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Abstract

In discussions of the foundations of statistical mechanics, it is widely
held that (a) the Gibbsian and Boltzmannian approaches are incompati-
ble but empirically equivalent; (b) the Gibbsian approach may be calcu-
lationally preferable but only the Boltzmannian approach is conceptually
satisfactory. I argue against both assumptions. Gibbsian statistical me-
chanics is applicable to a wide variety of problems and systems, such as the
calculation of transport coefficients and the statistical mechanics and ther-
modynamics of mesoscopic systems, in which the Boltzmannian approach
is inapplicable. And the supposed conceptual problems with the Gibb-
sian approach are either misconceived, or apply only to certain versions
of the Gibbsian approach, or apply with equal force to both approaches. 1
conclude that Boltzmannian statistical mechanics is best seen as a special
case of, and not an alternatve to, Gibbsian statistical mechanics.

1 Introduction

Unlike general relativity, or non-relativistic quantum mechanics, statistical me-
chanics lacks a generally-accepted axiomatic foundation. Not coincidentally,
also unlike those other theories, the philosophical study ofstatistical mechanics
has little if any consensus as to what the main foundational problems are, let
alone how they are to be solved.

In lieu of such a consensus, much (non-historical) study of the foundations
of statistical mechanics has focussed instead on the supposed contrast between
two strategies for understanding statistical mechanics: the so-called “Gibbsian”
and “Boltzmannian” programs.! The former characterises thermodynamic sys-
tems, and thermodynamic entropy, in terms of probability distributions over
microstates of a system; the latter, in terms of individual systems. (The re-
lation of the two approaches to anything actually said by the historical Gibbs
and Boltzmann is a debatable point but will not be explored here; see Uffink
(2007), Myrvold (2019), and references therein, for historically sophisticated
discussions.)

Furthermore, in conceptual discussions of statistical mechanics (particu-
larly, though not exclusively, in philosophy) something close to a consensus has

IThe dichotomy is explicit in, e. g. , Frigg (2007), Callender (1999, 2001), and Albert (2000).



emerged: while Gibbsian statistical mechanics, and the Gibbsian definition of
entropy (it is conceded) is a standard tool in practical applications of statistical
mechanics, it is conceptually fatally flawed, and — unlike Boltzmannian statis-
tical mechanics — lacks theresources to explain the key features of SM, notably
the approach to equilibrium and the laws of thermodynamics. In brief summary
(to be returned to later), Gibbsian statistical mechanics is criticised for trying
to explain thermodynamic behaviour as a feature of our information about the
world rather than as a feature of the world, for failing to identify entropy as a
property of individual physical systems, and for evading rather than answering
the challenges to statistical mechanics posed by time-reversibility of micrody-
namics and by the Poincaré recurrence theorem. (For examples of this criticism,
see Albert (2000), Callender (1999, 2001), Goldstein (2001), Lebowitz (2007),
and Maudlin (1995).) As such, despite the acknowledged technical advantages of
the Gibbsian approach, the Boltzmannian approach offers the true explanation
of the successes of statistical mechanics, and in particular of thermodynamics.?

My thesis here is threefold. Firstly, the Gibbsian and Boltzmannian ap-
proaches are not rival approaches to the statistical mechanics and thermody-
namics of the same systems: rather, the Gibbsian framework is a more general
framework in which the Boltzmannian approach may be understood as a special
case. Secondly, the wider applicability of the Gibbsian approach is indispensi-
ble from a naturalistic perspective, inasmuch as a wide range of empirically
successful applications of statistical mechanics cannot be understood within the
Boltzmannian approach. And thirdly, the Boltzmannian criticisms of the Gibb-
sian approach largely miss their mark: in the main, they apply to some of the
justifications, motivations and interpretations offered for Gibbsian statistical
mechanics but not to Gibbsian statistical mechanics itself.

The paper is structured as follows. In section 2 I briefly summarise the main
commitments of the two approaches. I then consider first statistical mechanics
(sections 3-5) and then thermodynamics (sections 6-7), arguing in each case
that the two approaches coincide when it comes to thermodynamic properties
of sufficiently well-behaved systems (sections 3, 6) but that there are theoret-
ically and experimentally relevant regimes where only the Gibbsian approach
is applicable (sections 4-5, 7). In sections 8-10 I consider the main objections
advanced against the Gibbsian approach. Section 11 is the conclusion.

I work throughout under the (of course false) assumption that the under-
lying microphysics is classical mechanics, so that microstates of a system are
represented by points in a classical phase space. I do so to make contact with
the contemporary literature rather than out of a belief that quantum theory
is irrelevant here; at the end (section 12) I make some brief comments on how
quantum theory affects my thesis.

2This marks a rather common pattern in philosophy of physics, where philosophers pre-
dominantly study and espouse a minority position in physics which is technically less produc-
tive, but conceptually clearer, than the alternative — other examples include algebraic vs.
mainstream approaches to QFT (cf Wallace (2011), loop-space quantum gravity vs. string
theory, and modificatory (e.g., Bohm or GRW) rather than pure-interpretion approaches to
the quantum measurement problem (cf Wallace (2018).



2 Gibbs vs Boltzmann: an overview

The main features of Boltzmannian statistical mechanics® are:
e Phase space is divided into macrostates, representing (something like)
“macroscopically indistinguishable states”. More precisely, each energy

hypersurface in phase space is divided into macrostates.

e Systems are represented by phase-space points: that is, the state of a
system is a (classical) microstate. The macrostate of a system is just that
macrostate in which the system’s microstate lies; due to the way that the
macrostate partition is constructed, to know the macroscopic properties
of a system we need know only its macrostate.

e The Boltzmann entropy of a system (up to a scale factor kp) is the log-
arithm of the phase-space volume of the macrostate in which it lies (the
“Boltzmann entropy” of the system).

e A system is in Boltzmann equilibrium if it lies in the largest of the macrostates
(called the equilibrium macrostate) given the system’s energy. The geom-
etry of phase space for macroscopically large systems means that it is
certain (for dilute gases) and heuristically plausible (in general) that the
equilibrium macrostate for energy E is overwhelmingly larger in phase-
space volume than all other macrostates of energy E. I'll call a system
with this property Boltzmann-apt’.

e The approach to Boltzmann equilibrium is essentially a consequence of
phase-space geometry combined with some reasonable assumptions about
the dynamics: since almost all points (by phase-space volume) of a given
energy lie in the equilibrium macrostate, either the dynamics or the ini-
tial state would have to be “ridiculously special” (Goldstein 2001) for the
system not to approach equilibrium. Similarly, a system in the equilib-
rium macrostate is exceptionally unlikely to wander out of the macrostate,
given that virtually all states it could evolve into are also in the equilib-
rium macrostate. This conception of equilibrium makes the approach to
equilibrium a statistical or probabilistic matter, and (given the Poincaré
recurrence theorem? ) systems initially away from equilibrium will eventu-
ally evolve away from equilibium again, but for Boltzmann-apt systems the
probability of equilibration is so close to unity, and the time taken for re-
currence so large, that this can normally be disregarded. The Boltzmann
equilibration time is the typical timescale after which a system reaches
Boltzmann equilibrium.

