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Abstract

I give an introduction to the conceptual structure of quantum field
theory as it is used in mainstream theoretical physics today, aimed at non-
specialists (though presuming some familiarity with quantum mechanics).
My main focuses in the article are (a) the common structure of quantum
field theory as it is applied in solid-state physics and as it is applied in
high-energy physics; (b) the modern theory of renormalisation.

1 Introduction

Quantum theory, like Hamiltonian or Lagrangian classical mechanics,! is not

a concrete theory like general relativity or electromagnetism, but a framework
theory in which a great many concrete theories, from qubits and harmonic oscil-
lators to proposed quantum theories of gravity, may be formulated. Quantum
field theory, too, is a framework theory: a sub-framework of quantum mechan-
ics, suitable to express the physics of spatially extended bodies, and of systems
which can be approximated as extended bodies. Fairly obviously, this includes
the solids and liquids that are studied in condensed-matter physics, as well as
quantised versions of the classical electromagnetic and (more controversially)
gravitational fields. Less obviously, it also includes pretty much any theory of
relativistic matter: the physics of the 1930s fairly clearly established that a
quantum theory of relativistic particles pretty much has to be reexpressed as a
quantum theory of relativistic fields once interactions are included. So quan-
tum field theory includes within its framework the Standard Model of particle
physics, the various low energy limits of the Standard Model that describe dif-
ferent aspects of particle physics, gravitational physics below the Planck scale,
and almost everything we know about many-body quantum physics. No more
need be said, I hope, to support its significance for naturalistic philosophy.

In this article I aim to give a self-contained introduction to quantum field
theory (QFT), presupposing (for the most part) only some prior exposure to
classical and quantum mechanics (parts of sections 9-10 also assume a little
familiarity with general relativity and particle physics). Since the normal form
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of that ‘introduction’ in a physicist’s education is two semesters of graduate-
level courses, this introduction is inevitably pretty incomplete. I give virtually
no calculations and require my reader to take almost everything on trust; my
focus is on the conceptual structure of QFT and its philosophically interesting
features. This article will not, realistically, equip its readers to carry out research
in philosophy of QFT, but I hope it will help make sense of references to QF T
in the philosophical and physics literature, serve to complement more technical
introductions, and to give some sense of just how important and interesting this
field of physics has been in the last fifty years.

My account is in logical rather than historical order, and the physics de-
scribed is all standard; I make no attempt to reference primary sources, though
I give some suggested introductions to the literature at the end. I use units in
which 7 and c are both set to 1; note that this means that mass and energy have
the same dimensions, and that length has the dimensions of inverse mass, so that
we can talk interchangeably of something happening at large energies/masses
and at short lengthscales.

2  Warm-up: classical continuum mechanics

Classical mechanics represents the instantaneous state of a fluid by (inter alia) a
pair of functions on space: a mass density p(z) and a velocity field v(z). Their
interpretations are straightforward and standard: the integral of p(x) over some
region R gives the total mass of the part of the fluid in R; the integral of p(z)v(x)
over R gives the total momentum of that same part. p and v jointly satisfy well-
known equations, which can be derived from first principles on phenomenological
grounds and which characterise the fluid’s dynamics in terms of a small number
of parameters, such as its viscocity and compressibility. The equations are
notoriously difficult to solve, but when they are solved (analytically, numerically,
or under certain local approximations) they do an excellent job of describing
the physics of fluids in terms of their continuously varying density and velocity
fields.

Remarkably so: because real fluids don’t have continuously varying densities
and velocity fields. Whatever the ‘fundamental’ story about the constituents of
matter, it’s beyond serious doubt that ordinary fluids like water or treacle are
composed of discretely many atoms, which in turn have considerable substruc-
ture, and so — insofar as the language of classical physics is applicable at all
— the ‘real’ density of the fluid is varying wildly on lengthscales of ~ 1071m
and even more wildly on shorter lengthscales.

The issue is usually addressed early in a kinetic-theory or fluid-dynamics
course. There, one is typically? told that these functions are defined by averaging
over some region large enough to contain very many atoms, but small enough
that the macroscopic parameters do not differ substantially across the wideth
of that region. For a fluid that phenomenologically has fairly constant density
and momentum over lengthscales of ~ 10~*m, for instance, that region needs

2See, e.g., Kenyon (1960, p.3) or Kambe (2007, pp.2-3).



to have a width L satisfying 10~*m > L > 10~ '%m. But the merely kinematic
task of defining these quantities does not capture the remarkable feature of fluid
dynamics (and of emergence in physics in general®): that there exist closed-form
dynamical equations for these quantities, so that we can actually reason from
current bulk features of the fluid to future bulk features without any need for
additional information about the microphysics.

That is not to say that the microphysics is irrelevant to the fluid’s behaviour.
When the assumptions under which the density is defined fail — that is, when
there is no lengthscale both short relative to the scales on which the fluid varies,
and long compared to atomic lengthscales — then the fluid-dynamics description
breaks down entirely and the underlying physics must be considered directly.
Droplet formation has this feature, for instance: droplets break off from a stream
of water when the width of the tube of water connecting the proto-droplet to the
rest of the fluid becomes only a few atoms wide. So do shock waves: the width of
the shock front depends on microphysics and not just on the phenomenological
parameters. But outside these special cases, the relevance of the microphysics
is purely that the viscocity and other parameters that characterise the fluid are
determined — and can in some cases be calculated — from that microphysics.

So consider what we could learn about a given fluid if all we knew was
fluid dynamics. We would have determined the coefficients in the equations
directly by experiment, not by deduction from the microphysics, for we do not
know what it is. We can predict from features internal to fluid dynamics that
it will break down at some short lengthscales: droplet formation, and shock
waves, lead to unphysical singularities if the continuum physics is exact. And
we might (depending on how the details of the thought experiment are filled in)
have reason external to the theory to expect such a breakdown. Furthermore,
on the assumption that there is an underlying theory and that it reduces to
fluid dynamics in some limit, we can reverse-engineer a few facts about that
underlying theory — but the latter will be grossly underdetermined by the
macro-level facts. Unless we have empirical access to droplet or shock-wave
phenomena, or other means to probe the underlying theory directly, we will
simply have to remain ignorant of that underlying theory. And if — with many
real-life metaphysicians — we wish to set aside the emergent description of the
world at large scales that fluid dynamics gives us and look for information about
fundamental metaphysics contained within our physics, we will look in vain.*

This is pretty much the empirical situation that modern quantum field theory
leaves us in.

3 Formal quantum theory of the continuum

Suppose we set out to construct a quantum theory appropriate to describe a
continuous entity — whether a field, or a solid object, or a fluid. Perhaps we
know that the entity is not continuous at shorter scales; perhaps we even possess

30n emergence, see Wilson, this volume.
4See Wallace (2018a) for further discussion of this point.



the physics applicable at those scales; perhaps we only suspect a breakdown
of continuity; perhaps we believe there is no breakdown; but in any case we
carry out our construction without using detailed information about the short-
distance physics. (For simplicity, let’s assume the continuum is spatially finite
for now.)

As a concrete model, suppose that the continuum has one large-scale degree
of freedom per spatial point: suppose, for instance, that it is a scalar field
theory where the degree of freedom is field strength, or (less realistically) a
solid body in one dimension where the degree of freedom is displacement from
equilibrium in some fixed direction.® (In the rest of this article, I will use this
model extensively for quantitative examples, but the qualitative features apply
to pretty much all quantum field theories.)

