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Classical equilibrium thermodynamics is characterised by laws of great gener-
ality and scope, but which have no justification within thermodynamics itself.
Historically, much of the original impetus of statistical mechanics was to provide
a microphysical justification: almost from its outset, the subject had to grap-
ple with the apparent inconsistency between the apparent time-irreversibility of
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Abstract

I give a brief account of the way in which thermodynamics and statis-
tical mechanics actually work as contemporary scientific theories, and in
particular of what statistical mechanics contributes to thermodynamics
over and above any supposed underpinning of the latter’s general princi-
ples. In doing so, I attempt to illustrate that statistical mechanics should
not be thought of wholly or even primarily as itself a foundational project
for thermodynamics, and that conceiving of it this way potentially distorts
the foundational study of statistical mechanics itself.

Introduction

thermodynamics and the apparent time-reversibility of microphysics.

If a 19th-century physicist were transported to the present day and perused
the philosophical literature on statistical mechanics, they would be forgiven for
thinking that little has changed. Overwhelmingly, the focus of discussion is
on the use of statistical-mechanical methods to underpin thermodynamics. For

instance, Roman Frigg’s recent review states that

Thermodynamics (TD) correctly describes a large class of phenom-
ena we observe in macroscopic systems. The aim of statistical me-
chanics is to account for this behaviour in terms of the dynamical
laws governing the microscopic constituents of macroscopic systems
and probabilistic assumptions. ... The fact that many processes in
the world are irreversible is enshrined in the so-called Second Law
of Thermodynamics ...It is the aim of non-equilibrium [statistical
mechanics| to give a precise characterization of irreversibility and to
provide a microphysical explanation of why processes in the world
are in fact irreversible. (Frigg 2007, pp.99-100)



Craig Callender (2001), slightly more cautiously, observes that “Kinetic theory
and statistical mechanics are in part attempts to explain the success of thermo-
dynamics in terms of the basic mechanics.” (p.540; emphasis mine.) In similar
vein, Katinka Ridderbos (2002) notes that “One of the cardinal aims of the
theory of statistical mechanics is to underpin thermodynamic regularities by a
theory formulated in terms of the dynamical laws governing the motion of the
microscopic constituents of a thermodynamic system.” (p.66) Examples could
easily be multiplied.

Notwithstanding Callender’s and Ridderbos’ caveats, this essentially founda-
tional construal of statistical mechanics is dominant in philosophical discussion.
The field is presented as concerned primarily with providing a microscopic un-
derpinning of already-known macroscopic generalities; the point of philosophical
concern is whether it does so adequately.

Part of the point of this paper is to suggest that this focus on the foun-
dational role of statistical mechanics is in danger of distorting the discussion.
Statistical mechanics is both a huge field in its own right in contemporary physics
and a hugely important tool across many (most?) other areas of physics, and
only a very small part of the work done under the label of statistical mechan-
ics has anything much to do with the foundations of thermodynamics. Insofar
as there are important questions to ask about the conceptual underpinnings of
statistical mechanics, it may be misleading to regard statistical mechanics itself
as itself wholly or primarily a conceptual underpinning for thermodynamics. I
mostly use the neo-Boltzmann approach (advocated recently by, inter alia, Al-
bert (2000), Callender (2001), Goldstein (2001), Lebowitz (2007), North (2002)
and Penrose (1994, 1989)) to illustrate where this can be significant.

But the main point of the paper is just to give an overview of what statistical
mechanics, as used in contemporary physics, actually does, over and above its
supposed foundational role — something that seems to be rather little under-
stood in foundational circles. I make no pretense at conceptual or mathematical
rigor: T attempt simply to lay out what the actual methods and (broad-level)
techniques of thermodynamics, and of equilibrium and then non-equilibrium
statistical mechanics, actually are. I take it that any satisfactory conceptual
account of statistical mechanics must succeed not simply at underpinning the
general predictions of thermodynamics, but the predictive and explanatory suc-
cesses of statistical mechanics itself.

2 The content of thermodynamics

What does classical thermodynamics actually tell us about the systems to which
it applies? Roughly speaking (that is, with no pretensions to completeness,
historical accuracy, conceptual independence or mathematical precision), some-
thing like the following:

e That each system, if isolated, relaxes in some reasonable time towards an
equilibrium state whose “thermodynamic parameters” (roughly speaking,



its macroscopically accessible features) are time-invariant and are deter-
mined only by its internal energy U and by whatever external parameters
(paradigmatically, its volume V') constrain it. (This equilibration princi-
ple is called the ‘minus first law of thermodynamics’ by Brown and Uffink
(2001).)

That any two such systems can be placed in ‘thermal contact’, whereby
they may be treated as parts of a single system that will reach a joint
state of equilibrium.

That the relation of ‘being in equilibrium with’, that holds between any
two systems at equilibrium which remain unchanged when placed in ther-
mal contact, is an equivalence relation, and that the relation of ‘being
hotter than’, which holds between two systems when energy is transferred
from the first to the second when they are placed in thermal contact, is
an ordering relation. (The Zeroth Law.)

That, in part as a consequence of the above, we can define ‘empirical
temperatures’, functions of an equilibrium system’s internal energy and
external constraints, so that system 1 has a higher temperature than sys-
tem 2 iff it is hotter.

