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The chaotic behavior of low-dimensional digital chaotic systems is seriously degraded, and the output sequence has a short period.
In this study, a digital sequence generator based on a high-dimensional chaotic system is proposed to ensure performance and
security. The proposed generator has low resource consumption, and the digital pseudo-random output sequence has a large
period. To avoid the nonchaotic state, the multistability in the high-dimensional discrete chaotic system is analyzed. The
statistical performance of the output sequence of the proposed digital high-dimensional chaotic system is evaluated, and the
results demonstrate that it is a suitable candidate for a long-period pseudo-random sequence generator.

1. Introduction

Random sequence generators are used in several engi-
neering applications including compressed sensing, image
encryption, secure communication, spread-spectrum com-
munication, and distance measurement [1–7]. They can
be classified into true random sequence generators and
pseudo-random sequence generators. True random sequence
generators are based on physical sources, such as resistor
thermal noise, atmospheric noise, and race hazard circuits.
Although true random sequence generators are highly
secure, their implementation is overly complex. Moreover,
they are difficult to control. By contrast, pseudo-random
sequence generators are based on seeds (initial values).
A given seed completely determines the behavior of
the pseudo-random sequence generator. Pseudo-random
sequence generators are designed by using certain mathemat-
ical algorithms, such as linear feedback shift register (LFSR),
nonlinear feedback shift register (NLFSR), linear congruence,
nonlinear congruence, and BBS (Blum Blum Shub). These
design methods are quite limited because they depend on
the corresponding algorithm. LFSR is a linear function. It
can be quickly reconstructed by the Berlekamp–Massey

algorithm without prior knowledge of the seed. NLFSR, lin-
ear congruence, nonlinear congruence, and BBS are
one-dimensional discrete maps. They generate a large-
period pseudo-random sequence at high computational
cost. With the rapid development of networks, the speed
and period of pseudo-random sequence generators have
attracted increasing attention. Therefore, the design method
of pseudo-random sequence generators should be improved
to meet the requirements of fast big data processing.

Chaos is a universal phenomenon in nonlinear systems.
Chaotic systems exhibit a large number of special behaviors,
such as initial value sensitivity, orbital ergodicity, and
aperiodicity [8]. These behaviors are in accordance with
the confusion and diffusion proposed by Shannon [9].
Therefore, chaotic systems are considered a new method
for constructing pseudo-random sequence generators. A
large number of chaotic systems have been discovered,
and several chaos control methods have been proposed.
Compared with other pseudo-random sequence generators,
chaotic pseudo-random sequence generators allow a large
variety of design choices. Therefore, the standards can be
focused not only on the randomness of the output sequence
but also on speed, period, and resource consumption. A
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chaotic pseudo-random sequence generator should be
appropriately optimized to meet the requirements of differ-
ent engineering applications, particularly big data processing.

Chaotic systems can be classified into continuous and
discrete systems. For digital applications, continuous chaotic
systems should first be discretized and then digitized. Discre-
tization methods include the Euler method [10] and the
Runge–Kutta method [11]. By contrast, discrete chaotic
systems require digitizing only and are thus more appealing
in digital applications. However, the chaotic behavior of
digital chaotic systems gradually degenerates owing to the
finite precision effect. Digital chaotic systems are not
aperiodic but periodic [12–15].

Chaotic systems can also be classified into high-
dimensional and low-dimensional systems. Low-dimensional
chaotic systems have high efficiency and low resource
consumption. The most commonly used low-dimensional
systems are the logistic map [16], the Henon map [17],
and the Sawtooth chaotic map [18–21]. The chaotic behav-
ior of these systems is highly degenerate. It is difficult to
ensure that the output sequence has a large period. By
contrast, high-dimensional chaotic systems have a more
complex nonlinear dynamic behavior. However, they have
the disadvantages of high resource consumption and low-
speed performance. Therefore, it is very necessary to design
a large-period high-dimensional digital chaotic system with
high-speed performance and low resource consumption.