3My account largely follows Albert (2000) and Frigg (2007); I take it to be mostly in agreee-
ment with, e.g., Carroll (2010), Goldstein (2001), Lebowitz (2007), North (2002), Penrose
(1994).

4See Wallace (2015b) for a review, and for emphasis of the fact that the so-called ‘problem
of measure zero’, according to which only ‘almost all’ states recur, is an artifact of classical
mechanics without foundational significance.



e The Boltzmann equilibrium values of a system are just the macroscopic
quantity values which specify the equilibrium macrostate. They may be
measured by single measurements of the system after the equilibration
timescale.

Note that at this stage, the terms ‘equilibrium’ and ‘entropy are being intro-
duced as terms of art, without any prior assumption about their relationship
to similarly-named thermodynamic terms. (I consider the relation between
statistical-mechanical and thermodynamic concepts of equilibrium and entropy
in sections 6-7.)

At first pass, the main features of Gibbsian SM® are:

e Thermodynamic systems are represented by probability distributions over
phase space (mathematically, by positive measures on phase space assign-
ing measure 1 to the whole space).

e The Gibbs entropy of a system represented by probability measure p is

Sa(p) = —kB//)ln/L (1)

the “Gibbs Entropy”.

e A system is at Gibbs equilibrium if p is time-invariant under the system’s
dynamics, which (again at first pass) seems fair enough: “equilibrium”,
after all, is understood from a macroscopic perspective as a state that
is unchanging in time). It then follows from ergodic theory that, if the
system is ergodic, the equilibrium distribution must be uniform on each
energy hypersurface (see Malament and Zabell (1980) for more discussion
of this relation between Gibbsian SM and ergodic theory). The Gibbs
equilibration time is the typical timescale after which a system reaches
Gibbs equilibrium.

For simplicity, we will assume that this equilibrium probability function
is the microcanonical distribution, which is restricted to a single energy
hypersurface and which is uniform on that hypersurface. (Extending to
the more general case does not essentially change the story, but introduces
distracting technical complications.)

e The Gibbs equilibrium wvalues of the system are the expected values of
the various dynamical quantities (microscopic or macroscopic) evaluated
with respect to the equilibrium distribution. They may be measured in
the usual statistical-mechanical way, by measuring many copies of the
equilibrated system and taking an average.

There is an immediate problem with this first-pass version of the Gibbsian
approach: it seems to have the corollary that real systems do not increase in

5At least at the foundational level, this account largely follows Sklar (1993), Callender
(1999), (Ridderbos 2002) and Frigg (2007).



entropy or approach equilibrium. For if the probability measure is defined over
individual microstates evolving under the system’s Hamiltonian, the dynamics of
the probability measure itself are determined: if the dynamics deterministically
carry the points in region V' at time 0 onto the points in region V' (¢) at time ¢,
then the conditional probability for a microstate of the system to be in region
V(t) at time ¢ given that it was in region V at time 0 is unity. This suffices to
uniquely determine the dynamics for p: they are given by Liouville’s equation,

“oplt) = {H.p(0)} &)

where H is the Hamiltonian and {-,-} is the Poisson bracket. This is a first-
order equation, so if the first derivative of p is zero at some given time it must
have been zero at all previous times: that is, no system that starts away from
equilibrium can reach equilibrium. Nor is there any prospect that the system
even gets closer to equilibrium, at least as measured by the Gibbs entropy,
since it is an easy consequence of Liouville’s equation that the Gibbs entropy is
invariant over time.

One influential way to evade this problem — due to Ed Jaynes — is to drop
the idea that dynamics have anything much at all to do with equilibrium or the
approach to equilibrium. To Jaynes and his followers,® to say that a system is
at equilibrium is to say simply that we know nothing about its state except its
energy; to say that a system is evolving towards equilibrium is to say that we
are losing information about its state. This strategy has been robustly criticised
in the philosophy literature,” most notably by advocates of the Boltzmannian
program, as simply failing to recognise the obvious fact that the approach to
equilbrium is an observed, empirically confirmed physical process. (See, e.g.,
Albert (2000).)

A more sophisticated variant of Jaynes’ approach, due to Wayne Myrvold (2014),
treats the probability distribution as epistemic, takes seriously its dynamical
evolution, but asserts (i) that realistic agents will lose the ability to keep track
of very fine-grained features of the probability distribution, and (ii) those fine-
grained features are not dynamically relevant when it comes to calculating
macroscopic quantities. As such, an agent can and must keep track not of
the true probability distribution but of a coarse-grained variant of it.

A quite different approach to the problem is to keep the idea that the sys-
tem evolves under some dynamics, but drop the idea that those dynamics are
Hamiltonian. Most radically, we could assume that explicit time asymmetry
must be introduced into classical physics to understand the approach to equi-
librium (the work of Ilya Prigogine is generally interpreted as exploring this
option; see Bishop (2004) and references therein for philosophical discussion).
Alternatively, we might appeal to the fact that no physical system short of the

6See, e.g., Jaynes (1965, 1957a, 1957b).

“Though for acerbic pith in response to Jaynes, little beats physicist J. S. Rowlinson’s
quotation of Leslie Ellis: ”Mere ignorance is no ground for any inference whatever. Ex nihilo
nihil.” (Rowlinson 1970)



whole Universe is truly dynamically isolated, and so will not truly have dynam-
ics given by a Hamiltonian for the system alone. But the first approach is in
danger of looking ad hoc, and the second does not seem to have the resources
to explain time asymmetry.

The main strategy to reconcile the Gibbsian approach with the Hamiltonian
dynamics involves a small modification to the former, rather than the latter:

e We introduce a coarse-graining map J on the space of probability dis-
tributions. At least in foundational discussions, the most common form
given for J works like this:

1. Coarse-grain phase space into cells.

2. Replace each probability measure p with a measure that is uniform
over each cell and which assigns the same probability to a cell as p
did.

This definition ensures that .J is a projection operator: that is, J? = J.
Maps like these (when linear) are sometimes called Zwanzig projections,
and in fact can be defined by methods of coarse-graining much broader
than the phase-space cell method; see, e.g., Zwanzig (2001) (or, for foun-
dational discussion, Zeh (2007) or Wallace (2015a)) for more details. The
action of J is often glossed as representing the fact that our measurements
of a system have finite precision, although (as I discuss further in section
9 this is not really a viable way to think about it).

e The entropy of a probability distribution p (with respect to a given coarse-
graining J) is now defined as the Gibbs entropy of the coarse-graining of

p:
Sa.(p) = Sc(Jp) =~k [ (Ip)In(Tp). (3)

e A system represented by probability function p is at equilibrium (with
respect to J) if its coarse graining Jp is invariant in time.