That the energy transferred to a system as a result of its transition be-
tween two equilibrium states can be consistently divided into ‘work’, which
is energy transferred via variation of the external parameters, and ‘heat’,
which is energy transferred via thermal contact, and that energy is con-
served, so that the change in internal energy of a system equals the net
work done on the system by varying its parameters plus the net heat flow-
ing into the system from other systems in which it is in thermal contact.
(The First Law.)

That it is possible to speak consistently of arbitrarily small and slow tran-
sitions of a system between equilibrium states, so that the infinitesimal
change of energy of the system dU in such a transition can be decomposed
as

dU = 6Q + 6W, (1)

where 0Q) and W are the infinitesimal work done, and heat transferred,
in the transition.

That the work §W can be decomposed as

SW =Y PdV",

where the V' are the external constraints on the system and the P; are
functions of an equilibrium system’s internal energy and external con-
straints, which can be defined as the rate of change of U with respect to
V' while the system is thermally isolated.



e That there exist functions S (‘thermodynamic entropy’) and 7' (‘ther-
modynamic temperature’) of an equilibrium system’s internal energy and
external constraints, such that

5Q = TdS,

such that T is an empirical temperature, and such that no transition of
a thermally isolated system between two equilibrium states can induce a
decrease in S. (The Second Law.)

Famously, the above principles (collectively speaking) are primitives of thermo-
dynamics: although there are various logical interconnections between them,
the system as a whole is merely postulated, and thermodynamics in itself offers
no justification for them. But never mind: let us accept them, and take for
granted that all of the above is known to hold of, say, a box of gas of known
total volume and external energy, and ask: what can be deduced about the the
behaviour of the box?

The answer, so far as I can see, is virtually nothing. The box will have
some equilibrium state, to which it will relax on some unspecified timescale.
Increasing or decreasing its volume may (or may not) lead to changes in its
internal energy. It will not be possible to use the box to play certain roles in
various heat engines: it will not, for instance, be possible to operate on it in a
cycle to turn heat into work. It will have some thermodynamical temperature,
and if placed in thermal contact with a lower-temperature system, will transfer
heat to that system. It will have some entropy, which cannot be induced to
decrease in an adiabatic process. But on what the temperature is, or the entropy,
for a given volume; on how much work must be done (or will be generated) in
contracting the box; on even whether the box is of uniform density...on all
these questions, thermodynamics in the abstract is silent. The Second Law, or
the First, or the Zeroth, or the Minus First, or all of them together, do not so
much as predict that a box of gas initially confined to one half of a box will
expand to occupy the whole box.

Nor can it be expected to: the very neutrality of thermodynamics forbids
it. Thermodynamics is intended to apply to gases, to liquids and to solids: to
boxes filled with plasma, treacle or stone as surely as boxes filled with gas. And
it is not a law of nature that a chunk of rock, initially ‘confined’ to one side of
a box by a partition, will expand to fill the whole box.

Thermodynamics only begins to get its bite when its abstract principles
are supplemented by physical details that pick out the particular system under
study. This is normally done via the equations of state of the system: the
concrete mathematical expressions for the functions P; and T in terms of the
energy U and the constraints V?. In the case of a gas, for instance, the only
salient constraint is the total volume V' (note that this already tells us a lot
about the gas, for instance that its macrophysics depends on the size of its
container but not on the shape) and, in the idealisation of a sufficiently dilute



gas, the equation of state for the parameter P, = P is
1U
P=——, 2
v (2)
where « is a dimensionless parameter dependent upon the species of gas, and
the equation of state for T is

=——=U, (3)

where M is the mass of the gas, R is an arbitrary scale constant (in fact equal
to ~ 8.3JK 1), and m is a parameter with the dimensions of mass, depen-
dent on the species of gas (the physical significance of which will be explored
shortly, though the reader can probably guess). Given these, we can solve for
S, obtaining

S= % (In(V) + aIn(T)) + So. (@)

Other systems have different equations of state. A box of radiation, for instance,
has again volume as its one salient external parameter, and has equations of state

P=iv ®)

T:(;gf“, ©

where for the moment ¢/o should be thought of as a empirical constant (Blun-
dell and Blundell 2010, p.286). A crystal at very low temperatures has no
salient external constraints and can often be treated as having equation of state
approximately

and

- ™
where T is the Debye temperature. In many cases, the equations of state cannot
be given in any simple form: the appendices of engineering thermodynamics
textbooks (at least those from the pre-Internet era) tend to contain tabulations
of the equations of state for the various phases of water.

Without the equations of state of a given system, thermodynamics is largely
inert; with them, it has considerable power. But where do the equations of
state come from? As far as classical thermodynamics is concerned: from phe-
nomenology, and phenomenology alone.

The equations of state, however, do not by any means tell us everything
about an equilibrium system — even everything that is macroscopically acces-
sible. Is the average density of an equilibrium system constant? Sometimes —
when the system is extensive — the equation of state can be manipulated into
telling us this, but it is not a law of nature that thermodynamic systems are
extensive. What is the frequency distribution of radiation in equilibrium in a
box? The particle velocity distribution in an ideal gas? Thermodynamics, even
given the equations of state, is silent.

