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Abstract

I give a fairly systematic and thorough presentation of the case for re-
garding black holes as thermodynamic systems in the fullest sense, aimed
at students and non-specialists and not presuming advanced knowledge
of quantum gravity. I pay particular attention to (i) the availability in
classical black hole thermodynamics of a well-defined notion of adiabatic
intervention; (ii) the power of the membrane paradigm to make black hole
thermodynamics precise and to extend it to local-equilibrium contexts;
(iii) the central role of Hawking radiation in permitting black holes to be
in thermal contact with one another; (iv) the wide range of routes by which
Hawking radiation can be derived and its back-reaction on the black hole
calculated; (v) the interpretation of Hawking radiation close to the black
hole as a gravitationally bound thermal atmosphere. In an appendix I
discuss recent criticisms of black hole thermodynamics by Dougherty and
Callender. This paper confines its attention to the thermodynamics of
black holes; a sequel will consider their statistical mechanics.

1 Introduction

Black hole thermodynamics (BHT) is perhaps the most striking and unexpected
development in the theoretical physics of the last forty years. It combines the
three main areas of ‘fundamental’ theoretical physics — quantum theory, general
relativity, and thermal physics — and it offers a conceptual testing ground
for quantum gravity that might be the nearest that field has to experimental
evidence. Yet BHT itself relies almost entirely on theoretical arguments, and its
most celebrated result — Hawking’s argument that black holes emit radiation
— has no direct empirical support and little prospect of getting any. So to
outsiders — to physicists in other disciplines, or to philosophers of science — the
community’s confidence in BHT can seem surprising, or even suspicious. Can
we really be so confident of anything without any grounding in observation?
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In this article, and its sequel, I want to lay out as carefully and thoroughly
as I can the theoretical evidence for BHT. It is written with the zeal of the
convert: I began this project sharing at least some of the outsiders’ scepticism,
and became persuaded that the evidence is enormously strong both that black
holes are thermodynamical systems in the fullest sense of the word, and that
their thermodynamic behaviour has a statistical-mechanical underpinning in
quantum gravity (and, as a consequence, that black hole evaporation is a unitary
process not different in kind from the cooling of other hot systems, and that it
involves no fundamental loss of information).

There are of course many reviews of this material. But those I know either
(i) take for granted the main results of BHT, moving quickly over established
material to get students up to speed with the research frontier; (ii) are explicitly
historical, which illuminates how the community in fact came to accept BHT
but can obscure the logic of whether and why they should have accepted it,
or (iii) are written at a very high level of mathematical rigor, so high that a
large fraction of the literature has to be omitted. I hope this paper will be
complementary to extant material. With few exceptions, I present and describe
results without going into the details of their derivation, and the student who
wishes to properly understand the topic will need to read this paper in parallel
with some of the extant review literature. My starting points (for this part
of the paper) were Harlow (2016), Jacobson (1996, 2005), Thorne, Price, and
Macdonald (1986), and Wald (1994, 2001).

A note on mathematical rigor: the tendency in foundational work on this
subject (see, e.g., Belot, Earman, and Ruetsche (1999) and Earman (2011))
has been to work at the level of rigor typical in mathematical physics, where all
results are stated exactly and proved rigorously. This is much higher than the
standard in theoretical physics more generally; it has the advantage of reliability,
but the disadvantage that a very large fraction of the literature must be elided —
especially in a frontier area like this, where the underlying physical principles are
unclear and the mathematical framework partial and under active development.
And the case for BHT — as will become apparent throughout this paper and,
even more so, its sequel — rests not so much on individual results that have
been established with full precision and rigor, but on the many independent
calculations with different premises and approximation schemes that all lead to
the same result. So this paper is written at the theoretical-physics level; I hope
that readers who prefer their mathematics more precise will at least get a sense
as to why the community takes BHT so seriously, even if they are not persuaded
themselves.

This is a large topic, too large for any one paper. In this paper I confine
my attention to phenomenological thermodynamics, setting aside any consid-
erations of statistical-mechanical underpinnings for that thermodynamics. In
Wallace (2017a) I consider the progress made in calculating the thermodynam-
ical properties of black holes via statistical mechanics (in effective-field theory
quantum gravity, in string theory, and via the AdS/CFT correspondence). And
in Wallace (2017c) I use these two papers as a starting point to review and
assess the notorious information-loss parador which has motivated a large part



of the critical attention paid to BHT.

The structure of the paper is as follows. I begin in section 2 by briefly
reviewing classical thermodynamics, and discussing how it is modified for self-
gravitating systems: to see whether black holes are thermodynamical, we need to
be clear what thermodynamics is in the first place. In section 3 I consider classi-
cal black hole thermodynamics, arguing that while black holes offer a strikingly
good realisation of the principles of thermodynamics when regarded as isolated
systems, they completely fail to do so when considered as components of a larger
system. In section 4 I show how including the implications of quantum field the-
ory, in particular (though not exclusively) the Hawking effect, entirely remove
this limitation; I also review the strength of the evidence for the Hawking effect
itself, and the related but logically stronger claim that Hawking radiation leads
to black hole evaporation. In an appendix, I address the arguments of a recent
paper by Dougherty and Callender (2016) which criticises BHT (that paper was
one trigger for my writing this paper, but engaging with its arguments in the
main text would complicate my structure unhelpfully).

I assume some familiarity with classical general relativity (in particular the
Schwarzschild solution) and classical thermodynamics (and I quote standard
results from both fields without explicit references); a little prior exposure to
quantum field theory would also be helpful in section 4. Except where explicitly
noted, I adopt units where G =h=c=kpg = 1.

2 Thermodynamics and statistical mechanics: a
brief review

Without any pretension to historical accuracy, complete precision or logical in-
dependence, we can break the salient parts of equilibrium thermodynamics into
three: equilibrium and equilibration; the First and Second Laws for individual
systems; interactions between multiple systems. I discuss each in turn; I then
briefly consider the generalisation of equilibrium thermodynamics to local ther-
mal equilibrium, and the subtleties introduced by gravitation. For this paper
I do not need, and do not discuss, the statistical-mechanical underpinnings of
thermodynamics.

2.1 Equilibrium and equilibration

A thermodynamic system has a family of equilibrium states parametrised by
the energy and by a (usually small) number of additional conserved quantities
and/or external constraints. If the system is in the equilibrium state corre-
sponding to its constraints and conserved quantities, it remains in that state;
if it is not, it equilibrates, evolving towards that state and reaching it, to any
given degree of accuracy, after a finite time (Brown and Uffink (2001) refer to
this equilibration principle as the Minus First Law of Thermodynamics). The
work done by such a process is defined as the change in the system’s energy,



and (by conservation of energy) is then equal to the energy cost to the external
agent.

For instance, for a box of gas (of some fixed kind of particle) the exter-
nal constraint is the volume of the box, and the conserved quantities are the
energy, the number of particles, and in principle the momentum and angular
momentum. In general we assume a nonrotating box and study it in its rest
frame, and/or assume that the box is so massive not to be affected by particle
collisions, so that momentum and angular momentum may be neglected and
‘energy’ and ‘internal energy’ can be identified; often we also take the particle
number as fixed and do not include it explicitly as a variable.

2.2 The First and Second Laws for individual systems

Given an isolated thermodynamic system, an adiabatic transformation of that
system is some operation performed on the system, starting at equilibrium, that
transforms its state to another equilibrium state without coupling it nontrivially
to other thermodynamics systems. Any such transformation can be thought of
as a change to the external constraints and conserved quantities of the system
via some external force; paradigm examples include expanding or compressing
a gas, or putting a non-rotating system into rotation.

Only some such changes are physically possible by means of adiabatic trans-
formations. Specifically, if the system’s equilibrium states are parameterised
by energy U and conserved quantities/external constraints X;, there exists a
function S(U, X1, ... Xn), called the entropy of the system (and hence defined,
as far as thermodynamics is concerned, only at equilibrium), such that S is
non-decreasing under any adiabatic transformation. This entropy non-decrease
law is one form of the Second Law of Thermodynamics.

Adiabatic transformations can then be broken into three categories: re-
versible transformations, which leave S unchanged; irreversible transformations,
which increase S, and thermodynamically forbidden transformations, which de-
crease S. It is generally the case that all reversible and irreversible transforma-
tions are physically performable (at least in principle, and perhaps in an ide-
alised limiting case) so that the Second Law imposes a necessary and sufficient
condition for a transformation to be possible. In particular, if we make a very
small adiabatic change to the X; and then wait for the system to re-equilibrate,
that change will leave S unchanged to a very high degree of accuracy. So suffi-
ciently slow adiabatic changes to the X; will define processes which are very close
to being reversible, becoming exactly reversible in the infinite-time limit. It is
generally the case that such quasi-static transformations are always available.

We can express the entropy in differential form as

s =g (dU +) Am) (1)



or, rearranging so that U is a function of S and the X,

dU = TdS - ) " \iX; (2)

where T'=1/8. T is called the thermodynamic temperature and the \; are the
thermodynamic variables conjugate to the X;; they can be given explicitly by
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The A; usually have a physical meaning: in particular, the variables conjugate
to volume, momentum, angular momentum, particle number, and charge are,
respectively, pressure, centre-of-mass velocity, angular velocity, chemical poten-
tial, and electric potential.

