CHRISTIAN WALLMANN Probability Propagation in
GERNOT D. KLEITER Generalized Inference Forms

Abstract.  Probabilistic inference forms lead from point probabilities of the premises
to interval probabilities of the conclusion. The probabilistic version of Modus Ponens, for
example, licenses the inference from P(A) = awand P(B|A) = 3 to P(B) € [af, af+1—a].
We study generalized inference forms with three or more premises. The generalized Modus
Ponens, for example, leads from P(A1) = a1,...,P(A,) = an and P(BJ|A1A---ANAy) =0
to an according interval for P(B). We present the probability intervals for the conclu-
sions of the generalized versions of Cut, Cautious Monotonicity, Modus Tollens, Bayes’
Theorem, and some SYSTEM O rules. Recently, Gilio has shown that generalized inference
forms “degrade”—more premises lead to less precise conclusions, i.e., to wider probability
intervals of the conclusion. We also study Adam’s probability preservation properties in
generalized inference forms. Special attention is devoted to zero probabilities of the con-
ditioning events. These zero probabilities often lead to different intervals in the coherence
and the Kolmogorov approach.

Keywords: Probability logic, Generalized inference forms, Degradation, Probability

preservation, Coherence.

1. Introduction

While logic studies the propagation of truth values from premises to conclu-
sions, probability logic studies the propagation of probabilities from premises
to conclusions. In probability logic Modus Ponens, for example, has the
form shown on the left hand side of Table 1. On the right hand side the
generalized probabilistic Modus Ponens is shown. In probability logic a con-
ditional A = B is represented by the “conditional event” B|A. The proba-
bilities of the premises are point probabilities. This assessment is assumed to
be coherent. Usually, the inferred probability of the conclusion is an interval
probability.
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Table 1. Probabilistic Modus Ponens with one categorical premise (left)
and generalized probabilistic Modus Ponens with n categorical premises

(right)
P(El) = 1
P(B) = a P(E.) = an
P(H|E) = P(H|Ey A+ N Eyp) = By
P(H) € ]d, } P(H) € [0,,,05]

Below we study, for different generalized inference forms, the behavior of
the interval [0],, 0,/] for an increasing number n of premises. We review results
recently obtained for generalized probabilistic inference forms [6,10,14,15].
In these inference forms a degradation is observed. The width of the probabil-
ity interval of the conclusion increases as the number n of premises increases.
Thus, more premises lead to less precise conclusions. Figure 1 shows a numer-
ical example for the degradation of Modus Ponens. In most inference forms
even an “ultimate” degradation occurs: Already after the addition of a small
number of premises, the interval of the conclusion becomes the non-informa-

tive interval [0, 1]. This is a consequence of the fact, that already for small
n the lower bound of the conjunction P( /\ E;) may be zero.

Because the lower bound of the conJunctlon probability—even for a rela-
tive small number of conjuncts—becomes zero, the conditioning events may
have zero probabilities. However, in the Kolmogorov approach conditional
probability is undefined in this case. The Kolmogorov approach is therefore
not appropriate to investigate generalized inference forms. The case where
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Figure 1. Degradation of Modus Ponens: lower (o) and upper (O)
bounds of P(H) (on the y-azes) for increasing numbers of categori-
cal premises n (on the z-azes); premise probabilities P(E;) = 0.8, for
i=1,...,8 and P(H| \ E;) =05
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the conditioning event has zero probability can, however, be treated in the
coherence approach of de Finetti [4]. As a consequence, the Kolmogorov
and the coherence approach lead to different interval probabilities for the
conclusion of generalized inference forms.

As already mentioned, in many generalized inference forms the interval
for the conclusion is getting wider as the number of premises increases and
the interval [0, 1] is obtained after a certain number of premises is added.
In probabilistically valid inference forms, however, the probability of the
premises of an inference form is preserved to its conclusion. Are generalized
inference forms consequently probabilistically invalid? Different inference
forms preserve the probability of its premises to its conclusion to different
degrees. Adams distinguished four preservation properties [1]. Each of these
preservation properties determines a consequence operation. An inference
form is valid with respect to such a consequence operation, if and only if, it
satisfies the corresponding preservation property. We can establish whether
an inference form satisfies a preservation property by considering the lower
probability of its conclusion. Well-known examples are SYSTEM P [11], which
is associated with probability one-preservation and SYsTEM O [8,9], which
is closely connected with minimum probability preservation. Modus Ponens,
for instance, is probability one preserving and consequently SYSTEM P valid.
This can immediately be seen by considering the lower bound of the interval
of the conclusion of Modus Ponens. If P(A) = a =1 and P(BJ|A) = =1,
then P(B) > af = 1. It is important to note that, since they yield differ-
ent intervals for the conclusion of inference forms, the Kolmogorov and the
coherence approach validate different inference forms.