Compared with other low-dimensional discrete chaotic
systems, the Sawtooth chaotic map has a particularly simple
form. It is easy to be digitized, as its output consists of posi-
tive decimals. There are several pseudo-random sequence
generators based on the Sawtooth chaotic map. When the
parameter satisfies a certain condition, the period of the
output sequence can reach 2N−1 2n − 1 [22]. With parame-
ter perturbations, the period can reach 22N−1 2n − 1 [23].
The variables N and n represent the precision length and
the dimension, respectively. Although the period of the
output sequence is large at the same precision, the operating
efficiency is not satisfactory.

In this study, a digital pseudo-random sequence gener-
ator based on a high-dimensional discrete chaos map is
proposed. For low computing complexity, the values of
all the parameters of the high-dimensional discrete chaos
are set as powers of two. Compared with the period of
other digital chaotic pseudo-random sequence generators,
the period of the output sequence of the proposed generator
is closer to the upper limit of the maximum period.

2. Sawtooth Chaotic Map

The Sawtooth chaotic map is also called Bernoulli shift or
Renyi map. It is defined as

xn+1 = βxn mod 1, n = 0, 1, 2, 3,… , 1

where 1 < β ∈ R and xn ∈ 0, 1 . It can be digitized by
either fixed-point or float-point representation. Compared
with floating-point computing, fixed-point computing is
faster, and hardware implementation is smaller. Thus,

for more efficient hardware implementation, fixed-point
representation is chosen. For the decimal, the fixed-point
representation of xn is

xn = 2Nxn , xn ∈N , 2

where 2Nxn represents the integer part of 2Nxn. Therefore,
(1) can be transformed into

xn+1 = 2Nβxn mod 2N 2−N , n = 0, 1, 2, 3,… , 3

where β is an integer. Multiplying both sides by 2N , (3) is
transformed into

xn+1 = βxn mod 2N , n = 0, 1, 2, 3,… 4

The maximum period of the digital Sawtooth chaotic
map (4) can reach 2N−2 for a certain parameter β. There are
two most commonly used parameters: one is 30517578125
(N = 35), and the other is 1220703125 (N = 31). The output
sequence of the digital Sawtooth chaotic map consists of
integers. They should be quantified as binary sequences
before being tested by the NIST SP800-22 test suite. To
ensure large periodicity, the quantified binary output
sequences are the most significant bits (MSB) of the digital
Sawtooth chaotic map output. When the parameter β is
30517578125, the period of the output sequence can reach
233. The NIST SP800 test suite can reflect the statistical
properties of the randomness of the pseudo-random
sequence [24]. It consists of 15 different tests. Each test
accepts as input a sequence of L bits and returns a P value.
A sequence will pass the test if the corresponding P value is
greater than 0.01. The NIST SP800 test suite may also be
used as follows: each test accepts as input K sequences of
L bits. The test results contain two indicators: U value
and ratio. The ratio changes with K . The U value is the
uniformity indicator of the P value. If the U value is greater
than 10−4, the P values are uniformly distributed. 100 out-
put sequences of the digital Sawtooth chaotic map of length
L = 2 × 106 bits were tested by the NIST SP800 test suite,
and the results are shown in Table 1.

The digital Sawtooth chaotic map fails the randomness
test because the U value of the nonoverlapping template is
significantly less than 10−4. The resource consumption of
the hardware implementation by FPGA (field-programma-
ble gate array) is shown in Table 2, and the block diagram
of the digital Sawtooth chaotic map in FPGA is shown
in Figure 1.