Equation (2) is one form of the First Law of Thermodynamics. Tt can be
understood entirely statically, as a statement of the relations between different
equilibrium states. But given the existence of quasi-static processes, we can
also interpret it as describing the actual change in U induced by small adia-
batic changes X; — X; + 06X, to the parameters, together with a flow of energy
@ = T45S into the system from some external reservoir. Following Wald (1994,
p.141)) we can call these the equilibrium-state and physical-process interpreta-
tions, respectively. Flow of energy of this kind is called heat flow and makes
sense even if the flow is not infinitesimal; conservation of energy entails that the
change in a system’s energy equals the heat flow into it plus the work done on
it, which is another form of the First Law.

Finally, note that at this stage of our analysis S (and, hence, T) is fixed
only up to an arbitrary rescaling: we can replace S with f(.5), for any smoothly
increasing function f, and 1/T with f'(1/T), without affecting anything said so
far.

or by

2.3 Multiple thermodynamic systems

Much of the content of thermodynamics is only available once we allow dynam-
ical interactions between multiple systems. The rules for doing so are:

1. Any two systems may be placed in thermal contact, so that heat may flow
between them while their other conserved quantities and external param-
eters remain separately fized. This can be generalised to allow for other
kinds of contact in which the two systems can exchange other conserved
quantities.

2. Multiple systems in (perhaps-generalised) thermal contact may be treated
as a single system; in particular, any such combined system will have a
unique equilibrium state.



3. The Second Law of Thermodynamics generalises to require that the total
entropy of two systems in (perhaps-generalised) thermal contact does not
decrease when those systems exchange energy and other conserved quan-
tities. For this to be well-defined, the possibility for rescaling of entropy
decreases sharply: in multiple-system contexts, entropy must be taken as
fixed up to a system-independent scale and a system-dependent additive
constant.

From (2) and (3) together, it follows that:

4. If two systems are in thermal contact, and heat 6Q) flows from system 1
to system 2, the total change in entropy is S = §Q(1/T> — 1/T1). So
heat will flow only if 77 > T5, and indeed, no process can as its sole effect
induce heat flow unless this condition holds (the Clausius statement of
the Second Law). It follows that a necessary and sufficient condition for
two systems in thermal contact to be jointly at equilibrium is that they
are separately at equilibrium with equal temperatures. (This generalises
to other forms of contact.) As a consequence, the relation ‘at equilibrium
with’ is an equivalence relation: this is the Zeroth Law of thermodynamics,
and in textbook presentations is often taken as a starting point; in my
presentation, it is a consequence of other assumptions.

5. Given a process involving an infinitesimal heat flow between two equilib-
rium systems at thermodynamic temperatures 17, T together with work
W done on the combined system, and such that the conserved quanti-
ties and external constraints of the two systems (other than energy) are
unchanged at the end of the process, the First Law entails that

T
W =TIAS, + ToASy =Ty (A51 + T2A52> . (5)
1

Since the Second Law entails that ASy; > —AS7, we have
W >TiAS (1 - (T2/T1)). (6)

From this, we can read off that the maximum efficiency of any cyclical
process which generates work from heat flow between the two systems is
(1 = T5/Ty) and, a fortiori, that no cyclical process can as its sole effect
convert heat into work, which is the Kelvin statement of the Second Law.
(Other processes can do better, but they do not leave the other conserved
quantities and constraints unchanged and so cannot be performed in a
cycle.)

2.4 Local thermodynamic equilibrium

In an extended body (such as a solid, a fluid, or a field), if the rate at which
a small region of the fluid equilibrates is fast compared to the rate at which it
exchanges energy and other conserved quantities with neighboring regions, the



body will approach local thermal equilibrium, at which we may express thermo-
dynamic quantities like charge, energy, entropy, temperature and pressure as
functions of position in the body. (For instance the sun, while not at equilib-
rium, is at local equilibrium, so that we can describe how temperature, pressure,
entropy density and energy density vary from the core to the atmosphere.) Var-
ious phenomenological equations can be derived or postulated to describe the
flow of thermodynamic quantities through the system. For instance, Ohm’s
Law describes how current flow in a conductor is dissipated as heat, and the
Navier-Stokes equations describe the flow of a viscous fluid and the dissipation
of organised energy as heat in that fluid. Various transport coefficients, like elec-
trical resistivity and viscocity, appear in those equations, so that they cannot
simply be derived from the equation of state but require additional empirical
input.

2.5 Complications of gravity

Thermodynamics can be coherently formulated for (relativistic or Newtonian)
self-gravitating systems, but the existence of long-range forces in these systems
leads to important subtleties, even before we consider black holes. Rather than
discuss the (somewhat controversial) general structure of these subtleties (for
that discussion, see Wallace (2010), Callender (2011), and references therein),
I will illustrate them with a concrete example due to Sorkin, Wald, and Jiu
(1981): a spherical box of radiation at thermal equilibrium, potentially large
enough that self-gravitation has a discernible effect.

The sphere is assumed to be nonrotating and at rest. Its equation of state
depends on two parameters: its radius R and its mass M (for a relativistic
system, and in units where ¢ = 1, its mass and its energy can be identified). A
crucial parameter is the Schwarzschild radius Rg(M) = 2GM/R: if R < Rg(M)
then an event horizon forms around the sphere and it must be treated as a black
hole.

As long as R > Rg(M), gravitating effects are fairly insignificant and the
sphere may be treated as if it were non-self-gravitating. It then behaves as a
pretty conventional thermodynamic system, with an extensive equation of state
determined by the intensive formulae

4
p=0bT* s= ngS (7)

that determine the energy density p and entropy density s as functions of the
temperature. In particular, if we consider a sequence of successively larger
spheres with M/R3 held constant, the temperature and density of each sphere
likewise remain constant. But for denser spheres (the transition occurs roughly
around R ~ 5Rg) gravitational effects become highly important and the system
displays several distinctive features characteristic of strongly self-gravitating
systems (all discussed, or readily derived, in Sorkin et al’s paper):

1. Because spacetime is nontrivially curved within the sphere, we cannot
define the mass of the sphere simply as the integral of the local mass-



density: indeed, that integral is not even well-defined in a coordinate-free
way. Instead, the mass can defined by using Noether’s theorem (according
to which energy is the conserved quantity associated with time translation
symmetry), calculated at a distance much larger than the shell radius at
which the spacetime is approximately flat. The precise version of this con-
cept of mass is called the ADM mass, after Arnowitt, Deser, and Misner
(1962) (a related version, the Bondi-Sachs mass (Bondi 1960, Sachs 1961,
1962), is better suited to handle situations involving radiation but rests
on the same basic idea). If the sphere had non-trivial spatial momen-
tum and/or angular momentum, analogous ADM momenta and angular
momenta can also be defined, using the appropriate asymptotic Noether
symmetries.

2. The sphere becomes increasingly non-homogeneous, with the density being
much higher towards the centre of the sphere. From this and the local
equation of state (7), we can deduce that the locally-measured temperature
also increases closer to the centre. The locally measured temperature ¢(r)
at a radius r from the centre is related to the thermodynamic temperature
(given by 1/T = 05/0U) by

t(r) = a(m(r),r)"'T (8)

where m(r) is the mass of the sphere internal to r (more precisely: the
ADM mass that the region of the sphere interior to r would have if it
were confined to that region and the rest of the sphere removed) and
a(m,r) = (1—2Gm/r)'/? is the gravitational redshift induced by a spher-
ically symmetric mass m.

3. The sphere is no longer extensive in any meaningful sense: increasing R
to KR and M to K3M will not produce a qualitatively similar sphere.
Indeed, if R <~ 0.254Rg, the sphere becomes unstable and undergoes
gravitational collapse into a black hole.

4. The heat capacity of the sphere (i.e., the rate of change of mass with
temperature at constant radius) decreases to zero and becomes negative,
so that decreasing the energy of the sphere actually causes it to become
hotter.

Though Sorkin et al do not discuss it, the notion of “thermal contact” also has
to be analysed with some care for these systems. For a start, we cannot put two
such spheres in thermal contact simply by placing them adjacent to one another:
their mutual gravitation would radically alter each other’s states, probably pro-
ducing gravitational collapse unless handled carefully. An intermediate system
is required.

As a concrete example, consider the following process for transferring heat
between two spheres with thermodynamic temperatures T4, 75, masses My, M,
and surface redshifts o, as:



1. A box is slowly lowered to the surface of Sphere 1 from ‘infinity’ (i.e.,
from very far above the sphere), allowed to fill with a small amount of
radiation of local mass m and temperature T} /a1, and then slowly lifted
back to infinity, requiring (Unruh and Wald 1982) work

Wi =(1-a)m. 9)

2. The box is adiabatically compressed or expanded (as appropriate) to a
temperature T5 /g, requiring additional (possibly negative) work

(as can be deduced from the equation of state (7)) and changing its mass
to m(TQ/OéQ)(Tl/Oél)

3. The box is slowly lowered to the surface of Sphere 2, requiring negative

work (T>/ o)
Qs
Wi = —(1 — ag)at—2m. 11
3=—(1—ay) (Tr Jon) (11)
4. The box is then opened and the radiation released into Sphere 2; this is
adiabatic, since it has the same local temperature as Sphere 2’s surface.

The entire process is adiabatic and has the following energy implications:

AMl = —Qaqm; AMQ = C)élm(1+(T2/T1)), W = W1+W2+W3 = ozlm(TQ/Tl).