Observable quantities will be (or at least: will include) averages of this
quantity over some region, so to any spatial region X we would expect to be able
to assign an operator @y representing that average. Furthermore, if X and Y
are disjoint, we should expect Py and Py to commute (recall that in quantum
mechanics, operators commute iff the physical quantities they represent can
simultaneously have definite values — something we would expect of physical
quantities assigned to distinct subsystems).

If we partition space into, say, a grid of equal-size volumes X;, each of length
L, centred on points z;, we can define simultaneous eigenstates of all the X;
any such state |y) will define a real function [x]r, given by

(@) = (x| X [x) (1)

and interpolating between the z; in some arbitrary smooth way. There will be
many |x) corresponding to a given function [x]r, corresponding to the many
possibilities of short-distance physics on scales below L; we can think of each
such |x) as representing a state of the continuum whose structure on scales
large compared to L is given by [x]r. Wave-packets around such states are
appropriate candidates to represent quasi-classical states of the continuum on
such scales.

Formally speaking, we can try to take the continuum limit of this theory, in
which:

e To each point z of space is assigned an operator $(x), with any two such
operators commuting;

e To each such @(z) can be assigned a conjugate momentum operator 7(z),
with [B(z), 7(y)] = id(z — y);

e A simultaneous eigenstate |x) of all of the p(z) is represented by a function
X, with

x(@) = (x| @) [x) - (2)

5The most realistic solid-state equivalent would include three degrees of freedom per spatial
point, since the solid can be displaced in any direction; I stick to one degree of freedom for
expository simplicity.




In this limit the degeneracy vanishes and each such x picks out a unique
state |x); continuing to proceed formally, we can represent an arbitrary
state |U) by

) = / Dy ). (3)

where [ Dy is the path integral over all functions x and ¥[x] = (x|V) is
a complex functional assigning a complex number to each real function.

e With the state space thus represented, we can write down a dynamics by

means of a Hamiltonian like
~ 1. N 1, ~
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or (in practice usually more useful) via a Feynman path integral

x(t,x)=x2(x)
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In either (4) or (6), the first three terms represent a linear (i.e. free)
continuum theory, and the V' term encodes self-interaction.

4 Particles

The formal limit discussed above is mathematically pathological, and under-
standing and resolving that pathology is key to understanding modern quantum
field theory. But since the necessary discussion will be somewhat abstract, let’s
start off by proceeding formally and extracting some of the physical content of
the continuum theory.

To begin with, let’s consider free field theories, where V' = 0 and so the
Hamiltonian is quadratic. The paradigm of a quadratic Hamiltonian is the
simple harmonic oscillator

~ 1 ~2 ~2
H=3(P +w?Q"), (7)
which can be solved exactly by introducing ‘annihilation’ and ‘creation’ opera-
tors @, a' defined by
a=(2w) Y2Q +i(w/2)?P; @' = (2w)"V2Q —i(w/2)/*P (8)

and satisfying [@,a'] = 1. The ground state |Q) of the theory satisfies @[€2) = 0
and has energy w/2, and the eigenstates of the theory are given by successive
actions of @' on the ground state:

[n) oc @) )5 H|n) = (n+1/2)w|n). (9)



The Hamiltonian can be rewritten as
H=w@a+1/2) (10)

and the concrete mathematical form of the ground state, as a wavefunction in
‘position’ space, is
(z]Q) o exp(—wz?/2). (11)
(I put ‘position’ in quotes because in this abstracted form of the simple harmonic
oscillator there is no reason to require x to be interpreted as position in physical
space.)
A general quadratic Hamiltonian with form

i - ;;Jmnﬁi v ;nzmmm@n@m (12

can then be understood as a collection of coupled harmonic oscillators, and can
always be diagonalised, by a linear change of variables, into a sum of uncoupled
harmonic oscillators — modes — of different frequencies w(k), with creation and
annihilation operators @' (k) and a(k):

= ;w(k)(a’r(k)a(k) +1/2) = ;w(k)ﬁf(k)a(k) + constant. (13)

These creation and annihilation operators satisfy
[@(k),a" (k)] =15 [a(k),a(l)] = [a(k),a' (1)) = 0 for k #1. (14)

We can formally treat a free field theory as the continuum limit of this oscillator
sum. Indeed, the coordinate transform can be concretely calculated; the modes
are labelled by spatial vectors k and given by

aT(/f):N/dg“g(26«}(76))_1/26_““'”"¢(96)—i(w(k)/2)1/26?”’“"”%("’3)) (15)

where w(k) = vVm? + k2, and where the normalisation constant N and the
allowed values of k depend on the spatial extent of the system. The Hamiltonian
of this system is formally infinite because of the constant term in (13) — the
first of the infinities that occur because of the mathematical pathologies of the
theory and which we will shortly have to tame — but formally speaking we can
just remove the constant term by subtracting an infinite correction from the
Hamiltonian, without affecting the physics. (If this makes you uncomfortable,
good! — but bear with me a little longer.)

We expect the ground state of a set of coupled harmonic oscillators to be
highly entangled with respect to the original variables, which in the case of our
continuum theory is to say that the degrees of freedom at distinct points of
space ought to be entangled. And so it turns out to be, as can most easily be
seen by calculating (| @(z)$(y) |Q); we find that

QI p(x)e(y) 12) = ﬁ exp(—|z —ylm). (16)



(A similar expression holds for 7(z).) So if two points are separated by a dis-
tance < 1/m, Bell-type measurements of the fields will pick up significant Bell-
inequality violation; on scales > 1/m, this will be negligible.® (The distance
1/m — or h/me, in more familiar units — is called the Compton wavelength; it
is typically much larger than the scale on which we expect the continuum ap-
proximation to fail.) Unsurprisingly, this entanglement persists for interacting
theories, and is a general feature of quantum field theories. It is a clue that
even in particle physics, |2) cannot be thought of simply as “empty space”: it
has a considerable amount of quantum structure. (A further clue comes from
the formally infinite energy density of the vacuum). Starting with the ground
state, arbitrary states of the field can be created by superposing states of form

) = (@' (k)™ |92) (17)

— that is, states like this form a basis for the full Hilbert space of the theory.
To see the full physical significance of the harmonic-oscillator analysis of the
continuum theory, let’s define a subspace H;p as spanned by the states

k) = @' (k) |2) ; (18)

that is, states in Hip are arbitrary superpositions of singly-excited modes.
Since each of these states is an eigenstate of energy, Hip is conserved under
the Schrodinger equation, so that the physics of singly-excited states is a self-
contained dynamics in its own right.

Given the expression (15) for a(k), any such state can be written (non-
uniquely) as

¥) = /d$3(f($)®(w)|9> +9(2)7(2) ) (19)

for complex functions f, g, and in fact it is easy to show that the converse is
also true. But relations like (16) tell us that the states @(z)|Q2) and 7(z)|2)
are localised excitations of the continuum that are negligible at distances from
2 much larger than the Compton wavelength. So we can think of the states of
Hip as superpositions of singly-localised excitations.

But that is exactly the concept of ‘particle’ in quantum mechanics: quantum
particles are not in general localised, but they can be expressed as superposi-
tions of states that are localised (wave-packets, say, or — formally —position
eigenstates). This suggests that Hip can be understood as a space of one-
particle states — the one-particle subspace (hence, “1P”) of the quantum field
theory. This naturally suggests identifying multiply-excited states like (17) as
multi-particle states, and indeed reinterpreting any state of the theory as a
superposition of multi-particle states. (Because the operators @' (k) and @' (l)
commute, it is easy to show that these particles obey Bose statistics.)

