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The purpose of this paper is to show a novel fault-tolerant tracking control (FTC) strategy with robust fault estimation and
compensating for simultaneous actuator sensor faults. Based on the framework of fault-tolerant control, developing an FTC design
method for wind turbines is a challenge and, thus, they can tolerate simultaneous pitch actuator and pitch sensor faults having
boundedfirst timederivatives.Thepaper’s key contribution is proposing a descriptor slidingmodemethod, inwhich for establishing
a novel augmented descriptor system, with which we can estimate the state of system and reconstruct fault by designing descriptor
sliding mode observer, the paper introduces an auxiliary descriptor state vector composed by a system state vector, actuator fault
vector, and sensor fault vector. By the optimized method of LMI, the conditions for stability that estimated error dynamics are set
up to promote the determination of the parameters designed. With this estimation, and designing a fault-tolerant controller, the
system’s stability can bemaintained.The effectiveness of the design strategy is verified by implementing the controller in theNational
Renewable Energy Laboratory’s 5-MWnonlinear, high-fidelitywind turbinemodel (FAST) and simulating it inMATLAB/Simulink.

1. Introduction

With the increasing demand for energy, the importance of
new energy development increases with each passing day.
Wind energy is an important part of new energy, and actively
developing wind energy to improve the energy system struc-
ture, ease the energy crisis, and protect the environment is
of great significance [1, 2]. For engineering systems, such as
wind power systems, their working conditions are poor, and,
in the case of long-term operation, a failure of a subsystem
or actuator or sensor failure is usually unavoidable. In most
cases, we cannot predict the time of system failure. Such
a failure may cause the structure and performance of the
whole system to change slowly or drastically, which will
seriously affect the safety of the wind turbine and its stable
power output. Fault-tolerant control can guarantee the stable

operation of a system under a specified performance index in
the event of system component failure, thus opening a new
way to improve the reliability of wind turbines in complex
and harsh conditions.

In recent years, the application of model-based fault-
tolerant control in wind turbines has gradually expanded.
Sloth et al. designed an active and passive fault-tolerant
controller based on the linear variable parameter (LPV)
for the pitch fault. The optimization method for the linear
matrix inequality was applied to active fault-tolerant control,
and the bilinear matrix inequality method was applied to
passive fault-tolerant control [3]. Sami and Patton designed
a sliding mode fault-tolerant control based on gain adaptive
control for a 5MW wind turbine operating at low wind
speeds. A robust observer was used to estimate the state and
unknown output (sensor fault and noise), which guaranteed
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the robustness of the sliding mode to unknown output [4].
Badihi et al. designed two fault-tolerant control methods
for the model uncertainties and torque actuator faults of
wind turbine generator converters. One method was based
on fuzzy model reference adaptive control and used fuzzy
inference for parameter adaptationwithout prior information
about any faults. The other method involved fuzzy modeling
and identification technology to design a method based
on the model detection and diagnosis, thus automatically
using real-time fault information to correct fault signs and
achieving fault-tolerant control for the torque actuator [5]. A
fault-tolerant control strategy based on the unknown input
observer array was proposed by Odgaard and Stoustrup.
The fault detection and isolation of high-speed and low
speed shaft speed sensors can be realized by an unknown
input observer [6]. Blesa et al. proposed a method based
on the interval observer to detect and isolate the fault of
a wind turbine sensor or actuator; according to the fault
information obtained, the fault-tolerant control method for
the corresponding faults can be realized by using a virtual
sensor or actuator technology [7].

However, the current fault-tolerant control strategies
generally aim at only a single fault. Thus when faults appear
in both wind turbine actuator and the sensor at the same
time, guaranteeing the stable operation of the system in the
specified performance index becomes challenging.

To solve the above problems, this paper proposes a
fault-tolerant control strategy for the pitch system for a
wind turbine based on multiple fault reconstruction. The
proposed fault-tolerant control strategy consists of two parts.
The first part adopts the active disturbance rejection control
technology to ensure the stable output of the wind turbine
power in the case of no fault. In the second part, a descriptor
sliding mode observer is designed to realize the continuous
estimation of the original system state, pitch actuator failure,
and pitch sensor fault, and a fault-tolerant controller is
designed based on the state estimation and fault estimation
information to maintain the stable operation of the system
under simultaneous pitch actuator and pitch sensor faults.

The remainder of this paper is organized as follows.Wind
turbine modeling is presented in Section 2. A descriptor
sliding mode observer is developed in Section 3. An active
disturbance rejection controller used for free-faults and
a reconfigurable controller used to compensate the pitch
system fault effect are developed in Section 4. The proposed
FFTC design is then verified in National Renewable Energy
Laboratory’s 5-MW nonlinear, high-fidelity wind turbine
model and simulated it in MATLAB/Simulink in Section 5.
The conclusions are given in Section 6.

2. Wind Turbine Modeling

A wind turbine system is characterized by nonlinear aerody-
namic behavior and the dependence on a stochastic uncon-
trollable wind force as a driving signal. To conceptualize the
system from the analytical and control design requirement
standing points, an overall model of the turbines is required.

In this section, a generalized nonlinear wind turbine model,
its pitch system, and its faults model are presented.

2.1. Nonlinear Wind Turbine Modeling. The model is shown
in the form as follows [8] with a generalized nonlinear
property:

𝑋̇ = 𝐹 (𝑋) + 𝐵𝑢 = [[[[[
[

𝑓1𝑓2𝑓3𝑓4

]]]]]
]
+ [[[[[
[

0
0
0
𝑔4

]]]]]
]
𝑢. (1)

The state vector 𝑋, control input 𝑢, and nonlinear vector𝐹(𝑋) are defined as

𝑋 = [𝜔𝑟, 𝜔𝑔, 𝛿, 𝛽]T ,
𝑢 = 𝛽𝑟

(2)

𝐹 (𝑋) =
[[[[[[[[[[[[
[

𝑃𝑟 (𝑥1, 𝑥4)𝑥1𝐽𝑟 − 𝑥1𝐷𝑠𝐽𝑟 + 𝑥2𝐷𝑠𝑁𝑔𝐽𝑟 −
𝑥3𝐾𝑠𝐽𝑟𝑥1𝐷𝑠𝑁𝑔𝐽𝑔 −

𝑥2𝐷𝑠𝑁2𝑔𝐽𝑔 +
𝑥3𝐾𝑠𝑁𝑔𝐽𝑔 −

𝑇𝑔𝐽𝑔𝑥1 − 𝑥2𝑁𝑔
− 1𝜏𝛽 𝑥4

]]]]]]]]]]]]
]