(12)
This has the characteristic form of a Carnot cycle. As a corollary, if 77 > T,
net work is extracted by the process, and we can replace (3) by

3’. The box is slowly lowered towards the surface of Sphere 2 until the work
extracted by doing so makes the whole process work-neutral, and then
released to free-fall the rest of the way.

The new process permits heat transfer, without work expenditure, from Sphere
1 to Sphere 2 provided T} > T5, and so provides a means to put the two spheres
in (somewhat indirect) thermal contact.

In many examples of self-gravitating bodies, there is another way to put
two bodies into thermal contact: seal them both into a very large box with
reflecting walls, and wait. If one or other body is above absolute zero, it will
emit electromagnetic radiation; in due course, the box will fill with radiation in
local thermal equilibrium. Each body is in thermal contact with the radiation
and so, indirectly, with the other body. This is an effective way (in principle
and in thought, not in engineering practice!) to, for instance, place two neutron
stars or white dwarfs into thermal contact. It is not really an option for our
radiation spheres, because they are themselves comprised of thermal radiation
so the breakdown into subsystems would not be well-defined.



3 Classical black hole thermodynamics

We can now consider whether, and to what extent, these thermodynamic no-
tions apply to black holes and systems of black holes. In this section I consider
only ‘classical’ black holes, by which I mean: black holes, if we neglect or imag-
ine away any quantum-field-theoretic effects: in particular, any matter fields
present will be treated phenomenologically and classically. For clarity, I do
not mean “black holes, under the fiction that the world is exactly classical”:
I'm not sure that is even well-defined (though see Curiel (2014)) but in any
case it presumably would not include thermal radiation, which can be treated
phenomenologically as a classical fluid but whose derivation via statistical me-
chanics requires quantum theory.

3.1 Black holes as objects

The basic idea of BHT is that black holes are thermodynamic systems, and that
a particular subclass of black holes (the stationary black holes) are the equilib-
rium states of those systems. But from the starting point of general relativity,
it is hard to see how this is even coherent: in that context, a “black hole” is
identified globally as a region of spacetime from which null geodesics cannot
reach future infinity (see, e.g., Hawking and Ellis (1973)). A spacetime region
cannot itself change in time, so the notions of ‘equilibrium’ or ‘equilibration’
don’t obviously make sense under this definition.

But the relativist’s concept of a black hole is not the only one extant in
physics. Astrophysicists have long spoken of black holes as objects which persist
through time and whose properties change in time: any talk of black holes
orbiting one another, or of two black holes merging to form a larger hole, or of
the velocity of a black hole relative to another astrophysical object, seems to
require a three-dimensional view of black holes as objects, in tension with the
spacetime-region view natural in theoretical relativity.

The membrane paradigm of Macdonald, Price and Thorne, developed in
detail in the astrophysical context in Thorne, Price, and Macdonald (1986)
and adapted for the quantum theory of black holes by Susskind, Thorlacius,
and Uglum (1993), addresses just this problem. Thorne et al consider a time-
like surface — the ‘membrane’, or ‘stretched horizon’ — that is placed around
the true event horizon, at a very small proper distance from the true horizon.
Thorne et al give the stretched horizon an area (1 + «)? times that of the true
horizon, where « is some positive real number < 1; more useful for foundational
purposes is Susskind et al’s convention (which I adopt henceforth), giving the
horizon an area one Planck area larger than that of the true horizon.

The defining property of the event horizon, physically, is that nothing can
emerge from it, and so in particular nothing can enter it and later return. But
virtually nothing can cross the stretched horizon and return, because doing so
would require extremely high accelerations — indeed, under Susskind et al’s
convention, it would require accelerations so high as to require Planck-scale
physics to describe. So as long as we are dealing with energy levels below the
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Planck scale, the stretched horizon may be treated as a one-way barrier just as
can the true horizon.

On the other hand, the stretched horizon is an ordinary timelike surface; it
can be treated as a two-dimensional closed surface in space that evolves through
time, and so can be attributed potentially-time-dependent physical properties.
And with its aid, we can then restate the goal of black hole thermodynamics
as follows: to investigate the extent to which the stretched horizons of black
holes can be treated as ordinary physical systems, and assigned mechanical,
electromagnetic, and thermodynamic properties, from the point of view of any
observers who remain outside the black hole — or, to put it in less operational
terms, the extent to which we can give a self-contained account of physics in the
region of spacetime exterior to any black holes in terms of stretched horizons to
which such properties are assigned.

3.2 Equilibrium and equilibration for black holes

Thermodynamics describes equilibrium systems in terms of their conserved
quantities and external constraints. There are no real external constraints ap-
plicable to a black hole, but there are quantities which we would expect to be
conserved: the energy, momentum and angular momentum of the hole (defined
asymptotically by the ADM method) and its electrical charge. In each case these
quantities are associated to long-range forces (gravity for the quantities asso-
ciated to spacetime symmetries; electromagnetism for charge), as these forces
ensure that matter bearing the conserved quantity will leave an asymptotic trace
on the spacetime even once it crosses the stretched horizon. (Conserved quan-
tities like baryon number, by contrast, cannot be expected to show up in the
physics of the black hole exterior, since the long-range physics will be indifferent
as to whether a particle that crosses the horizon is, say, a neutron rather than
an anti-neutron.) By working in a reference frame at which the black hole is
at rest and its angular momentum is aligned along the z axis (again, using the
ADM charges to define this rigorously) we reduce the conserved quantities to
three: the black hole’s mass M, the magnitude J of its angular momentum, and
its charge (. So if black holes have equilibrium states, we would expect the
space of such states to be parametrised by these three quantities.

The definition of an ‘equilibrium’ state is that it is unchanging in time, and
general relativity offers a clear way to represent this: we look for stationary so-
lutions of the Einstein field equations, that is: solutions with a timelike Killing
vector. Such solutions certainly exist for general M, J, Q: the Kerr-Newman
solutions to the coupled equations of general relativity and vacuum electromag-
netism (aka Einstein-Maxwell theory) are stationary and parametrised precisely
by mass, angular momentum and charge. When =0, these solutions reduce to
the Kerr solutions of vacuum general relativity; when J = 0, to the spherically-
symmetric Reissner-Nordstrom solutions of the Einstein-Maxwell theory; when
both are zero, to the well-known Schwarzschild solution. The Kerr-Newman
solution only describes a black hole when Q% + J2/M? < M?, with solutions
violating this inequality describing naked singularities; black holes that saturate

11



the inequality are called extremal, and are a somewhat puzzling but theoretically
important special case.

The 1970s saw extensive work by Bardeen, Carter, Hawking, Israel and
many others to prove the “No-Hair Conjecture”: that the Kerr-Newman black
holes are the unique stationary solutions to the Einstein-Maxwell theory, and so
provide unique equilibria. To this day there remain loose ends in the conjecture
and in its extension to more general situations in higher spacetime dimensions
and with other long-range forces present, but in his review article in the Einstein
Centenary Survey (Carter 1979) felt able to say that

the no-hair theorems available ...are quite sufficient to justify —
with at least the degree of rigour usually considered acceptable in
physics — the assumption by any practically minded astrophysical
theorist that any (external source free) black hole equilibrium-state
solution ... belongs to the Kerr or Kerr-Newman families”.

(See Carter’s review article for detailed references and for a summary of the
main results; see also Carter (1997) for some historical remarks and Chrusciel
and Costa (2008) for a fairly up-to-date survey.)

Of course, thermodynamic equilibrium requires more than mere stationar-
ity: it requires nmon-equilibrium systems to converge to equilibrium, and in par-
ticular, perturbations of equilibrium states to be damped back down to equi-
librium. The stability of black holes, and the convergence to equilibrium of
non-stationary black holes, has been extensively studied both analytically and
numerically. By the mid-1980s (see chapters VI-VII of Thorne, Price, and Mac-
donald (1986), and references therein) it was established that perturbations of
the stretched horizon by external gravitating bodies are damped away (for in-
stance, the stretched horizon can oscillate, but these oscillations are damped,
dying away back to equilibrium via the emission of gravity waves). Computer
simulations of colliding black holes, and accretion of matter onto black holes,
likewise demonstrate that the system evolves rapidly to the equilibrium-black-
hole configuration, decaying by the emission of gravity waves (‘ringdown’). And
the historic observation of gravity waves in 2016 by the LIGO observatory pro-
vided a remarkably precise fit to the quantitative ringdown predictions, and so
can reasonably be said to provide (ongoing) observational support for black hole
equilibration.

In summary: we have both a clear understanding of what the black hole
equilibria are, and a pretty good grasp on why they are indeed equilibria: at
the least, I think it would be hard to argue that we have any better theoretical
control of how paradigm ‘normal’ thermodynamical systems, like dilute gases,
approach and remain at equilibrium. So far, black holes fully fit the requirements
to count as thermodynamic systems.

3.3 The laws of black hole thermodynamics

To treat a black hole as a thermodynamic system requires us to identify external
interventions, and to divide them into adiabatic changes and heat flows. The
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former is fairly straightforward: to move a black hole from one equilibrium
state to another is going to require us to change its mass, angular momentum
or charge, and the simplest way to do that is to drop matter into it. The latter is
more delicate, since the division between ‘heat’ and ‘work’ is less obvious in an
alien situation like this than for a box of gas. The simplest thing to do (in this
case as in other less-familiar cases in ‘regular’ thermodynamics) is to identify
which transformations are reversible and which irreversible, and then define the
quasi-static adiabatic processes as the reversible ones.