As long as we continue to consider non-interacting field theories, this reinter-
pretation of a continuum theory as a multi-particle theory is exact, and indeed
serves as an alternative construction of a quantum field theory: start with a

6See this volume, section 4, for discussion of the Bell inequality.



one-particle quantum theory and construct from it the direct sum of the sym-
metrised N-fold tensor product for each N:

F(Hip) =Ho©Hip +SHip@Hi1p -+~ (20)

(where H is a one-dimensional Hilbert space and S is the symmetrisation oper-
ator, imposing Bose statistics), and define the field operators by inverting (15).
The space thus constructed is called the (symmetric) Fock space of Hqip and
the construction process itself is called second quantisation; see, e.g., Saunders
(1992) or Wald (1994) for contemporary presentations of it.

Given these equivalent ways of thinking of the theory, one sometimes hears
talk of field-particle duality, of the idea that ‘field’ and ‘particle’ are equally valid
ways of interpreting the underlying physics. But this talk of duality only re-
ally applies in the (ultimately physically uninteresting) case of theories without
interactions.

If a small interaction term is introduced to the free Hamiltonian, we ex-
pect that the particle analysis of the theory remains approximately valid. The
interaction term can then be naturally interpreted as introducing transitions
between excited modes of the harmonic oscillators, which under the particle
interpretation can be understood as scattering effects between particles, and its
effects can be studied by means of perturbation theory. But this analysis will
only ever be approximate: as the interaction strength increases, the particle
description of the theory becomes less and less valid, and eventually will need
to be abandoned altogether as a useful description of the theory. For this rea-
son we would (in my view) do better here to speak of ‘emergence’ of particles
from the continuum theory, rather than of duality. From this perspective, ‘par-
ticles’ are certain excitations of the ground state of the continuum which, to a
varyingly good degree of accuracy, approximately instantiate the physics of an
interacting-particle theory.”

It’s worth stressing that this picture of particles plays out pretty much identi-
cally whether the underlying continuum quantum theory is the quantum theory
of a solid or liquid, or a quantum field. In the former, particles are often referred
to as quasi-particles (such as the phonon, the quantum of vibration) but as far
as modern field theory is concerned, all particles are quasi-particles.

To discuss the field-particle relation any further, though, we need to address
the fact that any talk of ‘small’ or ‘large’ interactions is completely undefined
mathematically, as long as the pathologies of the continuum theory are unad-
dressed.

5 Effective field theories

These pathologies are trackable to the continuum theory’s infinitely many de-
grees of freedom per spacetime volume. For a start, a Hilbert space like this

7See Wallace (2012, ch.2) and Rosaler (2015) for further discussion of this notion of in-
stantiation.



is mon-separable: it has no countable basis, and hence naturally factors into
uncountably many superselection sectors, which differ only by the (ex hypoth-
esi unphysical) features of the theory on arbitrarily short lengthscales. More
seriously, any attempt to calculate physical quantities by the normal methods
of theoretical physics gives an infinite answer. This occurs even in the case of
a non-interacting system: we have seen that the expected value of the Hamil-
tonian in (4) is formally infinite, and so is the path integral in (5), though in
both cases we can formally treat this as an unobservable (infinite) correction to
the energy or action. This rather unsatisfactory situation becomes intolerable
as soon as interactions are introduced (in other words: as soon as the dynamics
stops being trivial), at which point the formal machinery of quantum physics
delivers infinities for pretty much any question we choose to ask.

Although there is an honorable tradition in mathematical physics (see the
Further Reading) of trying to formulate a fully mathematically rigorous theory
of the continuum that avoids these pathologies, while remaining well-defined
on all lengthscales, the current consensus in mainstream physics® is that the
problems should be resolved by taking seriously the idea that we were in the
first place only looking for a theory describing the continuum down to some
lengthscale, and that the pathologies are caused by going to the continuum
limit in the first place rather than remaining finite.To see why this might be,
let’s consider in more detail the path integral (3) that formally defines the inner
product. This integral is supposed to be over all functions Y, or at the least over
all square-integrable functions, and (restricting, for simplicity, to one dimension)
an arbitrary such function can be written as

n—=oo

x(x) = Z ap, exp(—2mni/R) (21)

n=—oo

where R is the spatial extent of the system and a*,, = «,,. So the integral can

be decomposed as
/DX:H/dan:/dao/da1-~-. (22)
n=0

And now it’s fairly unsurprising that carrying out infinitely many such integrals
gives an infinite answer. But if, say, R = 10m, then the integrals over «,, for
n > 10! integrate over functions varying rapidly on scales < 107 'm. So
if we were only trying to construct a continuum theory describing features of
the continuum on scales longer than that (if, for instance, we were studying a
“continuum” which is actually made of discrete atoms of size ~ 107'%m, as in
condensed-matter physics) then it becomes reasonable to consider cutting off
the integral, by discarding the integration over functions varying on those scales
(that is, by discarding the integrals over a,, for n > 107*!). Doing so removes
the infinities from the theory.

8For presentations, see (e.g.) Weinberg (1995b), Zee (2003), or Banks (2008).



If you’re not suspicious of this process, you should be. It is one thing to set
out to construct a theory applicable only above certain lengthscales; it is quite
another to suppose that it can be done simply by discarding any influence of
shorter-lengthscale physics. After all, I could just as easily have chosen the cutoff
length at 10~%m, or imposed it by some other means than Fourier modes. The
actual physics at the cutoff lengthscale is presumably extremely complicated,
and there doesn’t seem any reason not to expect those complexities to affect the
form of the larger-scale physics. We might try to avoid this by supposing that
the cutoff occurs at precisely the physical lengthscale at which the theory fails
— at the atomic lengthscale in condensed-matter physics, say) so that those
degrees of freedom are unphysical anyway — but we still face the problem that
our crude imposition of the cutoff is presumably far removed from the actual
way in which a microphysical description fails.

It is one of the most remarkable features of quantum field theory — and one
of the key discoveries of theoretical physics in the postwar period — that on
the contrary, the details of physics below the cutoff have almost no empirical
consequences for large-scale physics. The details are mostly too technical for an
article at this level, but the general idea can be understood as follows.

Consider again the dynamics (5). Expanding V as a power series in its
argument,

1 1
Viz)=Vy+ E/\4m4 + 5)\6136 +... (23)

(where we assume V is symmetric under  — —z, and ignore the x? term
since it is already included in the Hamiltonian), we can see that the theory is
specified by m? (corresponding, where a particle interpretation is valid, to the
squared particle mass), Vp, the infinite number of coefficients A4, Ag, ... and,
tacitly, by the method used to cut off the theory at short lengthscales, which we
can schematically write as A. (We can think of A as denoting the lengthscale
at which the cutoff is imposed as well as the details of the method by which
it is imposed; by abuse of notation, I will also use A to denote the lengthscale
alone.) So we can consider an infinite family of theories parametrised by these
variables. I will write o to denote, collectively, all the variables except A; (a, A)
then denotes a particular theory in this family. It will be helpful to think of «
as a set of coordinates in a theory space A; a theory is specified by a point in A
together with a choice of cutoff.

In general, any two such theories will be physically distinguishable by some
in-principle-measurable features. (For instance, any two theories with different
cutoff procedures can be distinguished by probing the physics around the cutoff
scale.) But recall that we are only really interested in using these theories
to describe physics at scales large compared to the cutoff; close to the cutoff
scale, our arbitrary assumptions about the nature of the cutoff make the theory
untrustworthy. So trustworthy physical predictions arise only from the large-
lengthscale features of these theories. With this in mind, define two theories 17,
Ty as IR-equivalent (IR for ‘infra-red’, physics jargon for long-distance), T ~rg
Ty, if they make the same prediction values for the evolution of dynamical
variables on lengthscales large compared to the cutoff, at least for quantum
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states which do not themselves vary sharply on lengthscales close to the cutoff.
There are various ways of making this precise; for our purposes, a heuristic
understanding will suffice.

