
Economic Thought 6.1: 1-15, 2017 
 

1 

 

The Signature of Risk: Agent-based Models, Boolean 
Networks and Economic Vulnerability 
 
Ron Wallace, Department of Anthropology, University of Central Florida, USA 
ronald.wallace@ucf.edu  
 

 

 

Abstract  

 

Neoclassical economic theory, which still dominates the science, has proven inadequate to predict 

financial crises. In an increasingly globalised world, the consequences of that inadequacy are likely to 

become more severe.  This article attributes much of the difficulty to an emphasis on equilibrium as an 

idealised property of economic systems. Alternatively, this article proposes that actual economies are 

typically out of balance, and that any equilibrium which may exist is transitory. That single changed 

assumption is central to complexity economics, a view which is presented in detail.  It is suggested that 

economic crises will be most effectively avoided when economists utilise methods, grounded in 

complexity theory, which can identify threat in an early stage. As a programmatic example, the use of 

Agent-Based Models (ABMs) combined with Boolean networks (BNs), is defended as a promising 

method for recognising vulnerability.  
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1. Introduction 

 

That the 400-year history of Western capitalism has been punctuated by crises has been 

extensively noted (Galbraith, 1990; Reinhart, 2011). Analyses addressing the trajectories of 

financial collapses have considered a range extending from Tulipomania (1637), to the Panic 

of 1857 – arguably the original global economic crash – to the onset of the Great Depression 

(1929), to the dot-com debacle (1997) and to the 2008 burst of the subprime-mortgage 

bubble. Many recent studies have faulted neoclassical economic theory, and its governing 

assumption of equilibrium, for an alleged lack of usefulness in predicting bubbles and crashes 

(Stiglitz, 2010; Bresser-Pereira, 2010; Colander et al., 2010). Yet circumstantial factors may 

have also played a role. Tularam and Subramaniam (2013) note that crisis models were 

adapted to specific situations to explain the financial challenge at hand rather than adopting a 

visionary or systematic approach. Similarly, The Economist (April 12, 2014) observes that 

economic models motivated by emergencies were ‘cobbled together at the bottom of financial 

cliffs. Often what starts out as a post-crisis sticking plaster becomes a permanent feature of 
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the system. If history is any guide, decisions taken now will reverberate for decades.’  

Exacerbating the effect of problematic theory is the instability of an increasingly securitised 

global economy. Thus John Edmunds (1997) has emphasised the amplifying effect of 

telecommunications on volatility in global securities: for a ‘botched devaluation or an 

attempted coup d’état, the punishment is quick and dire’; ‘hundreds of billions of dollars can 

be lost in a matter of hours and days’ (p. 15). Together these studies suggest that global 

economic crises may become more sweeping, frequent, and difficult to foresee, underscoring 

the need for improved vulnerability models.  

This article proposes a computational method synthesising Agent-Based Models 

(ABMs) and Boolean networks (BNs) to reliably determine when an economy is rapidly 

approaching a ‘meltdown’ (Buchanan, 2009).  The proposed method is viewed through the 

lens of complexity economics. This viewpoint, relatively new, was described by W. Brian 

Arthur (2013) as one which construes the economy as continually in motion, perpetually 

reconstructing itself. Key features of this approach are examined in detail. Emphasis is placed 

on multiple equilibria and expectation indeterminacy, two properties not easily accommodated 

in neoclassical economics. Following Arthur (2013) and, earlier, Kuhn (1962) it is suggested 

that these anomalies may signal a paradigm shift in economic thought. The discussion forms 

a conceptual bridge to an examination of ABMs and BNs: bottom-up, nonlinear computational 

strategies closely linked to complexity economics. The main structure of ABMs and BNs is 

developed in outline, but our objective is not to present a primer of either approach, a task 

which has been accomplished competently and extensively elsewhere (see Bonabeau, 2002; 

Helikar et al., 2011, among many others). Rather, it is our purpose to suggest how the two 

approaches may be linked, and used together as a powerful computational tool to identify 

vulnerability within an economy. The novel method is motivated by Bookstaber (2012) and 

Bookstaber et al. (2014) who noted: ‘For the analysis of market dislocations and crises, this 

dynamic generation of networks [from an ABM model] is critical’ (p. xxx). A key feature of this 

hybrid method is that successive BN ‘snapshots’ permit the use of the Lempel-Ziv (LZ) 

complexity algorithm – which we will present in some detail – to determine whether the 

economy is stable, weakly chaotic, or hovering somewhere in between: i.e., in a poised, 

critical regime (Lempel and Ziv, 1976). Through the application of LZ to an ABM-based BN, it 

should be possible to determine if an economic system is on the edge of a meltdown. Put 

somewhat differently, we propose a computational method for identifying an economic crisis 

when it is still at its inception, or metaphorically, mapping the ‘fault lines’ (Rajan, 2010) just 

before they become a collapse. We conclude that the framework of complexity economics, 

and its closely related strategies of ABM and BN modelling, may prove more valuable for 

reliably identifying economic vulnerability, and pointing the way towards policy, than the 

equilibrium-based neoclassical approaches that remain in widespread use.   

