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Community structure, one of the most popular properties in complex networks, has long been a cornerstone in the advance of
various scientific branches. Over the past few years, a number of tools have been used in the development of community
detection algorithms. In this paper, by means of fusing unsupervised extreme learning machines and the k-means clustering
techniques, we propose a novel community detection method that surpasses traditional k-means approaches in terms of
precision and stability while adding very few extra computational costs. Furthermore, results of extensive experiments
undertaken on computer-generated networks and real-world datasets illustrate acceptable performances of the introduced
algorithm in comparison with other typical community detection algorithms.

1. Introduction

As one of the most popular research fields over the past
decades, complex networks have stimulated scientific
advances in various fields such as biology [1], social net-
works [2], epidemiology [3], computer science [4], and
transportations [5]. Numerous articles have explored dif-
ferent types of properties in complex networks. Among
these articles, the study on community structure, which
means vertices in a given network are inherently segregated
into groups inside which the connections are relatively
denser than those outside, has been one of the most popu-
lar [6]. Finding out the divisions of nodes in networks,
which is called community detection or network clustering,
is a hot spot for investigators because it is a good means to
uncover the underlying semantic structure, mechanisms,
and dynamics of certain networks [7]. Using such extracted
information, internet service providers (ISPs) could set
up a dedicated mirror server for intense web visits from
the same geographic region to improve their customers’
internet surfing experiences [8], and/or online retailers
could provide more efficient recommendations to cus-
tomers in favor of creating a more friendly purchase
environment [9].

To address the community detection problem, researchers
have developed numerous algorithms. Social network scien-
tists used to solve this problem by traditional methods such
as graph partitioning, hierarchical clustering, partitional
clustering, and spectral clustering [7, 10]. Girvan and
Newman proposed the first divisive algorithm named after
them, which is a milestone historically because it introduced
more physicists and computer scientists to this field [11].
Divisive algorithms use the concept of betweenness as criteria
to judge how often an edge participates in a graph process
and break up connections one by one to determine the most
significant community structure [10]. A byproduct of Girvan
and Newman’s algorithm, called modularity Q, a quality
function originally proposed as a criterion to decide when
to stop the calculation, is another landmark that supports
clustering methods focusing on the modularity optimization
problem [12]. Although it has been proven impossible to list
all the feasible divisions to determine the best strategy in
deterministic polynomial time (the problem is np-hard)
[13], many alternative approximate optimization techniques,
including greedy algorithms [14], random walks [15], fast
unfolding algorithm [16], information-theoretic framework
[17], belief propagation [18], extremal optimization [19],
simulated annealing [20], and genetic algorithms [21], have
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been deployed to solve the problem. Along with the optimi-
zation tools of interest, many instruments have been involved
in this field. For example, spectral algorithms explore eigen-
values of Laplacian matrices of graphs using traditional
clustering techniques [22]. Similar to spectral clustering,
similarity matrix factorization and blocking can also be
applied [23]. Label propagation, that is, attaching labels to
each node based on the neighbor information, is known as
a fast and effective clustering method [24].

k-means clustering has long been one of the best off-
the-shelf tools that exhibit relatively high precision and
low computational complexity [25]. However, the perfor-
mance of k-means relies too heavily on the selection of the
initial centroids; hence many updates have been proposed
to overcome this drawback. k-means++ chooses distinct
initial seeds far from each other in a probabilistic manner,
which leads to more stable clustering results but involves
increased complexity [26]. Through ranking nodes in the
same manner as Google’s cofounders did [27] and picking
the center nodes from the highest ranking ones, k-rank
achieves small fluctuation in the community detection
output although it requires additional running time [28].
Another defect of k-means, explained by Ng et al. [29], is that
it is only capable of finding clusters corresponding to convex
regions. To address this problem, one could map the original
data into a more suitable feature space. For example, Li et al.
made use of principal component analysis (PCA) to imple-
ment k-means in a lower-dimensional space for community
detection tasks [30].