2. Coherent Conditional Probability

For the treatment of conditioning events with zero probabilities in general-
ized inference forms, we employ the coherence approach of probability theory
[3,4]. While in the Kolmogorov approach conditional probability is defined
by a ratio of two (unconditional) probabilities, it is a primitive concept in
the coherence approach.

Let L be a Boolean algebra (i.e., L is closed under —, A, V), let = denote
the classical consequence operation and let T be the sure event.

DEFINITION 1. A mapping P : L — [0,1] is a (finitely additive) one-place
probability function iff for all A, B € L

1. P(T) =1,
2. P(AV B) = P(A) + P(B), if = —(AAB).
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DEFINITION 2. Let P’ : L — [0,1] be a one-place probability function and
To={B € L: P'(B) # 0}. A mapping P : L x Ty — [0,1] is the (finitely
additive) Kolmogorov conditional probability associated with P’ iff for all
AecLand BeT,
P'(ANB)

P'(B)

For every Kolmogorov conditional probability, if P(B) = P(B|T) =
P'(B) = 0, then P(A|B) is undefined. The coherence approach does not
exclude the case of zero probability of the conditioning event.

Let L be a Boolean algebra, T' C L such that T is closed under disjunction
and T° =T\ {A € T : A inconsistent} be a set of conditioning events.

P(A|B) =

DEFINITION 3. A mapping P : L x T° — [0,1] is a (finitely additive) condi-
tional probability on L x TV iff

1. P(H|H) =1, for every H € T",

2. P(-|H) is a (one-place) probability function on L for every H € T,

3. P(ENA|H) = P(E|H)P(A|(EANH)), for AJE € L,H ENH € T°. (see,
e.g., [3])

Let L', T’ be arbitrary sets of events.

DEFINITION 4. A mapping P : L' x T — [0,1] is coherent iff there exist
a Boolean algebra L O L’ and a set T' C L closed under disjunction with
T" C T? such that P can be extended to a conditional probability on L x T°.

There are several advantages of the coherence approach. First, in the Kol-
P}’?g?) . Knowledge of the marginal
probabilities P(A A B) and P(B), however, is not required to assess con-
ditional probabilities in the coherence approach [3]. Second, while in the
Kolmogorov approach P(A|B) is undefined if P(B) = 0, in the coherence
approach conditioning on (consistent) events with zero probability is possi-
ble. P(-|B) is a one-place probability function even if P(B) = 0. As a con-
sequence, for instance, probability one can be updated in the light of events
with zero probability, i.e., it is not necessarily the case that P(A|B) = 1, if
P(A) =1 [3].

The interval of the coherent probability values for the conclusion of an
inference form can be determined by solving sequences of linear systems.
This is the content of Theorem 5 below which provides an alternative char-
acterization of coherence [3, p. 81]. Let P(E4|Hy), ..., P(E,|H,) be a prob-
ability assessment. If H; = T, then we write P(FE;) instead of P(E;|H;).

mogorov approach, P(A|B) is defined by
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Table 2. Constituents C1,...,Cs and their probabilities x1,...,zs for
n = 3 events

Ch Co Cs Cy Cs Ce Cy Csy Probability

FE 1 1 1 1 0 0 0 0 1+ xo+ T3+ T4
F 1 1 0 0 1 1 0 0 r1 + X2 + x5 + Te
G 1 0 1 0 1 0 1 0 1 +x3+ x5 + X7
P(CZ) X1 i) xrs3 T4 X5 Te X7 xrs

A possible outcome or a constituent is a logically consistent conjunction of
the form +FE; A -+ A+£E, AN+Hy A--- N £H,,, where £A € {A4,-A} for
all events A. If the 2n events are logically independent, then there are 22"
constituents C1, ..., Cy2.. The probability of an event F is the sum of the
probabilities of the constituents C,. verifying it, i.e., C,. = E. Table 2 shows
our notation in the case of three events F, F, G.