 

 

2. Complexity Economics: Historical Anticipations 

 

The claim that modern economies are highly dynamic systems, rarely in equilibrium, and thus 

ineffectively captured by the assumptions (and mathematics) of physics-inspired static 

models, did not begin with complexity theory (Galbraith, 1987).  The idea was anticipated in 

the 19
th
-century schemes of Friedrich List and Karl Marx who, like their anthropological 

counterparts, Lewis Henry Morgan and John McLennan, envisioned societies as moving 

through a series of historical stages, each derived from, and more complex than, its 

predecessor (Carneiro, 2003). Yet not until Joseph Schumpeter’s (1883-1950) descriptions in 

Capitalism, Socialism, and Democracy (1942) of entrepreneurs incessantly generating novelty 
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while destroying old forms of wealth do we find the unmistakable expression of the complexity 

view:  

 

‘Capitalism, then, is by nature a form or method of economic change and not 

only never is but never can be stationary… The fundamental impulse that 

sets and keeps the capitalist engine in motion comes from the new 

consumers’ goods, the new methods of production or transportation, the new 

markets, the new forms of industrial organization that capitalist enterprise 

creates’ (Schumpeter, 1947 [1942], p. 82).  

 

A generation later, Joan Robinson (1903-1983) endorsed a similarly dynamic view – an 

economic ‘arrow of time’ – which echoed, almost verbatim, the words of Zeno of Elea (5
th
 

century B.C.E.):  

 

‘Any movement must take place through time, and the position at any 

moment of time depends on what it has been in the past… The point is that 

the very process of moving has an effect on the destination of the movement, 

so there is no such thing as a position of long-run equilibrium which exists 

independently of the course which the economy is following at a particular 

date’ (Robinson, 1964, pp. 222-238; also see the valuable historical 

discussion in Turk, 2010).  

 

A similar understanding – of economics and much else – was emerging in Robinson’s day 

(1960s), in the relatively new, computer-inspired information sciences (Kurzweil, 1999). Highly 

visible among those theorists was Magoroh Maruyama (1963), who vigorously questioned the 

key assumption of self-regulatory informational loops (i.e. homeostasis) that had defined the 

cybernetics of mathematician Norbert Wiener (1894-1964) and psychiatrist W. Ross Ashby 

(1903-1972). Announcing a ‘second cybernetics’, he argued that  

 

‘[b]y focusing on the deviation-counteracting aspects of the mutual causal 

relationships however, the cyberneticians paid less attention to the systems 

in which the mutual causal effects are deviation-amplifying. Such systems are 

ubiquitous:  accumulation of capital in industry, evolution of living organisms, 

the rise of cultures of various types, interpersonal processes which produce 

mental illness, international conflicts, and the processes that are loosely 

termed as “vicious circles” and “compound interest”; in short, all processes of 

mutual causal relationships that amplify an insignificant or accidental initial 

kick, build up deviation and diverge from the initial condition’ (Maruyama, 

1963, p. 164).  

 

A full examination of this major theoretical shift would require a separate article (see, for 

example, Boulding, 1985). Here we will emphasise the emergence, within that context, of the 

two computational strategies with which we will be concerned: agent-based models (ABMs) 

and Boolean networks (BNs). 

ABM and BN models began as the almost inevitable outgrowth of the ‘second 

cybernetics’ approach. If, as was increasingly claimed, most – if not all – systems were only 

momentarily in balance, and vulnerable at all times to ‘accidental kicks’, it followed in the case 

of economics, that the neoclassical framework – inspired by classical physics, and 

emphasising stability – would require extensive revision. This would not – and historically did 
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not – entail the simple substitution of one theory for another. Rather, it was held that an 

inductive approach was needed, proceeding in ‘bottom-up’ fashion from raw economic data 

sets to novel overarching views. ABM and BN approaches, amplified by the rapidly changing 