3. Digital Pseudo-Random Sequence Generator

Although the randomness of the digital Sawtooth chaotic
map is not satisfactory, its form is quite simple. Accordingly,
a high-dimensional discrete chaotic system based on the
Sawtooth chaotic map is proposed, and its digital model is
analyzed in detail.
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3.1. Fast Arithmetic Operation on Fixed-Point Computing.
The arithmetic operations are multiplication, division, addi-
tion, and subtraction. Division is difficult to implement on
FPGA; thus, it should be avoided in the formulation of
the chaotic equation. The maximum frequency of FPGA
is seriously affected by multiplication. In Table 2, the max-
imum frequency of the hardware implementation of the
digital Sawtooth chaotic map by FPGA is not high for
multiplication. For fast arithmetic operations in fixed-
point computations, the values of all parameters are set
as powers of two in this study. Therefore, division and
multiplication are easier to implement. When the multi-
plier is a power of two, the function of 2n is to shift n bits
of the multiplicand to the right, and the missing low posi-
tion bits are filled by 0. When the divisor is a power of
two, the function of 2n is to shift n bits of the dividend
to the left, and the missing high position bits are filled
by 0. The complex multiplication and division operations
are thus reduced to the right and left shift operations,
respectively. The shift operation is easier to implement
on FPGA. Compared with subtraction, addition is easier
to implement. Therefore, optimized multiplication, opti-
mized division, and addition are selected in the design of
the high-dimensional discrete chaotic system.

3.2. High-Dimensional Discrete Chaotic Map Modeling. By
taking into account the form of the Sawtooth chaotic

map, a high-dimensional discrete chaotic is proposed
as follows:

Sn+1 = ASn mod 1 , n = 0, 1, 2, 3,… , 5

where Sn is defined as a state vector x1 n , x2 n ,
x3 n ,… , xm n T , and A is defined by

A =

a1,1 a1,2 ⋅ ⋅ ⋅ a1,m−2 a1,m−1 a1,m

a2,1 a2,2 ⋅ ⋅ ⋅ a2,m−1 a2,m−2 a2,m

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅ ⋅ ⋅

am,1 am,2 ⋅ ⋅ ⋅ am,m−2 am,m−1 am,m

⋅

6

In (6), there are at most two nonzero elements per
row to further reduce complexity and improve parallel
computing efficiency. Therefore, the following parameter
matrix is proposed:

A =

20 0 ⋅ ⋅ ⋅ 0 0 20

20 0 ⋅ ⋅ ⋅ 0 0 0
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅ ⋅ ⋅

2−1 0 ⋅ ⋅ ⋅ 0 20 0

, m ≥ 3, 7

where ai,i−1 = 20 i = 2, 3, 4,… , a1,1 = a1,m = am,m−1 = 20,
and am,1 = 2−1.

Proposition 1. When m is odd, the value of the determinant
of A (det A ) is 1; when m is even, det A = −1.

Proof. Using the expansion theorem for determinants, det
A = a1,m −1 1+m m−1

i=4 ai,i−1 −1 i+i. For ai,j = 20 j = i − 1,
i = 2, 3, 4,… and a1,m = 20, det A = −1 1+m. When m
is odd, det A = 1; when m is even, det A = −1.

Proposition 2. For the high-dimensional discrete map (5)
and the parameter matrix A (7), there exists at least one
positive Lyapunov exponent in (5).

Proof. The Jacobian matrix of (5) is the parameter matrix A
(7). It is assumed that the eigenvalues of the parameter
matrix A are λi i = 1, 2, 3,… ,m . By the fundamental prop-
erty of the eigenvalues, det A = m

i=1λi. By Proposition 1,

Table 2: Resource consumption of the hardware implementation
by FPGA.

Logic
elements

Memory
bits

Multiplier 9-bit
elements

Max
frequency

Throughput

52 0 6 72.97MHz 72.97M/s

Table 1: Results of the NIST SP800-22 test suite.

Test U value Ratio Result

Frequency 0.534146 99/96 Success

Block frequency 0.102526 98/96 Success

Cumulative sums 0.816537 98/96 Success

Runs 0.911413 99/96 Success

Longest run 0.935716 99/96 Success

Rank 0.080519 99/96 Success

FFT 0.213309 100/96 Success

Nonoverlapping template 0.000005 100/96 Failure

Overlapping template 0.996335 98/96 Success

Universal 0.181557 97/96 Success

Approximate entropy 0.739918 100/96 Success

Random excursions 0.103401 72/70 Success

Random excursions variant 0.032000 74/70 Success

Serial 0.834308 100/96 Success

Linear complexity 0.759756 99/96 Success
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det A = −1 1+m. There are two cases for the eigenvalues of
the parameter matrix A: either there exists at least a λk whose
absolute value is greater than 1 or all eigenvalues are equal to
1. The latter is obviously impossible. Therefore, there exists at
least one positive Lyapunov exponent in (5).