The prevalence of extreme learning machines (ELM),
originally proposed by Huang et al., should be largely cred-
ited to the simplicity of its implementation [31]. It has been
demonstrated that given random input weights and biases
of the hidden layer, a single-layer feedforward network
(SLFN) could approximate any continuous functions simply
by tuning the output weights [32]. As a result, the abstracted
task in ELM is equivalent to a regularized least squares
problem which can be solved in closed form using the
Moore-Penrose generalized inverse [33]. Recently, semisu-
pervised and unsupervised ELMs have been exploited based
on the manifold regularization framework [34]. Regarding
the clustering task, the unsupervised ELM can be interpreted
as an embedding process that maps the input data into
low-dimensional space.

In this paper, we propose an extreme learning machine
community detection (ELM-CD) algorithm based on the
combination of k-means and unsupervised ELM to fulfill
the community detection task. Unsupervised ELM, inherit-
ing the efficiency of ELM, has been utilized as a mapping
mechanism that transforms the adjacency matrix to low-
dimensional space, where k-means can be employed to label
the groups. In consideration of no additional computational
load, we prefer the original lite weighted k-means to other
reinforced editions. Extensive comparison trials on both
artificial networks and realistic networks indicate that
ELM-CD outperforms traditional k-means in light of dif-
ferent precision criteria. Meanwhile, the introduced algo-
rithm has remarkably low complexity, approaching that of
k-means, and outperforms all other competitors evaluated.

The remainder of this article is organized as follows.
Section 2 provides details of our algorithm. In Section
3, evaluations and comparisons are made in artificial
and real-world networks. Finally, we conclude our work
in Section 4.

2. Model and Algorithm

2.1. Preliminaries. We focus on an undirected network
G V,E , where V represents the set of vertices numbering
in totalN andE represents the set of edges with total number
M. Neglecting self-loops, which mean an edge starts and ends
at the same point, connections among nodes are expressed as
a symmetric adjacency matrix A ∈ℝN×N .

Aij =
1, if vertex i and j are connected,

0, otherwise,
1

where i = 1,… ,N and j = 1,… ,N .
According to A, the Laplacian matrix L ∈ℝN×N is

defined as

Lij =

−1, if Aij = 1,

di, if i = j,

0, otherwise,

2

in which di =∑N
j=1Aij is the degree of vertex i, i = 1,… ,N ,

and j = 1,… ,N .
A community detection algorithm segregates V into

mutually exclusive districts by means of attaching labels on
each node to indicate which group it belongs to. Because A
is symmetric, each row or column of A can be considered
as an input sample denoted by ai ∈ℝN , i = 1,… ,N . Instead
of directly assigning each node with a community label,
ELM-CD first embeds A into a smaller matrix E ∈ℝN×n in
the n dimensional feature space, where k-means clustering
proceeds to output a vector t ∈ℕN

+ whose items are the
community labels of each node.

2.2. Embedding Process. Following the universal semisuper-
vised and unsupervised ELM framework [34], given Nh
neurons in the hidden layer, we define Ei ∈ℝn as the
output vector from ELM with respect to input vector ai.

Ei = 〠
Nh

j=1
βjg wT

j ai + bj , 3

in whichw j ∈ℝN and bj ∈ℝ represent input weights and bias
of the jth neuron in the hidden layer, respectively; βj ∈ℝn is
the output weight from the jth neuron to n dimensional
output elements; and g · is the sigmoid function

g x =
1

1 + e−x
4
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Assume that the input dataset A can be classified as unla-
beled set ai , i = 1,… , u, and that u represents the number
of unlabeled nodes and labeled set ai, yi , i = 1,… , l, where
yi ∈ℝn is the corresponding community label and l is the
number of labeled nodes so that u + l =N . The calculation
of ELM would fall into two parts. In the first part, we ran-
domly decide the input weights and biases according to a
uniform distribution. In the second, let (3) be expressed
as the inner product