(3)

𝐵 = [0, 0, 0, 1𝜏𝛽]
T , (4)

where 𝜔𝑟 is the speed of low speed shaft; 𝜔𝑔 is the generator
speed; 𝛿 is the twist angle; 𝛽 is the pitch angle; 𝛽𝑟 is the pitch
angle control; 𝜏𝛽 is the time constant of the pitch actuator; 𝑇𝑔
is the generator torque; 𝐽𝑟 and 𝐽𝑔 are the low speed shaft and
generator inertia;𝑁𝑔 is the gear ratio; and 𝐷𝑠 and 𝐾𝑠 are the
drive-train damping and spring constants, respectively.

The mechanical power captured by the wind turbine is
described as

𝑃𝑟 = 12𝜋𝜌𝑅2𝑉3𝐶𝑝 (𝑥1, 𝑥4, 𝑉) , (5)

where 𝑅 is the rotor radius; 𝜌 is the air density; 𝑉 is the wind
speed; and𝐶𝑝 is the power conversion coefficient of the wind
turbine and is a nonlinear function.

2.2. Pitch System Modeling. The system of hydraulic pitch
is modeled as a closed-loop transfer function. Essentially,
these position servo systems can be modeled quite well via
describing a second-order transfer function as follows [9]:

𝛽 (𝑠)𝛽𝑟 (𝑠) =
𝜔2𝑛𝑠2 + 2𝜀𝜔𝑛𝑠 + 𝜔2𝑛 , (6)

where 𝜔𝑛 and 𝜀 are the frequency and damping ratio parame-
ters, respectively; 𝛽(𝑠) is the pitch angle; and 𝛽𝑟(𝑠) is the pitch
angle control.
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To facilitate the subsequent controller design, the state
space model of the pitch system is as follows:

[ ̇𝛽
̈𝛽] = [ 0 1

−𝜔2𝑛 −2𝜀𝜔𝑛][
𝛽
̇𝛽] + [

0
𝜔2𝑛]𝛽𝑟

𝑦 = [1 0
0 1][

𝛽
̇𝛽] .

(7)

2.3. Pitch Actuator Fault Modeling. The fault considered for
the pitch actuator is hydraulic leakage. The dynamics of the
pitch systems will be changed by a drop of oil pressure. The
pressure level is modeled as a convex combination of the
vertices of the parameters 𝜔𝑛 and 𝜀. Hence, the pitch system
can be described according to the so-called fault effectiveness
parameter 𝜃𝑓 ∈ [0 1], where 𝜃𝑓 = 0 corresponds to a fault-
free actuator with 𝜔𝑛 = 𝜔𝑛0 and 𝜀 = 𝜀0 𝜃𝑓 = 1 relates to a
full fault on the actuator with 𝜔𝑛 = 𝜔𝑛𝑓, 𝜀 = 𝜀𝑓. Hence, the
corresponding damping ratio and damping frequency can be
obtained by inverse formula and 𝜔𝑛 and 𝜀 can be depicted by
the pitch actuator fault [10, 11]:

𝜔2𝑛 = (1 − 𝜃𝑓) 𝜔2𝑛0 + 𝜃𝑓𝜔2𝑛𝑓
𝜀𝜔𝑛 = (1 − 𝜃𝑓) 𝜀0𝜔𝑛0 + 𝜃𝑓𝜀𝑓𝜔𝑛𝑓. (8)

The corresponding state space model is as follows:

[ ̇𝛽
̈𝛽] = [ 0 1

−𝜔2𝑛0 −2𝜀0𝜔𝑛0][
𝛽
̇𝛽] + [

0
𝜔2𝑛0]𝛽𝑟 + 𝐵𝑎𝑓𝑎, (9)

where 𝐵𝛼 = [ 0𝜔2
𝑛0

], 𝑓𝛼 = (1 − 𝜔2𝑛𝑓/𝜔2𝑛0)(𝛽 − 𝛽𝑟)𝜃𝑓 + 2(𝜀0/𝜔𝑛0 −𝜀𝑓𝜔𝑛𝑓/𝜔2𝑛0) ̇𝛽𝜃𝑓.
Equation (9) simplifies the design of the observer. How-

ever, 𝑓𝛼 is the newly defined actuator fault signal and it may
not be able to sufficiently reflect the severity of the primordial
fault 𝜃𝑓 and it is a potential problem. One method to refind
the primordial fault signal is to put (10) into use:

𝜃𝑓
= 𝑓𝛼
(1 − 𝜔2

𝑛𝑓
/𝜔2𝑛0) (𝛽 − 𝛽𝑟) + 2 (𝜀0/𝜔𝑛0 − 𝜀𝑓𝜔𝑛𝑓/𝜔2𝑛0) ̇𝛽 .

(10)

2.4. Pitch Sensor Faults Modeling. There are three common
faults for the pitch sensor: biased output, fixed output, and
no output. The only difference between the front two faults
original from the pitch sensor is that detecting a fixed output
is necessary [12, 13].

2.4.1. Biased Output on Pitch Sensor. The closed-loop pitch
system and the pitch angle measurement are affected by a
biased pitch sensor measurement. While the bias occurs, the
pitch sensor fault model is as follows:

𝛽mes (𝑡) = 𝛽 (𝑡) + 𝛽bias (𝑡) , (11)

where 𝛽bias(𝑡) is the pitch angle measurement bias and 𝛽(𝑡) is
the actual pitch angle.

2.4.2. Fixed Output on Pitch Sensor. A fixed output on a pitch
sensor is an abrupt fault and can occur at any time leading to
the following measurement equation:

𝛽mes (𝑡) = 𝛽 (𝑡𝑓) , ∀𝑡 > 𝑡𝑓, (12)

where 𝑡𝑓 is the time when the fault occurs.