Christodolou and Ruffini demonstrated (Christodolou and Ruffini (1971);
see Misner, Thorne, and Wheeler (1973, pp.907-913) for a discussion) that the
quantity that plays the role of entropy for a black hole (at least for infinitesimal
changes) is surface area (which, for an equilibrium black hole, is given by a
known function of M, J and Q): any intervention on an equilibrium black hole
must leave the surface area nondecreasing, so that the reversible processes are
those that leave surface area invariant and the irreversible processes strictly
increase area. Reversible transformations of J and @ can be brought about as
follows:

e To reversibly change the charge of a charged black hole, lower some
charged matter very slowly on a cord so that it is suspended, stationary,
just above the event horizon; then let go.

e To reversibly increase the angular momentum of a rotating black hole, fire
some mass at it on a trajectory which just brushes the event horizon.

e To reversibly decrease the angular momentum of a rotating black hole,
use the Penrose process (Penrose (1969), Penrose and Floyd (1971); see
Carroll (2003, pp.267-271) for an introduction): fall freely towards the
black hole on a trajectory that passes just above the event horizon, and
at point of closest approach, eject some mass into the black hole on a
trajectory opposite to the direction of rotation of the hole.

Dropping charge into a black hole from finite height, or injecting mass on a
non-brushing trajectory, or using the Penrose process on a higher trajectory,
will in each case be irreversible, bringing about an increase in surface area.

Hawking’s area theorem (Hawking 1972) generalises Cristodolou and Ruffini’s
result beyond infinitesimal changes: Hawking proved that the area of any black
hole is nondecreasing. His derivation presumes

1. that physics in the exterior of the black hole remains predictable (that
is, roughly: assuming that no naked singularities form; see Wald (1994,
pp.138-9) for a more precise discussion);

2. the Einstein field equations;

3. the null energy condition: that the stress-energy tensor 7" satisfies T'(v,v) >
0 for any null v. This is violated in some exotic quantum-field-theoretic
situations (of which more later) but seems a safe assumption for bulk
matter, such as electromagnetic radiation and astrophysical fluids.
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Bardeen, Carter, and Hawking (1973) christened the Area Theorem the “Sec-
ond Law of black hole thermodynamics”; in fact, it goes rather beyond the
entropy-increase form of the standard Second Law, since black hole surface area
remains well-defined even when a black hole is far from equilibrium, whereas
thermodynamic entropy is defined only at equilibrium.

In the same paper, Bardeen et al also established the “First Law of black
hole thermodynamics” which states that

1
dM = S—KdA —QdJ — &dQ (13)
s

where « is the surface gravity of the black hole, A its surface area, §2 its angular
velocity, and ® the electric potential on its surface. This is precisely the form of
the standard First Law for a thermodynamic system where angular momentum
and charge are conserved quantities, including the identification of the conju-
gates to J and @ as, respectively, angular velocity and electric potential. It
permits us to identify the thermodynamic temperature of the hole as propor-
tional to the surface gravity — albeit, as long as we are considering a system in
isolation, we have only identified entropy up to a monotonic function. Further-
more, we can independently prove the ‘physical-process’ and ‘equilibrium-state’
versions of the First Law distinguished by Wald (recall the discussion in section
2.2), demonstrating that the overall structure of interventions on the black hole
is self-consistent and fits the model of equilibrium thermodynamics.

3.4 Beyond Einstein’s equation

Bardeen et al’s derivation of the laws of Black Hole thermodynamics presup-
posed the Einstein field equations; however, as Wald and collaborators have
shown (Wald (1993); see Wald (1994, pp.143-147) for an introduction and fur-
ther references, and Jacobson and Mohd (2015) for more recent developments),
the First Law (in both physical-process and equilibrium-state form) can be de-
rived from a general diffeomorphism-invariant Lagrangian theory of gravity by
identifying the entropy as (a form of) the Noether charge associated with the
diffeomorphism symmetry, evaluated with respect to a vector field that coincides
on the horizon with the horizon Killing vector.

So far as I know there is no fully general non-decrease theorem for this
generalised black hole entropy of the same scope of Hawking’s area theorem,
but Jacobson, Kang, and Myers (1995) have demonstrated that this generalised
definition of entropy is nondecreasing under at least quasi-stationary processes,
provided that the null energy condition is satisfied; they also prove the analog of
Hawking’s result for a large class of generalisations of the Einstein Lagrangian.

The physical reason for caring about this generalisation lies in the effective-
field-theory program in contemporary particle physics. From that perspective,
general relativity is thought of as a non-renormalisable effective field theory,
regularised by a cutoff imposed by unknown Planck-level physics. In such a the-
ory, all possible diffeomorphism-covariant action terms should be present; the
Einstein-Hilbert action is just the leading-order term in an infinite expansion of
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the Lagrangian in these various terms. So the fact that black hole thermody-
namics extends so naturally beyond the Einstein-Hilbert case is reassuring for
the physical applicability of the theory.

3.5 Local properties of the stretched horizon

The stretched horizon of a black hole is, it seems, a purely fictional entity,
invisible to anyone falling through it and corresponding to no locally-present
distribution of charge or energy. It is therefore frankly startling that it can be
treated not simply as a formal device to make sense of black hole thermody-
namics (as I used it above) but as an actual extended physical system with local
thermodynamic properties.

To expand: as discussed in extenso in Thorne, Price, and Macdonald (1986)
and references therein, we can treat the stretched horizon as a two-dimensional,
electrically-conducting, viscous fluid, assigning to each infinitesimal part of its
surface the exact charge, current, and stress-energy densities required to ter-
minate the electromagnetic and gravitational field lines on its exterior. This
assignment is arguably fictional since an observer freely falling through the
horizon will not encounter these charges or energies, but from the point of view
of physics outside the stretched horizon they are entirely real. To give some
examples (many more can be found in Thorne et al):

1. If a positively charged particle falls towards the North pole of an uncharged
black hole, its field will induce a current flow of negative charge towards the
north pole, which will become negatively charged; the South pole, opposite
the direction of approach of the falling particle, will become positively
charged. By applying the law of Ohmic dissipation to this current flow (the
black hole’s surface resistivity is ~ 377 ohms) we deduce that heat will be
dissipated in this process so that the black hole area increases. When the
charged particle reaches the surface, current will flow back until the charge
density on the surface is constant, dissipating more heat. Any region of
charge excess will spread out exponentially so that the time for an initially
non-equilibrium charge distribution to equilibrate is 7., =~ M log M in
Planck units, or in more astrophysically useful units

M
Teq ~ 4.9 x 107° (%> (log(M/Mg) + 87.4) seconds (14)

(Mg = 1.99 x 103%kg is the mass of the Sun). Only in the limit where the
charge is lowered infinitely slowly to the surface will the current flow be
so slow, and the readjustment of charge across the surface so complete,
that no heat is dissipated; this is the reversible process described previ-
ously.(Znajek 1978; Damour 1978; Macdonald and Suen 1985; Thorne,
Price, and Macdonald 1986, pp.35-38,57-64.)

2. If an electrically neutral black hole rotates in an asymptotically constant
magnetic field at right angles to its axis of rotation, eddy currents will
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be induced in the horizon. The magnetic field will exert a torque on the
black hole via these currents, which will slow its rotation while also dissi-
pating heat through electrical resistance. The result is that the rotational
energy of the black hole will be dissipated as heat, slowing the black hole’s
rotation and increasing its area; the overall energy of the black hole re-
mains conserved: that is, no energy is extracted from the static magnetic
field in this process. (Thorne and Macdonald 1982,(Thorne, Price, and
Macdonald 1986, pp.102-106).)

3. If a black hole rotates in the tidal field of a larger gravitating body, the
surface of the hole will be perturbed; this in turn produces viscous dissi-
pation and corresponding viscous torque on the black hole in accord with
the Navier-Stokes equation, dissipating heat and slowing the rotation of
the hole. (Hawking and Hartle 1972; Hartle 1973, 1974; Thorne, Price,
and Macdonald 1986, pp.252-255.)

Also part of the local thermodynamics of black holes is the so-called Zeroth
law of black hole thermodynamics (Bardeen, Carter, and Hawking 1973), which
states that the temperature of a black hole is constant everywhere on the hori-
zon. In ordinary thermodynamics, the analogous result — that for a body at
equilibrium, the local temperature is constant — is more naturally thought of as
a corollary of the Zeroth Law applied to the local-thermal-equilibrium context.

3.6 No thermal contact for classical black holes

So far as we treat each black hole as an isolated system, the resemblance to
a thermodynamic system seems pretty complete: black holes have notions of
equilibrium and equilibration, reversibility and irreversibility, and local ther-
modynamic properties. But the resemblance terminates abruptly — at least
as far as classical black holes are concerned — as soon as we try to consider
them as thermodynamic systems interacting with other black holes, or with
non-black-hole thermodynamic systems.

