Skip to main content
Log in

A Quantum Informational Approach to the Problem of Time

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

Several novel approaches have been proposed to resolve the problem of time by relating it to change. We argue using quantum information theory that the Hamiltonian constraint in quantum gravity cannot probe change, so it cannot be used to obtain a meaningful notion of time. This is due to the absence of quantum Fisher information with respect to the quantum Hamiltonian of a time-reparametization invariant system. We also observe that the inability of this Hamiltonian to probe change can be related to its inability to discriminate between states of such a system. However, if the time-reparametization symmetry is spontaneously broken due to the formation of quantum cosmological time crystals, these problems can be resolved, and it is possible for time to emerge in quantum gravity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Arnowitt, R.L., Deser, S., Misner, C.W.: Dynamical structure and definition of energy in general relativity. Phys. Rev. 116, 1322–1330 (1959)

    Article  ADS  MathSciNet  Google Scholar 

  2. Henneaux, M., Troessaert, C.: BMS group at spatial infinity: the Hamiltonian (ADM) approach. JHEP 03, 147 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  3. Okolów, A.: ADM-like Hamiltonian formulation of gravity in the teleparallel geometry: derivation of constraint algebra. Gen. Rel. Grav. 46, 1636

    Article  ADS  MathSciNet  Google Scholar 

  4. Peldan, P.: Nonuniqueness of the ADM Hamiltonian for gravity. Class. Quant. Grav. 8, L223–L228 (1991)

    Article  ADS  MathSciNet  Google Scholar 

  5. Carlip, S.: Hiding the cosmological constant. Phys. Rev. Lett. 123(13), 131302 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  6. Halliwell, J.J.: Derivation of the Wheeler–De Witt equation from a path integral for minisuperspace models. Phys. Rev. D 38, 2468 (1988)

    Article  ADS  MathSciNet  Google Scholar 

  7. Bojowald, M., Hernandez, H.H., Kagan, M., Skirzewski, A.: Effective constraints of loop quantum gravity. Phys. Rev. D75, 064022 (2007)

  8. Smolin, L.: Unimodular loop quantum gravity and the problems of time. Phys. Rev. D 84, 044047 (2011)

    Article  ADS  Google Scholar 

  9. Boyarsky, A., Neronov, A., Tkachev, I.: Quantum cosmology of the brane universe. Phys. Rev. Lett. 95, 091301 (2005)

  10. Gusin, P.: Wheeler–De Witt equation for brane gravity. Phys. Rev. D 77, 066017 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  11. Rodrigo, E.: Solving the Wheeler–De-Witt equation for Kaluza–Klein Theories. Phys. Lett. 160B, 43–46 (1985)

    Article  ADS  MathSciNet  Google Scholar 

  12. Rodrigo, E.: The Wheeler–De Witt equation and quantum Kaluza–Klein theories. Phys. Lett. A 105, 196–198 (1984)

    Article  ADS  MathSciNet  Google Scholar 

  13. Hamber, H.W., Williams, R.M.: Discrete Wheeler–DeWitt equation. Phys. Rev. D 84, 104033 (2011)

  14. Baytaş, B., Bojowald, M.: Minisuperspace models of discrete systems. Phys. Rev. D 95(8), 086007 (2017)

  15. Zhang, X., Ma, Y.: Extension of loop quantum gravity to \(f(R)\) theories. Phys. Rev. Lett. 106, 171301 (2011)

    Article  ADS  Google Scholar 

  16. Alonso-Serrano, A., Bouhmadi-López, M., Martín-Moruno, P.: \(f(R)\) quantum cosmology: avoiding the Big Rip. Phys. Rev. D 98(10), 104004 (2018)

  17. Baratin, A., Oriti, D.: Group field theory with non-commutative metric variables. Phys. Rev. Lett. 105, 221302 (2010). arXiv:1002.4723 [hep-th]

    Article  ADS  MathSciNet  Google Scholar 

  18. Gielen, S., Oriti, D., Sindoni, L.: Cosmology from group field theory formalism for quantum gravity. Phys. Rev. Lett. 111(3), 031301 (2013)