THEOREM 5. (Coletti and Scozzafava [3, p. 81, Theorem 4]) An assessment
P(E1|Hy), ..., P(E,|Hy,) is coherent iff there exists a sequence of compat-
ible systems, with unknowns z¢ > 0,

>, xy=P(ElH;) > a7
Cr':Ei/\H-; Cr|:Hi
Sa=19lif Y 2¢7t'=0,a>1| (i=1,...,n)
CrEH;
ooz =1
Cr=H§

with o = 0,1,...,k < n, where H) = Hy V ---V H,, and HY denotes, for

a > 1, the union of the H; such that Y, z% ' =0.
ChEH,;

Let P be a coherent extension of the assessment P(E1|H4),. .., P(E,|Hy).
Then any given solution (z) of the System S, can be interpreted as a coher-
ent extension of the initial assessment to the family {C,|H§ : C, = H§'} [2].

To improve readability, we write x; instead of 2? and y; instead of z}.

ExaMpPLE 1. Consider for example Predictive Inference. The premises are
P(E) =, P(F) =, P(G) =s.

If P(EAF) = x4+ x2 > 0, then we obtain the lower (upper) bound for the
predictive probability P(G|EAF') by minimizing (maximizing) the objective

. -
function 7173, n the system So
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x1+$2+x3+x4:'yl
T1+ T2+ Ts5 + T = Y2
$1+$3+$5+.§U7:’}/3

P(G’E/\ F)($1 + (KQ) =T

8
i=1
Solving the linear system shows that
-2
P(GIENF) € [max{0,71+72+73 }, min{l,%}].
Y1 t+72 —1 Y1t+72 —1

If P(EAF)=xz1+x3 =0, then H} in Theorem 5 is E A F. The system &
is consequently given by

P(GIENF)(y1 +y2) =
yit+y2=1, w1, y22>0.

Solving Sy shows that, if P(EAF) = 0, then P(G|EAF') can attain any value
in [0, 1]. Note that in the Kolmogorov approach no corresponding result is
obtained as in this case P(G|E A F) is undefined.

3. Probability Intervals for Generalized Inference Forms

In this section, we collect results for probabilistic versions of important gen-
eralized inference forms [6,14]. We analyze these inference forms with respect
to degradation. If some of the conditioning events have zero probability,
we often obtain different intervals for the coherence and the Kolmogorov
approach. In the coherence approach a proper treatment of this case is pos-
sible, so that the probability of the conclusion is always a closed interval. In
the Kolmogorov approach, we obtain in many cases half-open, open, or no
intervals at all.

For the remainder of the paper, we suppose that P is a coherent condi-
tional probability.

3.1. And Rule
THEOREM 6. If P(E;|H) = «, fori=1,...,n, then

P </\ EJH) € [max{o, Zai —(n— 1)} , min{ai}]
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The lower bound of P( /\ E;|H) is less than or equal to that of P( /\ E;|H).

Equality holds for lower bounds greater than zero if and only if P(E. nt1 |H) =

Q41 = 1. Moreover, if n > Z a; + 1, then the lower bound of P( /\ E;|H)
=1 =1
is 0. We shall soon see that these properties of the conjunction cause the

degradation of many other inferences.
3.2. Cautious Monotonicity

The generalized version of SYSTEM P rule Cautious Monotonicity is given by

THEOREM 7. (Gilio [6]) If P(E;|Ey) =, fori=1,...,n+1, then
P(E,1|Eo NELN---NEy) € [Y,7"], with

( "il a;—n n
max } 0, w=+— if Yai—(n—-1)>0
,}// = > ai—(n—1) i=1
i=1
0 if Y ai—(n—-1)<0
\ i=1
min ¢ 1 do=d if Y a;—(n—1)>0
7// _ > ai—(n—1) i=1
n
1 if > oi—(n—1)<0
\ =1

REMARK 8. Suppose that a,+1 < 1. If P is a Kolmogorov probability and
Z a;—(n—1) <0, then the upper bound 1 cannot be attained. P(E,,11|EoA
E1 A---ANE,)=1,if and only if, P(Eg AE1A---ANEyp) = P(EgANE1 A--- A\

E,, A E,4+1). This requires that P(Eg A E1 A -+ A E,) = 0 and hence that
P(En+1|EO VAN E1 VANREEAN En) is undefined.