U=9 —T

5 m
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3 Enter statistical mechanics

To summarise the previous section, thermodynamics leaves the following three
questions unanswered:

1. Why are the basic postulates of the theory correct?
2. What are the equations of state of any given system?

3. What are the properties of a system at equilibrium, over and above those
specified by its equations of state?

Foundational and philosophical work on statistical mechanics tends to cast
it as an attempt to answer only the first question: an attempt, what is more,
whose success is questionable and controversial. But in fact, statistical me-
chanics seeks to answer all three questions, and whatver its deficiencies at the
first, it has obtained remarkable successes at the second and third. That is:
equilibrium statistical mechanics provides us with a calculational method to
generate equations of state, and indeed pretty much all other measurable prop-
erties of equilibrium systems, given only the microdynamics of those systems.
And applying this method has been systematically successful, both in reproduc-
ing already-known equations of state and in deriving new ones. Whether or not
we understand why it works, there can be little doubt that it works.

It will be helpful to review how the method is applied. Put aside, for the
moment, why any of this is justified; assume, if you like, that physicists follow
it unthinkingly and dogmatically. (More seriously, put aside legitimate worries
that the method is usually applied in the quantum domain: here, for simplicity,
I work purely classically.) The method comes in two flavours: microcanonical
and canonical.

The method of equilibrium statistical mechanics (microcanonical form)

1. Represent the system by a classical phase space I' and by a Hamiltonian
H[Vi,...Vy] that is a functional of the external constraints of the system.

2. Define the microcanonical ensemble, for a given energy U and constraint
values V1, ... Vy, as the probability distribution obtained by restricting the
uniform (Liouville) probability distribution to a shell of width éU <« U
around the hypersurface H[Vi,...Vy](z) = U and then renormalising.

3. To determine any present (empirically accessible) feature of the system at
equilibrium, calculate that feature as if the system’s probability of being
in a given region of phase space is given by the microcanonical ensemble.

4. Calculate the thermodynamical entropy of the system by taking the log-
arithm of the volume of the region on which the microcanonical ensemble
is defined (and then multiplying by kg, a scale constant); equivalently,
define it as

S = —kp / dp (2)p() In p(z) (8)



where p is the microcanonical distribution and p is Liouville measure.

5. Calculate the thermodynamic temperature of the system as the rate of
change of energy with thermodynamic entropy (keeping the constraints
constant).

The method of equilibrium statistical mechanics (canonical form)

1. Represent the system by a classical phase space I' and by a Hamiltonian
H[Vy,...Vy] that is a functional of the external constraints of the system.

2. Define the canonical ensemble, for a given temperature T and constraint
values Vi, ... Vy, as the probability distribution

1

p(z) = mexp(*lﬂvm--VN](I)/ICBT) (9)

where Z (the partition function) is a normalisation factor, given by

Z(T,Vi,...Vy) = /Fdﬂ (z) exp(—H[V4, ... Vy|(z)/k5T). (10)

3. To determine any present (empirically accessible) feature of the system
at equilibrium (including the energy), calculate that feature as if the sys-
tem’s probability of being in a given region of phase space is given by the
canonical ensemble.

4. Calculate the thermodynamical entropy of the system via

S = —kB/Gammadu (x)p(z) In p(x) (11)

where p is the canonical distribution. (Equivalently, define it as S =
—kpIn(Z) + (H)/T, where (H) is the expectation value of the Hamilto-
nian.)

The microcanonical ensemble is intended to be used for systems that are ther-
mally isolated from their environments; the canonical ensemble for systems
in thermal contact with a heat bath. In practice (and for reasonably-well-
understood mathematical reasons) the two methods give virtually identical re-
sults for macroscopic-scale systems, and the choice of which to use is mostly a
matter of convenience.

In either case, knowledge of S as a function of U suffices to determine the
equation of state. For a dilute gas of N point particles, for instance (in the
approximation where we neglect interactions) the phase-space volume occupied
by the microcanonical ensemble is

Vol oc VY x U3N/2=151, (12)



so that (when N > 1) to a very good approximation (and up to a constant
term)

N
S(U,V) = k(N In(V) + 37 n(U)). (13)
From this we get
N
= kp(~ 14
ds kB(VdV+2UdU) (14)

and can read off T'= 2U/3Nkp and P = 2U/3V. Not only have we recovered
the equation of state, we have determined the values of the parameters o and
m: the former is 3/2, the latter is the mass of a single particle. (For a dilute gas
whose particles have M internal degrees of freedom, a can again be calculated
and (in the classical limit) equals (3 4+ M)/2.)

To go beyond the equation of state (again via the microcanonical ensemble),
label the 3N independent momenta of the particles x1, ... 235, and consider the
probability density that the first M have momenta around pq,...pys. For the
ideal gas (cancelling a position integral), this is

Pr(x1 =p1,...20 = D)
_ Jday - daay 8y — p1) - S — par)S(00 @F/2m — U)
[day - dasy (2N, a2 /2m — U)

_ Jdear sy (0N 22 /2m — (U = M p?/2m))
Jdwy - dugy 8(00 22/2m - U) '

The numerator and denominator are, respectively, the surface areas of spheres
in 3N — M and 3N dimensional space, so we get

(15)

(2mU Zz 1pz)?,N M-1)/2

Pr(z1 =p1,...20m =DM) X @ml) N 172 (16)
Assuming M < N, this simplifies to
Y (3N—M—1)/2
Pr(x1 =p1,... o0 = pyr) X <I—Z(pf/2mU))> , (17)
i=1

which via the approximation (1 —x/N)" ~ e~? for large N (and via the known
value for T') simplifies to

Pr(zy =pi1,... o0 = pur) o< M exp(—p? /2mkpT). (18)

That is, the probability distributions over momenta are uncorrelated and the
one-particle distribution is the familiar Maxwell-Boltzmann distribution. As
such, with extremely high probability the fraction of particles found with a
given momentum will be given by this distribution.



