global then the answer is quite straight-
forwardly yes. In the notation of the previous sections, if the first system has
state (O, g) and the symmetry is h, the transformed system has state (O, hg).
Given any second system with state (O′, g′), the result of the symmetry is to
transform the invariant quantity g−1g′ to hg−1g′ — and this transformation
is directly observable, and so clearly indicates that we are dealing with a new
possibility.

How is this to be reconciled with the Representational Equivalence Thesis?
As an illustration, consider our standard particle-mechanics example, and con-
sider two systems (say, with N and M particles). Mathematically speaking, an
instantaneous configuration of the first system is an ordered set of N points in
Euclidean space E; an instantaneous configuration of the second is an ordered
set of M points in another copy E′ of Euclidean space. To compare the two
systems (to check, for instance, whether they are sufficiently spatially separated
that we can treat them as isolated) we need to identify E and E′ — that is,
specify an isomorphism between them — and there is no preferred or canonical
way to do so. So given configurations q, q′ of the systems separately, we have
not been given enough information to describe their joint configuration: that
requires, in addition, a representational convention as to how points in the two
configuration spaces are to be compared. Such a convention is inevitably re-
quired whenever we combine subsystems into a joint system. (In practice, the
convention is often given by a choice of coordinate systems, and/or of reference
frames, in the two subsystems.)

Prior to stipulating any such convention, there is no sense in which (q, q′)
specifies a different joint configuration from (R(g)q, q′), since q and R(g)q are
representationally equivalent. Given a choice of representational convention,
though, it is clear that applying the symmetry transformation to one system
gives rise to a different total configuration (and that this is true independent of
what the actual representational convention is). So: symmetry-related configu-
rations can be understood as representing different possible configurations if we
hold fixed the choice of representational convention.13

Introducing some metaphysical terminology: we have established, in effect,
that the intrinsic properties of a system are invariant under symmetry transfor-
mations of that system: these properties do not depend on relations with any
other systems and so representational equivalence entails equivalence of intrin-
sic properties. A subsystem-global transformation brings about a change in a
system’s extrinsic properties. And this in turn gives some insight into what we
are actually saying, physically, about a system when we establish that a certain
transformation is a symmetry: we are identifying the fact that some properties

13Thanks to Oliver Pooley for this observation.
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of the system are extrinsic properties. The relativity principle, for instance,
can be understood physically as telling us that velocity is an extrinsic property
of any system. (The idea that symmetries leave intrinsic properties unchanged
is far from new, and is often taken as definitional of a symmetry: see, e. g. ,
(Healey 2009).)

Although I have carried out this analysis at the level of configurations, it
applies mutatis mutandis at the level of states or entire histories of the system
(with the caveat in the latter case that dynamically possible histories of subsys-
tems can only be combined into dynamically possible histories of the combined
system insofar as the subsystems are non-interacting).

What if the symmetry-transformation is subsystem-local? In this case, the
transformation can be extended to a symmetry transformation which acts triv-
ially on any other systems — which is to say that the symmetry transformation
leaves invariant the intrinsic features not just of the system being transformed
but of any larger system within which that system is embedded, up to the entire
Universe, in principle. This seems to suggest that subsystem-local transforma-
tions bring about no physical change in a subsystem, and that features of the
system that are variant under a subsystem-local symmetry do not represent
physical features of that system.

As long as we are working at the level of histories, this seems correct: at
any rate, it is difficult to see what naturalistic work is being done by a no-
tion of modality that treats histories related by a subsystem-local symmetry
as physically distinct, and it is unclear how to understand the possibility of a
representational convention for the Universe as a whole which could allow us to
reconcile modal inequivalence with representational equivalence. (In metaphys-
ical terms, any new possibility would be purely haeccistic.) But matters are
much subtler if we consider applying the transformation at the level of configu-
rations (or, mutatis mutandis, states): at that level, there is a different kind of
modal question we can ask for which subsystem-local transformations do real
physical work. Namely: given that at time t the system has configuration q0,
and given two configurations q,R(g)q related by a symmetry transformation,
do these represent different configurations that the system can evolve into, or
redescriptions of the same configuration?