Cautious Monotonicity degrades. As the number of premises increases,
the width of the interval of the conclusion increases. Furthermore, if n >
n
Z o; + 1, then P(En+1‘E0 AN E1 VANEEIWAN En) € [0, 1]
i=1

3.3. Cut

The generalized version of SYSTEM P rule Cut is given by the following the-
orem. The interval of the conclusion strongly depends on the lower bound

n
o, for the conjunction P( A\ E;|Ep).
i=0
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THEOREM 9. (Gilio [6]) If P(E;|Ey) = oy, for i = 1,...,n, and
P(H\ A E) — 3, then
=0

P(H|Ey) € [Bon, Bon+1— 0y, with

Un—max{O Zaz n—l}

REMARK 10 If P is a Kolmogorov probablhty, then the bounds are the
same for Zal (n—1) > 0. However, 1f20¢Z (n—1)<0and 0 < <1,

then the 1nterval for P(H ]EO) is the open mterval (0,1). The value 0 (resp.
1) would require that P< A Ei]E()) = 0 as the following equation shows

=1

P(H|Eg)= (Hy /n\ E) P (Z\l EZ-|E0> +P <H|ﬁ/_n\1E) P <ﬁ Z\l Ei|E0> :

n

Therefore, P( A EZ> = P( A Ei]E())P(Eg) = 0 and hence P<H| A EZ)
i=0 i=1 i=0
is undefined.

Cut degrades. The width of the interval for P(H|Ep) increases as the
number of premises increases. This follows from the facts that its width is
1 — 0, and that o, is monotonically decreasing. The width of the interval
1 — 0, depends on the lower bound of the conjunction, i.e., o,. Since this
n

lower bound is zero if n > > «a; + 1, the interval for P(H|Ey) is the unit
i=1

interval if the number of premises is sufficiently high.

3.4. Bayes’ Theorem

Suppose that the prior probability of a certain hypothesis P(H) = 4, the
likelihood of the data given both, the hypothesis H, P(D|H) = 3, and the
alternative hypothesis ~H, P(D|-H) = ~, are given. The posterior proba-
bility of the hypothesis H given the data D is obtained, if P(D) > 0, by
Bayes’ Theorem P(H|D) = #(15) The premises of generalized Bayes’
Theorem are P(H) = 6, P(E |H) = p1,...,P(EL|H) = B, P(E1|-H) =
Y1, ..., P(En|mH) = v,. In inferential statistics it is often assumed that the
FE;’s are independent and identically distributed. We do neither require con-
ditional independence of the E;’s given H nor do we require that P(F;|H) =
P(E;|H) for i # j. The conclusion of the generalized Bayes’ Theorem is
P(H|E1 N+ N Ey).
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THEOREM 11. (Wallmann & Kleiter [14], lower bound) Let P(H) = ¢ and
let for alli=1,...,n, P(E;|H) = 3; and P(E;|-H) = ;. Then:

5<i @-—(n—l))

5 <§ B — (n— 1)) £ (-8 minfr)

o If&(iﬁi—(n—l)) > 0, then

M=

1

PH|ELA---NEy) >

M=

o Ifo(> Bi—(n—1)) <0, then P(H|E1 N---NE,) > 0.

i=1

THEOREM 12. (Wallmann & Kleiter [14], upper bound) Let P(H) = ¢ and
let for alli=1,...,n, P(E;|H) = 3; and P(E;|-H) = ~;. Then:
o I (1—8)(3 7 — (n—1)) >0, then
i=1

d min{f;}
win{s} +(1-9) (£ - (0 1)

PH|E A+ ANEy) <

n

o If(1—=6)(>.vi—(n—1)) <0, then P(H|E1 N---NE,) <1.

i=1

Bayes’ Theorem does not degrade (for a counter-example see [14]). How-

ever, if n > max{Zﬂi—i-l,Z%—kl}, then >> 8; — (n — 1) < 0 and
i=1 i=1 i=1

> vi—(n—1) <0, so that the interval [0, 1] is obtained. There are two spe-
i=1

cial cases in which Bayes’ Theorem degrades. First, if identical likelihoods
B; = ( and 7; = v are assumed. Second, if the values ~; € [0,1] are not
specified.