There is no dynamical principle according to which the coarse-grained en-
tropy is a constant of the motion; indeed, it is mathematically possible for the
coarse-grained entropy to increase to a maximum value and then remain there
indefinitely. Similarly, (and relatedly) nothing prevents a system initially away
from equilibrium evolving into equilibrium, if “equilibrium” is defined in coarse-
grained terms. (Note that this approach is at least closely related to Myrvold’s
proposal.)

Whenever it is significant, I will assume this last understanding of Gibbsian
statistical mechanics — but for most of my purposes in this paper, all that
matters is that there is an effective probability distribution for the system at
any given time, which coincides with the actual probability distribution for any
macroscopically relevant quantity and which evolves towards Gibbs equilibrium.
Whether that distribution is the true probability distribution, or is simply a
coarse-grained approximation to it, will be neither here nor there.



3 Equilibration in Boltzmann-apt systems

To begin our assessment of Boltzmannian and Gibbsian statistical mechanics,
let us start by considering systems that are Boltzmann-apt: that is, each of
which has a decomposition into macrostates such that, for any energy F, the
equilibrium macrostate at that energy occupies the overwhelming majority of
the volume of the energy hypersurface. In this context, the Gibbsian frame-
work actually entails the Boltzmannian framework. For consider: if the Gibbs
framework holds and if the system’s initial energy is F, then after the Gibbs
equilibration timescale the effective probability distribution is uniform on the
energy-FE hypersurface. But since the system is Boltzmann-apt, that means that
with overwhelmingly high probability the system is in the Boltzmann equilib-
rium macrostate: that is, with overwhelmingly high probability the system is
at Boltzmann equilibrium.

After the equilibration timescale, the macroscopic degrees of freedom at
any time will be overwhelmingly likely to possess their Boltzmann-equilibrium
values. So the Gibbs and Boltzmann equilibrium values coincide to an extremely
high degree of accuracy. There will be a small probability that the result of a
given measurement will diverge from these values, corresponding to the small
probability that the microcanonical distribution assigns to the non-equilibrum
macrostates. These fluctuations around the Boltzmann equilibrium values can
be described either are fluctuations within Gibbs equilibrium, or as fluctuations
into and out of Boltzmann equilibrium, but this is simply a semantic difference,
and does correspond to any physical disagreement about the system.

So the user of Gibbsian statistical mechanics is fully entitled to use — and
indeed, to accept the truth — of Boltzmannian statistical mechanics. In those
systems to which the latter is applicable, the Gibbsian framework can be seen
as grounding the Boltzmannian one.

The situation is not symmetric, for obvious conceptual reasons. The Boltz-
mannian framework per se contains no explicit notion of probability, and so does
not permit us even to define the Gibbsian probability distribution. (Almost cer-
tainly the Boltzmannian framework requires some qualitative notion of probabil-
ity — perhaps the notion of typicality advocated by Goldstein et al (2006) (see
Frigg (2009) and references therein for further details) — but its advocates com-
monly claim that the full quantitative probability distribution is not required,
and indeed is an incoherent concept in classical mechanics.) Nonetheless the
Boltzmannian has a straightforward story to tell about the practical utility of
Gibbsian methods: precisely because the equilibrium macrostate so dominates
the volume of the energy hypersurface, and because macroscopic variables have
almost-constant values on each macrostate, the average value of a macroscopic
variable will be extremely close to its actual value at Boltzmann equilibrium.
So the Boltzmannian can harmlessly use Gibbsian probabilistic methods as a
calculational tool, without any commitment to their truth.

In summary: as long as we (a) confine our attention to Boltzmann-apt sys-
tems, and (b) wish to calculate only equilibrium values of macroscopic variables,
the Gibbs and Boltzmann approaches are equivalent for all practical purposes.



And since the Gibbsian approach introduces a problematic notion of quantita-
tive probability, and arguably has a murkier account of how equilibration works,
one can see the case for preferring the Boltzmannian approach, and for setting
aside as foundationally irrelevant the incontestable fact that working physicists
use the Gibbsian approach.®

As we shall see shortly, however, (a) and (b) by no means exhaust the range
of applications of classical statistical mechanics.

4 Beyond Boltzmann equilibrium: transport prop-
erties

What might we want to calculate of a (let’s say Boltzmann-apt) system at equi-
librium, other than the values of its macroproperties? Omne important class
of properties are the multi-time correlation functions. For instance, consider a
classical dilute gas at equilibrium, and let X (¢) be the position of some arbitrar-
ily chosen particle at time ¢. At equilibrium, the expected value (X (¢)) of that
position is time-independent and equal to the center of mass of the gas; note
that I can make this statement based on only the vaguest and most qualitative
information about the gas.
But now consider the two-time correlation function

C(t) = (X (8)X(0))- (4)

The form of this function cannot be worked out in any simple way from the
equilibrium macrofeatures of the gas. Calculationally, it’s clear that it involves
the dynamics, since to evaluate it I need to work out how likely the system is
to transition from one position to another over time ¢; conceptually, we have

so that C(t) may be recognised as a measure of how far a randomly-chosen
particle diffuses through the gas after time t.

Knowing that the system is in the Boltzmannian equilibrium macrostate
does not in any straightforward way provide us with enough information to
calculate C(t); indeed, since C(t) is an explicitly probabilistic quantity, it is not
even defined on the Boltzmannian approach. Of course this would not matter
if C(t) were simply a theoretical curiosity — but, as my discussion above may
have suggested, two-time correlation functions like this are the main tool in
calculating diffusion coefficients, rates of thermal conductivity, and the other
quantitative properties of a system that characterise its behavior close to but not
at equilibrium. Indeed, the huge subject of transport theory is largely concerned
with calculating these two-time functions, and its methods are quite thoroughly

8See, e.g., Callender (1999, p.349): “[L]et me happily concede that for the practice of
science, Gibbsian SM is usually to be preferred. Since the values of all the entropy functions
I discuss agree at equilibrium, my arguments are necessarily philosophical in nature.”



confirmed empirically. (See, e.g., Zwanzig (2001), Altland and Simons (2010),
and references therein.)

So: even for Boltzmann-apt systems, there are important cases where proba-
bilistic methods seem necessary and do not reduce to Boltzmannian methods in
any simple way. (Multi-time correlation functions by no means exhaust the list
of such cases — indeed, I discuss another, the modern (‘BBGKY”) derivation of
Boltzmann-type equations through truncation of the N-particle probability dis-
tribution to 2-particle marginals, in Wallace (2016) — but they already suffice
to make the point.)