Here too the intrinsic/extrinsic distinction is useful. The intrinsic features of
a configuration are the symmetry-invariant features; symmetry-variant features
might be understandable as extrinsic features dependent on the relation with
configurations of other systems, or as dependent on the relation with configu-
rations of the same system at different times. If two particles are in circular
orbits around one another, for instance, the intrinsic features of the system are
time-invariant, but we can understand the system as changing either in the
sense that its orientation relative to other systems is changing, or in the sense
that its orientation at one time is different from its orientation at another.

We can get further insight into this by returning to the orbit/group analysis,
this time applied to configurations. Given a group G of dynamical configuration
symmetries, we can represent a configuration as a pair (o, g) where now o is an
orbit in configuration space (here again we suppose that we pick a representive
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point q(o) in each orbit o, so that any point can be written as gq(o) for some
(o, g)). A point in state space can then be represented as (o, g; ȯ, ġ), but this
representation does not fully separate variant from invariant features of the
state, because the quantity g−1ġ is invariant under the group action.14 The
quantity ξ = g−1ġ is called the body velocity in the physics literature, and can
be understood physically as representing the rate of change of the system’s
variant features not as measured by an external observer, but as measured by
a reference frame embedded in the system itself.

An orbit in the state space is represented by a triple (o, ȯ, ξ), comprising
the intrinsic features of the system’s configuration, the rate of change of those
intrinsic features, and the body velocity. In this notation (and continuing to
assume deterministic dynamics), section 4’s dynamical analysis can be rewritten
as

ö(t) = FO(o(t), ȯ(t), ξ(t); g(t); t) (12)

ξ̇(t) = FG(o(t), ȯ(t), ξ(t); g(t); t) (13)

ġ(t) = g(t)ξ(t) (14)

for some functions FO,FG. (In the physics literature this is known as dynami-
cal reduction, or sometimes as Marsden-Weinstein reduction; see Marsden and
Ratiu (1999) and references therein for details.)

Returning to the case of relations between configurations at different times,
notice that once we have solved the equations of motion for the intrinsic degrees
of freedom, we can go on to solve (14) to determine g(t): that solution will
have the form g(t) = h(t)g(0) where h(t) depends only on the intrinsic features
between times 0 and t. h(t) gives a dynamically determined relation between
g(0) and g(t); given g(0) and this relation, g(t) is fixed for any other time. So
the extrinsic features of the system at any time can be read off from the intrinsic
features of the system’s history and the extrinsic features at any one other time
— just as the extrinsic features of a subsystem can be read off from the intrinsic
features of the system and the extrinsic features of any other subsystem. Let’s
call extrinsic features of this kind temporally extrinsic, as distinct from the
subsystem-extrinsic features that arise from considering a system’s relation to
other systems.

(If the symmetry is discrete rather than continuous – as in the case of permu-
tation symmetry — the analysis goes slightly differently, because now ġ is not
meaningful. The configuration space can still be decomposed into orbits, but
the pairs (o, ȯ) fully describe orbits in state space and there is no body velocity.
But it remains the case that given a solution to the intrinsic dynamics, we can
determine some group element h(t) such that if g(0) represents the system’s
variant features at time 0, g(t) = h(t)g(0) represents them at time t.)

Should we regard temporally extrinsic features of a system’s state as phys-
ically meaningful? — or, put another way, are two states that differ only with

14Technical note: strictly ġ is a point in the tangent space over g, and g−1ġ is the left
translation of that point back to the tangent space over e.
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respect to their temporally extrinsic features different representations of the
same state, or representations of different possible states? The question is moot
as long as we are considering subsystem-global symmetries, because in that case,
any temporally extrinsic feature is also subsystem-extrinsic. But it is significant
when we consider subsystem-local symmetries. For instance, given a particle
permutation π, consider configuration-space trajectories q(t) and q′(t) where
for some t0 we have q(t0) = q′(t0), and for some t1, q′(t1) = πq(t1). In this case,
there will be no symmetry relating the two trajectories, and we can meaning-
fully regard q′(t1) and q(t1) as extrinsically different even though intrinsically
identical.

Should we then regard πq and q as different possible configurations? The
question seems largely conventional: it is, after all, up to us how we define
configuration space (or phase space). If we want to quotient out configuration
space (which amounts to working with unordered N -tuples of points in Eu-
clidean space) we can do that, albeit at the cost of making the topology a bit
awkward; if we want to continue working with the unquotiented configuration
space, so that points in the space represent temporally extrinsic as well as in-
trinsic features of configurations, we can do that too. The modal facts are in
any case unambiguous at the level of entire histories, so I find it difficult to
see any way of making this a matter of convention-independent fact. (We will
see in section 9 that the case for this apparent conventionality is sharpened in
quantum theory.)