Specifically: there seems to be no available process that can reduce the en-
tropy of one black hole and increase that of another (or of a non-black hole
thermodynamic system), even if the total entropy is increasing. To the con-
trary, the analysis of reversible and irreversible processes above applied to each
hole separately. Likewise, Hawking’s area theorem applies separately to each
connected component of a spacetime’s event horizon, and so mandates not just
that the total entropy of a system of black holes is nondecreasing but that the
entropy of each black hole is separately nondecreasing. As a corollary, there
seems no prospect of running a Carnot cycle between two black holes, and no
prospect of allowing heat to flow from one hole to another. Likewise, there seems
no way to make sense of heat flow from a black hole, to any other thermody-
namic system. The nearest we can get is to allow two black holes to ‘interact’
by colliding, in which case the area theorem guarantees that the new black hole
has a larger entropy than its constituents, but this is a pale shadow of genuine
thermal contact.
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In particular, classical black holes are completely black in the sense that
they omit no thermal radiation. This means that a black hole placed in thermal
contact with another body by the method of putting both in a box and letting it
fill with radiation will simply eat all the radiation, however low its temperature.
The only temperature that we seem consistently able to attribute to a classical
black hole is then absolute zero.

These limitations are aggravated by Bekenstein’s (1973) observation that
identifying black hole area with entropy also provides opportunities to violate
the Second Law of thermodynamics unless we place some constraints on the
form of the energy-entropy relation for ordinary matter — constraints that do
not seem well motivated within classical physics. Specifically:

e If some body of small mass m and entropy s is slowly lowered right to the
event horizon and then released (the so-called ‘Geroch process’, proposed
by Robert Geroch during a 1970 Princeton colloquium), it will do work on
the mechanism that lowers it. Qualitatively this is no different from the
way in which a weight slowly lowered from a pulley can do work at the top
of the pulley, but the quantitative scale is much larger: if a pointlike body
of mass m is slowly lowered to a point above the event horizon with redshift
a, then the work extracted is W = m(1 — «) and so (by conservation of
ADM mass) the mass increase of the black hole is ma (Unruh and Wald
1982). As the mass is lowered arbitrarily close to the horizon, a — 0,
and so the black hole’s mass after the process is carried out, and hence its
surface area, will be unchanged — but the entropy of the outside world
will decrease by s. (This process can even be used to turn heat into work
with perfect efficiency, thus violating at least the operational content of
the Kelvin statement of the Second Law.)

o If some large body with mass M and entropy S undergoes gravitational
collapse, it will form a black hole with area proportional to M2, and
decrease the entropy of the external world by S. If black hole area is
identified with entropy (up to some scale factor K') then the total entropy
change is 167 K M? — S, which for appropriate choices of M and S could
easily be negative. (Susskind 1995)

As Bekenstein pointed out, both of these arguments would fail if there is some
fundamental bound on the minimum size of a body with given entropy and mass.
To expand: specialising for simplicity to a Schwarzschild black hole with mass
M, the redshift at radial coordinate r is a(r) = (1—2M/r)"/? = ((r—2M)/r)'/?,
and the proper distance from the event horizon of an object at coordinate r is

" dr
= [ty (15)

Very close to the black hole ((r —2M)/2M < 1), we can approximately take

a(r) = (T ;AjM>l/2, (16)
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evaluate d, and solve to get
a(d) =d/M. (17)

So a spherical body of radius d, entropy s, and mass m, lowered slowly into the
black hole, will increase the mass of the black hole by dM = md/M, and so the
black hole entropy by 6S;, = 8wMdéM = 8mmd. The total increase in (black
hole entropy plus outside-matter entropy) is then

AS =68y — s =8mmd — s. (18)

If some new principle of nature means that any such body must satisfy s/m <
8md, that would suffice to ensure AS > 0 (changing the geometry of the body
changes the numerical coefficients but not the overall argument). A qualitatively
similar constraint, s/m < 2md, also blocks Susskind’s argument from gravita-
tional collapse: the body, on forming a black hole, will have entropy Sj, = 4wm?,
so the net increase in entropy is

AS = 4mm? — 5 = 2rm(2m — s/2mm) > 2m(2m — d). (19)

But the body must initially lie outside its own Schwarzschild radius, d > 2m,
to have avoided collapse already, so this must be positive.

However suggestive this Bekenstein bound might be, however, there is at least
within classical physics no obvious reason why it must hold. And so to sum up:
although classical black holes have some highly thermodynamic-like properties,
core aspects of thermodynamics depend on interactions between thermodynamic
systems; these interactions do not seem to function correctly for classical black
holes, rendering the analogy with thermodynamics purely formal.

4 Quantum field theory

Quantum mechanics — specifically, quantum field theory, formulated on a clas-
sical but curved spacetime — removes the blemishes in BHT and transforms
it from a suggestive analogy to a full equivalence. The central result here is
the Hawking effect: the discovery that black holes emit thermal radiation, at
exactly the temperature that BHT would predict.

4.1 Hawking radiation

As a starting point to understand the Hawking effect, let’s consider for simplicity
a free, massless, scalar quantum field theory defined on Schwarzschild spacetime,
with metric

ds? = —a(r)?dt? + a(r)"2dr? + r2(d6? + sin?(9)d¢?) (20)

where a(r) = /1 —2GM/r is the redshift factor. The ‘external’ region of
that spacetime — the region outside the event horizon, defined by r > 2GM
— is a globally hyperbolic spacetime suitable for describing the exterior of an
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uncharged non-rotating black hole. Since it has a timelike Killing vector —
corresponding to translation in the ¢ coordinate — we can coherently analyse the
eigenstates of energy of the theory, and since the field is free, those eigenstates
can be defined by the occupation number of the various independent modes of
the field, which are the definite-frequency solutions of the Klein-Gordon equation
on the Schwarzschild background.

These modes can be parametrised (here I follow Harlow (2016, pp.27-29))
by total angular momentum [, z-component of angular momentum m, and fre-
quency w, and written in the general form

Futm(1,7.6,6) = Vi (6, 6)e™“"hun(r) 21)

where Y}, is a spherical harmonic. To describe them further, it is helpful to
introduce the tortoise coordinate r,, defined by

re =r+In|r/2GM — 1|, (22)

which approximates r for r > 2GM but stretches the distance to the event
horizon to cover the whole negative-z axis; it also simplifies matters to adopt,
temporarily, units in which 2GM = 1, i.e.to use the Schwarzschild radius as
our unit of distance. The radial function v, then satisfies

(—C‘Z + V(r)) ot = W (23)
where Vo) = rr_31 (l(l+1>+ i) (24)

and where 7 is given implicitly in terms of r, by (22). This is a scattering
problem: modes can be thought of as incoming either from infinity or from the
event horizon, and they will scatter off, or tunnel through, a potential barrier
whose form depends on the angular momentum [. For [ > 1 the barrier has
height ~ [? and is located at r = 3/2.

We can now distinguish (following (Thorne, Price, and Macdonald 1986,
ch.VIII)):

e IN modes, which come in from infinity and largely scatter off the angular-
momentum barrier (for ! > 1) with some small amplitude to penetrate
the barrier and fall onto the event horizon;

e UP modes, which come up from the vicinity of the event horizon and are
largely trapped close to the horizon by the angular-momentum barrier (for
I > 1) with some small amplitude to escape to infinity.

Hawking’s result is then the following: for a black hole formed by gravita-
tional collapse, and with surface gravity x, the quantum state of the exterior is
a thermal state with respect to the UP modes, at a temperature x/27. (With
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respect to the IN modes, the quantum state is determined by boundary con-
ditions; for an astrophysical black hole in the current epoch, for instance, we
might take the IN modes to be in a thermal state at the temperature of the
microwave background radiation.)

To understand this summary, it is helpful to describe the radiation as seen by
a fictional observer moving along a trajectory of constant 7,6, ¢ (such observers
are often called fiducial observers, or FIDOs). A fiducial observer at a redshift of
a follows an accelerated worldline with locally-measured acceleration a~tda/dr;
we can imagine the observer being held in place by a rope supported at infinity.
Fiducial observers observe very different effects depending on how close they
are to the event horizon:

e A fiducial observer close to the event horizon (i.e., whose distance to the
event horizon is small compared to the Schwarzschild radius) observes a
thermal bath of black-body radiation which might be thought of as the
black hole’s “atmosphere”: this radiation remains largely trapped by the
potential barrier and mostly falls back into the black hole rather than es-
caping to infinity. The apparent temperature of the radiation, as measured
by the fiducial observer, will be T/a = k/2mwa, because that observer’s
clocks are redshifted by a factor a compared to coordinate time; we have
already seen that this shifting of the temperature is a general feature of
self-gravitating thermal systems.

e When the observer’s redshift is large enough that the locally measured
temperature approaches the Planck temperature, the field-theory model
we have used becomes unreliable: put another way, at this redshift the
locally-measured wavelength of the radiation approaches the Planck length
and we expect quantum-gravitational effects to cut off the QFT descrip-
tion. This occurs (not by coincidence) when the fiducial observer has
reached the stretched horizon, using Susskind et al’s convention for its
location.

e Conversely, an observer far from the event horizon sees a stream of out-
wardly flowing radiation appearing to emerge from the black hole. This
radiation is not black-body radiation, because modes of different angular
momentum escape the black hole atmosphere to differing degrees. The
grey-body factors of a black hole describe how the black hole’s emission
spectrum, as a function of angular momentum and frequency, deviates
from a perfect black body.

There is also a divergence between the observations of fiducial observers, and
those of inertial observers falling into the black hole from far away, a diver-
gence which increases as the event horizon is approached. In the outer (radia-
tion) region of the spacetime, both groups of observers have similar experiences:
they see an outward-going stream of radiation (although the increasing veloc-
ity of the infalling observer, and increasing acceleration of the fiducial observer,
cause these experiences to diverge increasingly as they approach the black hole).
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Within the black hole atmosphere, and particularly as the observers approach
the stretched horizon, the experiences become sharply different: while the fidu-
cial observers experience ever-hotter thermal radiation, the infalling observer
sees only slight deviations from empty spacetime.