For at least one positive Lyapunov exponent in (5), the
high-dimensional discrete map must be a chaotic system. In
practical engineering, the dimension of the chaotic system
need not be high. Therefore, a 6-dimensional discrete chaotic
system is proposed in this study. The parameter matrix A is
defined by

A =

20 0 0 0 0 20

20 0 0 0 0 0
0 20 0 0 0 0
0 0 20 0 0 0
0 0 0 20 0 0
2−1 0 0 0 20 0

8

Combined with (5), the 6-dimensional discrete chaotic
system is represented by

x1 n = x1 n − 1 + x6 n − 1 mod 1 ,

x2 n = x1 n − 1 mod 1 ,

x3 n = x2 n − 1 mod 1 ,

x4 n = x3 n − 1 mod 1 ,

x5 n = x4 n − 1 mod 1 ,

x6 n = 2−1x1 n − 1 + x5 n − 1 mod 1

9

Then, the six Lyapunov exponents are LE1 =
0 3915, LE2 = −0 0523, LE3 = −0 0523, LE4 = −0 0673,
LE5 = −0 1098, and LE6 = −0 1098. Although (9) has only
one positive Lyapunov exponent, the output sequence of

its digital model has a large period. A discrete chaotic
system with a large number of positive Lyapunov expo-
nents does not ensure that the output sequence generated
by its digital model will have a larger period. The phase
diagram of the chaotic attractors is shown in Figure 2.

The variables x2 n , x3 n , x4 n , and x5 n are the
delay signal of x1 n . Therefore, the phase diagrams (a),
(b), and (c) are similar. Figure 3 shows the time series plots
of the two sequences x1 n and x6 n generated by the map
in (9), where n = 0, 1, 2,… , 10000, x1 0 = 0 2, x2 0 = 0 3,
x3 0 = 0 1, x4 0 = 0 3, x5 0 = 0 2, and x6 0 = 0 2.

An autocorrelation algorithm can be used to detect the
periodicity of the time series. It is defined as follows:

rxx t = 〠
T

n=1
xnxn+t , t = 0, 1, 2, 3,… , 2n 10

From Figure 3, it can be seen that the triangular wave is
considerably smooth. This indicates that the output sequence
is aperiodic.

Multistability is present in various chaotic systems. The
parameter and the initial value seriously affect the stability
of the chaotic system. In (5) and (9), the fixed parameter
has no effect on stability. The Jacobian matrices of (5) and
(9) are (7) and (8), respectively, which are constant matrices.
Therefore, the Lyapunov exponents depend only on the
constant matrices (7) and (8) and are the invariant constants.
In (9), the six Lyapunov exponents are 0.3915, −0.0523,
−0.0523, −0.0673, −0.1098, and −0.1098 for the initial value
S0. For the positive Lyapunov exponent 0.3915, the discrete
map (9) is a chaotic system. Propositions 1 and 2 prove that
in (5), there exists at least one positive Lyapunov exponent.
Therefore, (5) is also a chaotic system for all initial values.

3.3. High-Dimensional Digital Chaotic Map. Using (2) and
(4), the high-dimensional digital chaotic map is defined
as follows:

Sn+1 = ASn mod 2N 11
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Figure 1: Block diagram of the digital Sawtooth chaotic map in FPGA.
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Equation (9) is transformed into

x1 n = x1 n − 1 + x6 n − 1 mod 2N ,

x2 n = x1 n − 1 mod 2N ,

x3 n = x2 n − 1 mod 2N ,

x4 n = x3 n − 1 mod 2N ,

x5 n = x4 n − 1 mod 2N ,

x6 n = 2−1x1 n − 1 + x5 n − 1 mod 2N

12

where xi ∈ℕ i = 1, 2, 3, 4, 5, 6 is in the interval 0, 2N − 1 .
2−1x1 n − 1 represents the integer part of 2−1x1 n − 1 .
Although the Jacobian matrix of (12) is also (8), the value
spaces of xi ∈ℕ i = 1, 2, 3, 4, 5, 6 are limited. Therefore,
(12) is periodic and can be described by the finite state
machine in Figure 4.