‘digital revolution’, were highly consistent with this critical view.  What distinguished these two 

methodologies was that they both configured complex artificial worlds comprised of interactive 

components defined by explicit rules; once the system was set in motion, the micro-level 

components would generate macro-level patterns. Users of both methods thus sought to 

avoid the pitfall – no stranger to the history of science – of imposing an outmoded theory upon 

recalcitrant data. In early ABM modelling, the economist Thomas Schelling (1921-2016) 

demonstrated that individuals (agents) in an artificial community following simple threshold 

rules regarding satisfaction with neighbours would generate, on the macro level, pronounced 

segregation along some specified social dimension (Schelling, 1971). Similarly, theoretical 

biologist Stuart Kauffman – building on earlier threshold models of ‘satisficing’ behaviour 

pioneered by Nobel Laureate and polymath Herbert Simon (1916-2001) – showed in the first 

BNs how a system of binary units interacting through algebraic rules would display self-

organisation (Simon, 1956; Kauffman, 1969). As is evident, the two approaches both 

generate global patterns from local interactions, and share an inductive philosophy. 

Nonetheless, they have followed largely separate paths since their beginnings in the 1960s. 

Perhaps their surface dissimilarity – ABMs’ descriptive richness versus BNs’ Spartan 

simplicity – has been sufficient to discourage attempts at hybridisation. But must we so 

choose? Below we will first examine the fundamental concepts of complexity economics, and 

then defend a synthesis of ABM and BN approaches (Borshchev and Fillipov, 2004; 

Bookstaber et al., 2014).   

 

 

3. Complexity Economics: Addressing the Limitations of the Neoclassical View 

 

Closely identified with the Santa Fe Institute and the writings of W. Brian Arthur, complexity 

economics extends the tradition of Schumpeter and Robinson, and builds on the contributions 

of information theory, through its construal of an economy that is typically in disequilibrium 

(Arthur, 1999; 2005; 2013). In contrast to the neoclassical viewpoint which nominates agent 

behaviours, strategies and historical assumptions believed to be logically consistent with 

some specified aggregate pattern – thus proceeding in a top-down fashion, and yielding a 

static model – complexity economics views agents as dynamic and reactive: they respond to 

economic patterns by transforming their beliefs and behaviours; these changes, in turn, give 

rise to a transformed and transient, pattern. This reflexivity is the essence of a non-equilibrium 

economy. Importantly, agent reactions are frequently creative; they are novelty-generating. 

Like talented chess-players in an artificial tournament tracked through time (recall Robinson’s 

‘arrow’), their strategies call upon memory and, at least temporarily, display increasing 

complexity (Lindgren, 1991); players utilise mixtures of several proven gambits or, 

occasionally, revert to a devastatingly simple – because unexpected – manoeuvre. Similar 

innovative responses can often accelerate market dynamics (see Fox, 2009 or any history of 

speculation), yet are poorly accommodated in the static, neoclassical view. As a final but 

critical point, the complexity approach is not a retreat from theory.  A wide range of models 

and related computational experiments, frequently involving statistical study of system 

properties and their causes, can be accommodated within the complexity framework 

(examples abound; see the special issue of Journal of Economic Dynamics & Control, 33, 

2009 devoted to the topic). Indeed, in larger perspective, complexity thinking appears 

consistent with the ‘semantic view’ of science, traceable to Patrick Suppes (1922-2014) and 
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Bas van Fraassen, in which models are investigatory tools or instruments which mediate 

between a theory and the world at which the model is ‘targeted’ (Morrison and Morgan, 1999).   

Acknowledging that the assumption of an economy that is normally in flux makes a 

substantial claim on his audience, Arthur (2005, p. 4) adds that  

 

‘a natural question to ask is what it delivers. What novel phenomena do we 

see when we do economics out of equilibrium? Are there questions that 

equilibrium economics can not [sic] answer, but that this more general form of 

economics can? In Kuhnian language, are there anomalies that this new 

paradigm resolves?’  

 

The candidate challenges are multiple equilibria and expectation indeterminacy. The first of 

these – which posits that a dynamic economy may settle into one of multiple possible stable 

states, and that the state selected is difficult to predict in advance – is by no means new; 

indeed it was recognised as problematic by the founders of neoclassical theory.  Léon Walras 