(It is important to appreciate that IR-equivalence is a much finer notion than
empirical equivalence. The “long-distance” features of a theory can be defined
on scales of tens of nanometers (in condensed-matter physics) or many orders
of magnitude smaller (in particle physics); they do not correspond simply to
directly observable features of the continuum.)

Now consider two cutoffs A, A’ (with, for definiteness, A’ > A). For any given
T (a, A), it turns out that changing the cutoff from A to A’ can be compensated
for by changing the other variables from a to some o/, without in any way
affecting the physical predictions of the theory at lengthscales large compared
to A and A’. That is: there is some transformation R(A — A’) acting on theory
space A such that

(a, A) ~rp (R(A = A)-a, A). (24)

(Again, this can be proved with various degrees of generality and rigor; again,
here T just assert it without proof.) The transformation U(A — A’) is know as
the renormalisation group; it has a central role in modern quantum field theory
and is discussed in more detail by Williams (this volume).

So there is in a sense redundancy in our family of theories: two apparently
different theories may correspond to the same large-scale phenomena and so be
interchangeable, as long as we regard the theories as in any case trustworthy
only as regards large-scale phenomena. In fact the redundancy is considerably
more dramatic than this: we can (in this particular example, and in fact in
general) identify a “relevant” subset of the coordinates of A such that only the
relevant coordinates have any significant effect on the physics. And this ‘rele-
vant’ subset is in general finite-dimensional. In the case of the three-dimensional
scalar theory we have been considering, for instance, it is three-dimensional (the
relevant coordinates can loosely be thought of as the zero of the potential Vj,
the free-Hamiltonian parameter m? and the first coefficient )4 in the expansion
of V', though as we will see in the next section, it’s a bit subtler than that
suggests.)

So: for given cutoff A, we can specify a theory — at least as far as the
long-distance content of the theory is concerned — just by giving the finitely
many values of the relevant coordinates. And A itself can be chosen according
to convenience or whim, for if we wish to replace it with A’ we need only make
a compensating change in those relevant coordinates.

This approach to “continuum” quantum physics (which, to repeat, is abso-
lutely standard in modern physics, both in particle physics and in condensed-
matter physics) is known as effective field theory. The term also applies to
individual theories: an effective field theory is a quantum field theory under-
stood as applying only on lengthscales larger than some short-distance cutoff,
and identified with a equivalence class of IR-equivalent theories defined by var-
ious specific cutoff schemes. All empirically-relevant quantum field theories in
physics, at present, are effective field theories. To quote the author of one

11



popular textbook,

I emphasize that A should be thought of as physical, parametrizing
our threshold of ignorance, and not as a mathematical construct.
Indeed, physically sensible quantum field theories should all come
with an implicit A. If anyone tries to sell you a field theory claiming
that it holds up to arbitrarily high energies, you should check to see
if he sold used cars for a living. (Zee 2003, p.162).

Equally, though, the precise (or even approximate) value of A is irrelevant to
the large-scale physics; all that matters is that it is much smaller than the
lengthscales on which we deploy the field theory to model the world.

6 Renormalisation

To get a better sense of how effective field theory works, let’s look (schemati-
cally) at how we might calculate some physical quantity — say, the “four-point
function” of the theory G, which gives the expectation value of quadruples of
field operators (possibly at different times) with respect to the system’s ground
state. (G corresponds, loosely speaking, to the scattering amplitude between
pairs of particles.) A standard approach to doing so in ordinary quantum me-
chanics is to decompose the Hamiltonian into a sum of a ‘free’ and ‘interaction’
term: N R R

H=Hy+ H;p,. (25)

The idea is that we can solve the physics of H o exactly, and that H int can
be treated as a small correction to Hg, whose effects can be estimated by the
methods of perturbation theory.

If we try this for the Hamiltonian (4), it would be natural to take

o= [t (@ + V(e +mi5e)) 20

and
B = / dz 37 (2). (27)

After introducing a cutoff, both are well-defined and finite; the former can be
solved exactly to give a well-behaved theory of a non-self-interacting approximately-
continuous quantum system, along the lines of section 3 (but with the formal
moves of that section legitimated by the cutoff).

Suppose for now that V is purely quartic: that is, V(z) = Ayz*/4!. Then
what perturbation theory is supposed to deliver for us is an expression for G in
powers of \y: something like

G=G0+G1)\4+G2()\4)2+"' (28)

If we calculate this power series to first order in A4 (known in physics as “tree-
order”, a reference to the Feynman-diagram notation used in practice to work
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out the power series) we get sensible, well-behaved answers (and answers in-
dependent of the cutoff scale A). But when we come to calculate the A3 term
(the “one-loop correction”, in physics terminology) we get a quite large result, a
sum of terms the largest of which is proportional to the logarithm of the inverse
cutoff length, log(1/A). (If we had tried to calculate this quantity formally in
the continuum theory, without any cutoff, the answer would have been not just
large but infinite). Terms this large invalidate the perturbative expansion and
call into question the validity even of the ‘sensible’ tree-order result. Evaluating
subsequent terms in the power series likewise gives very large results.

It turns out, however, that these large results can largely be removed by
absorbing them into the definitions of the parameters A\, and m?. What this
amounts to (roughly speaking?) is that we can rewrite the Hamiltonian as

~ ~ ~ ~ ~ ~ ~ ~/ ~/
H:HO+HZnt:(HO+A)+(Hlnt_A)EHO+H1nt (29)
for some operator 3, such that
1. I?:) has the same functional form as ffo, but with a new value (m?)"e"

(‘ren’ for ‘renormalised’) for the quadratic parameter, related to m? by an
expression like

(m?)"" = m? + a/A? + (smaller terms) (30)

for some dimensionless quantity a.

-~/

2. H
in a certain energy range (which range is determined by the choice of ﬁ),

-~/
ine 18 small enough to treat as a perturbation of H, at least for states

3. That perturbative expansion is a power series expansion not in A4, but in
a new parameter \;", related to Ay by an expression like

Azen =M+ 610g(1/mA) —+ (smaller terms) (31)

for some dimensionless quantity 5. The leading-order term in that expan-
sion is the tree-order term from before (but using A\;¢" and (m?)"*", not
A4 and m?).

This might seem a block to the applicability of the theory: to make calculations
we need to know (m?)"¢" and A\;¢", and we can only calculate them from m? and
A4 via detailed knowledge of the cutoff mechanism and scale. And indeed this
would be a block if we were presented with the theory by giving the original
parameters m? and A4 (the so-called “bare parameters”) as a gift from God.
But in fact, we determine the parameters through experiment — and what the
experiment gives us is the renormalised parameters, not the bare parameters.
The latter are related to the measured parameters through a cutoff-dependent
expression, but we don’t in any case need them for calculations.