2.4.3. NoOutput on Pitch Sensor. No output on a pitch sensor
causes the same changes in the measurement equation as a
fixed output. Contrary to a fixed output, the control system is
informed when there is no output from the pitch sensor. The
fault model is as follows:

𝛽mes (𝑡) = 0, ∀𝑡 > 𝑡𝑓. (13)

3. Descriptor Sliding Mode Observer Design

3.1. Problem Description. Considering the following wind
turbine pitch system with four conditions, pitch actuator
fault, pitch sensor fault, system uncertainty, and external
disturbance [14–17], the corresponding dynamic equations
are as follows:

𝑥̇ (𝑡) = 𝐴𝑥 (𝑡) + 𝐵𝑢 (𝑡) + 𝐵𝑎𝑓𝑎 (𝑡) + 𝑀𝑑 (𝑡, 𝑥, 𝑢)
𝑦 (𝑡) = 𝐶𝑥 (𝑡) + 𝐷𝑠𝑓𝑠 (𝑡) + 𝐷𝑎𝑓𝑎 (𝑡) , (14)

where 𝑥(𝑡) ∈ R𝑛 is the system state vector; 𝑦(𝑡) ∈ R𝑝 is the
measurement output vector;𝑢(𝑡) ∈ R𝑚 is the vector of control
input; 𝑑(𝑡, 𝑥, 𝑢) ∈ Rℎ is external and uncertainty disturbance;𝑓𝑎(𝑡) ∈ R𝑞 is the vector of pitch actuator fault; 𝑓𝑠(𝑡) ∈ R𝑙 is
the vector of pitch sensor fault; and 𝐴 ∈ R𝑛×𝑛, 𝐵 ∈ R𝑛×𝑚,𝐵𝑎 ∈ R𝑛×𝑞,𝑀 ∈ R𝑛×ℎ, 𝐶 ∈ R𝑝×𝑛, and 𝐷𝑠 ∈ R𝑝×𝑙, 𝐷𝑎 ∈ R𝑝×𝑞,
are known constant matrices.

Some assumptions are made in this paper for subsequent
theoretical analyses and controller design.

Assumption 1. The conditions for the uncertainty and exter-
nal disturbance are bounded as the following norm, and pitch
actuator fault and pitch sensor fault are held:

‖𝑑 (⋅)‖ ≤ 𝑑0,󵄩󵄩󵄩󵄩𝑓𝑎 (𝑡)󵄩󵄩󵄩󵄩 ≤ 𝛼0,󵄩󵄩󵄩󵄩󵄩 ̇𝑓𝑎 (𝑡)󵄩󵄩󵄩󵄩󵄩 ≤ 𝛼1,󵄩󵄩󵄩󵄩𝑓𝑠 (𝑡)󵄩󵄩󵄩󵄩 ≤ 𝛽0,
(15)

where 𝑑0 > 0, 𝛼0 > 0, 𝛼1 > 0, and 𝛽0 > 0 are some known
constants.

Assumption 2. The pair (𝐴, 𝐵) is stable, and (𝐴, 𝐶) is tested.
And a constant 𝛿 > 0 exits such that

rank [𝛿𝐼𝑛 + 𝐴 𝐵𝑎𝐶 0 ] = 𝑛 + 𝑞. (16)

Assumption 3. The matrices𝑀 and 𝐷𝑠 are full column rank,
and the dimension standard of 𝑞 + 𝑙 ≤ 𝑝 holds.



4 Complexity

The purpose of this paper is to get the estimates of pitch
system state and fault simultaneously. For the objective, we
can define the new augmented variables and matrices as
follows:

𝑥𝑠 (𝑡) ≜ 𝐷𝑠𝑓𝑠 (𝑡) ,

𝑥 (𝑡) ≜ [[
[
𝑥 (𝑡)
𝑓𝑎 (𝑡)𝑥𝑠 (𝑡)

]]
]
,

𝐴 ≜ [[[
[

𝐴 0 0
0 −𝛿𝐼𝑞 0
0 0 −𝐼𝑝

]]]
]
,

𝐵 ≜ [[[
[

𝐵
0𝑞×𝑚0𝑝×𝑚

]]]
]
,

𝐶 ≜ [𝐶 0𝑝×𝑞 𝐼𝑝] ,

𝐸 ≜ [[[
[

𝐼𝑛 𝛿−1𝐵𝑎 0
0 𝐼𝑞 0
0 0 0𝑝×𝑝

]]]
]
,

𝑁 ≜ [[[
[

0𝑛×𝑝0𝑞×𝑝𝐼𝑝
]]]
]
,

𝐵𝑓 ≜ [[[
[

𝛿−1𝐵𝑎 0𝑛×𝑙 𝑀
𝐼𝑞 0𝑞×𝑙 0𝑞×ℎ0𝑝×𝑞 𝐷𝑠 0𝑝×ℎ

]]]
]
,

𝑓 (𝑡) ≜ [[[
[

𝛿𝑓𝑎 (𝑡) + ̇𝑓𝑎 (𝑡)𝑓𝑠 (𝑡)𝑑 (⋅)
]]]
]
,

𝑛 ≜ 𝑛 + 𝑞 + 𝑝,

(17)

where 𝛿 > 0 is a design parameter selected such that
Assumption 2 holds.

By the above definitions, we can construct a new descrip-
tor system equivalently as follows:

𝐸𝑥̇ (𝑡) = 𝐴𝑥 (𝑡) + 𝐵𝑢 (𝑡) + 𝐵𝑓𝑓 (𝑡)
𝑦 (𝑡) = 𝐶𝑥 (𝑡) , (18)

where 𝑥(𝑡) is the descriptor system state, composed of the
initial state, the pitch actuator fault, and the pitch sensor fault,
which is imported into equivalently establishing a system for
descriptor (18).

3.2. Descriptor Sliding Mode Observer Design. The descriptor
observer can be designed by the lemma as the following
shows, by the summaries from [18].

Lemma 4. There always exists a matrix 𝐿𝐷 ∈ R𝑛×𝑝 designed
such that 𝑆 ≜ (𝐸 + 𝐿𝐷𝐶) is nonsingular; that is, the matrix
𝑊 ≜ 𝑆−1 exists. Furthermore, it holds that 𝐶𝑊𝐿𝐷 = 𝐼𝑝 and𝐴𝑊𝐿𝐷 = −𝑁.