Similar results can be obtained for the radiation box (including a calculation
of the value of ), for crystals (including a calculation of the Debye tempera-
ture), and for much-less-familiar systems. Indeed, the great bulk of active theo-
retical research in equilibrium statistical mechanics is concerned with studying
the properties of equations of state and microphysical distributions of physical
systems, ranging from magnets to plasmas and beyond.

Nor are the successes of statistical mechanics restricted to the expected value
of physical parameters: that is, their values averaged over the appropriate en-
semble. We can also apply the framework to study fluctuation phenomena. On a
series of measurements of some physical quantity A, for instance, the expected
value of the measurement is given by (A) = [ Ap, but we can also measure
the wvariance of this measurement, and compare it to its predicted value of
J(A—(A))?p. Again, statistical mechanics delivers: fluctuation phenomena are
widely observed and conform to the predictions of the equilibrium apparatus.

Finally, nothing in the rules of statistical mechanics prevent it being applied
to systems with only a few degrees of freedom, and indeed this is routinely done:
systems analysed in this way are of course predicted to have very large levels of
fluctuation, and these predictions, too, are routinely confirmed. To take a simple
example, the dilute gas can equally well be treated by regarding each particle as
in thermal contact with a heat bath comprised of all the other particles. On this
basis, the canonical distribution just is the Maxwell-Boltzmann distribution,
in agreement with the result we previously derived from the microcanonical
treatment of the gas as a whole.

Of course, asserting that this machinery correctly predicts the form, and cor-
rectly calculuates the coefficients, of equations of state, particle velocity distri-
butions, and fluctuation phenomena, in no way explains why it does so. Indeed,
this is rather the point: any acceptable account of the foundations of statis-
tical mechanics not only has to underpin the general structure of equilibrium
thermodynamics (including offering some micro-based function that plays the
abstract role of the entropy), it has to reproduce the success of the full statistical-
mechanical machinery, including its derivations of the equations of state, and
in particular, it has to get the numerical value of the entropy right. Ther-
modynamical entropy is not just some abstractly characterised non-decreasing
function: it is (up to a constant) an empirically measureable quantity, and any
microphysical analysis of it has to correctly reproduce its actual value.

To summarise: the three questions with which we begin generate three ques-
tions for the foundations of statistical mechanics:

1. Why are the basic postulates of thermodynamics correct?

2. Why does the (micro)canonical-distribution method correctly determine
the equations of state of a system?

3. Why does the (micro)canonical-distribution method correctly determine
the properties of a system at equilibrium, over and above those specified
by its equations of state?



To this we can now add a fourth (although it could arguably be regarded as
part of the third):

4. Why does the (micro)canonical-distribution method correctly determine
the fluctuations in the properties of a system at equilibrium?

4 Case study: Boltzmann’s characterisation of
equilibrium

In Boltzmann’s approach to statistical mechanics, it is assumed that:

e A system’s phase space is divided into macrostates, such that any two
phase-space points in a given macrostate have the same or virtually the
same macroscopic properties.

e For a sufficiently large system, there is one macrostate (for given values
of the energy and the external constraints) whose volume is overwhelm-
ingly larger than all of the others of the same energy and for the same
constraints; this macrostate is called the equilibrium macrostate.

e The Boltzmann entropy of a microstate is kg times the logarithm of the
phase-space volume of the macrostate in which that microstate is located.

e A system is said to be at equilibrium if its microstate lies in the equilibrium
macrostate; at equilibrium, the thermodynamic entropy is identified with
the Boltzmann entropy.

e Very general features of the dynamics are (it is supposed) heuristically
likely to cause the system to evolve from a given macrostate into one of
larger volume, so that Boltzmann entropy is in general non-decreasing,
and that in particular, the system is very likely to evolve in fairly short
order into the equilibrium macrostate.

Note that probability assumptions are heavily suppressed in this framework,
although there is at least some appeal to probability tacit in the last assumption.

How does the Boltzmann framework do at answering the four questions
posed in the previous section?

(1) Why are the basic postulates of the theory correct?

An explanation for equilibration is at the heart of the Boltzmann frame-
work; if we grant the various dynamical assumptions on which the frame-
work rests, the approach to equilibrium seems to be explained. The Second
Law is not so often discussed, but on the prima facie plausible assump-
tion that adiabatic transformations between equilibrium macrostates are
supposed to be represented by volume-preserving flows, the Boltzmann
entropy has to be non-decreasing under those flows.

10



(2)

On the other hand, this account seems to get no particular leverage on
the approach to equilibrium for systems with relatively small numbers
of degrees of freedom, where no “macro”state will be wildly larger than
another. It might be objected, of course, that such systems cannot reason-
ably be treated as thermodynamic, so that the concept of “equilibrium”
does not apply to them.

Why does the (micro)canonical-distribution method correctly
determine the equations of state of a system?