The phase diagram of the attractors is also shown
in Figure 5.

Compared with Figure 2, the phase diagram of the
attractors shows a significant change: it is sparse because
the value space of the variables xi i = 1, 2, 3, 4, 5, 6 is lim-
ited. In Figure 5, the attractors are obviously periodic; thus,
the chaotic attractors degenerate into periodic attractors.
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Figure 2: Phase diagram of the chaotic attractors: (a) x1 n − x2 n plane, (b) x2 n − x3 n plane, (c) x3 n − x4 n plane, (d) x5 n − x6 n
plane, (e) x1 n − x2 n − x3 n plane, and (f) x4 n − x5 n − x6 n plane.
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Figure 6 shows the time series plots of the two sequences
x1 n and x6 n generated by the map in (11), where n =
0, 1, 2,… , 5000, x1 0 = 2, x2 0 = 3, x3 0 = 1, x4 0 = 3,
x5 0 = 2, and x6 0 = 2.

Compared with Figure 3, the triangular wave is not
quite smooth and has a large number of sharp peaks. This
indicates that the output sequence is not aperiodic. From

Figures 6(a) and 6(c), it is obvious that the output
sequence is periodic.

3.3.1. Period Analysis. Owing to the finite precision effect in
the physical device, the chaotic behavior of the digital chaotic
system gradually degenerates. The output sequences of
the digital chaotic systems are all periodic. Therefore, a
large period is an important indicator. For precision length
N , the maximum period of the output sequence of the 6-
dimensional digital map is 26 N . The period of the output
sequence of the digital chaotic system (12) for various
values of N is shown in Table 3.

From Table 3, it can be seen that the period T of the
output sequence generated by (12) increases sharply as N
increases. Compared with other high-dimensional map
periods (T1 in [22] and T2 in [23]), T is significantly
larger and closer to the maximum period. The initial
values are selected as follows: x1 0 = 2, x2 0 = 3, x3 0 = 1,
x4 0 = 3, x5 0 = 2, and x6 0 = 2. With computation
precision 5, the period of the output sequence can reach
594621509 by using a 5-bit addition operation. It is efficient

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
x

1(
n

)

100 200 300 400 500 600 700 800 900 10000
n

(a)

0

50

100

150

200

250

300

350

Au
to

co
rr

 (t
)

200 400 600 800 1000 1200 1400 1600 1800 20000
t

(b)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x
6(
n

)

100 200 300 400 500 600 700 800 900 10000
n

(c)

−50

0

50

100

150

200

250

300

350

Au
to

co
rr

 (t
)

200 400 600 800 1000 1200 1400 1600 1800 20000
t

(d)

Figure 3: Time series plots of x1 n , x6 n , and their autocorrelation: (a) x1 n , (b) autocorrelation of x1 n , (c) x6 n , and (d) autocorrelation
of x6 n .
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6 Complexity



to generate a large period pseudo-random sequence with low
resource consumption.

3.3.2. Quantification Analysis. The N-bit fixed-point repre-
sentation of xi is xi = b xi bN−1 xi ⋯ b1 xi , bj xi ∈ 0, 1 ,
i = 1, 2, 3, 4, 5, 6, and j = 1, 2, 3,… ,N . The low position bits
of xi, i = 1, 2, 3, 4, 5, 6, are quantified as the output binary
sequences. Therefore, more than one bit can be generated
at a time. The throughput of the chaotic pseudo-random
sequence generator can be significantly improved. Currently,
SCMs (single-chip micyocos), ARMs (advanced RISC
machines), CPUs, and FPGAs can process several bytes in
one clock cycle, that is, 8 bits, 16 bits, 32 bits, and 64 bits.
Therefore, quantification with several output bits is beneficial
to information processing. However, it is unsafe to quantify
all bits of xi i = 1, 2, 3, 4, 5, 6 as the output binary
sequences. If the output sequences contain all the informa-
tion of xi i = 1, 2, 3, 4, 5, 6 , xi i = 1, 2, 3, 4, 5, 6 can be eas-
ily predicted and reconstructed without prior knowledge of
the initial seeds.