On the basis of Lemma 4, we can design the descriptor
sliding mode observer for the descriptor plant (18) as follows:

𝑆 ̇𝜉 (𝑡) = (𝐴 − 𝐿𝑃𝐶) 𝜉 (𝑡) − 𝑁𝑦 (𝑡) + 𝐵𝑢 (𝑡) + 𝐿𝑠𝑢𝑠 (𝑡)
𝑥̂ (𝑡) = 𝜉 (𝑡) + 𝑊𝐿𝐷𝑦 (𝑡) ,

(19)

where 𝜉(𝑡) ∈ R𝑛 is a variable in the middle, 𝑥̂(𝑡) ∈ R𝑛 is the
estimator of descriptor system state, 𝐿𝑃 ∈ R𝑛×𝑝, 𝐿𝐷 ∈ R𝑛×𝑝,
and 𝐿𝑠 ∈ R𝑛×(𝑞+𝑙+ℎ) are the derivative gain, proportion gain,
and sliding mode gain, and 𝑢𝑠(𝑡) ∈ R(𝑞+𝑙+ℎ) is the input of
discontinuous sliding mode to get rid of the disturbances of
system faults and uncertainties.

We can define the design matrix 𝐿𝐷 as follows:

𝐿𝐷 = [[[
[

𝐿𝐷1
𝐿𝐷2
𝐿𝐷3

]]]
]
= [[
[
0𝑛×𝑝0𝑞×𝑝𝑍

]]
]
, (20)

where 𝑍 = 𝑧𝐼𝑝 and 𝑧 > 0 is a design scalar.

Lemma 5. If Assumption 2 holds, a proportional gain 𝐿𝑃 =𝑆𝑋−1𝐶𝑇 will exist, such that the matrix 𝑊(𝐴 − 𝐿𝑃𝐶) is
Hurwitz, where we can solve𝑋 > 0 via the Lyapunov equation:

− (𝜇𝐼 +𝑊𝐴)𝑇𝑋 − 𝑋(𝜇𝐼 +𝑊𝐴) = −𝐶𝑇𝐶, (21)

where 𝜇 > 0 satisfies Re[𝜆𝑖(𝑊𝐴)] > −𝜇, ∀𝑖 ∈ {1, 2, . . . , 𝑛}.
The final step is to form the input term 𝑢𝑠(𝑡) of sliding

mode to make the input disturbance 𝑓(𝑡) attenuated. At first,
the gain matrix 𝐿𝑠(𝑡) for sliding mode can be designed as

𝐿𝑠 = 𝐵𝑓. (22)

Then, we can define the surface of sliding mode with𝑠(𝑡) ∈ R(𝑞+𝑙+ℎ) as follows:

𝑠 (𝑡) = 𝐵𝑇𝑓𝑊𝑇𝑃𝑒 (𝑡) , (23)

where the descriptor error is 𝑒(𝑡) = 𝑥̂(𝑡) − 𝑥(𝑡) and the
Lyapunov matrix 𝑃 > 0 is designed such that the following
constraint holds:

𝐵𝑇𝑓𝑊𝑇𝑃 = 𝐻𝐶, (24)

where𝐻 ∈ R(𝑞+𝑙+ℎ)×𝑝 is the matrix of design parameter based
on matrix 𝑃.
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Remark 6. Constraint (24) is introduced because 𝑒(𝑡) is
unknown in the function (23) of sliding mode; thus, 𝑠(𝑡)
cannot be got. Note that 𝐶𝑒(𝑡) = 𝐶𝑥̂(𝑡) − 𝐶𝑥(𝑡) is available,
because 𝐶𝑥̂(𝑡) and 𝐶𝑥(𝑡) can be obtained. Therefore, on the
basis of the constraint (24), we can derive it as follows:

𝑠 (𝑡) = 𝐻𝐶𝑒 (𝑡) . (25)

It is presented that 𝑠(𝑡) is available to design the observer.
At present, the discontinuous sliding mode input term 𝑢𝑠(𝑡)
can be designed in the form as the following shows:

𝑢𝑠 (𝑡) = −𝛾1sgn (𝑠 (𝑡)) , (26)

where 𝛾1 > 0 is a small designed value.

3.3. The Descriptor Error and Estimation State Dynamics.
First, we can rewrite the observer (19) as follows:

𝑆 ̇̂𝑥 (𝑡) = 𝑆 ̇𝜉 (𝑡) + 𝐿𝐷 ̇𝑦 (𝑡)
= (𝐴 − 𝐿𝑃𝐶) (𝑥̂ (𝑡) − 𝑊𝐿𝐷𝑦 (𝑡)) − 𝑁𝑦 (𝑡)
+ 𝐵𝑢 (𝑡) + 𝐿𝑠𝑢𝑠 (𝑡) + 𝐿𝐷 ̇𝑦 (𝑡)

= (𝐴 − 𝐿𝑃𝐶) 𝑥̂ (𝑡) − 𝐴𝑊𝐿𝐷𝑦 (𝑡)
+ 𝐿𝑃𝐶𝑊𝐿𝐷𝐶𝑥 − 𝑁𝑦 (𝑡) + 𝐵𝑢 (𝑡) + 𝐿𝑠𝑢𝑠 (𝑡)
+ 𝐿𝐷𝐶𝑥̇ (𝑡) .

(27)

Using Lemma 4, (27) is simplified to

𝑆 ̇̂𝑥 (𝑡) = (𝐴 − 𝐿𝑃𝐶) 𝑥̂ (𝑡) + 𝐿𝑃𝐶𝑥 + 𝐵𝑢 (𝑡) + 𝐿𝑠𝑢𝑠 (𝑡)
+ 𝐿𝐷𝐶𝑥̇ (𝑡) .