Furthermore, if we now include the higher-order terms Ag2® (etc) in V(z),
the result is that these terms:

9 “Roughly speaking” because I have omitted, for expository simplicity, the fact that the
field strength also gets renormalised.
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1. Further renormalise m? and A4, adding corrections that are functions of
A;

2. Make tree-order contributions to the calculation that are proportional to
powers of L/A, where L is the lengthscale on which G is evaluated (and
thus are extremely small if L > A);

3. Make loop-order contributions suppressed by successively larger powers of
L/A;

4. Have no effect on the dynamics in the long-distance limit except to renor-
malise m2 and Aj.

We can now identify the renormalised parameters as two of the three parameters
that (I claimed in the previous section) suffice to determine the theory up to
IR~equivalence. The third parameter can be identified as the energy density of
the ground state, related to the zero Vj of the function V' by an expression like

Vet = Vo +7(1/0)* (32)

but irrelevant to the physics except in the presence of gravity.

7 Scale-dependence, and particles again

I should stress one crucial feature of this renormalisation process: it is scale-
dependent. There is a certain amount of freedom in how to divide out the
contribution of higher-order terms in the perturbative expansion between (i)
renormalising the bare parameters, and (ii) contributing corrections to the tree-
order calculations. In practice this is usually done by picking some scale at which
the tree-order calculation (expressed in terms of the renormalised parameters) is
ezact. Calculations made at lengths close to this scale are well-approximated by
the methods of perturbation theory, but these methods become successively less
effective at too-large or too-small lengths. The theory can still be understood as
being specified by the parameters even at lengths far from the chosen scale —
but the meaning of those parameters at that scale will be far from transparent.
To illustrate this, consider two examples from particle physics: quantum
electrodynamics (QED) and quantum chromodynamics (QCD). In popular ac-
counts, the former is the theory of electrons and photons, the latter the theory
of quarks and gluons, but we will do better to think of the former as a theory of
an electron field interacting with the photon field (i.e., quantized electromag-
netic field) and the former as a theory of a quark and gluon field interacting.'®
In the absence of an interaction term, though, the usual particle account can be
recovered: the electron is the particle associated with the electron field, etc.

10Even this is an imperfect way to think, due to gauge freedom: the electron and photon
fields, or the quark and gluon fields, jointly represent the underlying physics, and the split
between them is to some degree gauge dependent; see Wallace (2014) for further discussion.
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In both theories (and simplifying slightly), one of the relevant parameters
(relevant in the sense of our previous discussion, that is) is the strength of
the interaction between the fields (electron-photon, or quark-gluon); another,
in the free-field limit, may be interpreted as the mass of the ‘matter’ particle,
i.e., the electron or quark. Schematically, let’s call these parameters A and m,
respectively.

In both cases, the values of A and m are scale-dependent. For QED, A
decreases at larger lengthscales. For lengthscales very large compared to the
cutoff length, it is small enough that the interactions may be treated as a small
perturbation of the free-field theory. In this regime, the particle interpretation of
the theory remains approximately valid, and we can meaningfully interpret the
theory as a theory of electrons scattering off one another with their interactions
mediated by photons. At shorter and shorter lengthscales (corresponding to
higher and higher energies) the electron-photon interaction becomes stronger
(the mass also changes, though the exact form of that change is not relevant
here).

Let’s pause to reconsider the emergent status of electrons (originally dis-
cussed in section 3) in this context. Recall that the particles of a free-field
theory are created from the ground state of the free-field Hamiltonian by ap-
plying creation operators. But the definitions of the creation operators, and
of the free-field ground state, depend on the parameters of the theory: on m
directly, and on A indirectly via its role in the renormalisation process. So the
one-particle Hilbert space constructed to analyse QED at high energies is a
different Hilbert space from the one constructed at low energies. This ought
to drive home the point that electrons cannot be thought of as fundamental
building blocks of nature; they are simply a useful, but scale-relative, emergent
feature of the underlying theory. But recall that this theory, too, should not
be thought of as fundamental, given the tacit presence of the cutoff. In fact,
QED actually imposes a minimum value for the cutoff length: the interaction
strength A continues to increase at smaller and smaller scales and eventually
becomes infinite (the so-called “Landau pole”), indicating that QED ceases to
be well-defined for cutoffs smaller than this length. To be sure, the Landau pole
occurs at a length far shorter than the point at which external reasons (like
gravity) would lead QED to fail as a physical description of the world, but it is
strong reason to think that there is no genuine continuum version of QED.

In QCD, conversely, the interaction strength \ decreases at shorter length-
scales (i.e., higher energies). This means that in high-energy physics, the field
can be viewed as describing a collection of weakly-interacting quarks. At low
energies this description breaks down entirely. We can still describe the field
in terms of particles, but now they are different particles: protons, neutrons,
and various mesons and other hadrons. These particles can be thought of very
loosely as bound states of the quarks; a somewhat more accurate statement
would be that they are excitations associated not with the quark field but with
various symmetrised products of that field.
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8 Symmetry and universality

Let’s return again to the scalar field. In classical field theory, saying “this is
a theory of an interacting scalar field” is nothing like enough to pick out a
unique theory. Fundamentally different Lagrangians could be written down for
a scalar field: some with ¢ interactions, some with ¢% interactions, some with
combinations of both, and so forth. This is not merely a matter of specifying
the coupling constants, but the actual functional form of the Lagrangian. Of
course, any term written down will have to satisfy the symmetries of the scalar
field (by definition; otherwise it would not be a scalar field), but specifying the
symmetry is only the beginning of specifying the dynamics.

But we have have seen that the situation is very different in quantum field
theory. Firstly, the entire class of renormalisable interactions is finite and small:
indeed, it basically contains the (renormalised) A4 parameter. So as far as in-
teractions on scales large compared to the cutoff are concerned, there is only
really one way to write down a nontrivial dynamics. Secondly, and more pro-
foundly, even if we exclude from the Lagrangian some (renormalisable or non-
renormalisable) interaction terms by setting the associated parameter A, to
zero, the parameter will move away from zero again if we shift the cutoff. To
say that, for instance, the ¢% term in the QFT Lagrangian is absent is to say
something cutoff-dependent, and hence something that is not really of physical
significance given the effective-field-theory approach to understanding quantum
field theories.

This is not confined to scalar field theories, of course. In full generality, writ-
ing down the symmetries of a quantum field theory pretty much fixes the form
of its dynamics, up to a very small number of parameters. This phenomenon —
often called universality — goes some way to explaining the central role of sym-
metry in contemporary theoretical physics: once the symmetries of a quantum
field theory are known, its dynamics are pretty much specified. (See Batter-
man, this volume, and Williams, this volume, for more on this subject and its
connection to the renormalisation group.)

9 Other features of quantum field theory

Pretty much everything I have discussed so far applies to any quantum field
theory. In this section, I will mention some conceptually important features of
QFT that apply in more specific theories. My focus will be on examples from
particle physics; of necessity, the discussions will be brief, and I concentrate on
examples which rely on specifically quantum-mechanical features of QFT (as
opposed to, say, gauge theory, which plays a central role in the Standard Model
but is to a large degree classical).
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9.1 Lorentz covariance and the classification of particles

In particle physics (but not in condensed-matter physics), the imposition of
Lorentz covariance places strong constraints on the form of a quantum field
theory. Examples include:

Wigner’s classification of particles: If we ask, independent of their origin
as excitations of a field, what quantum states deserve the name “particles”,
we can argue — following Wigner (1939) — that they should correspond to
irreducible representations of the Poincaré group. (A heuristic rationale:
the one-particle subspace must transform under the Poincaré group; if it
transforms reducibly, we can decompose it into a superposition of com-
ponents that each transform irreducibly. I don’t know of a really careful
conceptual analysis, though I make some suggestions in Wallace (2009).)
And if we ask what linear field theories can be written down, we get the
same result. (If we write down a field that transforms reducibly under
the Poincaré group, the irreducible components get renormalised differ-
ently, becoming in effect different fields.) Either way, it seems at least
highly plausible that the particle-like excitations of a field theory can be
group-theoretically classified.