5 Beyond Boltzmann equilibrium: fluctuations

What about systems that are not Boltzmann-apt? One might a priori guess
that statistical mechanics is inapplicable to such systems, since after all it relies
for its efficacy (doesn’t it?) on being able to average over a very large number
of constituents. But this is not the case: as I now illustrate, statistical mechan-
ics is frequently and successfully applied to systems where the Boltzmannian
equilibrium state does not overwhelmingly dominate the energy hypersurface.
Here I give two such examples, in neither of which we can simply assume that
a system — even after the equilibration timescale — is “overwhelmingly likely”
to be in one particular macrostate. (I give others in section 7 when I discuss
the thermodynamics of small systems.)

The first example is spontaneous symmetry breaking, say (for definiteness) in
ferrmomagnets. Here, “the” equilibrium macrostate below a certain tempera-
ture has a non-zero expectation value of magnetic spin, corresponding to the fact
that it is energetically favourable for adjacent spins to line up. But it then fol-
lows from the rotational symmetry of the underlying dynamics that there must
be another macrostate obtained by applying a rotation to each microstate in
the first, of equal volume to ‘the’ equilibrium macrostate and equally justifiably
called an equilibrium macrostate. In other words: systems with spontaneous
symmetry breaking are not Boltzmann-apt, at least at energies corresponding
to temperatures below the symmetry-breaking temperature.

It’s possible to imagine a modification of the Boltzmannian framework to
handle this case. We could generalise the definition of Boltzmann-aptness to
allow for many equilibrium states, each related by a symmetry, and such that
their collective volume dominates the energy hypersurface. (And notice that
since Boltzmann entropy is logarithmic, replacing one equilibrium state with NV
reduces the entropy only by kg In N, which will be a negligible shift if N is much
smaller than the number of microscopic degrees of freedom). We could argue
that unless the dynamics are ‘ridiculously special’, the system is overwhelmingly
likely to end up in one of the equilibrium macrostates, and to remain there for
a very long time.

But this does not suffice to save the phenomena. We require not just that the
system will end up in one such state, but that each is equally likely. This follows
directly from the assumption of Gibbs equilibrium (each has equal volume, so



each is equally likely) and is well-confirmed empirically. For instance, the pat-
tern of symmetry breaking can be analysed in a ferromagnet, and it is clearly
distributed at random. This assumption may seem obvious but it’s not at all
clear how Boltzmannian statistical mechanics can reproduce it, without being
supplemented by an explicit probability distribution — we cannot, for instance,
say ‘typical states are equally likely to end up in each equilibrium macrostate’,
since ‘being equally likely to end up in each equilibrium macrostate) is not a
property that any given microstate can have in a deterministic theory.

The second example is Brownian motion. Here the system consists of one
large particle in a bath of smaller ones, with the latter usually taken to be at
Gibbs equilibrium. The large particle has no meaningful notion of ‘macrostate’
and evolves randomly, due to fluctuations in the number of particles colliding
with it from any given direction; its probability distribution will converge on
the Maxwell-Boltzmann distribution, but this in no way means that the actual
state of the particle is time-invariant after its ‘equilibration’ timescale. Applying
Gibbsian methods (such as by calculating the two-time correlation functions)
we can derive the stochastic equation which the particle obeys (see Zwanzig
(2001) for a more detailed discussion). The resultant equation, and variants
on it which apply to similar setups, has been widely applied and thoroughly
confirmed empirically.

Note that in both of these examples, probability is not simply playing a
foundational role (as was the case in, say, the calculation of transport coefficients
from two-point functions). Rather, the predictions of the theory are themselves
expressed probabilistically, and don’t have any direct re-expression in terms
of categorical properties. Of course, the probabilities are measured through
relative frequencies, and it is always open to the Boltzmannian to insist that
apparently “probabilistic” predictions should be reinterpreted as, say, claims
about what is typical when an experiment is repeatedly performed on a very
large number of copies of the system. But this is just a claim about the general
foundations of probability in statistical mechanics (specifically, that it should
be understood on frequentist lines). It in no way eliminates probability from
the actual statement and use of statistical mechanics.

To summarise sections 3-5: while there is a class of statistical-mechanical
systems, and a class of properties of those systems, such that Gibbsian and
Boltzmannian methods are equally applicable when calculating those properties,
the scope of statistical mechanics is much wider than those classes and includes
many phenomena that seem treatable only by Gibbsian means. As we will now
see, essentially the same story recurs when we turn to thermodynamics.

6 Thermodynamics in macroscopic systems

As I (Wallace 2014) and others (see Skrzypczyk, Short, and Popescu (2014) and
references therein) have argued elsewhere, thermodynamics is not a dynamical
theory in the usual sense: not, that is, a theory of how undisturbed physical
systems evolve over time. (Indeed, insofar is it is seen as such, thermodynamics

10



is essentially trivial: it is concerned with equilibrium systems, and the defining
feature of such systems is that they do not evolve at all over time.) Rather,
thermodynamics is a control theory (or, alternatively, a resource theory), con-
cerned with which transformations can or cannot be performed on a system by
an external agent, given certain constraints on that agent’s actions. From this
perspective, the First Law of thermodynamics disallows control actions where
the work done on a system (i. e. the energy cost of the control operation to the
agent), plus the heat flow into the system from other systems, does not equal the
change in internal energy of the system. The Second Law, meanwhile, disallows
those transformations which lead to a net decrease in thermodynamic entropy.

As a more precise (though by no means completely precise) statement of the
content of thermodynamics, I offer the following: there are equilbrium systems,
and they can be completely characterised for thermodynamic purposes by a
small number of thermodynamic parameters: the energy U and some externally-
set parameters — in typical examples, the volume V. (It is also possible to add
some conserved quantities, such as particle number; for expository simplicity
I omit this complication). The equation of state determines the thermody-
namic entropy as a function of those parameters; schematically, we might write
S = S(U,V), understanding V to stand in for whatever are the actual exter-
nal parameters and conserved quantities. Other thermodynamically relevant
quantities can be calculated from the equation of state: therrmodynamic tem-
perature, for instance, is the rate of change of U with S at constant V; pressure
is minus the rate of change of U with V at constant S. The Second Law is the
requirement that any allowable control process leave the sum of all entropies
non-decreasing. (For a somewhat more detailed sketch of thermodynamics on
these lines, see Wallace (2017, section 2).)