(28)

Adding 𝐿𝐷𝐶𝑥̇(𝑡) to both sides of the descriptor system
(18), it can be rewritten as

𝑆𝑥̇ (𝑡) = (𝐴 − 𝐿𝑃𝐶) 𝑥 (𝑡) + 𝐿𝑃𝐶𝑥 (𝑡) + 𝐵𝑢 (𝑡)
+ 𝐵𝑓𝑓 (𝑡) + 𝐿𝐷𝐶𝑥̇ (𝑡) . (29)

Subtracting (29) from (28), the descriptor error dynamics
becomes

̇𝑒 (𝑡) = 𝑊(𝐴 − 𝐿𝑃𝐶) 𝑒 (𝑡) + 𝑊(𝐿𝑠𝑢𝑠 (𝑡) − 𝐵𝑓𝑓 (𝑡)) . (30)

Then, we can derive the system equation of sliding mode
estimation state. First, we can rewrite the observer state Eq.
(28) as follows:

𝐸 ̇̂𝑥 (𝑡) + 𝐿𝐷𝐶 ̇̂𝑥 (𝑡) = 𝐴𝑥̂ (𝑡) − 𝐿𝑃𝐶𝑒 (𝑡) + 𝐵𝑢 (𝑡)
+ 𝐿𝑠𝑢𝑠 (𝑡) + 𝐿𝐷𝐶𝑥̇ (𝑡)

(31)

which is equivalent to

𝐸 ̇̂𝑥 (𝑡) = 𝐴𝑥̂ (𝑡) − 𝐿𝑃𝐶𝑒 (𝑡) + 𝐵𝑢 (𝑡) + 𝐿𝑠𝑢𝑠 (𝑡)
− 𝐿𝐷𝐶 ̇𝑒 (𝑡) . (32)

We can decompose the matrices 𝐿𝑃, 𝐿𝑠, and 𝑢𝑠(𝑡) as
follows:

𝐿𝑃 ≜ [[
[
𝐿𝑃1𝐿𝑃2𝐿𝑃3

]]
]
,

𝐿𝑠 ≜ [[
[
𝐿 𝑠1𝐿 𝑠2𝐿 𝑠3

]]
]
,

𝑢𝑠 (𝑡) ≜ [[
[
𝑢𝑠1 (𝑡)𝑢𝑠2 (𝑡)𝑢𝑠3 (𝑡)

]]
]
.

(33)

From 𝐿𝑠 = 𝐵𝑓, it can be easily obtained that

𝐿 𝑠1 = [𝛿−1𝐵𝑎 0𝑛×𝑙 𝑀] (34)

and from (20), we can derive it as

𝐿𝐷𝐶 ̇𝑒 (𝑡) = [[[
[

0𝑛×𝑝0𝑞×𝑝
𝑍𝐶 ̇𝑒 (𝑡)

]]]
]
. (35)

Subsequently, the state Eq. (32) is decomposed to obtain
the following estimation state Eq. (36):

̇̂𝑥 (𝑡) = 𝐴𝑥 (𝑡) − 𝐿𝑃1𝐶𝑒 (𝑡) + 𝐵𝑢 (𝑡) + 𝛿−1𝐵𝑎𝑢𝑠1 (𝑡)
+ 𝑀𝑢𝑠3 (𝑡) − 𝛿−1𝐵𝑎 ̇̂𝑓𝑎 (𝑡) .

(36)

Second, an estimation state is constructed based on the
integral sliding mode surface 𝑥(𝑡) as follows:

𝑠 (𝑡) = 𝐺𝑥 (𝑡) − ∫𝑡
0
𝐺 (𝐴 + 𝐵𝐾) 𝑥 (𝜏) 𝑑𝜏, (37)

where 𝐺 ∈ R𝑚×𝑛 and 𝐾 ∈ R𝑚×𝑛 are the matrices with
parameter designed.𝐺 is chosen such that𝐺𝐵 is nonsingular,
and 𝐾 is designed such that 𝐴 + 𝐵𝐾 is Hurwitz. From (36)
and (37), it yields

̇̂𝑠 (𝑡) = 𝐺 (−𝐿𝑃1𝐶𝑒 (𝑡) + 𝛿−1𝐵𝑎𝑢𝑠1 (𝑡) + 𝑀𝑢𝑠3 (𝑡)
− 𝛿−1𝐵𝑎 ̇̂𝑓𝑎 (𝑡)) + 𝐺𝐵 (𝑢 (𝑡) − 𝐾𝑥 (𝑡)) .

(38)

Assuming that there exist matrices 𝐵1 ∈ R𝑚×𝑞 and 𝐵2 ∈
R𝑚×ℎ such that 𝐵𝑎 = 𝐵𝐵1 and𝑀 = 𝐵𝐵2, and letting ̇̂𝑠(𝑡) = 0,
we can derive the equivalent control scheme as follows:

𝑢eq (𝑡) = 𝐾𝑥 (𝑡) + 𝛿−1𝐵1 ( ̇̂𝑓𝑎 (𝑡) − 𝑢𝑠1 (𝑡)) − 𝐵2𝑢𝑠3 (𝑡)
+ (𝐺𝐵)−1 𝐺𝐿𝑃1𝐶𝑒 (𝑡) .

(39)
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Substituting (39) into (36), we can obtain the state system
equation with the method of sliding mode estimation as the
following shows:

̇̂𝑥 (𝑡) = (𝐴 + 𝐵𝐾) 𝑥 (𝑡)
+ (𝐵 (𝐺𝐵)−1 𝐺 − 𝐼𝑛) 𝐿𝑃1𝐶𝑒 (𝑡) . (40)

Combine the sliding mode estimation state Eq. (40) with
the descriptor error system (25) and build a system with the
closed-loop property as (41) shows:

̇̂𝑥 (𝑡) = (𝐴 + 𝐾𝐵) 𝑥 (𝑡) + (𝐵 (𝐺𝐵)−1 𝐺 − 𝐼𝑛) 𝐿𝑃1𝐶𝑒 (𝑡)
̇𝑒 (𝑡) = 𝑊(𝐴 − 𝐿𝑃𝐶) 𝑒 (𝑡) + 𝑊(𝐿𝑠𝑢𝑠 (𝑡) − 𝐵𝑓𝑓 (𝑡)) . (41)