The result (skipping over some representations that seem unphysical) is:

e Particles are classified completely by their mass (which can be zero
or positive) and by their spin, which can have any positive integer or
integer-plus-half value. This classification coincides, so far, with the
nonrelativistic version of the same approach, which classifies particles
via irreducible representations of the Galilei group (Bargmann 1954).
There are longstanding if somewhat contested arguments that parti-
cles of spin > 2 cannot consistently be associated to an interacting
quantum field, but that lies beyond the group-theoretic analysis; see
Bekaert, Boulanger, and Sundell (2012) and references therein.

e Particles of nonzero mass and spin s have a 2s+1-dimensional internal
space, again as in nonrelativistic mechanics.

e Particles of mass zero and spin > 0 have a two-dimensional internal
space (so that photons, for instance, are spin-one particles but have
only two orthogonal spin states for a given momentum). There are
subtle connections between gauge symmetry and this reduction of a
massless particle’s internal degrees of freedom; again, they go beyond
the group-theoretic analysis.

Antimatter: If a quantum field transforms under a representation of its in-
ternal symmetry group that has a natural complex structure (such as
the standard representations of U(1) or SU(N)), its one-particle Hilbert
space separates naturally into matter and antimatter components. A con-
sequence is that to all charged particles (and some uncharged particles,
like the neutrino) is associated an antiparticle of the same mass but op-
posite charge and other quantum numbers. This is a purely relativistic
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effect with no nonrelativistic analog; see Wallace (2009) or (for a discussion
from an algebraic-quantum-field-theory viewpoint) Baker and Halvorson
(2009).

Discrete symmetries and the CPT theorem: A relativistic quantum field
theory might in principle have three discrete symmetries in addition to any
continuous internal symmetries and the continuous Poincaré symmetries:
Parity (reflection in space), Time reversal (reflection in time) and Charge
conjugation (exchange of matter for antimatter). The CPT theorem (also
known as the TCP, CTP, PCT, and PTC theorem — I don’t recall ever
seeing TPC) establishes that any quantum field theory has a symmetry
which can be identified as the product of all three transformations: that
is, the transformed field at x,¢ is a function of the untransformed field at
—x,—t and the symmetry exchanges matter and antimatter. There is no
requirement that the individual transformations are symmetries or even
that they are well-defined transformations on the theory’s Hilbert space.

The Spin-Statistics theorem: See below.

9.2 The fermion/boson distinction

The scalar field theory I used above as an example is specified (formally) by
a function from points of space to operators such that pairs of spatially sepa-
rated operators commute; insofar as it can be treated as weakly interacting, it
can be interpreted as a theory of bosonic particles. But it is also possible to
construct a quantum field (either in solid-state physics or in particle physics)
where spatially separated operators anti-commute. The resultant theory, in the
weakly-interacting regime, can be analysed in terms of fermionic particles. Such
field theories are called fermionic, by contrast with the bosonic fields we have
focussed on so far.

The celebrated spin-statistics theorem establishes that a quantum field is
bosonic if its associated particles have integer spin, and fermionic if it has
(integer-plus-half) spin. In the Standard Model of particle physics, in par-
ticular, the fermionic fields are the quarks and leptons (electrons, neutrinos and
their heavier variants), which have spin 1/2; the bosonic fields are the force-
carriers (gluons, photons, the W and Z bosons) with spin 1, and the Higgs field,
with spin zero (and, depending how the Standard Model is defined, possibly
also the graviton, with spin 2). The theorem holds for (relativistic) spacetimes
of dimension 3 or higher; conversely in two spacetime dimensions, there are ex-
amples where the same quantum field can be analysed in terms of fermions in
one regime and bosons in another Coleman (1985, ch.6).

Formally speaking, fermionic fields can be treated very much like bosonic
fields (other than a large number of minus signs that have to be kept track of
in calculations). Conceptually, they seem dissimilar in important respects: for
instance, the quantum state of a fermionic field cannot in any straightforward
sense be understood as a wavefunctional on a space of classical field configura-
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tions. To the best of my knowledge there has been rather little discussion of
fermionic fields in the philosophy literature on QFT.

9.3 Infrared divergences and the large-volume limit

In my presentation of QFT so far I have assumed a spatially finite system. That
seems reasonable enough in most applications of QFT, whether in solid-state
physics (where the physical system to which QFT is applied is manifestly finite)
and in particle physics (where the physical processes of interest are normally
confined to a region of finite — and usually pretty small — extent). In each
case, the physically reasonable implication is that the size R of the finite region
will have little or no effect on the physics, provided it is much larger than the
scales which we are studying.

However, in some physical applications — notably those involving zero-mass
particles — this is not the case: loop-order calculations of physical quantities
include terms that depend on R, and that diverge as R — oco. These infra-red
divergences, analogously with the ultra-violet (short-range) divergences we have
already considered, can be handled in one of two ways: either by developing,
rigorously, a quantum theory of genuinely infinite systems, or by keeping R fixed
but large (or otherwise regularising the divergences, e. g. by adding a small mass
term) and absorbing R-dependent terms into a renormalisation of the physical
parameters. The latter is the route taken in mainstream physics, and delivers
useful physical insight into the origin of the infrared divergences: they occur
because zero-mass particles can be created with arbitrarily low energy, and so
a physical particle is surrounded by a cloud of very many — in the R — oo,
infinitely many — such particles.

The infrared and ultraviolet divergences are disanalogous in one important
way, though: while the short-distance cutoff is normally taken to describe a
physical cutoff above which the theory cannot be trusted, the long-distance cut-
off just reflects the finite extent of the part of physical reality we are trying
to model, together with a physical assumption that the details of the bound-
ary conditions on that region aren’t physically significant for shorter-distance
physics. Not unrelatedly, while (in my biased opinion) not much of conceptual
value has been gained by trying to define continuum QFT on arbitrarily short
lengthscales, mathematically rigorous considerations of spatially infinite QFTs
have been conceptually very informative (see Ruetsche (2011) and references
therein).

9.4 Symmetries and symmetry breaking

The duality between field and particle (in the noninteracting limit) suggests
that a symmetry of a quantum field theory will be represented as a symmetry
of the particle(s) associated with that theory, and so it often turns out. For
instance, the quark field has the group SU(3) as a dynamical symmetry, and
transforms as the three-dimensional complex representation of that symmetry;
correspondingly, quarks as particles have a three-complex-dimensional space of
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internal degrees of freedom. (This is usually described in popular accounts as
there being three sorts of quarks — red, green and blue — but in fact ‘red’,
‘green’ and ‘blue’ are just arbitrary bases in the quark’s internal space, and
(1/4/2)(red 4 blue) or (1/4/2)(blue - i green) are just as valid as quark states.)
Similarly, there is an approximate symmetry called ‘isospin’ in the effective field
theory of the hadrons (the low-energy states of quantum chromodynamics) that
shows up in the approximately equal masses of the proton and neutron.

However, this straightforward relation between field and particle symme-
tries only works if the theory’s ground state |(2) is invariant under the sym-
metry group. If this is not the case — which entails that ‘the’ ground state
is degenerate — then we can construct a different set of particles by acting
with creation operators on each ground state. A symmetry transformation un-
der which the ground state is not invariant will transform between different
(though indiscernible) sets of particles, rather than transforming a set of par-
ticle states among themselves. As a consequence, the symmetry is not visible
in the dynamics of the particles, and so is said to be “spontaneously broken”
(“hidden” might be a better term).

