Skip to main content

Pitfalls in Biological Computing: Canonical and Idiosyncratic Dysfunction of Conscious Machines

Buy Article:

$23.57 + tax (Refund Policy)

The central paradigm of arti?cial intelligence is rapidly shifting toward biological models for both robotic devices and systems performing such critical tasks as network management, vehicle navigation, and process control. Here we use a recent mathematical analysis of the necessary conditions for consciousness in humans to explore likely failure modes inherent to a broad class of biologically inspired computing machines. Analogs to developmental psychopathology, in which regulatory mechanisms for consciousness fail progressively and subtly understress, and toinattentional blindness, where a narrow 'syntactic band pass' de?ned by the rate distortion manifold of conscious attention results in pathological ?xation, seem inevitable. Similar problems are likely to confront other possible architectures, although their mathematical description may be far less straightforward. Computing devices constructed on biological paradigms will inevitably lack the elaborate, but poorly understood, system of control mechanisms which has evolved over the last few hundred million years to stabilize consciousness in higher animals. This will make such machines prone to insidious degradation, and, ultimately, catastrophic failure.

Document Type: Research Article

Affiliations: The New York State Psychiatric Institute, New York, NY, USA

Publication date: 01 January 2006

  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content