To summarise our results so far:
If G is a group of non-extendible dynamical symmetries then no conclu-

sions about observational, representational, or modal equivalence follow from
the symmetry.

If G is a group of extendible dynamical symmetries then

• G-variant features of a system are unobservable from within that system.

• As a corollary, G-variant mathematical structure in a theory is surplus
and symmetry-related structures are representationally equivalent.

If in addition G is a group of subsystem-global dynamical symmetries then

• G-variant features of a system can be measured from outside that system,
but any such measurement can be reinterpreted as a measurement of a
G-invariant relation between system and measurement device.

• A symmetry transformation leaves the intrinsic features of a system in-
variant but changes its system-extrinsic features.

• Symmetry transformations bring about new possibilities.

If instead G is a group of subsystem-local dynamical symmetries then

• G-variant features of a system are unobservable
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• A symmetry transformation of an entire system (at all times) does not
bring about a new possibility, and does not change any physical features
of the system.

• A symmetry transformation of a system’s state at a given time changes
the temporally extrinsic features of the system (while leaving its intrinsic
features unchanged); it appears to be conventional whether symmetry-
related states represent different possibilities.

In the case where G contains a system-local subgroup Gloc, so that we can define
the system-global symmetry group as Ggl = G/Gloc, and define its action on the
system uniquely up to a system-local symmetry:

• Gloc-variant features of a system are unobservable; features that are Gloc-
invariant but variant under a subsystem-global symmetry can be measured
from outside that system, but any such measurement can be reinterpreted
as a measurement of a G-invariant relation between system and measure-
ment device.

• A system-local symmetry transformation of an entire system (at all times)
does not bring about a new possibility, and does not change any physical
features of the system; a system-global symmetry transformation (defined
only up to a system-local symmetry) changes its system-extrinsic features
but not its intrinsic features.

In the remainder of the paper I consider complications to this picture which
arise from more advanced examples of symmetries, due (respectively) to time-
dependent symmetries, to quantum theory, and to cosmology. The technical
level of the next three sections is significantly higher than for the rest of the
paper; they can be skipped on first reading without loss of continuity.

8 Time-dependent symmetries

Recall our original definition of a dynamical symmetry, expressed with respect
to the configuration-space formulation of classical mechanics: it is specified by a
group G and an action R of G on the configuration space Q, such that R(g)q(t)
is a dynamically possible history iff q(t) is. A time-dependent symmetry is again
specified by a group and action, but now we require that for any smooth path
g(t) in G itself, R(g(t))q(t) is dynamically possible iff q(t) is. Or put more collo-
quially : if the symmetry is time-dependent then we can apply it independently
at different times, subject only to the requirement that the symmetry group
applied changes smoothly with time. We will assume for the moment that all
elements of G are small : which is to say, each element is connected by a smooth
path to the identity e. (The significance of this requirement will emerge shortly).

If a symmetry is time-dependent, it follows that the dynamics for the theory
is (formally) indeterministic. For suppose that g(t) = e for t < t0 but g(t) 6= e
thereafter. Then if q(t) is a dynamically permissible trajectory, so is R(g(t))q(t)
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— but these two histories are identical up to time t0 but diverge afterwards. As
such, insofar as the theory’s dynamics are specified by a differential equation,
that equation must admit multiple solutions.

(For an elementary discussion of time-dependent symmetries, with examples
and references, see Wallace (2003).)

The notions of extendibility of symmetries, and of subsystem-local and
subsystem-global symmetries, generalise straightforwardly to the time-dependent
case. Generalising our analysis of measurement to indeterministic symmetries
is a little delicate since there is no unique equation of motion, but a natural
extension is to say that one system measures another if the set of possible post-
measurement values of the measuring-device state is functionally dependent on
the pre-measurement value of the target-system state. Then our previous results
again generalise: subsystem-global symmetries are measurable, subsystem-local
symmetries are not.

In practice, subsystem-locality and time dependence are closely related: to
the best of my knowledge, there are no physically relevant examples of a time-
dependent, subsystem-global symmetry group.15 (The reason, in a nutshell, is
relativity, which forces transformations of the same system at different times
to be closely related to transformations of different systems at the same time.)
The interesting case is time-dependent, subsystem-local symmetry.