Given the assumption that the equilibrium region occupies the overwhelm-
ing majority of the energy hypersurface in phase space, the Boltzmann
entropy is extremely close numerically to the logarithm of the volume of
the whole energy hypersurface: that is, it is extremely close to the en-
tropy as calculated according to the microcanonical method. If we grant
that Boltzmann entropy at equilibrium really does play the role of ther-
modynamic entropy (that is, if we grant the Boltzmannian answer to (1)),
then it follows that the microcanonically-calculated entropy is indeed the
thermodynamic entropy. From this, the equations of state follow.

(3) Why does the microcanonical- or canonical-distribution method

correctly determine the properties of a system at equilibrium,
over and above those specified by its equations of state?

The overwhelming majority of the energy hypersurface is (ex hypoth-

est) contained within the equilibrium macrostate. So averaging over the

whole hypersurface (the recipe given by the microcanonical method) is

to a very close approximation the same as averaging over the equilib-

rium macrostate. But (again ex hypothesi) any macroscopically measur-

able property of the system is constant, or nearly so, within any given

macrostate. So averaging a macroscopic property over the whole macrostate
gives the same answer as just picking an arbitrary microstate and evalu-

ating the property on that macrostate.

On the other hand, statistical mechanics can also be applied to systems
small enough that the probability distribution is not overwhelmingly con-
centrated in this fashion. In these cases, the predictions of statistical
mechanics become probabilistic, and the Boltzmannian account cannot
straightforwardly reproduce them.

(4)Why does the (micro)canonical-distribution method correctly de-

termine the fluctuations in the properties of a system at equi-
librium?  Here the Boltzmannian method simply fails. Fluctuations
by their nature occur only when we cannot idealise the probability of the
largest macrostate to be 1. Knowing that the system is “overwhelmingly
likely” to have particular values of macroscopic quantities does not in itself
give us the machinery to quantify the expected level of deviations from
those values.

11



To summarise: the Boltzmannian approach (once we grant its dynamical as-
sumptions) seems to have the resources to explain the success of statistical
mechanics under the approximation that its probabilities are zero or one, and
this approximation is fairly reasonable for sufficiently large systems. But in
many cases statistical mechanics makes explicitly probabilistic predictions, and
in this situation the Boltzmannian approach is silent.

It is, I think, relatively straightforward to see how the approach would have
to be supplemented to meet this challenge. At present, the Boltzmannian relies
on this assumption:

Qualitative equilibrium assumption: after a certain period of
time (the ‘equilibration timescale’), the system is overwhelmingly
likely to be in that macrostate that occupies an overwhelming pro-
portion of the appropriate energy hypersurface.

To properly allow for probabilistic predictions, and in particular for fluctu-
ation phenomena, this has to be strengthened to something like the

Quantitative equilibrium assumption: after a certain period
of time (the ‘equilibration timescale’), the probability of the sys-
tem being in any given macrostate within the appropriate energy
hypersurface is proportional to the volume of that macrostate.

The quantitative assumption suffices to (a) ground the success of the micro-
canonical approach (putting aside the canonical approach for the moment) and
(b) recover the qualitative assumption as a special case. But the intuition that
is generally taken to underpin Boltzmannian statistical mechanics (“basically
all the points on the energy hypersurface are in the equilibrium region, so un-
less the dynamics, or the initial state, are ridiculously special, the system is
going to make its way to the equilibrium region and stay there for a ridiculously
long time”) does not straightforwardly serve to underpin the quantitative as-
sumption. The moral, I take it, is that probabilities are not introduced simply
as part of the foundations of statistical mechanics: that is, as a foundational
project intended to ground deterministic macropredictions. Rather, generically
speaking the outputs of statistical mechanics are probabilistic results, and they
reduce to deterministic predictions only for large systems.

Of course, in any case “intuition” should not be the right underpinning for
the approach to equilibrium, which is ultimately a dynamical process — and,
just as in the equilibrium case, a dynamical process whose foundations are less
secure than its calculational outputs.

5 Non-equilibrium statistical mechanics

Reading foundational or philosophical work on non-equilibrium statistical me-
chanics can give the following impression:

1. What is known is that systems evolve to equilibrium over some reasonably-
short timescales.

12



2. What is needed is an account of the dynamics of non-equilibrium systems
which predicts that they approach equilibrium.

3. The success conditions on such an account are (a) that it indeed predicts
that systems go to equilibrium; (b) that it is based on conceptually and
technically well-motivated assumptions.

(The discussions of non-equilibrium statistical mechanics in the Gibbs approach
by Callender (2001), Ridderbos (2002) and Frigg (2007) seem to fit this pattern,
for instance.)

On this basis, non-equilibrium statistical mechanics is a foundational project
(we already knew that systems approach equilibrium, we just seek to find out
why), and so it is entirely possible to suppose that little or no progress has been
made in that project.

As with the equilibrium, this conception of statistical mechanics sharply un-
derstates just how much we actually know about the quantitative non-equilibrium
processes that physics studies. In fact, we not only know that systems approach
equilibrium, we know a considerable amount, quantitatively, about how fast they
approach equilibrium,! and we possess a variety of fairly effective calculational
algorithms to construct those quantitative predictions from the underlying mi-
crophysics. As in the equilibrium case, we may not be sure why those algorithms
work, but we have abundant evidence that they work. And an adequately broad
conception of the foundations of non-equilibrium statistical mechanics must in-
clude in its goals not merely an understanding of the qualitative predictions of
the field (i.e. , that systems approach equilibrium) but an underpinning of the
quantitative predictions.