(1834-1910) in his Elements of Pure Economics (1874) had envisioned highly idealised 

market behaviour, specified by simultaneous equations, for which there were as many 

unknowns as equations; he believed that under these conditions, the system would (probably) 

yield a unique equilibrium (Ingrao, 1989). This formal argument has been analogised to a 

grand, auction-like setting, involving a single commodity, in which sellers call out prices, and 

consumers respond by purchase or by refusal to buy at that price: i.e., the ‘Walrasian 

auction’. The aggregate effect is a trial-and-error ‘groping’ (tâtonnement) toward a unique 

equilibrium. (For valuable alternate views of the auction metaphor – which Walras himself 

never used – see Kirman, 2010 and De Vroey, 2003). But Walras himself acknowledged that 

if one chose to evaluate a more elaborate, two-commodity ‘auction’, there may, in fact, be 

multiple possible equilibria. Later generations of economists have sought to specify the 

mathematical conditions under which a unique equilibrium would be guaranteed. A full 

consideration of these controversies extends beyond the scope of this article. Perhaps the 

best summation was provided by Timothy Kehoe (1998), who raised the eminently practical 

issue of computational difficulty:  

 

‘It may be the case that most applied models have unique equilibria. 

Unfortunately, however, these models seldom satisfy analytical conditions 

that are known to guarantee uniqueness, and are often too large and 

complex to allow exhaustive searches to numerically verify uniqueness’ 

(Kehoe, 1998, pp. 38-39). 

 

In contrast to this tradition, complexity economics essentially cuts the Gordian Knot: the quest 

for an inerrant method for guaranteeing a unique equilibrium is abandoned as a sterile 

exercise. In its place, the dynamic properties – especially positive feedback – of a simulated 

economic system are observed from their origin as random perturbations: Maruyama’s 

‘insignificant or accidental initial kick[s]’ (Maruyama, 1963, p. 167). Because identical initial 

conditions, in a series of simulations, can often generate different equilibria, probabilities 

reflecting these alternative possible outcomes can be assigned to selected features:  

 

‘Sometimes one equilibrium will emerge, sometimes (under identical 

conditions) another. It is impossible to know in advance which of the 

candidate outcomes will emerge in any given unfolding of the process, but it 

is possible to study the probability that a particular solution emerges under a 
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certain set of initial conditions. In this way the selection problem can be 

handled by modeling the situation in formation, by translating it into a process 

with random events’ (Arthur, 2005, pp. 5-6).  

 

The alternative approach has been applied to actual economic systems. Woods and 

Vayssières (2002) describe the effects of a price-unit change on the Internet-provider market:  

 

‘They operated as if the price unit in the market was a connection hour. The 

pricing system now is much different. People are not generally charged by 

the minute, but by the bandwidth, the maximum instantaneous capacity of the 

connection. The differing pricing systems produced different incentives for 

modem and other technology’ (Woods and Vayssières Kandel, 2002,  

p. 6.319).   

 

Citing this and other perturbations (e.g., the introduction of product bundling), they conclude 

that a small policy change can drive a market to ‘a different equilibrium’ (Woods and 

Vayssières Kandel, 2002, p. 6.319).    

Unlike multiple equilibria – a concept proximately tethered to the quantitative 

revolution in modern economics – the second of the anomalies, expectation indeterminacy, is 

deeply anchored in Western philosophy. Plato (c. 429-347 B.C.E.) argued in Symposium  

(c. 385-370 B.C.E.) that any discussion of expectations was made problematic by changes in 

the self, especially in values and tastes, that occur over the lifespan. Much later, David Hume 

(1711-1776) in his Treatise on Human Nature (1738-1740), advanced an almost identical 

argument. In modern economics, the construct of the multifaceted, evolving individual did not 

disappear so much as it was elegantly dismissed. In Léon Walras’ static model, people inhabit 

a timeless world, are endowed with perfect information regarding market performance, and 

interact ‘in an unending round of robotic behavior’ (Rothbard, 2005, p. 97). Because time is 

not part of the model, expectation is rendered meaningless. Although recent scholarship 

suggests that Walras may have intended to later revise the model to include realistic 

dynamics – an issue explored by the author in a forthcoming article – his project was never 

realised (Ingrao, 1989). Instead, the ‘unending round’ was mathematically refined by Kenneth 

Arrow and Gérard Debreu (1921-2004), by which point ‘expectations’ had all but vanished 

from economic thought (Arrow and Debreu, 1954). In 1961, however, the omission was 

addressed with far-reaching consequences by John F. Muth’s (1930-2005) presentation of 

rational expectations theory (RET): investors make, and update decisions based on all 

relevant information regarding market variables of interest (e.g., performance of a particular 

stock). Given that the investors are on a time-path – here a departure from Walras – and are 

seeking to maximise profits, they modify their forecasts in the light of new information, and in 

the direction of greater reward (utility). There is thus a feedback loop between the signals of 

market performance and the adjustments in investor decisions; as a result, expectations – in 

the aggregate, and in the long run – will not systematically differ from actual market outcomes 