Our previous analysis showed that state quantities variant under a time-
independent symmetry could always be understood as extrinsic features of the
state, representing symmetry-invariant relations either with other systems, or
with states of the same system at different times (with the latter being the
only available possibility if the symmetry was subsystem-local). In general this
understanding is not available for quantities variant under a time-dependent
symmetry: given an arbitrary g0 ∈ G, and an arbitrary time t, we can find
g(t) such that g(t0) = g0, and g(t) = e except for values of t within some
arbitrarily short distance of t0. So just as a subsystem-local transformation
of a system can be extended to a transformation that equals the identity on
any other given system, so a (small) time-dependent symmetry of a state can
be extended to a transformation that equals the identity on any other given
state. For this reason, we can usefully call elements of a small time-dependent
symmetry-group time-local.

I have already argued that when a subsystem-local transformation is applied
to an entire history, there is no good reason to regard that transformation as
bringing about a new possibility. Since any time-local transformation of a state
can be extended to a transformation of the entire history that equals the identity
except in an arbitrarily small neigbhorhood of the state, it follows directly that
time-local transformations of states also fail to give rise to new histories (and
hence the formal indeterminism associated with these symmetries does not entail
any physical indeterminism).

15The closest I know to examples are the variant theories of Newtonian mechanics developed
by Barbour and Bertotti (1982) and Saunders (2013), but (for reasons I develop in more detail
in Wallace (2019a)) neither can be interpreted as representing a subsystem of a larger system.
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We can also understand this through dynamical reduction. Given a system
with configuration-space history q(t) ' (o(t), g(t)), a time-dependent symmetry
h(t) transforms it to (o(t), h(t)g(t)) — which is to say that the symmetry-variant
part of the system’s history is completely unconstrained by the dynamics. As
a consequence, we can consistently reduce the dynamics to a dynamics on the
space of orbits, with some differential equation

ö(t) = F(o(t), ȯ(t); t). (15)

(If symmetry is the only cause of indeterminism, this equation will be determin-
istic.) So the symmetry-variant properties of a system have no dynamical effect
either on the symmetry-invariant properties, or even on the symmetry-variant
properties at later times. They are, in the fullest sense, dynamically redundant.

The requirement for symmetries to be small is doing essential work here,
as the above arguments have required us to construct smooth paths from e to
whatever group element we were considering. They fail for large symmetries
(those which cannot be so connected to the identity); two states variant un-
der a large element of a time-dependent symmetry group are not time-local,
and quantities variant under such symmetries (but invariant under the small
part of the symmetry group) can be understood as time-extrinsic just as for
time-independent symmetries. Important examples arise in non-Abelian gauge
theories (I discuss them further in Wallace (2019b); see also Teh (2016)).

All of this has a gratifyingly direct fit in the constrained Hamiltonian for-
malism (cf Earman (2003), Teh (2016), and references therein). There, the
phase-space dynamics is deterministic only up to small time-dependent symme-
tries, which are generated by the constraints; there, ‘observables’ are required
to be invariant under such symmetries (but not necessarily under large elements
of the symmetry group); there, phase-space points related by a small symmetry
are normally interpreted as physically equivalent.

9 Symmetries in quantum theory

In the Hilbert-space formulation of quantum mechanics, a dynamical symmetry
is a 1:1 transformation of Hilbert space which leaves all transition amplitudes
invariant.16 By Wigner’s theorem, any such transformation must be a unitary
or anti-unitary operator; writing it as R̂, the condition is that if Û(t; t0) is the

time evolution operator for an isolated system which has R̂ as a dynamical
symmetry, then R̂ commutes with Û(t; t0). (Any such transformation has the
property that it maps solutions to solutions, but the converse is not true. In
quantum theory, preserving solutions is too coarse a notion: we want to preserve
the full structure of transition probabilities.)

A dynamical symmetry group is then a group G together with an action
g → R̂(g) of G by means of (anti-)unitary operators, such that each R̂(g) is a

16In fact, it suffices for the transition amplitudes to be invariant up to phase. Also, and as
with the classical case, I simplify slightly by leaving out velocity boosts and time translation.
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dynamical symmetry. The notions of an extendible symmetry, and of subsystem-
global versus subsystem-local symmetries, carry over mutatis mutandis.