Indeed, that description of the task (that underpinning the quantitative part
of the subject is an additional task for foundational work) understates the case.
To see this, and to illustrate the general point, consider again the case of a dilute
gas. This provides perhaps the best-known example of an evolution equation
for non-equilibrium statistical mechanics: the Boltzmann equation,

o) =N [ dudd’ o = o’ = o) (plu)p() — p)p(w)). (19
where N is the particle number density, o(uu’ — vv') is the the scattering
cross-section for particles with velocities u, u’ to scatter into a state with veloc-
ities v,v’, and p(v) is either (as Boltzmann originally proposed) the fractional
number density of particles with a velocity v, or (as is more usual in contem-
porary textbooks) the marginal one-particle probability distribution, averaged
over particle position.

As is well known, the Boltzmann equation was originally proposed by Boltz-
mann as a microphysical grounding of the approach of a gas to equilibrium:

LTAnd indeed, about the circumstances in which they do not approach equilibrium: a
box full of a mixture of hydrogen and oxygen at standard temperature and pressure, for
instance, does not approach equilibrium on any reasonably quick timescale, in the absence of
an externally-generated spark.
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systems obeying it will converge on the Maxwell-Boltzmann particle-number
distribution. As is equally well known, Boltzmann’s own derivation tacitly (via
the postulate of the Stosszahlansatz) makes assumptions which cannot hold for
all microstates of the gas at any time (due to reversibility of the dynamics),
and which cannot hold for the evolution of any microstate of the gas for all
times (due to Poincaré recurrence). (For a careful treatment, see Brown, Myr-
vold, and Uffink (2009).) Partly for these reasons, the Boltzmann equation is
frequently? referred to as an “early” approach to the foundations of thermody-
namics, to be contrasted with later approaches (including the “Boltzmannian”
approach described above!) deemed better able to account for the approach to
equilibrium.

What is in danger of being lost here is that the Boltzmann equation works,
not perhaps in the sense of providing a conceptually sound understanding of
why dilute gasses equilibrate, but in the sense of predicting quantitatively, and
accurately, how dilute gases away from equilibrium actually behave. That is,
when the Boltzmann equation says that the rate of change of the one-particle
distribution depends in such-and-such a way on the distribution, the overall
density, and the scattering cross-section, that is what is found in nature.

Nor are its applications limited to Boltzmann’s original context. A 1988
survey of the field (Cercignani 1988) notes that the equation “has proved fruitful
not only for the study of the classical gases Boltzmann had in mind, but also,
properly generalized, for electron transport in nuclear reactors, photon transport
in superfluids, and radiative transport in planetary and stellar atmospheres.”
For an even more exotic application, note that the Boltzmann equation (suitably
supplemented to allow for long-range forces) is also central to the kinetic-theory
approach to galactic dynamics: to “gases”, that is, where the “particles” are
stars.

So an approach which succeeds in giving an underpinning to the qualitative
fact that dilute gases approach equilibrium, but fails to underpin the Boltmzann
equation, has failed to provide a satisfactory account of the statistical mechanics
of dilute gases. But conversely, an account that successfully underpins the
Boltzmann equation gets the approach to equilibrium as a bonus. For while
it may be mysterious why dilute gases in general approach equilibrium, it is a
straightforward theorem that dilute gases subject to the Boltzmann equation
approach equilibrium.

Furthermore, the Boltzmann equation is by no means the only example of
a predictively powerful non-equilibrium evolution equation. (Other examples
include the Fokker-Planck equation (discussed in, e.g., Liboff 2003, p.301 and
Le Bellac, Mortessagne, and Batrouni 2004, p.552) and — in quantum theory
— the Pauli master equation (discussed in, e.g., Zwanzig 1966) and the de-
coherence master equation (discussed in, e.g., Schlosshauer 2007 and Zurek
2003), as well as indefinitely many variations of the Boltzmann equation). And
in each case, these equations are constructed from the underlying mechanics.
The algorithms for carrying out this construction are less clearly articulated

2See, e.g., Frigg (2007) or Callender (2001).
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and understood in the literature than the algorithms of equilibrium statisti-
cal mechanics, but a large fraction of them are constructed via the method of
projections, which I discuss in the next section.

6 The method of projections

The method of projections, like the canonical- and microcanonical-distribution
approaches to equilibrium statistical mechanics, is normally formulated in the
language of probability distributions on phase space (or, in the quantum case,
of density operators). (If this seems to you simply the wrong way to proceed
on conceptual grounds, remember again that I am simply explaining the way
statistical physics is done, not claiming that it is on a firm conceptual footing.)
The space of such distributions can be denoted P, and — given a Hamiltonian
H — Liouville’s equation,

p="Lup={p H}, (20)

gives an evolution equation on P under the supposed ‘true’ dynamics of the
system. It will be convenient to write U(t) for the time evolution operator
generated on P by Liouville’s equation (formally, U(t) = exp({-, H})).