4.2 Evidence for the Hawking effect

Before considering the thermodynamics of black holes in the light of Hawking
radiation, we should pause briefly to ask how confident we should be in its
existence. After all, while the classical theory of black holes lies within the range
of astrophysical observation and so is supported by quite a lot of direct evidence,
there is no realistic prospect of observing Hawking radiation from astrophysical
black holes, and so far no proposal for observing it in non-astrophysical contexts
(e. g. at the LHC, or through the decay of primordial black holes) has borne fruit.
So the case is entirely theoretical; it is, nonetheless, very powerful.

To my knowledge there are at least five independent, conceptually distinct
routes by which the Hawking effect can be derived:

1. Hawking’s original method of matching outgoing modes with exterior
modes via the technique of Bogoliubov transformations (Hawking (1975);
see Wald (1994, ch.7) for a review);

2. Making precise the heuristic understanding of black hole evaporation by
particles tunneling across the event horizon (Parikh and Wilczek 2000);

3. Requiring the quantum state of the black hole exterior to solve or nearly
solve the semiclassical Einstein field equations, which is possible only if
the outgoing modes are in a thermal state at the correct temperature
(Candelas (1980), Sciama, Candelas, and Deutsch (1981); see also section
4.3);

4. Path-integral methods on the analytic continuation of the black hole exte-
rior spacetime, which demonstrate that the radiation-free vacuum — and,
more generally, any thermal state at the wrong temperature — leads to
singularities at the horizon (Hartle and Hawking 1976; Israel 1976);

5. Observing that radiation flow across the event horizon is necessary to
prevent anomalous breaking of the diffeomorphism symmetry (Robinson
and Wilczek 2005).

Each has its strengths, weaknesses, and distinctive features. Hawking’s original
approach (1) is perhaps most directly tied to the physics of actual collapse-
formed black holes, but is confined to free fields. At the other extreme, (4)
is completely general but only applies to a black hole at thermal equilibrium
with an external radiation bath, requiring additional physical justifications to be
applied to collapse-formed black holes. (1) and (2) give concrete mechanisms for
Hawking radiation, whereas (3)-(5) derive contradiction or unphysical paradox
from its absence. But collectively, they strongly suggest that Hawking radiation
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really is a consequence of quantum field theory on curved spacetime, and not
simply an artefact of a particular method of mathematical analysis.

It is also possible to give a fairly direct physical argument for Hawking ra-
diation. Consider a fiducial observer, very close to the event horizon (at some
redshift @ < 1, say. The radius of curvature of the spacetime is much larger
than the distance to the horizon, so locally it will appear to the observer as if
they are accelerating in flat space at a constant locally-measured acceleration
a~tda/dr. Sufficiently close to the event horizon, this tends to x/c, where
k is the surface gravity. The Unruh effect (Unruh (1976); see Harlow (2016,
pp.15-24) for a helpful discussion, and Crispino, Higuchi, and Matsas (2008)
for an exhaustive review) tells us that an observer in flat spacetime with uni-
form acceleration a experiences a bath of black-body thermal radiation at a
temperature of a/27 (and the Unruh effect itself can also be derived in multiple
ways: from Bogoliubov methods, via path integrals, and as a rigorous result in
algebraic quantum field theory, to name three). So by the equivalence principle,
we would expect our fiducial observer to see something very close to thermal
radiation at this temperature: that is, at locally measured temperature k/2ro.

Now, very close to the black hole the event horizon fills almost the whole
sky, so we would expect most of the radiation observed by the fiducial observer
to fall back into the black hole. But it doesn’t quite fill the whole sky, so any
given radiation mode will have some amplitude to escape to infinity (with lower-
angular-momentum modes having the highest amplitude). That radiation will
be redshifted by a factor a and so will be seen at infinity to have a temperature
k/2m, in accordance with Hawking’s prediction (and to be radially streaming
from the black hole).

I pause to consider and rebut a well-known potential objection to the exis-
tence of Hawking radiation: the so-called trans-Planckian problem. In a nutshell,
the problem is that radiation observed from a black hole sufficiently long after it
forms is apparently redshifted down from radiation at a locally-measured wave-
length shorter than the Planck length, i.e.a wavelengthl at which we should
regard quantum field theory as unreliable in any case. (And “sufficiently long”
is not at all long, in astrophysical terms: the timescale is ~ M log M in Planck
units, or (from equation (14)) ~ 1072 seconds for solar-mass black holes.) At
times much later than this, the original energy of the detected radiation gets
bigger than Planckian, indeed ridiculously big.

If this argument were correct, it would demonstrate not simply that Hawking
radiation is absent, but that there is some inherent inconsistency in defining
quantum field theory on a curved background: as noted above, the absence of
Hawking radiation also leads to unphysical phenomena. But there are good
reasons to doubt that it is correct. In particular (following Polchinski (1995)):

1. It is possible to foliate the spacetime of a collapse-formed black hole so
that curvature and energy densities on each slice remain well-behaved and
far from the Planck scale (at least for black holes that are themselves large
compared to the Planck mass, and up to late stages in its evaporation, of
which more later).
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2. The Hawking effect (if it exists) is low-energy physics, entirely describable
in terms of the physics on each individual slice.

3. So the form of the cutoff imposed on our quantum-field to regularise it
at short wavelengths has no effect on the low-level physics, beyond the
usual effect of rescaling the parameters of the field theory (which can be
absorbed by renormalisation of those parameters).

4. So it’s harmless to use any cutoff we like, even the unphysical cutoff where
we actually allow free-field theory to stay defined on arbitrarily short wave-
lengths.

In a certain sense there is even empirical evidence that the trans-Planckian
problem is innocuous, and more generally that the arguments used to derive
Hawking radiation are valid. Very close analogues of the Hawking effect occur
in certain condensed-matter systems (as originally proposed by Unruh (1981))
and have recently been empirically confirmed, even though in these theories it
is unambiguous that the degrees of freedom are cut off at the atomic scale and
that (the analogues of) trans-Planckian modes do not exist. (See Unruh (2014)
and Dardashti, Thebault, and Winsberg (2017), and references therein, for more
on these analogues and their conceptual significance.)

For more on the trans-Planckian problem (and some residual worries) see
Jacobson (2005, pp.46-54), Harlow (2016, pp.37-39), and references therein;
however, for the moment I think we are justified in setting it aside and regarding
Hawking radiation as a nigh-unavoidable consequence of any attempt to do
quantum field theory in the vicinity of a black hole event horizon. Physicists
tend to regard the case for Hawking radiation as further bolstered by the unity
it provides to black hole thermodynamics but even without that bolstering, the
case is very strong — though, of course, as good empiricists we should remind
ourselves that it remains purely theoretical.

4.3 Back-reaction and evaporation

Hawking’s original calculation — and all the other calculations referenced above
— use quantum field theory on a fixed, non-dynamical background metric. As
such, these derivations in of themselves do not suffice to establish that Hawking
radiation is fully analogous to ordinary thermal radiation, because they imply
nothing about whether a radiating black hole ultimately decreases in mass and,
thus, surface area. To establish this, we need to consider the back-reaction of
the radiation on the metric field, and doing so in a fully satisfactory way requires
a quantum theory of gravity, which of course we lack. Furthermore, given that
there is no robust local definition of gravitational energy — and, relatedly, no
robust way to understand total energy as a sum of local energies — we cannot
simply appeal to a local conservation law to conclude that radiating black holes
evaporate.

Nonetheless we can give powerful arguments for that conclusion. The most
direct is via appeal to Noether’s theorem, applied on a sphere surrounding, and
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far from, the black hole: in that regime, we expect to be able to treat the hole as
an approximately-isolated system in a larger region of Minkowski spacetime (see
Wallace (2017b) for more on this). So the symmetries of Minkowski spacetime
allow us to write a global conservation law and to argue that the sum of the
ADM mass-energy of the black hole plus the total energy of the radiation outside
the sphere — which is well defined, since that region is very nearly flat — should
be conserved, and hence that the energy flux through the sphere ought to equal
the rate of decrease of the black hole mass.

We can make this more quantitative by considering the physics on the bound-
ary of this large sphere (here, and for the rest of this section, for simplicity I
confine my attention to uncharged, non-rotating black holes). In this regime,
Hawking radiation just looks like a classical outflow of radiation, with stress-

energy tensor
T = nFn¥(A/r?) (25)

where r is the Schwarzschild radial coordinate, n* is an outward-pointing null
vector, and A depends on the black hole mass (and lacks a simple analytic form,
due to grey-body factors). The Schwarzschild metric does not solve the Einstein
field equations with this stress-energy tensor, so the assumption that the black
hole does not evaporate is inconsistent with classical general relativity in a
regime where we expect the latter to hold. The unique spherically-symmetric
solution to the field equations for this stress-energy tensor is the Vaidya metric
(see, e.g., Joshi 1994), which is basically the Schwarzschild metric with a time-
dependent mass term M (t) (‘basically’ because we need to express the metric
in retarded coordinates, due to the finite speed of propagation of the radiation).
And the time-dependence is given by

dM

e 4r A, (26)
exactly as would be predicted from a naive treatment of radiation as carrying
away local mass-energy density.