E =Hβ, 5

where

H =

g wT
1 a1 + b1 ⋯ g wT

Nh
a1 + bNh

⋮ ⋯ ⋮

g wT
1 aN + b1 ⋯ g wT

Nh
aN + bNh

∈ℝN×Nh ,

6

β =
βT1
⋮

βTNh

∈ℝNh×n 7

We define each line of H as hi ∈ℝ1×Nh , indicating
the output with respect to ai. The target of the second
stage could be interpreted as a manifold-regularized opti-
mization problem:

minβ 
1
2
〠
l

i=1
Ci ei 2 +

1
2

β 2 +
λ

2
Tr ETLE

s t  eTi = yTi − hiβ, i = 1,… , l,

8

in which ∥·∥ is the Euclidean distance, Tr · calculates the
trace of a matrix, and λ is a trade-off parameter. The first
term of (8) is the loss function taking into account all labeled
nodes with diverse penalty coefficients Ci. The second term
refers to the classical antioverfitting regularization item that
constrains the output weight to be as small as possible. The
third term is the manifold regularization where the unlabeled
data comes into play. Concretely speaking, the manifold
regularization framework believes in the assumption that
if two points on the manifold sphere are close to each
other, then they would also result in similar predicted out-
comes [35]. Consider the adjacency matrix as a measure of
distance that two nodes are close to (connected to) each other
if Aij = 1, otherwise they will be far away (disconnected) from
each other. The approximation of the manifold regulariza-
tion is provided as

Rm =
1
2
〠
N

i=1
〠
N

j=1
Aij Ei − Ej

2 = Tr ETLE 9

This regularization penalizes the large difference in
prediction of two connected nodes.

When there exist no labeled nodes in the input dataset
and substituting (5) into (8), the optimization formulae could
be reformulated as

minβ  β 2 + λTr βTHTLHβ

s t   Hβ THβ = In
10

The additional constraint abides by the suggestion of
Belkin and Niyogi in the case of the degeneration of the
solution [36], and In is an n dimensional identity matrix.

Let γ and v denote the eigenvalue and the corresponding
eigenvector, respectively. When N ≥Nh and H have full
column rank, it has been proven in [34] that solving (10) is
equivalent to selecting n generalized eigenvectors corre-
sponding to the n smallest eigenvalues of the problem.

INh
+ λHTLH v = γHTHv 11

To organize the matrix β, we abandon the first eigenvec-
tor because it corresponds to eigenvalue 0 and contributes
little in the embedding process. Thus, given the first n + 1
smallest eigenvalues γ1, γ2,… , γn+1 sorted by ascending
order and their corresponding eigenvectors v1, v2,… , vn+1,
the output weights β are

β = v2, v3,… , vn+1 , 12

in which vi = vi/ Hvi , i = 2,… , n + 1, indicates the nor-
malized eigenvectors.

If N <Nh, meaning that the dimension of A is smaller
than the number of neurons in the hidden layer, the
proven formulation of (11) is underdetermined and has
the following alternative formulation:

In + λLHHT v = γHHTv 13

In turn, the solution is

β =HT v2, v3,… , vn+1 , 14

where the normalized eigenvectors are given by vi =
vi/ HHTvi ,i = 2,… , n + 1.

Finally, we substitute β into (5) to obtain the embedding
matrix E that would be fed into a k-means clustering
algorithm to determine the community labels t.

2.3. Clustering Process. In this article, an implementation of
the original k-means clustering [25], owing to its low com-
putational complexity, has been integrated into ELM-CD.
First, ELM-CD randomly selects k rows in E as the initial
centroids of k clusters. Second, taking the Euclidean dis-
tance as the standard, each row in E, which is represented
byei, i = 1,… ,N , is assigned to a cluster whose centroid is
closest to a certain row. Then, for each cluster, we calculate
the mean value of all its members and designate this mean
vector as the new centroid. We then iterate the cluster assign-
ment and the centroid update processes until no row in E
changes its community label.

We show the entire procedure of the ELM-CD algorithm
in Pseudocode 1.
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3. Experiments and Results

In this section, we deploy our proposed algorithm ELM-CD
on computer-generated networks as well as four well-
known real-world networks to compare its performance with
that of three competitors, including two divisive algorithms:
GN [11] and NF [37], and conventional k-means [30]. All
experiments took place using MATLAB R2016a running on
an AMD Athlon(tm) X4 740 3.2GHz desktop with 4GB
RAM. The constructed ELM network has Nh = 2000 neurons
and randomly initialized input weights between −1 to 1 with
all biases being ignored (set to 0). Following the empirical
configuration in [34], we set the embedding feature space
dimension n = 3 and the trade-off parameter λ = 0 1.