The point of the method of projection is to proceed from a dynamical equa-
tion for the full probability distribution, to an equation for some reduced or
restricted version of the distribution, containing only a small part of the infor-
mation encoded by the original distribution. This is represented by the epony-
mous projection, a map J from P to itself satisfying J? = J. The projection is to
be thought of as a kind of coarse-graining of a probability distribution, throwing
away that part of it which is not relevant to whatever macro-level phenomenol-
ogy is to be described. In the terminology of Zwanzig Zwanzig (1960, Zwanzig
(1966), the projection decomposes p into the relevant part p, = Jp, and the ir-
relevant part p; = (1—J)p, and the objective is to find autonomous dynamical
equations for the relevant part. In most (not all) cases, the projection is linear.

Physically significant examples of projections (all of which are linear) in-
clude:

Coarse-graining: The phase space is divided into cells (perhaps with each
cell corresponding to a macrostate in Boltzmann’s sense) and J leaves the
probability of each macrostate invariant but smooths the distribution out
to be uniform on each macrostate. (Coarse-graining is widely discussed
in the foundations of statistical mechanics in the context of the Gibbsian
approach.)

Averaging over degrees of freedom: The degrees of freedom are divided
into ‘relevant’ and ‘irrelevant’ degrees of freedom. For the dilute gas,
for instance, the small-scale positional degrees of freedom are designated
as irrelevant, and the large-scale positional degrees of freedom, and the
momentum degrees of freedom as relevant; for a system interacting with
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an environment, the relevant degrees of freedom are the system degrees of
freedom and the environment degrees of freedom are designated as irrele-
vant. The projection then replaces the distribution with one that has the
same marginals over relevant degrees of freedom but has some fixed, spec-
ified form over irrelevant degrees of freedom; in doing so, any correlations
between relevant and irrelevant degrees of freedom are discarded.

Diagonalisation: Only applicable to quantum systems, this projection deletes
the off-diagonal elements of the density operator with respect to some
specified basis.

In its crudest form, the method of projections works as follows:

1. Evolve the system forward for some reasonably short time At under the
underlying time evolution operator U(t).

2. Apply the projection operator J. (Sometimes this step is called a reran-
domization posit.)

3. Iterate.

If J has been appropriately chosen, it will turn out that for some intermediate
range of values of At, the evolution rule thus determined is insensitive to the
exact value of At. In this case, we can without ambiguity define the forward
dynamics associated with J by

Us(NAt)p = (JU(A) p. (21)

Is it conceptually clear what’s going on here? Almost certainly not, but that
isn’t the point. The point is: this is in fact how all manner of equations in con-
temporary statistical mechanics are constructed (even the Boltzmann equation,
in many modern presentations), and the equations thus constructed work —
that is, do predict how the relevant part of the probability distribution evolves
— 80 it is incumbent on an adequate foundation of statistical mechanics to un-
derstand why it works (and not merely to abandon it as unsatisfactory and seek
a different explanation for equilibration).

In fact, we can make fairly considerable progress in seeing, qualitatively, what
would be involved in the claim that the method works. The actual evolution of
the relevant part of the distribution, given initial distribution p, is given by the
underlying dynamics as

pr(t) = JU(t)p- (22)

So for the method of projections to also predict correctly how p, evolves, we
must have
JUt)p = U,s(t)p. (23)

On pain of violating Poincaré recurrence (at least in the quantum case), this
cannot hold for any p for all times; on pain of violating time reversal invariance,
it cannot hold for all p for any times. But there is no a priori problem with
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there existing some p such, for sub-recurrent positive times, (23) holds. (In the
terminology of (Wallace 2010), such p are forward compatible with J.)

A justification of the method of projections, therefore, requires both some
assumptions about the structure of the dynamics, and some condition on the
initial distribution. In fact (at least in the case of linear J), it is possible to
get rather more precise about this. In more sophisticated applications of the
method of projections (following Zwanzig (1960) and references therein), we can
differentiate (22) and, after some algebra, obtain the following formally exact
equation for p,:

t
pr(t) = (JLgJ)pe(t)+ T Lget=DLutp, (0)+ / At’ JLye ' =NEat (1 J) Ly p,(t—t').

0
(24)
This expression is (formally) exact, and so makes no time-asymmetric assump-
tions, but its form is suggestive. The first term is a time-reversible flow term
(effectively the projection of the original dynamics onto the relevant subspace).
The second term is the only place where p;.(t) plays any role: it provides a
contribution to the rate of change of p, at time ¢ dependent on the original
(time-zero) value of p;.. If the second term vanishes (which can be achieved
in particular by setting p;-(0) = 0 as a time-zero boundary condition) then we
have a closed integro-differential equation for p;..
Under certain conditions, the integral kernel JLge(*=/)Eut(1 — J) will drop
off rapidly compared to the timescales on which p, evolves.? In this case, to a
good approximation we can (i) replace the upper limit of the integral with oo;
(ii) replace p,(t — t') with p,(¢).
Putting these two results together, we obtain a differential equation for p,.:

pr(t) =~ (JLgJ)p,(t) + (/Ooo At’ JL et =Nkt (1 — J)LH> pr(t).  (25)

This is an explicitly time-asymmetric equation; various particular cases of it
include the (empirically verified) equations of decoherence, of radioactive decay,
and of diffusion and equilibration in dilute gases.*

What is the conceptual significance of these results? Firstly, they show once
again how probabilistic concepts are deeply embedded in the contemporary prac-
tice of statistical mechanics. One occasionally sees it suggested, in particular in
discussions of the Boltzmannian approach, that quantitative probabilistic ideas

3A little thought shows that in a uniformly recurrent system — that is, one where recur-
rence occurs for probability distributions rather than just individual phase-space points —
this cannot be correct for all times: eventually the kernel must increase again and return to
its original value. If this occurs (which is the case in particular in quantum theory, where
a uniform recurrence theorem holds — see Wallace (2013) for discussion) we must confine
application of these methods to times much less than the recurrence timescale. Of course, this
is no real restriction.