(Muth, 1961).  It is difficult to underestimate the impact of RET, both on academic economics 

and on actual economic behaviour (for a valuable critique see Kirman, 2014). In academia, 

the model’s proponents – most conspicuously, Thomas Sargent and Robert E. Lucas – 

ignored or understated its most destructive weakness: a body of investors is not an idealised 

set of isolates, but an interacting, randomised, and self-referential system (Arthur, 2005); 

investors’ expectations are rarely independent but are more often ‘coordinated’ (Kirman, 

2014): they constantly form and evolve with regard to the expectations of others. This self-

referential property is not only the crux of the indeterminacy problem but, given that humans 
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have imperfect knowledge and are notoriously error-prone, has played a critical role in 

outbreaks of ‘financial euphoria’ (Galbraith, 1990; see also Fox, 2009). Its absence from RET, 

and hence from the outlook of policymakers, may have therefore significantly contributed to 

the recent financial crisis. Ben Bernanke, Chairman of the Federal Reserve (2006-2014), 

candidly acknowledged as much to the International Herald Tribune (2010):  

 

‘I just think that it is not realistic to think that human beings can fully anticipate 

all possible interactions and complex developments. The best approach for 

dealing with this uncertainty is to make sure that the system is fundamentally 

resilient and that we have as many fail-safes and back-up arrangements as 

possible’ (Bernanke cited in Kirman, 2014, p. 36). 

 

Whether Bernanke’s admonition will be adequately answered by complexity economics only 

later events can show. But the treatment of expectations in the complexity approach is 

promising, and differs markedly from that of Muth and Walras. Like multiple equilibria (to 

which it is systemically related) expectation indeterminacy is not a problem to be avoided by 

positing unrealistic constraints, but accepted as a property of a non-equilibrium system. Arthur 

(2005) contrasts the two approaches:  

 

‘To suppose [as in RET] that a solution to a given problem would we reached 

in a one-off non-repeating problem, we would need to assume that agents 

can somehow deduce in advance what model will work, that everyone 

‘knows’ this model will be used, and everyone knows that everyone knows 

this model will be used, ad infinitum’ (Arthur, 2005, p. 7).  

 

This critique is markedly similar to Muth’s candid acknowledgment:  

 

‘The rational-expectations hypothesis assumes all individuals in the economy 

have unlimited computational ability and know how to make use of the 

information they possess’ (Muth, 1994, pp. 101-102).  

 

In a more parsimonious strategy, complexity economics views expectations ‘in formation’: ‘To 

do this,’ Arthur proposes,  

 

‘we can assume that agents start each with a variety of expectational models, 

or forecasting hypotheses, none of these necessarily “correct”. We can 

assume these expectations are subjectively arrived at and therefore differ. 

We can also assume agents act as statisticians: they test their forecasting 

models, retain the ones that work, and discard the others. This is inductive 

behavior. It assumes no a priori “solution” but sets out merely to learn what 

works. Such an approach applies out of equilibrium… as well as in 

equilibrium, and it applies generally to multi-agent problems where 

expectations are involved’ (Arthur, 2005, pp. 7-8).  

 

A growing body of experimental studies suggest that, while RET is often consistent with the 

behaviour of more experienced traders, over successive trials, and at a slower rate of 

investment, bubbles and crashes also occur. Computerised studies conducted by Smith et al. 

(1988) with experienced and inexperienced subjects found that fourteen of 22 experiments 

exhibited price bubbles followed by crashes relative to intrinsic dividend value. When traders 
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were experienced, however, this factor reduced, but did not eliminate, the probability of a 

bubble. (But see also the qualifying remarks regarding this experimental tradition provided by 

Joyce and Johnson, 2012).  The inadequacy of RET was additionally indicated by an artificial-

market study conducted by Arthur et al. (1996).  In their analysis, virtual investors formed and 

discarded hypotheses in a recursive ‘ecology of beliefs’; i.e., their decisions were based on 

their expectations of others’ expectations. Their major finding may be compared to phase 

transitions in chemistry:  when investor decisions proceeded at a relatively low rate, RET was 

supported, but when the rate was increased, the market self-organised into complexity: 

technical models were transiently vindicated, and ‘bubbles and crashes’ occurred – a regime 

remarkably similar to actual market behaviour.  

 

 

4. Agent-based Models and Boolean Networks: Toward a Signature of Risk 

 

Can computational models predict economic crises? Tularam and Subramaniam (2013), as 

we have seen, vigorously criticised proposed methods for forecasting crashes, concluding 

that,  

 

‘[T]here is little evidence of a longer term vision and therefore financial crises 

modeling has not been dealt with by researchers with any level of visionary 

approach’  Tularam and Subramaniam, 2013, p. 118).  