A spontaneously broken symmetry shows up in the phenomenology via con-
straints between the measured coupling constants. In the case of a global
symmetry (one that acts the same way at every point of spacetime) it also
shows up via the presence of a ‘Goldstone boson’, a massless particle which al-
ways occurs in the particle spectrum of such a system. (In the long-wavelength
limit it corresponds to the symmetry that maps from one ground state to an-
other.) For instance, the spatial translation symmetry is spontaneously broken
in condensed-matter physics by the lattice structure of the ground state of a
solid body; the associated Goldstone boson is the phonon, the quantum of vi-
bration. The pion (a two-quark low-energy excitation of the quark field) can
be understood as a Goldstone boson of a spontaneously broken approximate
symmetry of the hadrons; as such, its mass is low but not zero.

The physics is somewhat subtler when the spontaneously broken symmetry is
local. In that situation, the Higgs mechanism causes the gauge fields associated
with the local symmetry (which are normally massless) to acquire mass. The
mechanism is sometimes heuristically described as the vector boson “eating” the
Goldstone boson; there is some controversy in foundations of physics as to what
a better description would be (Earman 2004; Struyve 2011; Friederich 2013).

There are conceptually interesting mathematical subtleties involved with
spontaneous symmetry breaking (global or local). In finite systems, it is known
that the ground state is not genuinely degenerate because of the possibility
of tunnelling between symmetry-related states. The infinite-volume limit is
required for true degeneracy, and in that limit some of the other assumptions
of the theory break down. For discussion, see Ruetsche (1998) and references
therein.
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9.5 Non-renormalisable interactions in physics

My account of renormalisation theory might give the impression that non-
renormalisable interactions have no part to play in physics: either we are at
energy levels very low compared to the cutoff (in which case their influence is
swamped by the renormalisable interactions) or we are relatively close to the
cutoff (in which case the theory is not reliable in any case). This is not quite
correct. In particular, suppose we have a field theory with no renormalisable
interactions. Then we would predict that:

1. The interactions will be dominated by that nonrenormalisable term which
drops off least rapidly at greater lengthscales;

2. The interaction strength will be suppressed by some power of L/A, where
L is the characteristic lengthscale of the interaction and A is the cutoff;

3. In particular, the interactions will be very weak at large lengths.

I give two important examples of this in practice. The first is the so-called
four-fermion theory, where the only field is an uncharged spin-half fermionic
field (taken to represent neutrinos, say). In the Standard Model, neutrino inter-
actions are mediated by the W and Z bosons, but in situations where the energy
levels of interactions are much lower than the W and Z masses, we can regard
those masses as a cutoff on an effective field theory where the neutrinos interact
directly. Any direct interaction between fermion fields is nonrenormalisable;
the lowest-order such term is a two-particle scattering term that allows pairs of
neutrinos to scatter off one another. We would predict that this interaction is
very small at interaction scales large compared to the Compton wavelength of
the W and Z. And indeed this is what we find: the force that mediates neutrino
interactions is called the Weak Interaction in particle-physics phenomenology.

The second example occurs in quantum gravity. There is no renormalisable
interaction between the metric field and matter (or between the metric field and
itself) but the lowest-order nonrenormalisable interaction term is the Einstein-
Hilbert action term of general relativity (together with a cosmological-constant
term, of which more below). The extreme weakness of the gravitational field is
then explained by the fact that gravitational phenomena are studied on scales
extremely large compared to the Planck length at which we expect full quantum
gravity to impose a cutoff on field theory.

9.6 Quantum field theory on curved spacetime

Most of the theoretical development (and almost all the experimental data) in
QFT assumes flat spacetime, either Newtonian (for condensed-matter physics)
or Minkowski (for particle physics). But quantum field theory can be formulated
in at least some nonflat spacetimes, and doing so is the basis of important work
in cosmology and in the physics of black holes, in particular in one of the most
celebrated and surprising discoveries of the past forty years: Hawking’s discovery
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of black hole radiation (see Wallace (2017a) and references therein for further
details).

10 Outstanding questions of particle physics

I have tried to indicate in this article just how successful and powerful quantum
field theory is. But — optimistically from the point of view of exciting new
physics — there remain some deep puzzles in the theory, in particular in its
applications in particle physics. Here I identify three such puzzles; there are
many others, but these are perhaps the most visible in contemporary physics.
The first two are discussed in more detail by Barnes, this volume, and Williams,
this volume.

10.1 Fine-tuning of the Higgs mass

My discussion of the scalar field glossed over one subtlety. I noted that the mass
of the field is renormalised, so that the empirically-accessible mass is related to
the ‘bare’ mass by a cutoff-dependent term. In general in quantum field theory,
renormalisations like this are logarithmic in the cutoff, as in expression (31):
the mass rescaling in a spin-half field, for instance, has abstract form

m"" =mpo(1+ Alog(1/A)), (33)

for some dimensionless A not usually too far from unity. Because of the slow
scaling of the logarithm function, this means that if the bare mass is much
less than the cutoff energy, so will the renormalised mass. But in the case of
the scalar particle, the mass rescales according to equation (30), with additive
corrections to the bare mass proportional to 1/A%. This means that we would
expect the renormalised mass of a scalar particle to be of the same order as the
cutoff energy, whatever the bare mass might be.

However, the Higgs boson — which, in the simplest versions of the Standard
Model, is the particle associated with a scalar field — has a mass far below
whatever the Standard Model’s cutoff energy is. This is not a contradiction
in the theory — a sufficiently careful choice of the bare mass can yield what-
ever value we like for the renormalised mass — but it seems to involve rather
unattractive fine-tuning of the theory’s parameters.

10.2 Fine-tuning of the cosmological constant

We saw in section 3 that the formal energy density of the vacuum of a free field
theory is infinite. Adding a cutoff tames the infinity but still leaves a very large
finite term, of order (1/A)*. Interactions add further contributions, also of order
(1/A)*. So the expression for the total energy density pyqc, schematically, is

Pvac = V(0) + free-field contribution + interaction renormalisation (34)
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where V(0), the classical vacuum energy density, is the value of the Lagrangian
at zero field.

In nongravitational physics, none of this matters: the energy density has
no effect on the physics and can be set to whatever value we find convenient
(usually zero) by an appropriate choice of V(0) without empirical consequence.
But the stress-energy tensor of the field has form

Ty = Tlle/n + JuvPuac (35)

where the ‘renormalised’ stress-energy tensor T};;" is defined by the requirement
that it vanishes for the ground state. And the Einstein field equation is

G + 9 C =81GT),, (36)

where C' is the cosmological constant. So it looks as if the vacuum expectation
value should make an enormous contribution to the cosmological constant, albeit
it’s not fully clear how to interpret the field equation without a quantum theory
of gravity (the simplest approach would be to take the right hand side of the
equation to be the expectation value of the stress-energy tensor; see Wald (1994)
for further discussion of this hybrid theory). That contribution is more than 100
orders of magnitude larger than the observed value of the cosmological constant.
Again, this is not a contradiction, as we can tune the classical vacuum energy
density (or, equivalently, the bare cosmological constant!!) to whatever value
we like; as with the Higgs mass, the problem is the extreme fine-tuning of the
parameters that seems to be required.