The analysis of sections 4-5 was extremely abstract — so abstract that it can
be carried directly over to quantum theory. So given an isolated quantum system
with a symmetry, that symmetry is unmeasurable from within the system; there
is no in-principle difficulty in measuring it from a different system, even if the
symmetry is extendible, but that measurement will always be reinterpretable
as a measurement of some relational quantity. There are, however, interesting
subtleties that arise from the richer structure of quantum theory.

To explore further, note that if a measurement is of some quantity invariant
under a symmetry, quantum-mechanically that means that the operator rep-
resenting the measurement must be invariant under the adjoint action of the
operator representing the symmetry. So given a symmetry group G with action
g → R̂(g) as above, any internally-measurable observable X̂ must satisfy

R̂(g)X̂R̂
−1

(g) = X̂ (16)

for all g ∈ G, and so given a quantum state ρ, the expectation value of that
measurement satisfies

〈X̂〉ρ ≡ Tr(X̂ρ) = Tr(R̂(g)X̂R̂
−1

(g)ρ) = Tr(X̂R̂
−1

(g)ρR̂(g)) (17)

which is to say that ρ can be replaced by R̂
−1

(g)ρR̂(g) without affecting the
result of any (internally) measurable quantity. If we now integrate over all such
group actions, using the invariant Haar measure µG

17 over G, we can define

ρG =

∫
G

dµG R̂
−1

(g)ρR̂(g) (18)

which, following Bartlett, Rudolph, and Spekkens (2007), we can call the G-
twirl of ρ. Then any measurement of ρ, provided it is physically possible and
performed within the system, is equivalent to the same measurement of ρG .

Now, recall that the action of a group on a Hilbert space can always be
decomposed into irreducible representations (irreps), so that if R̂I is the Ith
irrep and acts on Hilbert space HI , the total Hilbert space can be decomposed
as

H =
⊕
I

KI ⊗HI (19)

with G acting trivially on each KI : that is, the overall group action is

R̂(g) =
∑
I

idKI ⊗ R̂I(g) (20)

where idKI denotes the identity on K. ρG can be written in this notation as

ρG =
∑
I

ρI ⊗ idHI (21)

17Strictly this is only defined for compact G, so these results need to be treated with some
care if applied to non-compact groups such as translation.
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where ρI is a density operator on KI and now idHI is the identity on HI . As long
as we confine ourselves to internally-performable measurements, then, the quan-
tum state is empirically equivalent to a probabilistic mixture of states defined
on the G-invariant spaces KI .

In other language, all of this is to say (i) that as far as internal measure-
ments are concerned, symmetries effectively define superselection rules, and (ii)
that within each superselection sector the quantum state is represented for all
empirical purposes by one of the invariant states ρI .

As long as we are considering subsystem-global symmetries, this analysis has
largely practical consequences: it tells us that when analysing a measurement,
we can treat the symmetry as superselected with respect to the combined sys-
tem of target system plus measurement device, which interestingly constrains
what measurements are possible. A very early result in this field, the WAY
theorem (named for Wigner (1952) and Araki and Yanase (1960); see Busch
and Loveridge (2013) and references therein for modern presentations) estab-
lished that no completely sharp measurement of a quantity was possible unless
it commuted with all additive conserved quantities, and showed that the degree
of accuracy that could be obtained by an unsharp measurement depended on
the initial degree of asymmetry of the measurement device. More recent work
(see Bartlett, Rudolph, and Spekkens (2007) and references therein) has quanti-
fied this result and developed it into a general resource theory of measurements,
where the resource is the initial asymmetry. (Note the crucial role of the as-
sumption that the conserved quantity is additive, which in our terminology is
equivalent to it being extendible.)

The consequences are more dramatic for a subsystem-local symmetry, for
then our analysis entails that a superselection rule with respect to that symmetry
effectively applies to any system even as regards measurements made outside
the system. Consider permutation symmetry, for instance: no measurement,
including from outside the system, can distinguish the quantum state of N
identical particles from the state obtained by G-twirling that state. So the
system’s state is empirically equivalent to a probabilistic mixture of states each
of which transforms under some irrep of the permutation group — and which,
furthermore, is invariant under the action of that irrep. At this point, normal
physics practice would be to say that the actual system is in one or other irrep,
and the probability distribution over them represents our ignorance of the actual
irrep. In the case of permutation, the completely symmetric and completely
asymmetric irreps represent, respectively, bosonic and fermionic statistics; the
higher-dimensional, mixed-symmetry irreps represent parastatistics.