 

Alternatively, Andrew Berg and colleagues at the International Monetary Fund (IMF) – writing 

in the wake of the Asian currency collapses (1997), but before the Great Recession (2008) – 

were cautiously sceptical:  

 

‘Overall, … EWS [Early Warning System] models are not accurate enough to 

be used as the sole method to anticipate crises. However, they can contribute 

to the analysis of vulnerability in conjunction with more traditional surveillance 

methods and other indicators’ (Berg et al., 2005 p. 491).   

 

So can it be done? Or is the endeavor Quixotic? Richard Bookstaber (2012) has offered a 

more restricted objective.  He notes that any attempt to predict a systemic shock is ‘a task 

that in itself is fraught with uncertainty’ (clearly increasing in relation to the futurity of the 

event). Citing the 2008 crisis, he emphasises that ‘central banks took unprecedented actions 

that would have been difficult to anticipate, as would the effects of those actions’ (Bookstaber 

2012, p. 4). (This view can be easily amplified: In the years preceding the 2008 crash, the 

1999 repeal of the Glass-Steagall Act, the rise of subprime ‘robo-lending’, and the invention of 

credit default swaps were all without precedent, and likely contributed to the event. There is a 

burgeoning literature on these machinations. For an irreverent insider account, emphasising 

credit default swaps, see Lewis (2010). For an apologia regarding the repeal of the Glass-

Steagall Act, see Binder (2013, pp. 266-267). Accordingly, Bookstaber and his group endorse 

an ABM model, linked to a network approach, which could identify, and possibly avert, a crisis 

at its inception. Rather than predicting it well in advance – the weakness of EWS approaches 

– the model can ‘trace the path a shock follows as it propagates through the financial system ’ 

(Bookstaber et al., 2014, p. 4). Moreover, shocks can be artificially induced as a means of 

policy testing.  

 The defining attribute of an ABM is the individual actor or agent which is a computer 

program or, more commonly, a distinct part of a program, which can represent a person, a 
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household, a firm, or even a nation (Gilbert, 2007). Agents exchange information both directly 

and indirectly, as well as within and between levels; they modify their behaviour with regard to 

what they have learned. Expressed somewhat differently, each agent is assigned a set of 

updatable rules which regulate its changing responses to the inputs from other agents.  In the 

case of individuals, the rules might be simple heuristics; for a bank or investment firm, they 

may be formal policies adhered to in a stable economy, but modified or even abandoned in 

the event of a financial crisis. As this artificial economy evolves, it will often display emergent 

properties, i.e. features that arise from a system of interacting agents, but are not present in 

any agent within the system. This remarkable natural process is also encountered in actual 

economies (see the special issue of the Journal of Economic Behavior & Organization, 82, 

May 2012 devoted to ‘Emergence in Economics’). Thus Paul Templet has shown that the 

diversity of industrial economies emerges over time from the number of energy flows which 

circulate through energy-consuming sectors and from the allocation of energy use across 

those sectors (Templet, 2004).  

The Bookstaber ABM is focused on hedge-fund investing, but its underlying concepts 

could be readily applied to other scales, including that of the global economy. Indeed, similar 

approaches have been used to analyse ‘housing and mortgage prepayments, payment 

systems, market microstructure, and macroeconomics’ (Bookstaber, 2012, p. 11). The model 

is comprised of three types of agents:  

1) Hedge funds (HF), financial vehicles which pool the capital of individuals and 

institutions to invest in a wide range of assets using risk-management techniques. This focus 

is defended as immediately relevant to crisis modelling because significant HF leverage – its 

borrowed capital and cash which is used for investment – combined with increasing investor 

redemptions, can lead to an HF funding risk during a sudden economic downturn.  

2) Cash provider (CP), a funding source which pools the investors’ assets. The CP 

agent may be an asset manager, or a range of financial institutions; e.g., a pension fund, an 

insurance company or, most often, a money-market fund. The latter typically provides only 

short-term funding which, importantly, may be redeemed in the event of a financial crisis, 

thereby increasing the vulnerability of the HF.  