To understand evaporation closer to the black hole, we need to go beyond the
fully classical Einstein equation, as quantum-mechanical effects become relevant.
The normal tool to investigate this is semiclassical gravity, in which the classical
metric is coupled by the Einstein field equations to the renormalised value of
the quantum expectation value of the stress-energy tensor (possibly including
first-order gravitational perturbations as an additional graviton field). That is,
a solution of semiclassical gravity requires both a metric g and a (Heisenberg)
quantum state |¢) such that

-~

Glgl = 8nG (Y| T[O][4) en (27)

where 5 schematically denotes the various quantum fields, G is the Einstein
tensor associated with g, and the ‘ren’ subscript indicates that we need to renor-
malise the stress-energy tensor.
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This theory can either be posited directly, on the plausible if heuristic
grounds that quantum gravity ‘ought’ to look like this when metric fluctua-
tions are small, or derived as the leading non-classical term in a certain expan-
sion scheme for the effective quantum field theory of gravity coupled to matter
(Tomboulis 1977; Hartle and Horowitz 1981); either way, it is the standard tool
used for exploring back-reaction (see Wald (1994, ch.5) and references therein
for detailed discussion). It is difficult to calculate with; nonetheless, it has pro-
vided very strong evidence that radiating black holes do indeed radiate, and at
exactly the rate predicted by the naive treatment. In particular (and without
pretending to be exhaustive):

1. Candelas, Deutsch and Sciama (Candelas 1980, Sciama, Candelas, and
Deutsch 1981) have calculated the stress-energy tensor for a scalar field
on a Schwarzschild background near to the black hole event horizon. They
find that the vacuum state of that field is strongly polarised, so as to have a
very large negative stress-energy density, which diverges to negative infin-
ity on the event horizon; this negative energy density is ezactly cancelled
out by the positive stress-energy density of the quanta in a thermal state
at the Hawking temperature. It follows from their results that

(a)

(b)

the Hartle-Hawking state, in which both UP and IN modes of the
field are in that thermal state, has zero net stress-energy density
close to the black hole, and so solves the semiclassical equations;

any state which has any non-thermal UP mode (or any thermal UP
mode at the wrong temperature) has divergent stress-energy density
on the future horizon, and so fails to solve the semiclassical equations
even approximately;

the Unruh state, in which the UP modes are thermally excited at
the Hawking temperature but the IN modes are unexcited, has sin-
gular stress-energy density on the past horizon (which, for a collapse-
formed black hole, is in any case unphysical) but only mildly nonzero
stress-energy density on the future horizon, so that we would expect a
self-consistent solution that is only a small perturbation of the Unruh
state and the Schwarzschild solution;

In that small perturbation, the change in the area of the horizon can
be calculated via the Newman-Penrose equation; the result is exactly
in accord with the naive prediction from radiation flow. (This also
gives insight into how the black hole’s area can decrease in violation
of the area theorem: the strongly polarised spacetime region close to
the horizon violates the null energy condition.)

Frolov and Thorne (1989) generalised these findings to rotating black
holes.

2. Price, Thorne and Zurek (Zurek and Thorne 1985, Thorne, Price, and
Macdonald 1986, ch.VIII) translated this analysis into the membrane
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paradigm. In that framework, the positive stress-energy associated with
the atmosphere of a black hole in the Hartle-Hawking state (i. e. with both
UP and IN modes thermal at the Hawking temperature) exactly cancels
the negative stress-energy due to vacuum polarisation. If the IN states
are unexcited, this results in a very slight depletion of the energy of the
atmosphere and so a very slight negative energy flow across the stretched
horizon. A precise set of conservation equations can be written at the
stretched horizon that relate changes in its area to the flow of stress-energy
across it; again, these reproduce exactly the naive prediction.

3. Abdolrahimi, Page, and Tzounis (2016) use numerical methods to find
the metric of a radiating black hole as a perturbation of the Schwarzschild
metric; they obtain a metric which far from the event horizon becomes
asymptotically close to the Vaidya metric, again with the expected rate
of mass decrease.

In conclusion: there are excellent reasons to think that the ‘naive’ treatment of
radiation gets the facts exactly right: black hole radiation carries away energy
and decreases the mass and surface area of the radiating black hole.

4.4 Hawking radiation and black hole thermodynamics

Hawking radiation slightly complicates the definition of ‘equilibrium’ for black
holes, but no more so than for any other radiating thermodynamic system. Any
electromagnetically-interacting body above absolute zero will radiate, so if such
a system is placed alone in the vacuum, it will eventually cool to absolute zero.
We can handle this in three ways:

1. Place the system in a box (of arbitrary size) filled with thermal radiation
at the same temperature as the system. The radiation and the system
will be in thermal equilibrium with one another and the system will itself
remain at equilibrium.

2. Place the system in an empty box that is not too large. It will fill up with
thermal radiation at the same temperature as the system; if it is sufficiently
small, this will happen without the system’s temperature changing too
much.

3. Finesse the issue by ignoring radiation, on the assumption that the timescale
on which it cools the object is long compared to other timescales of inter-
est.

All these are available for black holes; the only subtlety is that the black hole’s
negative heat capacity means that it will be in unstable equilibrium with a
sufficiently large thermal bath. In normal circumstances, if a small fluctuation
causes the radiating system to absorb a bit of heat, its temperature rises above
that of the radiation bath, so it emits the heat back again; for a black hole, that
fluctuation decreases the temperature, so positive feedback will occur. However,
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if the box is sufficiently small, the decrease in temperature of the radiation
bath exceeds that of the black hole and the system remains stable. Elementary
calculations (Hawking 1976) demonstrate that the total mass-energy of radiation
in the box must be less than 1/4 of the black hole mass; for a solar-mass black
hole, the box must be no more than ~ 10'? parsecs across, not an especially
demanding constraint.

More importantly, Hawking radiation allows black holes to be in thermal
contact with one another (and with other thermodynamic systems), in just the
same ways as for other self-gravitating systems. The simplest way to do this is
just to put the two systems (one or both of which is a black hole) in a large box,
far enough from one another that their mutual gravitational interaction can be
neglected. The box will fill up with radiation at a temperature intermediate
between the two, and so heat will flow from the hotter body into the radiation
and thence into the colder body. In particular, if the two bodies are at the same
temperature, no energy will flow from one to the other: the Zeroth Law holds
fully for black holes.

Alternately (and following Unruh and Wald (1982, 1983)), we can achieve
thermal contact via “black hole mining”: slowly lowering a box on a rope into a
black hole’s atmosphere, letting it fill with thermal radiation, and slowly pulling
it out again. The net energy extracted from the black hole in this process is
easily calculated to be

Q=aP+pV (28)

where V' is the box’s volume and «, p and P are respectively the redshift and the
locally-measured radiation density and radiation pressure at the point where
the box is removed. From the First Law of black hole thermodynamics, the
change in the black hole’s entropy is @ /Ty (where Ty is the hole’s temperature);
meanwhile, the box contains radiation at a temperature of Ty /a. Thermal
radiation has an entropy density s = (P + p)/T, so the entropy increase at
infinity is also Q/Tw; in other words, this process is reversible, and indeed
can be reversed just by slowly lowering a box of radiation into a black hole’s
atmosphere until its local temperature matches that of the atmosphere, opening
it, and then slowly pulling out the empty box.

If instead we try to lower the box into another black hole’s atmosphere until
we have extracted the same work as was required to lift the box in the first
place, we will find that this is possible only if the second black hole is at a lower
temperature than the first; if not, radiation pressure will support the box before
we have extracted enough work. So — just as with the radiation spheres — this
may be seen as a means of enabling heat flow from one black hole to another.

Finally, if we lower the box into the second black hole until it is exactly
supported by radiation pressure — which is to say, until its temperature matches
the local temperature of the atmosphere — we will find that the net work done
is

W = (01— an)(P + p)V (20)

where a3 and as are the redshifts at which the box is respectively filled and
emptied. If the two black holes have temperature T, T, then we must have
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T /a1 = Ty/as, so that the heat Q)1 extracted from the first black hole, the
heat transferred to the second black hole, and the work extracted satisfy

Q2= (T1/T2)Q1; W =(1-T1/T2)Qx. (30)

So this process is a Carnot process between the two black holes.

4.5 The generalised second law and the Casini-Bekenstein
bound

At this point, we have established that stationary black holes behave almost
exactly like (self-gravitating) thermodynamic systems. But there is a loose
end left over from section 3.6: we have not yet established that the Second Law
applies in full generality, nor seen how to block Geroch’s and Susskind’s thought-
experiments which apparently allow violations of the Second Law. What would
be needed to tie up this loose end would be a proof, in semiclassical gravity, of
the “generalised second law”: that the entropy of the black hole exterior plus
the Bekenstein-Hawking entropy is non-decreasing. (As Harlow (2016, p.34)
notes, “generalised second law” is a bit misleading if black hole area really is
entropy, in which case this would just be the ordinary second law. On the other
hand, in semiclassical gravity it is the sum of a statistical-mechanical entropy
with a purely phenomenological entropy, so it does have a hybrid nature.)