Recovering thermodynamics from an underlying mechanical theory, then,
requires us to provide mechanical definitions of (inter alia) ‘equilibrium’, ‘allow-
able control process’, the ‘thermodynamic parameters’, and ‘entropy’ along with
other reasonable mechanical posits, such that (a) these laws of thermodynamics
can be derived (at least approximately) from those definitions and posits, (b)
the definitions do reasonable justice to the informal, operational understand-
ing of the thermodynamic terms (according to which, for instance, equilibrium
states have macroproperties that are approximately constant in time) and (c)
given that the equation of state of a system is an empirically measurable feature
of that system, the definitions allow us to recover the actual, quantitative form
of the equations of state of known systems.

In looking for such a recovery, we are not operating in a vacuum. After a
century of statistical mechanics, it is well known how to calculate the thermody-
namic entropy of a (large) system: taking the Hamiltonian of that system to be
parametrised by the external parameters (so that, for instance, the Hamiltonian
of a box of gas is a function of its overall volume), treat the thermodynamic en-
ergy as just directly representing the mechanical energy, and define the entropy
as the log of the phase-space volume of all states with that energy (this makes
the entropy indirectly a function of V' as well as energy U, since the Hamiltonian
depends on V). Mathematically speaking, this is the Gibbs entropy of the mi-
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crocanonical distribution; empirically, this works, for a huge variety of systems,
and so recovering it (at least to a high degree of approximation) is a sine qua
non of any mechanical recovery of thermodynamics. (Call this the ‘quantitative
test’” of a proposed recovery.)

We can also say something general about allowable control operations. At
a minimum, such control operations ought to correspond to transformations al-
lowable by the basic structure of classical mechanics. Any such transformations
preserve phase-space volume when acting on closed systems, so we will assume
that any such control operation is indeed volume-preserving. (It is possible to
decrease phase-space volume by measuring the state and choosing the control
operation accordingly, a strategy that leads towards Maxwell-Demon-style (ap-
parent) counter-examples to the Second Law, but these lie beyond the scope of
this paper; for discussion in the control-theory context, see Wallace (2014) and
references therein.)

With all this said, let’s consider what a derivation of thermodynamics for
macroscopic systems might look like. In most cases (perhaps putting aside
spontaneous symmetry breaking), we can reasonably assume such systems are
Boltzmann-apt: that is, that for given U,V the phase space region is domi-
nated by a single region in which the macroscopic variables are approximately
constant. Let’s start with the Boltzmannian approach, in which equilibrium is
defined as occupation by the system’s actual microstate of the largest-volume
macrostate, and in which we eschew explicit and quantitative use of probabili-
ties. A natural choice for control operations is then

Boltzmann-equilibration operations: in which the system’s thermodynamic
parameters are changed, some subsystems are brought into and out of
thermal contact (that is, coupled or decoupled by some Hamiltonian) and
then the system is allowed to evolve such that (in an irreducibly imprecise
way) it is almost certain to reach equilibrium. To restrict to equiibration
operations is to assume an agent who has control only over a system’s
bulk thermodynamic parameters.

By assumption, a Boltzmannian-equilibrium operation must have the desired
effect for all (or at least the vast majority in phase-space measure) of points in
the equilibrium region. So it follows that the volume of the post-operation equi-
librium state must exceed that of the pre-operation equilibrium state. Hence
Boltzmann entropy is non-decreasing under these operations, in accordance with
the Second Law. Furthermore, since the equililbrium macrostate dominates the
allowable region of the phase space, its Boltzmann entropy is numerically al-
most equal to the microcanonical entropy, so that the quantitative test is passed
too. In short, this seems an entirely satisfactory (sketch of a) derivation of ther-
modynamics from Boltzmannian statistical mechancs, with the Boltzmannian
notions of ‘entropy’ and ‘equilibrium’ mapping to the thermodynamic ones.
What about from the Gibbsian perspective? Here, to say that the system
is at equilibrium is to say that its effective probability is uniform over the al-
lowable region of phase space. Given that the system is Boltzmann-apt, recall
that the system thus almost certainly has the Boltzmann-equilibrium values of
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the macroproperties. (Again, there is a purely semantic difference here: the
Boltzmannian says that the system is almost certainly at equilibrium and, if
at equilibrium, certainly has such-and-such values of the macroproperties; the
Gibbsian says that the system is at equilibrium and, as such, almost certainly
has those values.) The natural choice here for control operations is:

Gibbs-equilibration operations: In which the system’s thermodynamic pa-
rameters are changed, some subsystems are brought into and out of ther-
mal contact (that is, coupled or decoupled by some Hamiltonian) and
then the system is allowed to evolve such that if the effective probabil-
ity distribution is originally uniform over the region determined by the
old parameters, after the control operation it is uniform over the region
determined by the new parameters.

Given the background coarse-graining assumptions of the Gibbs approach, the
Gibbs entropy of the effective probability distribution cannot go down in the
control operation. And the quantitative test is trivially passed. So again, we
have a (sketch of a) satisfactory derivation of thermodynamics from Gibbsian
statistical mechanics, with ‘equilibrium’ and ‘entropy’ here played by the Gibb-
sian rather than the Boltzmannian notions. As a further difference, because the
Gibbsian approach describes the system probabilistically, the Gibbsian corre-
lates for thermodynamic energy and work are expected values, not categorical
values — although given the assumption of Boltzmann-aptness, the actual value
will be extremely close to the expected value with extremely high probability.

The situation is parallel to the statistical-mechanical case. For the Gibbsian,
there is no factive difference between the two approaches: the validity of the
Gibbsian approach entails that of the Boltzmannian approach, and the two
strategies differ only semantically. For the Boltzmannian, the Gibbsian use of
probabilities is justifiable only on pragmatic terms.

Again in parallel to the statistical-mechanical case, Gibbsian thermodynam-
ics would be required only if there are applications of thermodynamics where
the Boltzmann-apt assumption fails, where the use of actual probabilities is un-
avoidable, and where statistical fluctations are non-negligible and measurable.
And again, there are indeed many such cases.

7 Beyond macroscopic thermodynamics

A combination of theoretical and experimental advances have made the last
twenty years a golden age for the statistical mechanics of small systems. On the
theoretical side, the key advance has been fluctuation theorems, results derived
in the Gibbsian framework which relate the probability distributions over differ-
ent transformations between systems. For instance, in macroscopic thermody-
namics, if a system is transformed between equilibrium states while remaining
all the while in contact with a heat bath at temperature T, it is a standard
result that

AF >W (6)
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where AF is the decrease in the free energy between initial and final states, and
W is the work extracted in moving from initial to final states. The inequal-
ity becomes an equality only in the quasi-static limit. The Jarzynski equality
(Jarzynski 1997) sharpens this to:

o AF/KT _ <efW/kT> (7)

where the right hand side is an expectation value over different microphysical
realisations of the transition between initial and final state. For large systems
and slow changes, the fluctuations in the right-hand-side will be negligible and
we will recover the quasi-static, non-probabilistic result, but the equality holds
— according to Gibbsian statistical mechanics — even for small systems and
for rapid transformations of those systems.