3) Banker/dealer (BD), a hub in the HF network, comprised of multiple sub-agents 

(e.g., financial desk, trading desk, derivatives desk), which coordinates flows of funding and 

collateral between the HF and the CP. Agents and sub-agents in the model are described by 

decision rules that govern their responses to inputs; e.g., CP constraints on the amount that 

will be lent to the finance desk in the BD system. The ABM, as described, is subjected to a 

price shock, and – in what is arguably the most innovative feature of the model – the 

spreading destabilisation is depicted in a series of snapshots via a complementary graphic 

network (GN), which receives periodic output from the ABM. In this approach, agents are 

represented as nodes, and their interactions are edges (links). A coloured area within a node 

depicts the amount of capital; an empty node represents a default; the thickness of an edge 

denotes the intensity of the impact of one node (agent) upon another. The Bookstaber GN, 

when put into motion, pictorially expressed spreading financial disorder. Dramatically falling 

prices forced a default of HF and BD, resulting in the near-collapse of funding within the 

system. Importantly, conventional stress analyses (e.g., Value-at-Risk, or VaR methods) 

would have identified only the early stages of the crisis. (For an overview of VaR, see 

Linsmeier and Pearson, 2000). 

The architecture of Bookstaber’s prototype could be made even more informative if 

linked to a BN, and in turn expressed as a complexity metric. Each picture in the GN would 

have its mathematical equivalent. It would be possible, through such an approach, to identify 

a ‘tipping point’ in the GN progression where a change in one or more nodes (e.g., a massive 
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HF liquidation) may be sufficient to generate chaos. A BN, introduced briefly above, is 

comprised of a set of components or nodes {𝜎1, 𝜎2, … 𝜎𝑛} which can assume only two values, 

ON (1) or OFF (0) corresponding, respectively, to the active or inactive state of the variable, 

or to its above- or below-threshold value. Nodes are linked by a wiring diagram in a first 

approximation which may be somewhat speculative, especially if the variables are not yet 

well-understood (Helikar et al., 2011). The binary output of each node is specified by logical 

operations utilising AND, OR, and NOT; the input-output relations, or Boolean functions {B1, 

B2,. . .Bn}, are represented in a ‘truth table’. Under the best of conditions – i.e., when educated 

guesswork is minimal – the BN approach may be regarded as an approximation technique in 

which successive applications of updated model variants frequently yield a result with high 

predictive power. On a fundamental conceptual level, BNs would appear to have a strong 

affinity with ABMs: In both approaches computational objects interact via simplified rules 

relating to incentives or information. Converting the output of the ABM-based GN into a BN 

model would therefore be plausible but, like any BN application, would require trial-and-error 

manipulation (of the wiring diagram, the truth table, and the choice of node values (0,1) during 

multiple simulations) until BN activity would correspond to the GN picture.  

 How does the BN yield a signature of risk? Ilya Scmulevich’s team developed a 

method for quantifying the dynamic state of a BN through the Lempel-Ziv (LZ) metric 

(Schmulevich, 2005; Lempel and Ziv, 1976). The approach was developed by Abraham 

Lempel and Jacob Ziv in 1976, and first used in the informational sciences as a data-

compression algorithm. Variations in LZ were subsequently developed, including one by Terry 

Welch (1984) for use in high-performance computing. Compatible with BN modelling, LZ has 

been applied in molecular biology (Schmulevich et al., 2005), medicine (Zhou et al., 2011), 

evolutionary studies (Yu et al., 2014), and a variety of other sciences. (There are several 

complexity metrics in addition to LZ which may prove potentially useful for evaluating 

economic systems. The state of the art is fluid, and new methods are emerging all the time. 

For an overview, see Lloyd, 2001). 

The mathematical basis of LZ is given in Lempel and Ziv (1976), which those wishing 

a formal presentation are urged to consult. This article offers instead an illustration of the 

algorithm by means of an example (Schmulevich et al., 2005; Wallace, 2015). Consider a 

finite and binary alphabet in which complexity is defined as the number of unique substrings, 

with the possible exception of the last one (which may not be unique), as the sequence 

evolves from left to right. Importantly, in the version of LZ presented here, the search for 

previous occurrences of a substring may bridge previously seen substring boundaries. Thus, 

in the sequence 01100101101100100110, the first digit, 0, is new; it has not been 

encountered before. The (evolving) LZ value is therefore 1. Proceeding to the next digit, 1, it 

is clear that this digit is also new. Thus the LZ value increases to 2. Continuing from left to 

right, the next (third) digit is 1, which has been previously encountered.  Therefore, the length 

of the substring is increased by one digit (i.e., the fourth digit, 0), yielding a new substring 10, 

and an evolving LZ value of 3.  Next, beginning with the fifth digit, 0, and continuing to move 

from left to right, the next new substring is 010, yielding an evolving LZ value of 4. The 

process is continued until the sequence is parsed as follows: 0-1-10-010-1101-100100-110, 

where dashes indicate the boundaries between substrings. The LZ complexity of this 

sequence is thus 7. It should be noted that in this LZ variant, the final substring 110, although 

it was counted, was not new (the reader should bridge the second dash; recall that, in this 

variant, bridging is permitted).  