3.1. Modularity and NMI. Our first criterion, the modularity
Q proposed by Newman and Girvan [38], is defined as the
margin between the density of intracommunity edges on
the estimated network and the density on a randomly reorga-
nized network with the same number of nodes and edges.

Q =
1
2M

〠
N

i=1
〠
N

j=1
Aij −

didj

2M
δG iG j

, 15

where di =∑N
j=1Aij still represents the degree of vertex i as

before and G i indicates the group label of node i. δij is the
Kronecker delta, leading to

δG iG j
=

1, if vertex i and j belong to the same group,

0, otherwise
16

A larger Q corresponds to a more apparent community
structure in the underlying network and vice versa.

The normalized mutual information (NMI), another de
facto benchmark for community detection, has also been
deployed to evaluate the accuracy of algorithms [39]. Based
on information theory, the NMI of two division methods A
and B to partition N nodes is defined as

I A, B =
−2∑CA

i=1∑
CB
j=1Nij log NijN/Ni N j

∑CA
i=1Ni log Ni /N +∑CB

j=1N j log N j/N
,

17

where CA and CB are the numbers of communities in A
and B, respectively, and Nij denotes the number of nodes
that both appear in group i of A and in group j of B,
where Ni =∑CB

j=1Nij and N j =∑CA
i=1Nij. The larger I A, B

indicates the more similar A is to B. Given the exact com-
munity distribution result B and the candidate algorithm A,
I A, B = 1 means that the algorithm has found all the com-
munities identical to the real structure while I A, B = 0
indicates a complete failure of the algorithm.

3.2. Computer-Generated Networks. We fabricate networks
with community structures per Girvan and Newman’s
method [11]. In this case, 128 vertices are separated into four
communities uniformly, meaning 32 nodes in each group,
and edges are randomly added between each pair of nodes
with probability Pin when the two nodes come from the same
community and Pout for vertices belonging to different
groups. In restraint of Pin > Pout and the average degree of a
vertex z = 16, through changing Pout or the average number
of intercommunity edges per vertex zout (the two are

ELM-CD (A)
1 initialize constant parameters, including λ, Nh, n
2 generate L from A
3 normalize A
4 randomly generate input weights and biases of neurons in hidden layer
5 calculate H according to Eq. (6)
6 if N ≥Nh
7 select the first n + 1 smallest eigenvalues of Eq. (11) and assemble β

using the corresponding eigenvectors as in Eq. (12)
8 else
9 select the first n + 1 smallest eigenvalues of Eq. (13) and assemble β

using the corresponding eigenvectors as in Eq. (14)
10 archive the embedding matrix E =Hβ
11 randomly select k rows from E as centroids, say c1, c2,… , ck
12 while t changed
13 for i = 1 to N
14 for j = 1 to k
15 dist j = ei − c j
16 find the smallest element in dist and its corresponding index s
17 ti = s
18 for i = 1 to k
19 update ci to be the mean value of all members in cluster i
20 return t

Pseudocode 1: (pseudocode of the ELM-CD).
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equivalent), we can achieve different networks with obvious
(small zout) or ambiguous (large zout) community character-
istics. These computer-generated networks with decided
graph knowledge are then fed into our algorithm and its
competitors to calculate their NMI, and the results are
presented in Figure 1.

Each point in Figure 1 represents the average NMI of a
certain algorithm on 50 randomly generated scenarios with
predefined zout varying from 0 to 8. The error bars accompa-
nying those points mark the normalized deviation of NMI in
1000 experiments. Lines connecting points are included
solely as a guide. The community detection resolution of all
methods drops with increasing zout; however, our algo-
rithm outperforms all competitors, especially when zout is
approaching 8, which means the community structure is
becoming extremely ambiguous, Even when zout = 8, ELM-
CD could still correctly classify half the number of nodes.
Another outstanding feature of our algorithm is its compar-
ative robustness. Different from what happens to ELM-CD,
both GN and k-means run competitively in terms of accu-
racy until zout = 6, but performance noticeably deteriorates
after that.