3.5. Modus Tollens

Modus Tollens is the inference from {—B, A = B} to the conclusion —A.
The result for probabilistic Modus Tollens with two premises within the
Kolmogorov approach has been derived in [13]. Generalized Modus Tollens
is given by
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THEOREM 13. (Wallmann & Kleiter [14]) If P(—E;) = «;, fori=1,...,n,
and if P(Ey NEy A\ -+- N E,|H) = 3, then P(—~H) € [0',1], with

*

1—1*; if of+B3>1
.iai n
5 — 1—1Tiﬁ if a*4+p<1 and > a;+p0<1
i=1
n
0 if «*+p<1 and > a;+pB>1,
i=1

where a* = max{a;}.

REMARK 14. If P is a Kolmogorov probability, then the upper bound 1
is never correct. Since if P(—H) = 1, then P(H) = 0 and consequently
P(Ey NEy A --- N E,|H) is undefined. Within the coherence approach an
assessment of probability 1 to both premises of Modus Tollens is perfectly
alright and leads to probability 1 of the conclusion. A Kolmogorov proba-
bility such that P(—-B) = 1 and P(B|A) = 1, however, does not exist. If
P(=B) =1, then P(A) = 0, and hence P(B|A) is undefined—a contradic-
tion.

Modus Tollens is special because if o* + 3 > 1, then the interval of
its conclusion does not depend on the number of premises n. However, if
a*+ 3 < 1, then it does depend on n. Modus Tollens does not degrade. More-
over, contrary to the other inferences considered so far, the unit interval is
not necessarily obtained if the number of premises is large.

3.5.1. Exclusive-Or. SYSTEM O is weaker than SYSTEM P [8,9]. It con-

tains weaker forms of the rules And and Or, Weak-And (Wand) and Weak-Or

(Wor). Wor is SYSTEM O equivalent with the rule Exclusive-Or (Xor).
Exclusive-Or is the following rule

IfA=C, B=C, and = ~(AAB), then AV B = C.

The generalized probabilistic version is given by

THEOREM 15. If P(H|E;) = oy, fori =1,...,n and = =(E; A\ Ej), for
1<i<j<n, then

P(H|E;V---V E,) € min{a; }, max{«;}].
PROOF. If |= —(E; A E;), then P(H|E, V-V E,)=

=PHANEELV---VE,)+---+PHANELELV---VE,)
= P(H|E,)P(E |FA V-V E,) 4+ P(H|E,)P(E,|E1V---V E,).
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Setting if o; = min{a;} (resp. oy = max{«;}), P(E;|E1V---V E,) =1
yields the lower (resp. upper) probability for the conclusion.

REMARK 16. In the Kolmogorov approach, if for some %,j a; # o, we
obtain the open interval (min{«;}, max{a;}). In this case we cannot set for
some i P(E;|EqV ---V E,) =1, because then P(E;) = 0 for all j # i and
consequently P(H|E;) is undefined.

Xor does degrade. However, the interval [0, 1] is not necessarily obtained
after addition of a certain number of premises.

4. Probabilistic Validity of Generalized Inference Forms

The key question of this section is whether a certain generalized infer-
ence form satisfies one of the probability preservation properties below.
The question can be answered by considering the lower bound of the inter-
vals obtained in Section 3. The Kolmogorov approach and the coherence
approach often yield different lower bounds. As a consequence, an inference
form may satisfy a preservation property relative to one of the approaches
while it does not satisfy it with respect to the other approach.

4.1. Preservation Properties
Adams considered four preservation properties [1, p. 1].

1. Certainty-preservation If the premises of an inference form have proba-
bility 1, then its conclusion has probability 1.

2. High probability-preservation If the premises are highly probable, then
the conclusion is highly probable, i.e., for all > 0 there exists ¢ > 0 such
that: If for every premise A it is P(A) > 1 — ¢, then for the conclusion
C' it holds that P(C) > 0.

3. Positive probability-preservation If the premises have positive probabil-
ity, then the conclusion has positive probability.

4. Minimum probability-preservation The probability of the conclusion is
at least as high as the minimum of the probabilities of the premises. Or
equivalently: For all thresholds r: If the probability of each premise is
at least r, then the probability of the conclusion is at least r.