In light of these results, let us return to the discussion of section 5 on the
redundancy of subsystem-local symmetries. There I argued that it seems to
be largely conventional whether we quotient the state space of a system by a
subsystem-local symmetry: it depends whether we want the state space to rep-
resent the extrinsic relation between states at different times which differ by
the action of the symmetry, or just to represent the intrinsic properties at each
time. In quantum theory, quotienting amounts to replacing the Hilbert space
of the system with the direct sum of the invariant KI , with the additional stip-
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ulation that coherent superpositions of states in different subsystems have no
physical meaning: put another way, the actual Hilbert space of the quotiented
system is one of the KI . But given our superselection results, this is really just
the question of whether to take the state to be ρI or ρI ⊗ idHI . Even a fairly
modest structuralism in our metaphysics will make this a distinction without
a difference. (In the specific case of permutation symmetry, this underdetermi-
nation has been extensively discussed in the literature: see French (2015) and
references therein.)

What is not conventional is the fact that two quantum states at time t
which are intrinsically identical but which differ extrinsically via a symmetry
transformation can both be reached from the same quantum state at some ear-
lier (or later) time t0, and that both possibilities contribute coherently to the
overall transition amplitude. The dynamical significance of the choice of irre-
ducible representations is that it determines any relative phase factors between
the contributions. This is particularly clear if we restrict attention to Abelian
symmetries (or to Abelian representations of symmetries, such as the symmetric
or antisymmetric representations of the permutation group). Let x be some ini-
tial configuration, and let y and y′ be configurations at some later time, related
by the action of the symmetry. If we quotient out by the symmetry, y and y′

are mapped to the same point, but two trajectories x→ y and x→ y′ will not
be mapped to the same trajectory, so the action for each must be included in
the path integral — and in formulating the dynamics, we always have the possi-
bility of adding some topological phase factor to their relative contributions. If
we do not quotient out, then the two trajectories correspond to different transi-
tion amplitudes 〈x| Û |y〉 and 〈x| Û |y′〉— but because the final state transforms
under an irrep of the symmetry, it will be a coherent superposition of |y〉 and
|y′〉 with equal weight, differing only by a phase factor. So the total transition
amplitude between physical states will again involve a coherent sum of contri-
butions from the two paths — only this time, the relative phase is determined
by the particular representation (-1 for fermions, +1 for bosons, for instance).18

I end this discussion with two brief remarks in more technical areas of
physics, which may be skipped by readers unfamiliar with the relevant material.

1. The physical significance of a subsystem-local symmetry is contained (I
have argued) in the existence of inequivalent trajectories between intrin-
sically identical initial and final states, which can be understood as an
extrinsic property of those states. This takes a subtle form in the case of
identical particles in two dimensions (or in systems like thin films, which
can be approximated as two-dimensional), because two trajectories might
be topologically inequivalent not just because they differ by a particle
permutation, but because they differ in the way in which the permutation
was implemented over time: in two dimensions, trajectories often cannot

18The path-integral analysis for non-Abelian groups — for parastatistics, for instance — is
decidedly subtler, and indeed at one time (Laidlaw and Morette DeWitt 1971) it was argued
that parastatistics could not be incorporated in the path-integral formalism. See Greenberg
and Mishra (2004) and references therein for further details.
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be deformed into one another without crossing. The concrete implication
is that it is the braid group, not the permutation group, which determines
the statistics of identical particles in two dimensions: this leads to the
phenomenon of anyons. See Stern (2008) for a review.

2. In non-Abelian gauge theory (specifically, in QCD) there is a subsystem-
local (but non-small) symmetry generated by topologically non-trivial, but
boundary-vanishing, gauge transformations. These transformations form
a group isomorphic to the integers, so that we can write an element of the
group action as R̂(n), with R̂(n+m) = R̂(n)R̂(m); a state |ϕ〉 in an irrep
satisfies

Û(n) |ϕ〉 = e−inθ |ϕ〉 (22)

for some angle θ, so that the irreps are labelled by this θ, and in the
path integral, trajectories that terminate on states differing by the ac-
tion of R̂(n) pick up a relative phase factor exp inθ, which has empirical
consequences. Experiment suggests that it is equal to zero to very high ac-
curacy, and the so-called strong CP problem is the problem of identifying
why this is.