3.4. The Stability Condition of Observer

Theorem 7. Based on the sliding mode input scheme as 𝑢𝑠(𝑡)
(26) presented, the system shown in (41) is stable, if there exist𝑅 ∈ R𝑛×𝑛 > 0, 𝑃 ∈ R𝑛×𝑛 > 0, and𝐻 ∈ R(𝑞+𝑙+ℎ)×𝑝 such that the
constraint (24) holds and the LMI optimization problemadmits
a feasible solution [14]:

min (𝜃 + 𝜀) ,

s.t. Ψ =
[[[[[[[[[[[[
[

Ψ11 Ψ12 Ψ13 Ψ14 0 0
Ψ𝑇12 Ψ22 0 0 Ψ25 Ψ26
Ψ𝑇13 0 Ψ33 0 0 0
Ψ𝑇14 0 0 Ψ44 0 0
0 Ψ𝑇25 0 0 Ψ55 0
0 Ψ𝑇26 0 0 0 Ψ66

]]]]]]]]]]]]
]

< 0, (42)

where Ψ11 = (𝐴 + 𝐵𝐾)𝑇𝑅 + (𝐴 + 𝐵𝐾), Ψ12 = 𝑅(𝐵(𝐺𝐵)−1𝐺 −𝐼𝑛)𝐿𝑃1𝐶, Ψ13 = 𝐼𝑛, Ψ25 = 𝐼𝑛, Ψ14 = 𝑅(𝐼𝑛 − 𝐵(𝐺𝐵)−1𝐺), Ψ26 =𝑃𝑊, Ψ22 = (𝐴 − 𝐿𝑃𝐶)𝑇𝑊𝑇𝑃 + 𝑃𝑊(𝐴 − 𝐿𝑃𝐶), Ψ33 = −𝜃𝐼𝑛,Ψ44 = −𝜀𝐼𝑛, Ψ55 = −𝜃𝐼𝑛, Ψ66 = −𝜀𝐼𝑛.
4. Active Fault-Tolerant Control Design

The fault-tolerant control of a wind turbine in area 3 (above
rated wind speed) is mainly studied in this paper. The output
power of the generator must be adjusted to the rated power
to ensure the output quality and wind turbine safety. There
are two general methods for power regulation [19]: (1)With
the generator torque fixed and the generator speed adjusted
to the rated speed by controlling the pitch angle and (2) the
generator torque and pitch angle are adjusted simultaneously.
However, regardless of which method is used, the pitch
systemmust be used to regulate the pitch angle.Therefore, the
pitch actuator and pitch sensor are very important parts of the
power control system. The purpose of this paper to develop
a novel active fault-tolerant controller to address the case in
which the pitch actuator and pitch sensor show faults at the
same time, so only a collective pitch method is used. Method(1) will be chosen for the power control in this paper.

An active fault-tolerant control for the pitch system (14)
comprises a norm controller and a reconfigurable controller,
designed as

𝑢 (𝑡) = 𝑢norm + 𝑢𝑓, (43)

where 𝑢norm is the norm controller to achieve pitch angle
control under the fault-free case and 𝑢𝑓 is the reconfigurable
controller to compensate the fault effect.

4.1. Norm Controller Design. The active disturbance rejection
control (ADRC) technique is used in wind turbine pitch
control under the fault-free case in this paper due to its
facilitation and robustness. The ADRC controller design
procedures are summarized as the following three steps [20,
21]:

(1) Firstly, to avoid a large overshoot of the system, the
step input signal is transformed into a continuous and
smooth signal by designing the tracking differentiator
[22].

(2) Second, an extended state and disturbance nonlinear
observer is designed to estimate and compensate for
the unknown time varying nonlinear disturbances in
the system online.

(3) Finally, the pitch control is realized by a conventional
PD controller.

It is assumed that the output of the system is the speed of
the low speed shaft and that the input is the pitch angle. From
(1) to (3), the dynamic equation of low speed shaft speed is

𝑥̇1 = 𝑃𝑟 (𝑥1, 𝑥4)𝑥1𝐽𝑟 − 𝑥1𝐷𝑠𝐽𝑟 + 𝑥2𝐷𝑠𝑁𝑔𝐽𝑟 −
𝑥3𝐾𝑠𝐽𝑟 . (44)

Its second-order derivative can be obtained as

𝑑2𝑥1𝑑𝑡2 = 𝐿𝑓 (𝑥) + 𝐿𝑔 (𝑥) 𝑢 (45)

𝐿𝑓 (𝑥) = 4∑
𝑖=1

(𝜕𝑓1𝜕𝑥𝑖𝑓𝑖) +
𝜕𝑓1𝜕𝑉 𝑉̇ (46)

𝐿𝑔 (𝑥) = 𝜕𝑓1𝜕𝑥4𝑔4, (47)

where 𝑉̇ is the derivative of the wind speed.
Assuming that all nonlinearities of the system represented

as 𝐿𝑓(𝑥) and 𝐿𝑔(𝑥) in (45) are unknown, the defined
perturbation that contains all nonlinear and time varying
dynamics of the system is shown as follows:

𝜓 (𝑥) = 𝐿𝑓 (𝑥) + (𝐿𝑔 (𝑥) − 𝑏0) 𝑢, (48)

where 𝑏0 = 𝐿𝑔(𝑥)𝑥=𝑥(0) is the nominal constant gain.
Then, system (45) can be represented as follows:

𝑑2𝑥1𝑑𝑡2 = 𝜓 (𝑥) + 𝑏0𝑢. (49)
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4.1.1. Design of Nonlinear State and Perturbation Observer.
Defining 𝑧1 = 𝑥1, 𝑧2 = 𝑥̇1, and 𝑧3 = 𝜓(𝑥), the mathematical
model of the observer is shown as follows:

𝑧̇1 = 𝑧2
𝑧̇2 = 𝑧3 + 𝑏0𝑢
𝑧̇3 = 𝜓̇ (𝑥) .

(50)

Defining 𝑧̃𝑖 = 𝑧𝑖−𝑧̂𝑖, the nonlinear observer is then shown
as follows:

̇̂𝑧1 = 𝑧̂2 + 𝑘01𝑧̃1
̇̂𝑧2 = 𝑧̂3 + 𝑏0𝑢 + 𝑘02𝑓𝑎𝑙 (𝑧̃1, 0.5, ℎ)
̇̂𝑧3 = 𝑘03𝑓𝑎𝑙 (𝑧̃1, 0.25, ℎ)

(51)

𝑓𝑎𝑙 (𝜒, 𝜎, ℎ) = {{{{{
𝜎2ℎ(1−𝜎)𝜒, 󵄨󵄨󵄨󵄨𝜒󵄨󵄨󵄨󵄨 ≤ ℎ

sign (𝜒) 𝜎2 󵄨󵄨󵄨󵄨𝜒󵄨󵄨󵄨󵄨𝛿 , 󵄨󵄨󵄨󵄨𝜒󵄨󵄨󵄨󵄨 > ℎ,
(52)

where 𝑧̂𝑖 is the estimated value of 𝑧𝑖; 𝑘0𝑖 is a gain of the
observer; 𝜒 is an input error of the nonlinear function; 0 <𝜎 < 1 is the precision index; and ℎ is the width of the linear
area of a nonlinear function.