The (closely related) Crooks fluctuation theorem (Crooks 1998) again con-
cerns transitions between equilibrium states A, B of a system in thermal contact
with a reservoir. For that system, the theorem states that

Pr(WA—B) _ (VV—AF> (8)

Pr(—W|B — A) kT

where Pr(W|A — B) is the probability that a given transition from A to B will
require work W, and Pr(—W|B — A) is the probability that a given transition
from B to A will extract work W. In the limit of large systems and slow
processes, W = AF and the theorem just says that transitions in either direction
are equally likely, but the result is again a mathematical consequence of Gibbsian
statistical mechanics even for fast processes on microscopic systems.

These are results that cannot be derived in full generality in the Boltz-
mannian framework: they are explicitly probabilistic, and the free energies are
themselves defined as expectation values. This would be of only limited sig-
nificance, though, if they remained purely theoretical results, experimentally
untestable on systems small enough to display meaningful fluctuations.

But of course they have been tested, extensively. The most well-developed
examples have involved the stretching and unstretching of RNA and polymer
chains (see, for instance, Collin et al (2005)). In these experiments, the work
done on the chain in a given stretch-and-unstretch shows large thermal fluctu-
ations (that is, we are way outside the Boltzmann-apt regime) but nonetheless
the probability distributions over work done, and the expectation values, con-
form exactly to the predictions of the fluctuation theorems. Experiments have
been done in a range of other small systems, and the field is moving too quickly
to summarise in a foundational article like this one (for an already-dated re-
view, see Bustamante, Liphardt, and Ritort (2005)) but suffice it to say that
the experimental evidence for the fluctuation theorems looks compelling, even
(especially?) in small systems where fluctuations are large.

Tests of the fluctuation theorems do not exhaust the range of recent exper-
iments in microscopic thermodynamics. To give one more example, recall that
Richard Feynman famously argued Feynman (1967, pp.116-9) that a ratchet
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could not be used as a Maxwell demon to transfer heat between two reser-
voirs of equal temperature because of fluctuations. Bang et al (2018) have
demonstrated this result empirically, using a microscopic ’ratchet’ consisting of
a colloidal particle in an optical trap. They verified that although on any given
run of the experiment heat is sometimes converted into work, the expected work
output (measured by averaging over many runs) is zero unless the two reservoirs
are of unequal temperature.

In summary: modern physics is extensively applying, and testing, thermo-
dynamics in the microscopic regime, where the Boltzmann-aptness assumption
completely fails and predictions are explicitly probabilistic. In this regime,
Boltzmannian statistical mechanics is inapplicable and the Boltzmannian con-
ception of equilibrium is useless.

Now, it should be acknowledged that in using “thermodynamics” to apply
to this regime, in which terms like ‘work’ and ’free energy’ enter the Second
Law only as expectation values, we are going well beyond their original use in
nineteenth-century phenomenological thermodynamics. I could even concede
that that subject reduces to Boltzmannian statistical mechanics as readily as to
the Gibbsian version. But this is a semantic matter. Whether the subject that
modern physicists call ‘thermodynamics’ is a precisification of that nineteenth-
century subject or a genuine extension of it, it is a robust and empirically
well-confirmed subject which relies for its formulation and its use on probabilis-
tic — that is, Gibbsian — conceptions of statistical mechanics in general and
equilibrium in particular.

I conclude that — even if we restrict attention to the classical case —
the range of applications of modern statistical mechanics and thermodynamics
vastly outstrips what can be analysed using just the methods of Boltzmannian
statistical mechanics, without the explicit introduction and study of quanti-
tative probabilities. Assuming (as I take it should be uncontroversial) that a
foundation for statistical mechanics needs to be a foundation for all of statistical
mechanics, and not just for the tiny fraction that had been developed by, say,
1900, then I don’t see an alternative but to accept the Gibbsian framework as
that foundation, with the Boltzmannian framework as a highly important spe-
cial case of it applicable to Boltzmann-apt systems for the calculation of certain
quantities.

I could end the paper here. However, critics of Gibbsian statistical mechan-
ics have advanced a number of objections to the effect that it is conceptually
incoherent, and those objections are not magically swept away simply by a nat-
uralistic argument that we need Gibbsian methods (even if that need might
make us more confident that the objections can somehow be met). In the next
three sections, I consider what I take to be the main Boltzmannian objections
to Gibbsian statistical mechanics, and argue that they either rest on misconcep-
tions about the framework, or else apply to particular versions or developments
of the Gibbsian framework but not to that framework in itself. For expository
clarity, and to ensure that I am not engaging with straw men, I will concen-
trate on influential criticisms due to Albert (2000), Callender (1999, 2001) and
Maudlin (1995).
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8 Objections to Gibbs: modality and probabil-
ity

One of the most common objections to Gibbsian statistical mechanics is that it

makes thermodynamics in general, and entropy in particular, a study of modal,

in particular probabilistic, features of a system, rather than of categorical fea-

tures, when the latter is what is required to do justice to the phenomena. Indeed,

this is often held up as a simple and straightforward mistake. As representative
examples, consider Callender (2001, p.544):

The problem is not the use of ensembles ... The problem is instead
thinking that one is explaining the thermal behaviour of individual
real systems by appealing to the monotonic feature of some func-
tion, be it ensembles or not, that is not a function of the dynamical
variables of individual real systems. It is impossible to calculate the
intellectual cost this mistake has had on the foundations of statis-
tical mechanics. The vast majority of projects in the field in the
past century have sought to explain why my coffee (at room tem-
perature) tends to equilibrium by proving that an ensemble has a
property evincing monotonic behaviour. (Emphasis Callender’s.)

Or Maudlin (1995, p.147):

Since phenomenological thermodynamics originally was about . . . individual
boxes [of gas|, about their pressures and volumes and temperatures,
‘saving’ it by making it be about probability distributions over en-
sembles seems a Pyrrhic victory. It is remarkable, and not a little
depressing, to see the amount of effort and ingenuity that has gone

into finding something of which the phenomenological laws can be
strictly true, while insuring that the something cannot possibly be

the phenomena.

A particular concern of both authors is the Poincaré recurrence theorem. Given
recurrence, we know that a system will eventually return arbitrarily close to its
initial state, and so if entropy is indeed a function of the microstate of a system,
then entropy must eventually return to its initial value, seeming to demonstrate
that any account of entropy as monotonically increasing has lost touch with the
microfoundations of thermodynamics.

There is a great deal to say in response to these objections. Here I identify
six points that ought, jointly, to assuage such worries.