3.3.3. Quantity Analysis. The output sequences of (12) are
x1 n , x2 n , x3 n , x4 n , x5 n , and x6 n . x1 n , x2 n ,
x3 n , x4 n , and x5 n are similar. Therefore, two different
sequences can be generated by (12). A large number of new
sequences can be generated by operations between x6 n
and x1 n i = 1, 2, 3, 4, 5 . In (12), there are three types of
schemes for the output sequence:

(a) The output sequence generated by x1 n .

(b) The output sequence generated by x2 n .

(c) The output sequence generated by operations
between x6 n and xi n i = 1, 2, 3, 4, 5 , namely,
x6 n + xi n and x6 n ⊕ xi n .

3.3.4. Randomness Analysis. 100 sequences of length L =
2 × 106 bits were tested by the NIST SP800 test suite,
and the results are shown in Table 4. For comparison with
Table 1, N was set to 35.

The asterisk “∗” indicates that the corresponding test
failed. From Tables 4 and 5, the randomness of the low
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Figure 5: Phase diagram of the attractors: (a) x1 n − x2 n plane, N = 2; (b) x5 n − x6 n plane, N = 2; (c) x1 n − x2 n plane, N = 2; and
(d) x5 n − x6 n plane, N = 2.
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position bits is better than that of high position bits. The
randomness of the 8-bit outputs in x1 n and x2 n all
passed the NIST SP800 test suit. This is due to the fact that
the matrix A involves the division 2−1. In fixed-point
representations, when the divisor is a power of two, the
function of 2n is to shift n bits of the dividend to the left,
and the missing high position bits are filled by 0. Therefore,
the low position bits are disturbed by the high position bits.
As the missing high position bits are filled by 0, the

disturbance of the high position bits is not significant.
The test results for the output sequence generated by
operations between x6 n and xi n , i = 1, 2, 3, 4, 5, are
shown in Table 6.

By contrast, the randomness of the high position bits is
better. The randomness of the output sequence generated
by the addition operation “+” is better compared with that
by the xor operation “ ⊕ ,” There are 27 different sequences
in Table 6, and 17 different sequences passed the NIST
SP800 test suit.

3.3.5. Performance Analysis. With the same N and m, the
proposed pseudo-random sequence generator is faster than
others because there are at most two nonzero elements per
row in the parameter matrix A, which ensures higher parallel
performance in the hardware implementation. The resource
consumption is shown in Table 7.

The consumption of memory bits and multiplier 9-bit
elements is smaller, and the max frequency and throughput
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Figure 6: Time series plots of x1 n , x6 n , and their autocorrelation: (a) x1 n , (b) autocorrelation of x1 n , (c) x6 n , and (d) autocorrelation
of x6 n .

Table 3: Period analysis.

Precision T T1 T2 Tmax T/Tmax
2 986 126 504 4096 24.07%

3 50160 252 2016 262144 19.13%

4 15085157 504 8064 16777216 89.91%

5 594621509 1008 32256 1073741824 55.37%
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are higher compared with the corresponding values for
the Sawtooth chaotic map. The block diagram of the
6-dimensional digital chaotic map in FPGA is shown
in Figure 7.

3.3.6. Key Space Analysis. It is proved that the 2100 key space
is sufficiently large to resist attacks by existing computers
[25]. Therefore, the precision length N need only be greater
than 17 for (12). The key space changes with the precision

Table 4: Randomness test of x1 by NIST SP800.