4.1.2. The Pitch Controller Design. In this controller, the
actual perturbation is compensated in real-time by estimating
the unknown perturbation of the system with a nonlinear
observer. The pitch controller can be expressed as

𝑢norm = 1𝑏0 (𝐾𝑃 (V1 − 𝑧̂1) + 𝐾𝐷 (V2 − 𝑧̂2) − 𝑧̂3) , (53)

where 𝐾𝑃 and 𝐾𝐷 are two control gains; 𝑧̂1, 𝑧̂2, and 𝑧̂3 are
the outputs of the observer; and V1, V2 are the outputs of the
tracking differentiator.

4.2. Reconfigurable Controller Design. With the above-men-
tioned stability conditions, we can guarantee the reachability
of the sliding surfaces 𝑠(𝑡) of (25) and 𝑠(𝑡) of (37). Then
presenting the fault-tolerant control law as follows:

𝑢𝑓 = 𝐾𝑥 (𝑡) − 𝛿−1𝐺𝐵𝑎𝑢𝑠1 (𝑡) − 𝐺𝑀𝑢𝑠3 (𝑡) − 𝛾2𝑠 (𝑡)
− 𝜌 (𝑡) sgn (𝑠 (𝑡)) , (54)

where 𝜌(𝑡) = ‖𝐺𝐿𝑃1‖‖𝐶𝑒(𝑡)‖ + 𝛿−1‖𝐺𝐵𝑎‖‖ ̇̂𝑓𝑎(𝑡)‖, 𝛾2 > 0 is a
small design parameter, and𝐺 is designed such that𝐺𝐵 = 𝐼𝑚.

Because it is not as easy to obtain a solution under limit
(24) directly inMATLAB, constraint (24) can be transformed
into the following inequality condition:

(𝐵𝑇𝑓𝑊𝑇𝑃 − 𝐻𝐶)𝑇 (𝐵𝑇𝑓𝑊𝑇𝑃 − 𝐻𝐶) < 𝜗𝐼𝑛, (55)

where 𝜗 > 0 is a small parameter. By using the Schur com-
plement Lemma, we can convert condition (55), equivalently,
into

min (𝜗)
s.t. Π = [[

[
−𝜗𝐼𝑛 (𝐵𝑇𝑓𝑊𝑇𝑃 − 𝐻𝐶)𝑇

(𝐵𝑇𝑓𝑊𝑇𝑃 − 𝐻𝐶) 𝐼𝑞+𝑙+ℎ
]]
]

< 0.
(56)

Therefore, we can transform the LMI conditions of
(24) and (56) into a problem of LMI optimization to get
viable solutions. Recalling the minimization of 𝜃 and 𝜀, the
parameter 𝜗 must be minimized. To this end, we can obtain
the LMI optimization problem as follows:

min (𝜛 (𝜃 + 𝜀) + (1 − 𝜛) 𝜗)
s.t. Ψ < 0,

Π < 0,
(57)

where 𝜛 is a fixed parameter to be selected such that 0 <𝜛 < 1. By using the mincx solver in the standard MATLAB
LMI Control Toolbox, we can solve the LMI minimization
optimization problem.

With the descriptor sliding mode observer (19) propos-
ing, we can now directly estimate the augmented descriptor
system state 𝑥(𝑡). Note that because𝐷𝑠 is a full column rank,
as supposed in Assumption 3, (𝐷𝑇𝑠 𝐷𝑠)−1 exists. Hence, the
estimate of 𝑓𝑠 is computed as follows:

𝑓𝑠 (𝑡) = 𝐼𝑙 (𝐷𝑇𝑠 𝐷𝑠)−1𝐷𝑇𝑠 [0𝑝×𝑛 0𝑝×𝑞 𝐼𝑝] 𝑥̂ (𝑡) . (58)

Remark 8. To prevent the signals 𝑢𝑠(𝑡) and 𝑢(𝑡) from becom-
ing chatter, the continuous functions 𝑠(𝑡)/(‖𝑠(𝑡)‖ + 𝑜) and𝑠(𝑡)/(‖𝑠(𝑡)‖ + 𝑜) can be simply used to replace sgn(𝑠(𝑡)) and
sgn(𝑠(𝑡)), where 𝑜 > 0 is a small constant [23].

We can summarize the parameters of the descriptor
sliding mode method and the fault-tolerant control design
process into the following four steps:

(1) Choose 𝛿 properly such that condition (16) holds, and
select the derivative gain matrix 𝐿𝐷 in the form (20)
such that 𝑆 ≜ (𝐸 + 𝐿𝐷𝐶) is nonsingular.

(2) Choose 𝜇 > 0 such that Re[𝜆𝑖(𝑊𝐴)] > −𝜇 for∀𝑖 ∈ {1, 2, . . . , 𝑛}. Deal with the Lyapunov Eq. (21)
to obtain 𝑋. Furthermore, compute the proportional
gain matrix 𝐿𝑃 as 𝐿𝑃 = 𝑆𝑋−1𝐶𝑇.

(3) Design the gain matrix 𝐿𝑠 of sliding mode, such that𝐿𝑠 = 𝐵𝑓. By using the mincx solver in MATLAB,
choose a fixed scalar𝜛 and have the LMI optimization
problem (57) solved to get the minimized 𝜃, 𝜀, and 𝜗
and the viable solutions 𝑅, 𝑃, and 𝐻. Design 𝑢𝑠(𝑡) as
the equation of (26).
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(4) Design𝐺 such that𝐺𝐵 = 𝐼𝑚. Choose𝐾 such that (𝐴+𝐵𝐾) is Hurwitz. Let 𝐿𝑃1 = [𝐼𝑛×𝑛 0𝑛×𝑞 0𝑛×𝑝] 𝐿𝑃, 𝑢𝑠1 =[𝐼𝑞×𝑞 0𝑞×𝑙 0𝑞×ℎ] 𝑢𝑠, and 𝑢𝑠3 = [0ℎ×𝑞 0ℎ×𝑙 𝐼ℎ×ℎ] 𝑢𝑠,
and design 𝑢(𝑡) as (43).