The preservation properties above are ordered by strictness. The chain
of implications 4 = 3 = 2 = 1 holds. However, neither of the converse
implications is true.
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Consider for example Modus Ponens. If P(B|A) =  and P(A) = «, then
the interval for P(B) is [af,af + 1 — a]. Modus Ponens {A = B, A} -. B
is consequently

1. Certainty preserving: If « =1 and § =1, then a8 = 1.

2. High probability preserving: For P(H) > 6, choose 1 — € = /4.
3. Positive probability preserving: If a > 0 and g > 0, then o3 > 0.
4.

Not minimum preserving: In general, it is not the case that af >

min{a, G}.

4.2. Certainty-Preservation and High Probability-Preservation

It is important that, while in the Kolmogorov approach high probability
and certainty-preservation differ, they are, given the assumption of p-con-
sistent premises, equivalent in the coherence approach [5,7]. We call a set
of premises {A1,...,A,} p-consistent iff the assessment P(A;) = - - =
P(A,) =1 is coherent.

THEOREM 17. Suppose that { A1, ..., A} is p-consistent. Then the inference
from {A1,..., Ay} to C is in the coherence approach certainty preserving iff
it is high probability preserving.

REMARK 18. In the coherence approach an inference form has been called
SysTEM P valid iff its premises are p-consistent and it is high probability
preserving [5]. Contrary to other approaches, System P validity therefore
requires p-consistent premises. We mention three such approaches. Adams
[1] works with the default assumption: If P(A) = 0, then P(B|A) = 1 for all
B. Hawthorne uses Popper functions. With respect to Popper functions cer-
tainty and high probability-preservation are, even without the assumption
of p-consistent premises, equivalent [8]. Hawthorne and Makinson [9] employ
Kolmogorov probability functions. In Section 4.4, we discuss the inference
form Weak-And. It is SYSTEM P valid with respect to these approaches, but
not with respect to the coherence approach.

The inference from B to A = B is, for example, relative to the Kolmogo-
rov approach certainty preserving but not high probability preserving. In
the coherence approach this inference form is not high probability preserv-
ing and therefore, because { B} is p-consistent, not certainty preserving.

The inference forms of Section 3 are certainty preserving relative to the
coherence approach. This is immediately obtained by considering the lower
bound of their conclusion. Consequently, if their premises are p-consistent,
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these inference forms are already known to be high probability preserving
in the coherence approach.

To show that an inference form is high probability preserving with respect
to the coherence approach, we can alternatively determine for every proba-
bility of the conclusion ¢ a “high” probability 1—e for the premises, such that
this probability assessment guarantees that the probability of the conclusion
is at least 0. A suitable € can be determined by considering the intervals given
in Section 3. Consider, for example, Modus Tollens. Let ¢ > 0. In order that

P(C) > 4, the lower bound of P(C), i.e., 1 — 17;*’ may not be less than 4.

Therefore, we solve
1—(1—¢)
-~ 7>
1—c¢ -
for € and obtain 1 — e > 2—;. A suitable € for the other inference forms can
be determined by the same method. We have

1—

THEOREM 19. Let P be a coherent conditional probability. All inference
forms of Section 3 with p-consistent premises are certainty preserving and
(consequently) high probability preserving.

REMARK 20. Although generalized inference forms remain high probabil-
ity preserving, degradation has a striking consequence. In order to obtain
that the probability of the conclusion is at least d, ¢ is clearly decreasing
with increasing n. Since the lower probability of the conclusion decreases as
the number of premises increases, for a high probability of the conclusion a
higher probability of the premises is necessary with increasing n.

4.3. Positive Probability-Preservation

For n > 2 premises high probability preservation differs significantly from
positive probability preservation. While all of the generalized inference forms
considered in Section 3 are high probability preserving, none of them—with
the exception of Xor—is positive probability preserving. As already pointed
out, in the case of And, Cautious Monotonicity, Cut, and Bayes’ Theorem
the lower bound of the conclusion is zero if the number of premises n is
sufficiently high.

Moreover, in contrast to their generalizations, some of the inference forms
are positive probability preserving. Cut and Bayes’ Theorem are positive
probability preserving for n = 1. If the sum of the probabilities of the two
premises is different from one, then Modus Tollens is also positive probabil-
ity preserving.
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THEOREM 21. If P is a coherent conditional probability, then the gener-
alizations of And, Cautious Monotonicity, Cut, Modus Tollens and Bayes’
Theorem are not positive probability preserving. Generalized Xor is positive
probability preserving.