In applying this method to a BN, LZ values are calculated for binary time-series 

readouts at clocked moments as the BN simulation is running. The LZ values of the 

successive BN snapshots are then displayed as a probability distribution. The latter is then 
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compared with three probability distributions of LZ values for Random Boolean Networks 

(RBNs) representing ordered, critical, and chaotic states. In an RBN, inputs to nodes are 

randomly chosen, and ‘each node is assigned an update function that prescribes the state of 

the node in the next time step, given the state of its input nodes. The update function is 

chosen from the set of all possible update functions according to some probability distribution ’ 

(Drossel, 2008). Although simple visual examination of superposed actual and random LZ 

probability distributions could itself be informative, several mathematical approaches exist for 

evaluating their similarity. We may represent the LZ probability distribution corresponding to 

actual data as 𝑃 =  [𝑝1, … , 𝑝𝑚] and each of the RBN mock-data probability distributions as  

𝑄 =  [𝑞, … , 𝑞𝑚]. The Euclidean distance, a similarity measure, is then given by  

 

    𝐸(𝑃, 𝑄) = (∑ (𝑝𝑖 − 𝑞𝑖)
2)𝑚

𝑖=1
1/2

, 

 

and the Kullback-Leibler (KL) divergence or relative entropy, an alternate measure, is given 

by  

 

               𝐷 (𝑃, 𝑄) =  ∑ 𝑝𝑖
𝑚
𝑖=1 log (𝑝𝑖/𝑞𝑖) 

 

In a comparison, the more different the distributions of 𝑃 and 𝑄, the larger will be the values of 

the Euclidean and KL measures. (It follows that if the 𝑃 and 𝑄 probability distributions are 

identical, 𝐸(𝑃, 𝑄)  =  𝐷(𝑃, 𝑄)  =  0.) Thus, in an economic application, if the modelled system 

were approaching a meltdown (e.g., the subprime market shortly before the fall), 𝐸 and 𝐷 

values for successive comparisons between the actual distribution 𝑃 and the RBN distribution 

𝑄 for a critical regime would increasingly approach 0. Schmulevich et al. (2005) recommend 

that more than one metric be applied to insure that ‘the results do not depend on the 

particular measure used’ (p. xx). Consistent with this view, the continuing development of new 

complexity metrics and related divergence measures, as documented by Lloyd (2011) should 

reduce the likelihood of artefacts. 

 

 

5.  Conclusion 

 

Economists, generations hence, will likely regard this period as a difficult time in their science: 

an uneasy historical juncture between the inadequate and the untried. But the episode is not 

without precedent. It is useful to remember that neoclassical economics, against which the 

critical mood is predominantly directed, itself began as a conscious reaction against the 

passions of its day. The austere and elegant theories of Léon Walras and his school were 

intended to overcome the acrimonious, and occasionally violent, confrontations within and 

between Political Economists, Marxists, anarchists, and Romantics, themselves a philosophic 

reflection of the wider social disorder (Tuchman, 1966; Burleigh, 2006). No less disorderly is 

our own era. Yet there is an important difference: Today’s global marketplace is linked by 

information technology which can propagate economic crises in hours or sometimes minutes 

(Edmunds, 1997). Moreover, financialisation, not only of the US economy, but of much of the 

industrial world (e.g., OECD countries), deploys this same technology, thus propagating 

unemployment, negative growth, and inequality (Kus, 2012). The development of novel 

approaches in computational economics for identifying crises and responding with effective 

policies – essentially matching speed with speed – is thus far more crucial today than it was in 

Walras’ era. The stakes are global, not regional. In this time of competing persuasions, ABM 

and BN models show promise primarily because they are both inductive strategies. At the 
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onset of a crisis, it is surely reckless to be guided by preconceived formulae which, in turn, 

are correlated with an inadequate theoretical view. On the other hand, there is relative safety 

in an exploratory approach. The Procrustean temptation is made more difficult when no one – 

not even, in many cases, the modellers themselves – can predict the simulation, even though 

the initial rules have been precisely specified (Amigoni and Schiaffonati, 2008). This would 

amount, nontrivially, to a scientific shift:  structured but unpredictable, ABM and BN models 

would not only be representations (Morgan and Morrison, 1999). They would occupy centre 

stage in computational discovery procedures, perhaps bringing economics closer to the 

elusive understanding of risk.  
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