3.3. Real-World Networks. In this part, four real-world net-
works with decided numbers of communities have been
selected as test beds for measurement of our algorithm’s
accuracy as well as its running times. Table 1 shows the four
datasets in detail. For each scenario, we took 1000 trials for
each of the three probabilistic algorithms NF, ELM-CD,
and k-means. For the decided algorithm GN, only one trial
is sufficient.

First, we checked each algorithm’s understanding of
community structures based on the definition of modularity.
For GN, ELM-CD, and k-means, we need to predefine the
number of communities as one of the input parameters.
Practically, we varied this parameter from 1 to 10 for the first
three networks (Karate, Dolphins, and Polbooks) and from 1
to 20 for the last (football). Among all partition results, the
clustering scheme with the highest Q was chosen along with
its corresponding NMI scores. Table 2 lists these experi-
mental results and shows that ELM-CD exhibits obvious
but not dominant superiority compared with the other
algorithms. Specifically, compared with k-means, ELM-CD
demonstrates a stronger capability to determine more modu-
lar structures, simultaneously with higher NMI in most
instances. We cannot ignore the higher modularity scores
of GN and NF obtained in the dolphin network, but we
should also bear in mind that in this test, GN and NF
determined five and four clusters, respectively, compared to
ELM-CD’s three clusters.

Second, we fixed the predefined number of communities
as the inherent number for each network and calculated the
NMI of each algorithm to evaluate how close the difference
between the discovered community structure and the given
underlying structure could be. Meanwhile, the consumed
time was recorded to compare the complexity of the algo-
rithms. We display the maximum NMI accompanied by
the corresponding modularity and the calculation time in
Table 3. From this table, in spite of the minor improvement

in precision, GN is much slower in comparison with the
other three algorithms. Regarding NF, although it runs fast
enough, the low modularity and NMI results represent a
shortfall in the overall performance. ELM-CD no doubt
consumes more time than k-means, whose computational
complexity is O N · k where k is the predefined number of
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Figure 1: NMI of different algorithms on computer-generated
networks.

Table 1: Information of datasets.

Dataset
Number of

nodes
Number of

edges
Number of
communities

Karate 34 78 2

Dolphins 62 159 2

Polbooks 105 441 3

Football 115 613 12

Table 2: Maximum Q values and corresponding NMI of different
algorithms.

Dataset Index GN NF k-means ELM-CD

Karate
Modularity 0.4013 0.3807 0.3715 0.4198

NMI 0.7072 0.6925 0.1.0 0.6873

Dolphins
Modularity 0.5196 0.4955 0.4216 0.4617

NMI 0.5016 0.5727 0.4964 0.6548

Polbooks
Modularity 0.5120 0.5020 0.4509 0.5221

NMI 0.4018 0.4396 0.5525 0.5538

Football
Modularity 0.5950 0.5682 0.5779 0.5797

NMI 0.4237 0.4436 0.8490 0.8207
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communities, because ELM-CD requires the ELM calcula-
tion expenditure, which costs O Nh time. Theoretically,
once k is determined and when N ≫Nh, the complexity of
ELM-CD is asymptotically O N , of the same as k-means.
On the other hand, owing to the application of ELM, the
stability of ELM-CD is much better than that of k-means.
We demonstrate this by listing the average modularity and
NMI results of the three fast algorithms in Table 4.

In Table 4, k-means illustrates very poor stability (even
worse than that of NF) in light of the large differences
between the average results and the maximum results shown
in Table 3. In contrast, ELM-CD overcomes this inherited
shortcoming due to the inclusion of the manifold regulariza-
tion term in the equivalent optimization process as depicted
in (8). Another trend exposed is that the robustness of
k-means and ELM-CD is stronger for large networks with
higher numbers of communities. The graphical clustering
results of ELM-CD in Table 2 and Table 3 have been illus-
trated in the left and right parts of Figures 2–5, respectively.