4Strictly speaking, the equation thus derived is the Prigogine-Brout equation for the
projected dynamics of the full N-particle probability distribution under a projection which
smooths out spatial variations; the Boltzmann equation follows from this under further (time-
symmetric) assumptions. See Zwanzig (1960) for details.
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are ultimately dispensible in statistical mechanics, to be replaced by qualitative
ideas about which phase-space regions are much larger than others. We have
already seen that this strategy is problematic in the face of fluctuation phenom-
ena; now we find that it is also in tension with the methods of non-equilibrium
statistical mechanics.

Secondly, the general method of projections — and, more explicitly, the
Zwanzig projection formalism — illustrates a central idea of the Boltzman-
nian approach: that the applicability of statistical mechanics depends on time-
symmetric constraints on the dynamics, and on a constraint on the initial state.
In the Zwanzig decomposition, the requirement on the initial state is that the
second Zwanzig term vanishes; the requirement on the dynamics is that the
kernel of the third Zwanzig term falls off sufficiently rapidly.

Thirdly, the method of projections also makes clear the nature of the initial-
state constraint: it is a probabilistic constraint (a requirement that a certain lin-
ear functional of the irrelevant part of the probability distribution vanishes), and
it places no constraint whatsoever on those features of the state (the “relevant”
features) that we are actually attempting to track using statistical-mechanical
methods.

To illustrate this, consider again the Boltzmannian account of the approach
to equilibrium. It relies on two assumptions (over and above its general require-
ments on the form of the dynamics):

1. The initial macrostate of the Universe is some specific macrostate which
has a low Boltzmann entropy

2. The probability distribution over current microstates of the Universe is
the uniform distribution, conditioned on the present macrostate and on
the initial state

Frequently (and, to be fair, more often in popularisations than in technical
discussions®) it is the first of these conditions — the so-called “Past Hypothesis”
— that is described as doing the real work. The probabilistic assumption is
generally downplayed.

However, if this account is interpreted in the Zwanzig formalism (using,
as our choice of J, coarse-graining over macrostates), the first condition is a
constraint on the relevant part of the probability distribution, and so is not
required to derive time-asymmetric laws. The real work is being done by the
second assumption, which is a constraint purely on the irrelevant part of the
distribution (specifically, that it vanishes at the initial time). The first condition
may be part of an explanation of what the Universe in fact has the structure
it does, but it is unnecessary as part of an explanation of why, at the emergent
level, it obeys the laws it does. (I expand upon this point in Wallace (2010).)

5See, for example, Penrose (1989).
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7 Conclusion

I have attempted to demonstrate that the great bulk of statistical mechanics
is concerned little with providing a foundational underpinning for the general
principles of thermodynamics, but rather is a collection of techniques used in
the modelling of actual systems. These techniques are far from conceptually
clear — quite the reverse, in fact — and it is potentially very distorting to look
for a philosophically satisfactory underpinning for only the parts of the field
most directly concerned with qualitative thermodynamics.

To close with a more general observation, it is perhaps unsurprising that
statistical mechanics in general seems so little discussed in the foundational lit-
erature, despite the burgeoning field of discussions of statistical mechanics as
a foundational endeavour. For unlike most of the fields studied in philosophy
of physics (notably quantum and classical mechanics, classical field theory, and
general relativity), statistical mechanics does not lend itself well to a precise,
mathematically rigorous formulation, and for good reasons and bad, philoso-
phers seem to find it much easier to engage with the content of a physical
theory when a precise formulation is available.

Partly as a consequence, the bulk of philosophical work in statistical mechan-
ics is done from a more or less explicitly historical basis, and a s a consequence is
fairly focussed around the preoccupations of the nineteenth and early-twentieth
century founders of the subject. Indeed, Jos Uffink’s recent “Compendium of
the Foundations of Statistical Mechanics” (Uffink 2007) begins by observing
that

Statistical physics ...has not yet developed a set of generally ac-
cepted formal axioms, and consequently we have no choice but to
dwell on its history.

But — while deep insights can be, and have been, gained into physics both
through historical study and through mathematical rigor — they are not, pace
Uffink, the only ways that philosophers can approach contemporary physics.
There is an alternative: look at the actual practice of physics, at least as repre-
sented in the papers, research monographs and contemporary texts, and try to
make sense of it. Of course, physics understood this way is in general tangled and
confused, without the logical clarity that comes from rigorous axiomatisation
or the different kind of clarity that comes from following through the historical
record. But I take it that the ability to unravel conceptual tangles, and resolve
conceptual confusion, is about the one distinctive skill set that philosophers (at
least qua philosophers) can bring to the activity of physics. To demand that
philosophical attention be confined to those areas of physics already sufficiently
well understood that they can be given sharp and precise formulations is to
accept a sharply diminished prospect that philosophical study of physics can
make any contribution to its development.
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