Test
8 16 32

U value Ratio U value Ratio U value Ratio

Frequency 0.455937 100/96 0.181557 99/96 0.055361 99/96

Block frequency 0.129620 100/96 0.224821 99/96 0.012650 99/96

Cumulative sums 0.401199 100/96 0.262249 98/96 0.798139 98/96

Runs 0.020548 98/96 0.867692 96/96 0.897763 98/96

Longest run 0.911413 99/96 0.153763 99/96 0.816537 99/96

Rank 0.851383 99/96 0.401199 100/96 0.924076 100/96

FFT 0.004981 98/96 0.699313 99/96 0.657933 98/96

Nonoverlapping template 0.007694 99/96 0.014550 96/96 0.004981 98/96

Overlapping template 0.455937 98/96 0.779188 100/96 0.574903 100/96

Universal 0.383827 99/96 0.779188 100/96 0.867692 99/96

Approximate entropy 0.419021 100/96 0.366918 98/96 0.867692 99/96

Random excursions 0.03200 75/72 0.001254 75/71 0.076389 69/67

Random excursions variant 0.007234 75/72 0.069925 74/71 0.063958 71/67

Serial 0.334538 99/96 0.115387 95/96∗ 0.437274 98/96

Linear complexity 0.678686 96/96 0.534146 99/96 0.304126 95/96∗

The asterisk “∗” in Table 4 indicate that the corresponding test failed.

Table 5: Randomness test of x6 by NIST SP800.

Test
8 16 32

U value Ratio U value Ratio U value Ratio

Frequency 0.779188 98/96 0.897763 99/96 0.055361 99/96

Block frequency 0.213309 99/96 0.350485 100/96 0.012650 99/96

Cumulative sums 0.494392 99/96 0.739918 98/96 0.798139 98/96

Runs 0.045675 97/96 0.494392 99/96 0.897763 98/96

Longest run 0.419021 100/96 0.181557 99/96 0.816537 99/96

Rank 0.037566 98/96 0.366918 99/96 0.924076 100/96

FFT 0.964295 98/96 0.554420 98/96 0.657933 98/96

Nonoverlapping template 0.037566 98/96 0.019188 99/96 0.004981 98/96

Overlapping template 0.455937 99/96 0.334538 97/96 0.574903 100/96

Universal 0.224821 99/96 0.574903 100/96 0.867692 99/96

Approximate entropy 0.935716 97/96 0.437274 99/96 0.867692 99/96

Random excursions 0.063958 76/73 0.197677 72/70 0.076389 69/67

Random excursions variant 0.036868 74/73 0.000854 74/70 0.063958 70/67

Serial 0.798139 98/96 0.494392 98/96 0.437274 99/96

Linear complexity 0.494392 99/96 0.350485 99/196 0.304126 95/96∗

The asterisk “∗” in Table 5 indicate that the corresponding test failed.

Table 6: Randomness test of the output sequence generated by operations between x6 n and xi n i = 1, 2, 3, 4, 5 .

Bits x6 ⊕ x1 x6 ⊕ x2 x6 ⊕ x3 x6 ⊕ x4 x6 ⊕ x5 x6 + x2 x6 + x3 x6 + x4 x6 + x5
8 Failure Failure Failure Failure Success Success Failure Success Success

16 Failure Success Failure Failure Success Success Success Success Failure

32 Success Success Failure Success Failure Success Success Success Success
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length N and the number of variables m. The key space of
(11) is 2N ⋅m.

3.3.7. Hardware and Software Parameter Selection. All the
logic circuits in the hardware implementation used a single
Altera Cyclone II family chip. The statistical analysis of the
pseudo-random binary sequence was performed by the
NIST SP800 test suite version 2.1.2 software package. In
the parameter setting of NIST SP800, the block length
for the block frequency test was 128, the block length
for the nonoverlapping template test was 9, the block
length of the overlapping template test was 9, the block
length of the approximate rntropy test was 9, and the
block length of the linear complexity test was 500.

4. Conclusion

The periodicity of the output sequence of a high-dimensional
digital chaotic map is obviously larger than that of the output
sequence of a low-dimensional digital chaotic map, and its
randomness is also better. The proposed pseudo-random
sequence generator based on a high-dimensional discrete
chaotic map has parallel structure and lower hardware
resource consumption, and its output sequence has a consid-
erably large period. Moreover, the statistical performance
of the proposed pseudo-random sequence generator was
evaluated, and it was shown that it can pass all the tests
in NIST SP8000 test suit.
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