Firstly, what we want to explain in non-equilibrium statistical mechanics is
itself something modal: not that systems invariably go to equilibrium but that
they do so almost certainly. It might not be compulsory to quantify ‘almost
certainly’ as ‘with probability very close to 1’ but at any rate it does not seem
to involve a substantial change of focus. A probabilistic property of a system is
poorly suited to explain why the system deterministically behaves in such-and-
such a way, but it is well suited to explain why it very probably behaves in that
way.
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Secondly, in statistical mechanics (as distinct from thermodynamics) the
entropy is ultimately no more than a book-keeping device to keep track of
irreversibiliy in a system’s dynamics. In Gibbsian statistical mechanics, irre-
versibility typically takes the form of an increasing dispersal of a probability
distribution over the constant-energy hypersurface (which, in Boltzmann-apt
systems, in turn entails the increasing likelihood of the system being in the equi-
librium macrostate). Because (an appropriately coarse-grained) Gibbs entropy
tracks this dispersal, it is a useful tool to study the approach to equilibrium,
but it has no causal or explanatory role in its own right. (And the same is
true for Boltzmannian statistical mechanics: the Boltzmann entropy, as far as
non-equilibrium statistical mechanics is concerned, is a device for tracking a
system’s increasing likelihood of being found in increasingly-large macrostates.)

Thirdly, while in thermodynamics the entropy plays a much more quanti-
tatively significant role, that role is itself modal. As I noted in section 6, the
subject matter of thermodynamics is the transformations that an agent can
bring about in a thermodynamic system. The word ‘can’ betrays the modality
of this subject matter: if a system might be in one of many states, this constrains
the transformations that the agent can bring about, at least without measur-
ing that state. This modality is hidden in most applications of macroscopic,
phenomenological thermodynamics — but in that context, the Gibbs entropy
is just a property of the system’s thermodynamic variables, and the modality is
suppressed.

Fourthly, once it is recognised that in Gibbsian statistical mechanics ‘equi-
librium’ is a statement about the probability distribution of a system, there
is no contradiction between the (classical) recurrence theorem and the claim
that entropy is non-decreasing. For the former tells us that any given sys-
tem has some timescale at which it has returned to its initial state, and the
latter (for Boltzmann-apt systems) tells us that at any time after the equili-
bration timescale the system is overwhelmingly likely to be in the equilibrium
macrostate, and these statements are compatible. Nor is there any contradic-
tion between the recurrence theorem and the claim that thermodynamic entropy
is non-decreasing, for the latter concerns the interventions we may make on a
system, and it is of no use to an agent to know that any given microstate will
recur, absent knowledge that the system has in fact recurred at a given time.

Fifthly, while the quantum version of the recurrence theorem has a uniform
timescale for recurrence, and so indicates that even the coarse-grained Gibbs en-
tropy cannot be non-decreasing for all time, this simply indicates (assuming the
orthodox coarse-graining version of the Gibbsian approach) that the assump-
tions underpinning the validity of coarse-graining cannot apply for arbitrarily
long timescales (something that can in any case be read off the master-equation
or BBGKY formalisms for irreversible Gibbsian dynamics; cf the discussion in
Wallace (2016)). I suppose Callender and Maudlin should be pleased at this
result: properly understood, Gibbsian statistical mechanics does not after all
seek an exceptionless principle of non-decreasing entropy, but only an entropy
that is nondecreasing over the physically significant timescales.

Finally, Boltzmann entropy is itself only superficially a categorical property
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of a system. Yes, formally speaking the Boltzmann entropy depends only on a
system’s microstate, but it relies for its definition on a partition of the energy
hypersurface into macrostates, and that partition is modal in nature — most
obviously because the energy hypersurface itself depends on the dynamics. To
make this vivid, suppose that a system has microstate x, and then perturb its
Hamiltonian such that it remains constant in some small neighborhood of =
but varies sharply over the rest of x’s macrostate. Then the perturbation will
adjust the macrostate partition, and thus change the Boltzmann entropy of =z,
even though no categorical property of the system has been altered.

9 Objections to Gibbs: coarse-graining

A second major locus of concern about the Gibbsian framework is the supposed
inadequacy of any account based on coarse-graining (which, recall, is the main-
stream — though not the only — approach to reconciling irreversibility with
the time-invariance of fine-grained Gibbs entropy). It is variously described as
ad hoc, as confusing our subjective limitations as experimenters with objec-
tive matters of fact, and as introducing some kind of spurious and empirically
unsupported modification of the dynamics. Thus Maudlin (1995, pp.146-7):

One can modify the underlying dynamics by adding some ‘rerandom-
ization’ posit ...but these surreptitious modifications simply have
no justification.

Or Callender (1999, p.360):

The usual response to the conservation of [the fine-grained Gibbs
entropy| is to devise new notions of entropy and equilibrium, in
particular, the coarse-grained entropy and a notion of equilibrium
suitable for it. The motivation for these new notions is solely as
a means of escaping the above “paradox” [time-invariance of fine-
grained entropy], though it is usually defended with appeals to the
imprecision with which we observe systems.

Here I identify three reasons that such concerns do not undermine the Gibbsian
project (properly understood).

Firstly, in statistical mechanics the choice of coarse-graining is typically mo-
tivated neither by concerns about experimental limitations, nor through the
ulterior motive of explaining irreversibility; rather, the motivation is the search
for robust, autonomous higher-level dynamics. In the BBGKY approach to
dilute-gas mechanics, for instance, the coarse-graining process is the discarding
of three-body and higher marginals from the probability distribution; the mo-
tivation here is simply that we seem to be able to write down a well-defined
and empirically successful dynamics for the so-truncated probability function.
Similarly, in master-equation approaches to Brownian motion the reason for
discarding information about the thermal bath in which the Brownian particle
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moves is not (or should not be) that we do not have that information empir-
ically; it is that there is a robust, empirically adequate, stochastic dynamics
for the Brownian particle alone. (This is perhaps a good point to observe that
statistical mechanics — contra the way it is often discussed in the foundational
literature — is not itself a foundational project: its primary goal is to find
empirically-adequate values and dynamical equations for collective degrees of
freedom, not conceptually-adequate foundations for thermodynamics. See Wal-
lace (2015a) for development of this point.)

Secondly, in thermodynamics there s reason to understand coarse-graining
in terms of experimental limitations — but this is entirely appropriate given
the control-theory understanding of thermodynamics. In the version of ther-
modynamics I sketched in sections 67, the coarse-graining can be understood
as quantifying our operational limitations: if the best we can do is alter a sys-
tem’s macroscopic parameters and allow it to come to equilibrium, for instance,
then the right coarse-graining is the one that replaces a distribution with the
equilibrium distribution at the same volume and expected energy.