It has been argued (Fort and Gambini 1991; Healey 2010) that if we worked
in the quotiented configuration space right from the start, the strong CP
problem would dissolve; but this seems overstated. The topologically dis-
tinct paths would still contribute to the path integral and we would still
have the option of adding a θ phase term. Of course, we could decide
not to, but equally, we could decide to set θ = 0 in the non-quotiented
formalism. The real issue with θ = 0, in either formulation, is that in
quantum field theory, quantum corrections would be expected to intro-
duce a large non-zero θ term even if it is omitted initially: obtaining θ = 0
at the level of phenomenology requires a very large, and very precisely
chosen, value of θ in the bare parameters of the theory. (It is a highly
contested issue whether naturalness arguments like this should really be
seen as persuasive: I make the case that they should in Wallace (2019c).)

10 Symmetries of the whole Universe

I have argued in this paper that interpretatively there is a fundamental distinc-
tion to be drawn between symmetries based on if, and if so how, they can be
extended to other systems. But what if — as is extremely common in philo-
sophical writings — we are concerned with symmetries of the entire Universe,
in which case the distinction seems to evaporate?

I am highly tempted to dismiss this question as premature. Even in cosmol-
ogy, we are hardly ever working with a model intended to describe the entire
Universe (as opposed to, say, some large patch of it); even in quantum grav-
ity, very large additional problems occur when we move from considering some
isolated system (like a black hole) to considering the entire universe. Indeed,
at present many high-energy physicists would claim that we have a quantum
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satisfactory theory of gravity, via the AdS/CFT correspondence (and its inter-
pretation as describing a system in a box; cf discussion and references in Wallace
(2017), but there is no comparable case within that research program that we
have a quantum theory of cosmology. Modelling the whole Universe raises con-
ceptual and technical problems that do not occur in normal uses of physics and
we have very little empirical evidence to help us resolve them.

But suppose we throw caution to the winds and assume (following philosophy-
of-physics orthodoxy) that at least some of our current theories have physically-
significant interpretations in which their models are models of the whole Uni-
verse. At this point, the key result of section 4 — that no measurement internal
to a system can distinguish between symmetry-related states of that system
— applies to any dynamical symmetry. (This assumes, of course, that we are
studying a theory rich enough to represent scientists, measurements, and ob-
servations inside its own structure. Given a possible world consisting only of
two point-particles interacting via a central force, for instance, there is nothing
like the structure to permit us to model measurement, and so no conclusion
that can be drawn about what is observable. If the reader nonetheless wants to
know how to draw epistemic and/or metaphysical conclusions about that (sup-
posedly) possible world from its dynamical symmetries, they will have to do it
on their own time: I have no intuitions about the situation, and no inclination
to trust any such intuitions anyway.)

Assuming our symmetries are time-independent, the discussion in section 5
on subsystem-local symmetries now applies with equal force to subsystem-global
symmetries: in an N -particle Newtonian theory interpreted as a theory of the
whole Universe, for instance (and ignoring severe concerns about the modella-
bility of measurement in any such theory) then configurations at different times
will have a symmetry-invariant and empirically determinable relative orientation
even while the overall orientation of the system remains undetectable. But by
the same token, the considerations of that section suggest that possible histories
differing by a symmetry transformation ought to be regarded as redescriptions
of the same history; or, at any rate, if they are not to be so regarded it must be
for metaphysical, not naturalistically-motivated, reasons. (This is of course the
original context of the ‘Leibniz shift”.)

In the quantum context, this would imply that any symmetry of the whole
Universe — even a global one — ought to be regarded as defining a superse-
lection rule. Applying this to the Hamiltonian itself (i. e. , to time translation
symmetry) has radical implications for dynamics in any such universe, a problem
explored extensively in the quantum gravity literature (the classic discussion in
Page and Wootters (1983)) and related to (but distinct from) the famous ‘prob-
lem of time’.

But we may be getting ahead of ourselves, for it is not at all clear that
we should expect a truly cosmological theory to have any such symmetries.
Modern physics provides (admittedly speculative) grounds to think that global
symmetries in this sense are not exact and/or do not apply to the Universe as
a whole:
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1. The apparent exact global internal symmetries of particle physics (e.g.,
the symmetry underlying baryon-number conservation) are so-called ‘ac-
cidental’ symmetries (see, e. g. , Duncan (2012, pp.490-1)) which occur as
a consequence of renormalisability but we have no reason to expect to hold
exactly when non-renormalisable corrections to the dynamics are added.