10.3 Quantum gravity

A common claim about quantum gravity is that it is a puzzle that arises from the
incompatibility of quantum mechanics with general relativity, and so would arise
(in principle) whenever quantum effects and gravity apply simultaneously. This
is not the perspective of most quantum field theorists: to them, the metric field
is at least perturbatively perfectly well-behaved — albeit non-renormalisable —
and can be handled in the effective-field theory framework. (We have already
seen that the extreme weakness of the gravitational field can be understood
in effective-field-theory terms as a consequence of the non-renormalisability of
the Einstein-Hilbert action.) Indeed, exactly this formalism is applied in the
quantum-fluctuation calculations that underpin our theoretical models of the
cosmic microwave background radiation, and so ‘quantum gravity’, in the sense
of a quantum-field-theoretic understanding of general relativity, has already
passed at least a crude experimental test. (For the formalism, see Weinberg
(2008, ch.10); for conceptual discussion, see Wallace (2016)).

HThere is an odd tendency (which I observe mostly in conversation) for philosophers of
physics to draw a sharp distinction between a bare constant on the left-hand side of the
Einstein field equation (where it is taken to pertain to spacetime) and the negative of the
same constant on the right-hand side of the equation (where it is taken to pertain to matter)
But (as I once heard Sean Carroll remark in response to one such comment) it is permissible
to move terms from one side of an equation to the other!
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What most quantum field theorists mean by ‘quantum gravity’ is the break-
down of effective-field-theory general relativity — and, it is usually assumed,
the rest of the Standard Model of particle physics — around the Planck length,
at ~ 1073* metres. A quantum theory of gravity, in this sense, would be a gen-
uinely finite theory from which particle physics, and general relativity, would
emerge as effective field theories in appropriate long-distance regimes. (It is
generally assumed that this theory would also tame the formal infinities that
occur due to singularities in classical general relativity.)

Unfortunately, the great insensitivity of an effective field theory to the phys-
ical details of its high-energy cutoff, and the sheer energy scale of that cutoff,
makes it very hard to gain evidence about the details of that theory: it “has
imprinted few traces on physics below the Planck energy” (Bousso 2002, p.2).
There is not the least hope that particle accelerators will ever probe the Planck
scale; so far, only early-universe cosmology seems to hold out any hope of giving
us observational access to quantum gravity. One reason why string theory, loop
quantum gravity and other would-be quantum gravity programs have paid so
much attention to the thermodynamics of black holes is that black hole radiation
can be understood (via different choices of foliation) either as an effective-field
theory result occurring at tolerably low energies, and so reasonably well un-
derstood, or as a fully quantum-gravitational effect; as such, black holes are a
highly non-trivial consistency check on a putative quantum theory of gravity,
above and beyond that given by ordinary effective-field-theory methods.'?

11 Philosophical morals

Quantum field theory, as the language in which a huge part of modern physics
is written, is a natural setting for all manner of detailed questions in philos-
ophy and foundations of physics, from the search for relativistic versions of
dynamical-collapse and hidden-variable theories'® to the correct understanding
of the gauge principle. But in this last section I want to draw a more general
moral. Contemporary philosophy of physics is for the most part focussed on
so-called fundamental physics: that is, on those parts of physics which describe
the world in full detail and at every scale, not simply in some emergent, ap-
proximate way in some regimes.'* We currently have no fully worked-through
fundamental physical theory. Indeed, we never have: there has never been a
time when physicists had plausible ground to believe that they possessed any
such theory. (Perhaps the closest point was at the turn of the twentieth century,
after the development of electromagnetism and thermodynamics, and before the
twin revolutions of relativity and quantum theory.) So in practice philosophy
of physics proceeds by taking a theory like classical or quantum particle me-
chanics, or classical general relativity, and studying it under the fiction that it
is fundamental. It is tempting to imagine studying QFT on that basis too.

12See Curiel(this volume), Wallace (2017a, Wallace (2017b) and references therein.
13See Lewis (this volume) and Tumulka (this volume) for further discussion.
M For more on this point, see French, this volume, and Wallace (2018b).
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But quantum field theory is not that kind of theory. For all that our best and
deepest physics is cast in its framework, it is by its own nature non-fundamental.
An effective field theory — and, recall, all empirically-successful quantum field
theories are effective field theories — is defined through the methods of cutoff
and renormalisation, and does not even purport to fully describe the world. It
is a remarkable irony that the Standard Model at one and the same time is the
nearest we have ever come to a Theory of Everything, and is uninterpretable
even in fiction as an exact description of the world. It is further irony that
the theory itself tells us that it is compatible with an indefinitely large range
of ways in which the deeper-level physics might be specified. The fact that
such a theory is (most physicists assume) quantum-mechanical allows us to
say something about it, but quantum mechanics, like classical mechanics, is a
framework theory and all manner of different theories fit within it.

Quantum field theory is a reminder to philosophers that physics, like other
sciences, is hardly ever in the business of formulating theories that purport to
describe the world on all scales. They who wish to learn ontology from our
best science, in the era of effective field theories, have two choices: recognise
that deep and interesting metaphysical questions come up at all lengthscales in
physics and are not confined to the ‘fundamental’, or remain silent and wait,
and hope, for a truly fundamental theory in the physics that is to come.

12 Further reading

There are many textbooks on quantum field theory. Probably the best conceptually-
focussed book-length account is Duncan (2012); other books that I have found
helpful include Zee (2003), Banks (2008) (insightful but very terse), Peskin and
Schroeder (1995) (the standard graduate-level textbook), and Weinberg (1995a)
(not recommended as a first introduction). But tastes vary; get hold of several
and see what suits your learning style. Coleman (1985) is not a textbook, ex-
actly, but is highly insightful on a number of conceptual issues in QFT. All of
these textbooks focus primarily on particle-physics applications of QFT.

For discussions of QFT more focussed on solid-state physics, see Abrikosov
et al (1963) (old but classic) or Altland and Simons (2010) (much more up to
date). For a more detailed account of the Standard Model, see Cheng and Li
(1984) or Donoghue et al (2014).

The methods of the renormalisation group extend beyond QFT as under-
stood as a quantum theory of the continuum and also have deep significance
in classical statistical mechanics; for a very clear presentation of the renormal-
isation group in this context, see Binney et al (1992). (One word of caution
here: do not confuse the formal analogy between classical statistical mechanics
and QFT, with the physical similarities between QFT as applied to condensed-
matter systems and to particle physics.)

My favorite reference on quantum field theory in curved spacetime is Jacob-
son (2005); Wald (1994) is also excellent. Wald also provides an introduction to
the broader issues of black hole thermodynamics, albeit now a little out of date;
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for more recent reviews from various perspectives, see Harlow (2016), Hart-
man (2015) and Grumiller et al (2015). For philosophical considerations (going
rather beyond QFT in each case), see Curiel, this volume, Belot et al (1999)
and Wallace (2017a, 2017b).

For a philosophical defense (as opposed to simply an exposition, as here)
of ‘mainstream’ effective-field-theory QFT against the more rigorous, but em-
pirically less successful, approach of trying to define continuum quantum me-
chanics exactly (nowadays usually called ‘algebraic quantum field theory’, or
‘AQFT’), see Wallace (2006, 2011); for a response from the AQFT perspective,
see Fraser (2009, 2011) (see also Baker (2016) for observations on the debate).
Ruetsche (2011) provides a general introduction to AQFT methods and a route
into the broader literature on philosophy of AQFT; other (more advanced) in-
troductions are Haag (1996) and Halvorson (2007).

The question of particles in QFT has been extensively discussed in the philos-
ophy literature (albeit mostly disjoint from the ‘emergent’ attitude to particles
I advocated in section 3; see Fraser, this volume, and references therein.
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