5. Simulation Results

In this paper, the faults considered for the pitch system
are hydraulic leakage on pitch actuator and a biased output
on pitch sensor. Hence, following the design procedures
mentioned above, the effective design and verification for the
proposed controller can be shown via pitch system (14) with

𝐴 = [ 0 1
−123.4321 −13.3320] ,

𝐵 = [ 0
123.4321] ,

𝐵𝑎 = [ 0
123.4321] ,

𝑀 = [−0.20 ] ,

𝐶 = [1 0
0 1] ,

𝐷𝑎 = [11] ,

𝐷𝑠 = [10] ,
𝜔𝑛0 = 11.11 rad/s,
𝜔𝑛𝑓 = 3.42 rad/s,
𝜀0 = 0.6,
𝜀𝑓 = 0.9,

𝑑 (⋅) = 0.2 cos (6𝑡) + 0.5 sin (2𝑡)
𝜃𝑓 = {{{

0, 0 ≤ 𝑡 ≤ 70
1, 70 < 𝑡 ≤ 100,

𝑓𝑠 (𝑡) = {{{
0, 0 ≤ 𝑡 ≤ 40
𝑓𝑠 ⋅ 𝛽 (𝑡) , 40 < 𝑡 ≤ 100.

(59)

The simulations are carried out within FAST-
MATLAB/Simulink combined environment, and the detailed
parameters of NREL’s 5-MWbenchmark wind turbinemodel
are described in Table 1. We can do simulations with the
wind speed time signal and its average speed is 16m/s, as
shown in Figure 1.

Table 1: Parameters of NREL’s 5MW wind turbine model.

Power rating 5MW
Rotor orientation, structure Upwind, three-bladed
Control Variable speed, variable pitch
Rotor, hub diameter 126m, 3m
Hub height 90m
Cut in, rated, cut out wind speed 3m/s, 11.4m/s, 25m/s
Rated rotor, generator speed 12.1 rpm, 1173.7 rpm
Maximum blade pitch rate 8 deg/s
Rated generator torque 43093Nm
Maximum generator torque 47402Nm
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Figure 1: Effective wind speed.

Let the parameter 𝛿 = 0.55, which makes sure that
condition (16) is available, and select the derivative gain max:𝐿𝐷 = [ 0001000001 ]𝑇; then, the matrix 𝑆 can be made nonsingular,
and 𝑆 and𝑊 can be calculated.

We select 𝜇 = −𝜆min(𝑊𝐴) + 5 = 5.55 such that
Re[𝜆𝑖(𝑊𝐴)] > −𝜇 for 𝑖 = 1, 2, . . . , 𝑛. Via solving the
Lyapunov equation (21), we can get the matrix 𝑋 and thus
also can calculate the proportional gain matrix as

𝐿𝑃 = 104

× [ 0.0001 0.0165 −0.0001 0.0009 0.0000
−0.0051 −1.0953 0.0049 0.0000 0.0015]

𝑇 . (60)

By selecting the scalar 𝜛, the LMI optimization problem
(57) can be resolved and we can get the practical solutions of𝑅 and𝐻 as follows:

𝑅 = [0.1820 0.0099
0.0099 0.0015] ,

𝐻 = [ 1.0658 51.8549 −0.1291
−0.1255 −2.1491 0.0092 ]

𝑇 .
(61)
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Figure 2: Estimate of newly defined pitch actuator fault 𝑓𝑎 with 𝑓𝑠
= −0.2.
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Figure 3: Pitch actuator original fault 𝜃𝑓 and its estimate with 𝑓𝑠 =−0.2.

We select the matrices 𝐺 and𝐾 as follows:

𝐺 = [0 0.0081] ,
𝐾 = 10−4 × [0.0174 −0.3215] . (62)

The norm controller (53) has the following parameters:𝑏0 = −0.03, 𝐾𝑃 = 5.5, and𝐾𝐷 = 5.
The simulation results are shown in Figures 2–9. The

estimation of the pitch actuator fault signal 𝑓𝑎 is redefined
according to (9) and shown in Figure 2. However, one
problembecause of the redefined pitch actuator fault signal𝑓𝑎
is that it is not easy to determine the severity of a fault because
it is strongly coupled to the system states. The original pitch
actuator fault signal can be constructed by using (10) and the
reconstructed original fault is shown in Figure 3. Figures 3–5
show that the proposed descriptor sliding mode observer can
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Figure 4: Pitch sensor fault and its estimate with 𝑓𝑠 = −0.2.
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Figure 5: Pitch angle and its estimate with 𝑓𝑠 = −0.2.

obtain a satisfactory estimation of the new augmented pitch
system states. With the estimated pitch system augmented
states, FTC is carried out with the strategy shown in (43).
The FTC results are presented in Figures 6–9. In this part,
as for the fault-tolerant scene of the fault-tolerant controller,
the conventional controller is in a divergence state due to the
worst case of the fault, so the corresponding effect contrast
diagram is not given.

6. Conclusion

In this paper, a new architecture for active FTC controller is
proposed for a wind turbine pitch system with simultaneous
pitch actuator and sensor faults based on fault estimation and
reconstruction to maintain nominal pitching performance.
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Figure 7: Generator speed and its torque with 𝑓𝑠 = −0.2.

The FTC controller included both a normal controller, which
was designed by using the active disturbance rejection control
technique for estimating and compensating for the uncer-
tainties, and a reconfigurable controller, which was designed
by using the state and fault estimates obtained from an aug-
mented descriptor sliding mode observer. The simulations
performed in the FAST-MATLAB/Simulink demonstrate
that the proposed FTC design can ensure the stability of the
generator power output in the event of a fault or in cases
without a fault.
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Figure 8: Generator power output with 𝑓𝑠 = −0.3.
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