2. Quantum gravity offers some further reasons to expect global symmetries
not to be exact: the only quantities conserved in black hole evaporation are
those associated with long-range forces, which in high-energy physics cor-
responds to those associated with asymptotic local symmetries. The lack
of exact global symmetries is also provable perturbatively in string the-
ory and can be argued for via the AdS/CFT correspondence: see Banks,
Johnson, and Shomer (2006) and references therein for details.

3. Although local gauge symmetries (and the Poincaré gauge symmetry un-
derlying general relativity, are believed to be exact, and give rise to subsystem-
global symmetries through asymptotic effects, those asymptotic effects
rely on boundary conditions ‘at infinity’, which are normally interpreted
to describe the way in which a system embeds into a larger system and
which are not applicable in cosmology. The only consistent way we cur-
rently know how to avoid such boundary conditions is to assume that
space is compact, in whch case there are no asymptotic symmetries.

In the end, I return to the caution with which I began this section: we just
do not know, reliably, how to think about theories — and, a fortiori, about sym-
metries of those theories — when the theories are genuinely being interpreted
cosmologically. Nor do we need to in order to understand the role of symmetries
in non-cosmological (i. e. , almost all) applications of our theories.

11 Conclusion

Dynamical symmetries place constraints on observability because, and to the
extent that, they apply to the physical processes by which those observations
are made. Although this implies fairly straightforwardly that symmetry-variant
properties of a system cannot be observed by measurement processes confined
to the system itself, in practice we very rarely model a measurement process
explicitly in physics, and so the implications of a symmetry of a system for obser-
vations made on that system depends on whether, and how, the symmetry can
be extended to other systems, including the measurement device. If the symme-
try cannot be so extended, it has no particular consequences for observation; if
it is subsystem-local, so that it can be extended to a symmetry which acts triv-
ially on any other system, it is unobservable; if it is subsystem-global, so that it
can be extended to a symmetry that includes the measurement device but which
does not act trivially on it, then the action of the symmetry on the system alone
has measurable consequences, but these can be reinterpreted as measurements
of the symmetry-invariant relations between system and measurement device.
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These results strongly suggest that symmetry-invariant features of a system
should be interpreted as intrinsic features, that features that are variant under
subsystem-local symmetries should be interpreted as descriptively redundant,
and that features that are invariant under subsystem-local symmetries but vari-
ant under subsystem-global symmetries should be interpreted as extrinsic fea-
tures. It follows that subsystem-local symmetry transformations should not be
regarded as bringing about different states of affairs, but that subsystem-global
symmetry transformations should be so regarded.

These various results extend, albeit with some subtleties, to the physically
important cases of time-dependent and quantum-mechanical symmetries. They
do not extend to theories which are intended to be understood as cosmological, in
which the local/global distinction collapses, but cases of this sort are extremely
unusual in physical practice and there are strong, if speculative, reasons to think
that a genuinely cosmological physical theory should have no global symmetries.
In any case, the cosmological case only strengthens the general point that nor-
mal modelling practice in physics is to treat an isolated system as modelling a
small part of a larger universe, and that the epistemology and metaphysics of
symmetry in physics is much clearer once this is properly allowed for.

The results of this paper go some way towards seeing how genuinely substan-
tive intepretative results can follow from a purely formal concept of symmetry
(and do not require us to abandon that formal concept, as is the case for some
non-dynamical definitions of symmetry). But a puzzle remains: my analysis
turns on how a symmetry can be extended beyond a system to other systems in
dynamical contact with it, and definitionally (it would seem) no formal feature
of a system’s symmetries can fix this question of extension to other systems.
If so, then once again we seem to need to make substantial interpretative as-
sumptions in order to get interpretative results from a theory’s symmetries, and
to abandon the hope of extracting such results from a formal conception of
symmetry.

This problem cannot be completely solved: nothing about a theory, in iso-
lation, can rule out the possibility that new physics, applying to new systems,
will break a symmetry of the old system once the two are dynamically coupled.
Nonetheless it is still possible to draw tentative conclusions about the extendibil-
ity of a theory’s symmetries from the theory itself, once it is recognised that (in
many cases) physical theories themselves contain rich information about their
subsystems and the restriction of symmetries to those systems. I develop this
observation in depth in the companions to the present papers (Wallace 2019a;
Wallace 2019b).
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