Thirdly, the macrostate partition at the heart of Boltzmannian statistical
mechanics is just as vulnerable to these criticisms as is the Gibbsian coarse
graining — indeed, it is a special case of that coarse-graining, corresponding in
Gibbsian terms to replacing a distribution with that distribution which agrees on
the probability of each macrostate and is constant across macrostates. Consider
some standard descriptions of the coarse-graining:

[W]e must partition [phase space] into compartments such that all
of the microstates X in a compartment are macroscopically indis-
tinguishable[.]? (Callender 1999, p.355)

Everyday macroscopic human language (that is) carves the phase
space of the universe up into chunks. (Albert 2000, p.47)

If pushed, I suspect Boltzmannians would reply that it is not the epistemic
indistinguishability of macrostates that is doing the work, but rather the pos-
sibility of writing down robust higher-level dynamics in terms of macrostates,
and largely abstracting over microscopic details. But of course this is exactly
what the Gibbsians have in mind when they speak of coarse-graining.

10 Objections to Gibbs: subjectivity

Probably the most severe criticism made of Gibbsian statistical mechanics is
that it somehow conflates the question of how much we know about a system,
with the question of how a system will in fact behave. Thus Albert (2000, p.58)

9Callender goes on to gloss this as “’that is, they share the same thermodynamic features”.
But he does not define “thermodynamic features”, and the standard definition — that ther-
modynamic features are restricted to the energy, volume and thermodynamic entropy, and
functions thereof — does not suffice to define the macrostate partition.
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There’s something completely insane (if you think about it) about
the sort of explanation we have been imagining here . .. Can anybody
seriously think that our merely being ignorant of the exact micro-
conditions of thermodynamic systems plays some part in bringing it
about, in making it the case, that (say) milk [mixes into'’] coffee?
How could that be? What can all those guys have been up to?

Or Callender (1999, p.360):

Thermodynamic behaviour does not depend for its existence on the
precision with which we measure systems. Even if we knew the
positions and momenta of all the particles in the system, gases would
still diffuse through their available volumes.

Many aspects of this concern overlap with worries about the modal or proba-
bilistic nature of Gibbsian statistical mechanics, or the subjectivity of coarse-
graining processes in particular, and so have been addressed in the previous
two sections. Here I add just two further observations: one aimed at statistical
mechanics, one at thermodynamics.

Firstly: insofar as we accept that statistical mechanics is in the business
of making probabilistic predictions (and, as we saw in section 5, this is clearly
implied by scientific practice) this reduces to a general concern about the inter-
pretation of statistical-mechanical probability. For if we want to explain why a
deterministic system will with high probability do X, probabilistic statements
about its current state are pretty much all we can expect as explananda. If
probabilities are here to be interpreted epistemically, then what is to be ex-
plained is why I have a high degree of belief in the system being (say) in the
equilibrium macrostate 7 seconds from now, and my present beliefs about the
system are quite natural explananda.

It will be objected by (e.g.) Albert and Callender that when we say ‘my
coffee will almost certainly cool to room temperature if I leave it’ we are saying
something objective about the world, not something about my beliefs. I agree,
as it happens; that just tells us that the probabilities of statistical mechanics
cannot be interpreted epistemically. And then, of course, it is a mystery how
they can be interpreted, given that the underlying dynamics is deterministic:
perhaps as long-run relative frequencies, perhaps via the Lewis-Loewer best-
systems approach (Lewis 1980, Loewer 2002), perhaps as the decoherent limit of
quantum probabilites (Wallace 2016). But (on pain of rejecting a huge amount
of solid empirical science, cf sections 4, 5, 7) some such interpretation must be
available.

In the thermodynamic context, by contrast, it is far less clear to me why my
knowledge of a system’s state cannot play an explanatory role. To be sure, that
information cannot explain why the system spontaneously approaches equilib-
rium; that is the domain of statistical mechanics. But there is no paradox in
supposing that the transformations I can bring about of a system’s state should

10 Albert actually says ’dissolves in’ here, but this is not strictly correct: milk, a mixture of
water and water-insoluble lipids, is not itself soluble in water.
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depend on my information about that very state. (If Albert had asked how our
being ignorant of the exact microconditions of the coffee could make it the case
that we are unable to un-mix the coffee and the milk, the rhetorical force is at
least less clear.)

To be sure, in the phenomenological context this is largely irrelevant: in-
formation about a system is useless to me except insofar as I have access to
operations which are sensitive to that information. (Even if provided with an
exact readout of my coffee’s microstate, I lack the manipulative precision to use
that information to unmix it.) But that just brings us back to the previous
section’s discussion of coarse-graining.

11 Conclusion

The standard story in philosophy of statistical mechanics about the Gibbs and
Boltzmann approaches relies on two assumptions: that the Gibbs and Boltz-
mann approaches are empirically equivalent and apply to the same physical
systems, and that the Gibbsian framework has conceptual flaws that do not
trouble the Boltzmannian.

I have argued that neither is correct. The standard objections to the Gibb-
sian approach either misunderstand the approach, or apply to certain ways of
developing the approach but not to the approach itself, or apply with equal
force to the Boltzmannian. And it is good that this is so, because physical
as practiced in the 21st century requires the Gibbsian framework to handle a
host of physically relevant situations in which the Boltzmannian approach is
inapplicable. Correctly understood, modern statistical mechanics includes the
Boltzmannian framework simply as a special case of the Gibbsian.

12 Epilogue: quantum statistical mechanics

My discussion in this paper is entirely classical. But the world is not even
remotely classical, and so really we should ask: what does the Gibbs/Boltzmann
distinction look like in quantum theory?

The obvious thought might be: replace phase space with (projective) Hilbert
space; replace phase-space points with Hilbert-space rays; replace probability
distributions over phase space with probability distributions over the space of
rays. But macroscopic systems need not be, and in general will not be, in pure
states. And mathematically, a probability distribution over the space of mixed
states cannot be distinguished from a single element of that space.

So a hypothetical “Gibbsian” quantum statistical mechanics works with den-
sity operators understood as probability distributions over mized states; a “Boltz-
mannian” statistical mechanics instead works with density operators understood
as individual mized states. But nothing at the level of the mathematics will dis-
tinguish the two approaches (see Wallace (2016) for further discussion). And I
have been arguing that the machinery of the Gibbsian approach, not a hypo-
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thetical interpretation of that machinery, is compatible with the Boltzmannian
conception of statistical mechanics as objective. In the case of quantum the-
ory, this seems to follow automatically: at the level of machinery, there is no
difference between the two conceptions. In reality, modern quantum statistical
mechanics simply studies the evolution of mixed states and coarse-grainings of
those states, with no need within the formalism for any additionally statistical-
mechanical conception of probability. Mathematically speaking the methods
used are continuous with Gibbsian rather than Boltzmannian statistical mechan-
ics, but it is mere semantics whether those methods should be called ‘Gibbsian’
or ‘Boltzmannian’.
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