The three decades following Bekenstein’s original conjecture saw a substan-
tial if rather disunified literature on various thought experiments intended to
support the generalised second law. For instance, Unruh and Wald (1982) ar-
gued that the Geroch process is prevented by Hawking radiation: the global
entropy maximum of a (small) box of a given energy is achieved when the box
is full of thermal radiation at that energy, and that box will float, supported
by the radiation pressure of the black hole atmosphere, when it is deep enough
into the atmosphere that its temperature matches the local atmosphere temper-
ature. It can readily be shown that if the box is then opened so that its contents
fall into the black hole, the entropy increase of the hole equals the entropy in
the box. But this argument is controversial (see, e. g., Bekenstein 1999; Marolf
and Sorkin 2002) and in any case does not seem to address the case where a
black hole is formed by mass with a high entropy/energy ratio. Other authors
offered various more-or-less rigorous arguments for the Bekenstein bound from
quantum field theory, though for a long while Bekenstein’s conjecture proved
difficult to make precise, and at one point was thought to rely on some ceiling
on the number of distinct fundamental particles (intuitively, the more particles
there are, the more states there are at a given energy). See Wall (2009) and ref-
erences therein for a review of various attempts to prove the generalised second
law over this period.

The last decade, however, has seen major progress in this area, largely due
to increased insight into the way quantum entanglement changes with time in
the black hole exterior. Building on work of Marolf, Minic, and Ross (2004),
Casini (2008) was able to give a clear statement of the Bekenstein bound and
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then prove it fairly rigorously within quantum field theory. Similar ideas have
been used by Wall (2012) to give a clear statement and fairly general proof of
the generalised second law.

While no doubt there is more to learn here, there now seems to be pretty
strong evidence that the generalised second law holds in semiclassical gravity
in full generality, completing the case for a thermodynamic description of black
holes.

5 Conclusion

Black hole thermodynamics is often described as a striking analog of ordinary
thermodynamics. But if what it is to be a thermodynamic system is to obey
the various laws of thermodynamics, and to interact with other thermodynamic
systems in such a way that the combined system obeys those laws too, then
stationary black holes are not analogous to thermodynamic systems: they are
thermodynamic systems, in the fullest sense. More precisely, according to the
best physics we currently have, a black hole at (or weakly perturbed from) equi-
librium behaves ezactly like a conducting, viscous fluid at (or weakly perturbed
from) equilibrium, arranged in a thin shell just outside the event horizon.

An obvious question follows. In all other cases we know, there is a statistical-
mechanical underpinning both to the general laws of thermodynamics, and to
the specific form of the equation of state and transport coefficients of each ther-
modynamic system. Can we likewise construct a black hole statistical mechan-
ics to underpin black hole thermodynamics — or are black holes fundamentally
different from other thermodynamic systems at the microphysical level despite
their common phenomenology? I address this topic in Part II.

A Appendix: Dougherty and Callender on black
hole thermodynamics

In a thoughtful and provocative recent paper, Dougherty and Callender (2016;
henceforth DC) reach the opposite conclusion to mine: that “the analogy [be-
tween black hole thermodynamics and the ordinary kind] is not nearly as good
as is commonly supposed.” They advance three arguments: that BHT “is often
based on a kind of caricature of thermodynamics”; that it is ambiguous to what
systems BHT is supposed to apply; that BHT is motivated by a controversial
epistemic conception of entropy. Here I want to reply to these arguments.

A.1 A pale shadow of thermodynamics?

DC point out many apparent weaknesses in the details of the analogy between
black hole and ordinary thermodynamics, and it is simplest to respond to them
in objection-reply form.
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DC: What is called the “Zeroth law” of BHT is analogous to a mere conse-
quence of the real Zeroth Law.

Response: Fair enough (cf section 3.5). But the true Zeroth Law holds for
black holes as much as for other thermodynamic systems, once Hawking
radiation is allowed for (section 4.4).

DC: In ordinary thermodynamics, equilibrium systems minimise their internal
energy; it’s not clear whether that’s even meaningful for black holes.

Response: Consider a black hole away from equilibrium. Assuming it eventu-
ally settles down to stationarity (for which, we have seen, there is strong
evidence) then at late times the system will consist of outgoing gravita-
tional radiation far from the black hole, plus a stationary black hole. To
an arbitrarily good approximation we can then assign mass separately to
the black hole and the radiation via Noether’s theorem; gravitational ra-
diation has positive energy, so the stationary black hole must have lower
mass than its progenitor. This heuristic argument can be made precise via
the Bondi mass (section 2.5): the Bondi mass loss formula demonstrates
that a system that emits gravitational waves has decreasing mass. See,
e.g., Madler and Winicour (2016) and references therein for a review of
the techniques involved.

DC: There is no ‘in equilibrium with’ relation for black holes.

Response: Hawking radiation lets us define such a relation in pretty much
the same way it is defined for other gravitating and/or radiating bodies
(section 4.4).

DC: In ordinary thermodynamics, internal energy is distinct from total energy;
in BHT, it is identified with total energy.

Response: That’s an artefact of working in the black hole rest frame, which is
done purely for convenience (section 3.2).

DC: If two black holes coalesce into one, the total entropy increases, even
if the two black holes started off at the same temperature, ‘contrary to
thermodynamics’.

Response: It’s not contrary to thermodynamics. It’s contrary to the ther-
modynamics of extensive systems, but black holes — like self-gravitating
systems in general — aren’t extensive (section 2.5).

DC: Substituting black hole entropy for area in thermodynamic laws makes a
mess of thermodynamic relations where volume is a variable.

Response: Black hole entropy doesn’t actually have the dimensions of area,
unless we work in Planck units, in which case everything is dimensionless.
But in any case, just because two quantities have the same units doesn’t
mean they can be substituted for one another in equations. (I confess I
don’t entirely understand DC’s point here.)
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DC: BHT is very non-extensive.

Response: Indeed it is, but (a) nothing in thermodynamics requires extensiv-
ity, and (b) extensivity fails in strongly self-gravitating systems for clear
physical reasons (section 2.5), even before we consider black holes. (DC
recognise this last point in a footnote, but claim that the subtleties of
scaling in self-gravitating systems are ‘not analogous’ to those of black
holes. They don’t say why; examples like the radiation sphere certainly
look closely analogous.)

Beyond these specific points, if DC find that BHT is a caricature of ordinary
thermodynamics, it is in part because the version of BHT they are discussing is
itself a caricature, pretty much restricted to the laws of BHT stated in Bardeen,
Carter, and Hawking (1973). They don’t consider Christodolou and Ruffini’s
discussion of reversible and irreversible processes, or any of the results of the
membrane paradigm, or the various results on equilibration, and more impor-
tantly, while they note the existence of Hawking radiation they don’t consider
its role in thermal contact, or in permitting reversible heat flow to and from
black holes via Unruh-Wald mining of the thermal atmosphere.

A.2 Entropy of what?

DC point out that the event horizon is a globally defined concept, that a concept
like that is not a suitable basis for BHT, and that there is no generally-agreed-
upon or unproblematic alternative. They are surely right to identify this as
a profoundly important question with ramifications for our understanding of
Hawking radiation, and perhaps for quanutm theory more generally. But it
doesn’t seem that relevant to black hole thermodynamics. After all, thermody-
namics is concerned with systems at equilibrium, and is essentially silent about
non-equilibrium systems except to require that they go to equilibrium. So all
BHT needs is a clear understanding of the horizon for stationary black holes
(and, perhaps, for holes that are mildly perturbed away from equilibrium). But
pretty much all candidate definitions for the horizon agree on stationary black
holes.

A.3 Entropy and empiricism

Bekenstein’s original conjectures about black hole entropy made heavy use of
the relation between information theory and entropy, and that link is frequently
used as motivation in textbook discussions to this day. DC are critical both
of information-theoretic approaches to entropy in general (they prefer a Boltz-
mannian conception of thermodynamics in which the information-entropy link
is broken) and about its application to black holes in particular (they regard
the idea of information being lost behind the event horizon as a particularly
pernicious form of operationalism, given that we could just jump into the black
hole ourselves to find it again).
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I think DC are being a little unfair here, both to Bekenstein himself (whose
conjecture about black hole entropy was a consilience argument based on Christodolou,
Ruffini and Hawking’s results, and on various concrete thought-experiments, as
much as on the general entropy-information link) and to operationalism (as
shown by Hayden and Preskill (2007), in the absence of Planck-scale effects,
matter thrown into a black hole will be unobservable even by an observer who
jumps in after it after only time ~ M log M (~ 1072 second for astrophysical-
scale black holes, recall); suggestively, this is the time it takes for the stretched
horizon to equilibrate in the membrane paradigm, so information thrown into a
black hole is lost in principle after the black hole has equilibrated).

But let’s stipulate that they are entirely correct. That might be a reason not
to have awarded a grant to Bekenstein (or Hawking) back in the 1970s. It doesn’t
seem a good argument against black hole thermodynamics now, after the discov-
ery of the Hawking effect, the membrane paradigm and the Casini-Bekenstein
bound. The case for black hole thermodynamics can now rest entirely on the
concrete results that have been inspired by Bekenstein’s conjecture, and does
not need Bekenstein’s original motivation. The history of science is full of ideas
whose original motivation was shaky but which nonetheless worked out, and
which now stand on their own without need for that original motivation.

To be fair to DC here, in their dialectic they take themselves already to
have shown that the formal analogy between black hole thermodynamics and
ordinary thermodynamics is weak, so that substantial additional motivation is
needed to identify entropy with black hole area. So my criticisms of this section
are not really independent of my earlier points.
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