The Kolmogorov and the coherence approach validate different inference
forms. In the Kolmogorov approach generalized Cut, for instance, is positive
probability preserving, while this is not the case in the coherence approach.

4.4. Minimum Probability-Preservation

Positive probability preservation and minimum probability preservation dif-
fer. Contrary to positive probability preservation, Cut with two premises is,
for example, not minimum probability preserving. SYSTEM O is closely con-
nected with minimum probability preservation (for a description of SYSTEM
O see [8,9]). All its inference forms are minimum probability preserving.
The converse, however, is not true.

The generalization of Xor is minimum probability preserving.

THEOREM 22. Let P be a coherent or a Kolmogorov conditional probability.
Then generalized Xor is minimum probability preserving.

The SYSTEM O rule Weak-And (Wand) is given by
IfAN-B= Band A= C, then A= BAC.

Wand is central to SYSTEM O and minimum preserving in the Kolmogo-
rov approach. However, a positive probability assessment to A A =B = B
is incoherent. Hence, from the point of view of coherence, SYSTEM O is not
satisfactory.

THEOREM 23. For every probability assessment P P(B|AAN-B) > 0 is inco-
herent. In particular, {A N -B = B, A = C} is not p-consistent.

PROOF. If P is a coherent probability assessment, then P(B|A A =B) +
P(~B|A A -B) = 1. Since P(~B|AA~B) =1, P(B|AA ~B) = 0. o

REMARK 24. The premises of Wand are not p-consistent. As a consequence
Wand is not SYSTEM P valid in the coherence approach (compare Remark
18). In other approaches p-consistency of the premises is not required for
SYSTEM P validity (compare Remark 18). Consequently, since And is Sys-
TEM P valid, and Wand is a special case of And, Wand is SYSTEM P valid
in these approaches.
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If P(B|AAN=B) > 0, we can conclude in the Kolmogorov framework, that
P(A N -B) =0 and hence that P(B|A A =B) is undefined. Hence, there is
no Kolmogorov probability such that P(B|A A —B) > 0.

5. Conclusions

We have seen that Cautious Monotonicity, Cut, and Exclusive-Or clearly
degrade, and that Bayes’ Theorem (with some exceptions) and Modus
Tollens do not degrade. Moreover, in all the inference forms considered—
with the exception of Modus Tollens and Exclusive-Or—the unit interval is
obtained even with a “small” number of premises. Narrow intervals may be
considered to be better than wide intervals; a more complete knowledge base
may be considered to be better than a truncated one [12]. While in general
the number of premises and the precision of the conclusion may conflict, in
generalized inference forms they often must conflict.

Degradation does not conflict with the property of monotonicity, but its
consequences for information seeking cannot be ignored. On the one hand,
the principle of total evidence leads to the selection of the most “recent”
interval based on the most specific information. This yields wide intervals,
and in many cases even the non-informative [0,1] interval. On the other
hand, a take-the-best strategy leads to the selection of the tightest interval.
The according interval is based on the seemingly most “relevant” informa-
tion with n = 1. Since all additional premises are discarded, it would be
counterproductive to seek further information, because it would simply be
useless.

Degradation is neither “good” nor “bad”. To solve the conflict between
precision and specificity requires to counterbalance (i) the width of an inter-
val, (ii) the amount of information it is based upon, and (iii) the position
of the interval. The choice depends on pragmatic conditions. An answer to
the question which interval should rationally be selected seems to lie outside
the domain of probability theory.

It might be supposed that degradation disappears if further constraints
are added to the premises. In many cases stochastic independence, for
example, leads to point probabilities of the conclusions. Though often pre-
supposed, independence may be a constraint that is too strong. Exchange-
ability is a related but much weaker assumption. We have shown that in
many generalized inference forms exchangeability does not prevent degra-
dation [15].
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In general, degradation does not make generalized inference forms prob-
abilistically invalid. Each of the inference forms considered in this contri-
bution is high probability preserving. As already pointed out, the lower
probability of the conclusion is often zero if the number of premises is large.
Therefore, all of the inference forms—with exception of Exclusive-Or—are
not positive probability preserving.
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