3.3.1. Zachary’s Karate Club Network. From 1970 to 1972,
Zachary observed a karate club as an example of a social net-
work, which captures 34 members in the club and documents
78 pairwise links between members who interacted outside
the club [40]. The decided community structure formed after
a series of factional confrontations between the administrator
“John” and instructor “Mr. Hi” (pseudonyms) led to the split
of the club into two. Half of the members formed a new club
around Mr. Hi, and members from the other part found a
new instructor or gave up karate.

Figure 2 shows the partition results of our algorithm
corresponding to the scenarios in Table 2 and Table 3,
respectively. We use triangles to mark the new group belong-
ing to the administrator, and circles represent the instruc-
tor’s. From Figure 2(a), ELM-CD converges to four groups
to reach the largest modularity, although it redundantly
separates each new club into two smaller ones. When the
number of communities is decided, ELM-CD was able to
detect the difference after the confrontation occurred in the
club, which is demonstrated in Figure 2(b).

3.3.2. Dolphin Social Network. The second network we make
use of here is an undirected social network of frequent
associations between 62 dolphins in a community living off
Doubtful Sound, New Zealand [41]. These dolphins, natu-
rally separated by their sex into two categories, were studied
by Lusseau et al. for several years.

In Figure 3, we present snapshots of ELM-CD clustering
results for the largestQ and the maximum NMI, respectively.
Again, triangle and circle markers have been used to repre-
sent the two identical genders known ahead of time. For the
best effort segregation in light of the modularity criteria,
ELM-CD splits the female community into two subgroups,
as shown in Figure 3(a). Node 40 appears to be the key factor
that has the greatest effect on NMI results. In both images of
Figure 3, node 40 is the only one that has been incorrectly
classified. As a matter of fact, in Figure 3(b), the maximum
NMI would be 1 rather than 0.8888 if node 40 could be
assigned to the correct group.

3.3.3. Political Book Network. The third benchmark is a
network of books on US politics published around the
time of the 2004 presidential election and sold by https://
www.amazon.com/ [42]. Edges between books represent
frequent copurchasing of books by the same buyers. In total,
105 books, denoted as nodes, have been classified into three
categories as liberal, neutral, and conservative according to
their political orientations.

In Figure 4, these political tendencies have been identified
by triangle (conservative), circle (liberal), and pentagon
(neutral) markers, respectively. The identifications made by
our algorithm, on the other hand, are shown in three differ-
ent colors. Red and blue colors represent the conservative
and liberal groups, respectively, while green indicates the
neutral part, which occupies a small number of nodes. It is
clear from Figure 4 that people tend to have relatively stable
opinions on politics as indicated by the obvious segregation
of these books. However, it is not very uncommon that some
neutral books appear more liberal or conservative oriented in
the eyes of some critical readers, while the political orienta-
tions of some liberal or conservative books are obscure and
may be considered as neutral. This explains why our algo-
rithm can make mistakes on the boundaries between
different classes. Moreover, from these two images, some
books could have been classified more reasonably. For exam-
ple, node 78 has four connections to conservative books

Table 3: Compared results for maximum NMI, corresponding Q
values, and time elapsed (s) of different algorithms.

Dataset Index GN NF k-means ELM-CD

Karate

Modularity 0.3600 0.3870 0.3715 0.3715

NMI 0.8365 0.6925 1.0 1.0

Running time 5.5980 7.6e− 4 8.6e− 4 0.0098

Dolphins

Modularity 0.3787 0.4923 0.3555 0.3787

NMI 0.8888 0.6208 0.8084 0.8888

Running time 10.2244 0.0020 0.0012 0.0171

Polbooks

Modularity 0.4831 0.5020 0.4248 0.4530

NMI 0.5754 0.5308 0.4144 0.6650

Running time 199.2434 0.0064 0.0033 0.0293

Football

Modularity 0.5973 0.5773 0.5523 0.5585

NMI 0.9214 0.7624 0.8954 0.8944

Running time 808.1076 0.0120 0.0021 0.0308

Table 4: Average NMI and Q values of the three fastest algorithms.

Dataset Index NF k-means ELM-CD

Karate
Modularity 0.3807 0.1071 0.2374

NMI 0.6925 0.3960 0.4340

Dolphins
Modularity 0.4941 0.2818 0.2788

NMI 0.5943 0.3336 0.5728

Polbooks
Modularity 0.5019 0.3360 0.4861

NMI 0.5282 0.3739 0.5461

Football
Modularity 0.5680 0.5126 0.5086

NMI 0.7424 0.8396 0.8262
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Figure 2: Communities extracted from Zachary’s karate club network using ELM-CD. Different shapes indicate the inherent classification,
while different colors show the detection results of ELM-CD. (a) Clustering result with the largest Q. (b) Given k = 2 the scenario with
the best NMI (=1).
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Figure 3: Communities extracted from the dolphin social network using ELM-CD. Different shapes indicate the inherent classification,
while different colors show the detection results of ELM-CD. (a) Clustering result with the largest Q. (b) Given k = 2 the scenario with
the maximum NMI.
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Figure 4: Communities extracted from the political book network using ELM-CD. Different shapes indicate the inherent classification,
while different colors show the detection results of ELM-CD. (a) Clustering result with the largest Q. (b) Given k = 3 the scenario with
the maximum NMI.
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while only sharing two connections with liberal ones; never-
theless, it is defined as a liberal book. Another example is the
neutral node 77 that has no link to any other neutral books.
Both the best efforts in Figures 4(a) and 4(b) have success-
fully corrected these two unreasonable classifications.

3.3.4. US College Football Network. The last example is the US
college football network. Girvan and Newman introduced

this network of American football games between Division
I colleges during the 2000 regular season, where 115 teams
(nodes) from 12 conferences played 613 games (edges) in
total [11]. On average, there are seven intraconference games
and four interconference games, meaning that each team has
a greater chance of confronting a competitor in the same
conference. This feature gives us a good opportunity to
deploy our algorithm to evaluate its accuracy.
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Figure 5: Communities extracted from the US college football network using ELM-CD. Twelve conferences have been placed in groups with
conference names as labels. The detection results of ELM-CD are highlighted in different colors, each of which indicates one detected
community. (a) Clustering result with the largest Q. (b) Given k = 12 the scenario with the maximum NMI.
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In Figure 5, each conference has been located in a cluster
relatively far from the other conferences and the community
detection results have been recolonized using different colors.
Aiming at the highest score in modularity, ELM separates
these teams into eight classes. From Figure 5(a), except for
the Southeastern and the Atlantic Coast conferences, all
others have been misunderstood to some extent. Some of
them, say the Pacific Ten and the Mountain West in dark
blue, have been merged into a larger group. Some have been
disassembled and displaced into other groups, such as the
Independents and the Sun Belt. Such categorization could
be rational because conferences in a larger group do compete
with each other more frequently than smaller conferences. In
contrast, teams in the Independent conference, except for
nodes 81 and 83, share no game with each other; hence, it
is no surprise to see them in other categories. When the
number of communities is restrained to 12, as shown in
Figure 5(b), ELM-CD performs well, with NMI = 0 8944
according to Table 3. This time, most conferences have
retained the majority of nodes to organize independent com-
munities, except for the Sun Belt, which has been fragmented,
and the Mountain West, which contains two subclasses.
However, we also have to note some unusual clustering
behavior in this procedure, such as node 37 being placed in
the same group with nodes 81 and 83, having nothing to do
with 37 at all. Both of the snapshots in Figure 5 on some level
expose the irrationality of the original conference definitions.
For instance, node 111 belongs to Conference USA, but
this team has always played its games with opponents
from other conferences, which is contrary to the definition
of a community.

4. Conclusions

In this article, we have proposed a community detection
algorithm by combining the extreme learning machine
and k-means techniques. Compared with the traditional
k-means clustering method, the most evident advantages
of the introduced algorithm, named ELM-CD, are the
increase in precision and stability while adding very little
calculation. ELM-CD has also been tested on Girvan and
Newman’s artificial networks and on four real-world net-
works and has been compared to GN, NF, and conventional
k-means based on modularity and NMI benchmarks. From
the implementation of ELM as an embedding procedure
ahead of k-means clustering, ELM-CD demonstrates com-
petitive performances both in accuracy and complexity.
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