  19. Anderson, E.: Problem of time in quantum gravity. Ann. Phys. 524, 757–786 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  20. Gambini, R., Porto, R.A., Pullin, J., Torterolo, S.: Conditional probabilities with Dirac observables and the problem of time in quantum gravity. Phys. Rev. D 79, 041501 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  21. Di Tucci, A., Lehners, J.-L., Sberna, L.: No-boundary prescriptions in Lorentzian quantum cosmology. Phys. Rev. D 100(12), 123543 (2019)

  22. Carlini, A., Greensite, J.: Fundamental constants and the problem of time. Phys. Rev. D 52, 936–960 (1995)

  23. Wald, R.M.: A Proposal for solving the ‘problem of time’ in canonical quantum gravity. Phys. Rev. D 48, R2377–R2381 (1993)

  24. Husain, V., Pawlowski, T.: Time and a physical Hamiltonian for quantum gravity. Phys. Rev. Lett. 108, 141301 (2012)

    Article  ADS  Google Scholar 

  25. Marolf, D.: Solving the problem of time in mini-superspace: measurement of Dirac observables. Phys. Rev. D 79, 084016 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  26. Husain, V., Qureshi, B.: Ground state of the universe and the cosmological constant. A nonperturbative analysis. Phys. Rev. Lett. 116(6), 061302 (2016)

  27. Rovelli, C., Smolin, L.: The physical hamiltonian in nonperturbative quantum gravity. Phys. Rev. Lett. 72, 446–449 (1994)

  28. Ohkuwa, Y., Ezawa, Y.: Third quantization of \(f(R)\)-type gravity II - General \(f(R)\) case. Class. Quant. Grav. 30, 235015 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  29. Campanelli, L.: Creation of universes from the third-quantized vacuum. Phys. Rev. D 102(4), 043514 (2020)

  30. Faizal, M.: Fourth Quantization. Phys. Lett. B 727, 536–540 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  31. Artigas, D., Mielczarek, J., Rovelli, C.: A minisuperspace model of compact phase space gravity. Phys. Rev. D 100(4), 043533 (2019)

  32. Janssen, O., Halliwell, J.J., Hertog, T.: No-boundary proposal in biaxial Bianchi IX minisuperspace. Phys. Rev. D 99(12), 123531 (2019)

  33. Djordjevic, G.S., Nesic, L., Radovancevic, D.: Minisuperspace FLRW oscillator cosmological model and generalized uncertainty principle. Class. Quant. Grav. 35(19), 195002 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  34. Chagoya, J., Sabido, M.: Anisotropic invariance in minisuperspace models. Class. Quant. Grav. 33(12), 125023 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  35. Braunstein, S.L., Caves, C.M.: Statistical distance and the geometry of quantum states. Phys. Rev. Lett. 72, 3439–3443 (1994)

    Article  ADS  MathSciNet  Google Scholar 

  36. Tóth, G., Petz, D.: Extremal properties of the variance and the quantum Fisher information. Phys. Rev. A 87(3), 032324 (2013)

    Article  ADS  Google Scholar 

  37. Paris, M.G.: Quantum estimation for quantum technology. Int. J. Quant. Inf. 7(Supp 01), 125–137 (2009)

    Article  Google Scholar 

  38. Genoni, M.G., Giorda, P., Paris, M.G.: Optimal estimation of entanglement. Phys. Rev. A 78(3), 032303 (2008)

    Article  ADS  Google Scholar 

  39. Cook, R.L., Martin, P.J., Geremia, J.M.: Optical coherent state discrimination using a closed-loop quantum measurement. Nature 446(7137), 774–777 (2007)

    Article  ADS  Google Scholar 

  40. Bae, J., Kwek, L.-C.: Quantum state discrimination and its applications. J. Phys. A 48(8), 083001 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  41. Becerra, F., Fan, J., Migdall, A.: Implementation of generalized quantum measurements for unambiguous discrimination of multiple non-orthogonal coherent states. Nat. Commun. 4(1), 1–6 (2013)

    Article  Google Scholar 

  42. Leverrier, A., Grangier, P.: Unconditional security proof of long-distance continuous-variable quantum key distribution with discrete modulation. Phys. Rev. Lett. 102(18), 180504 (2009)

    Article  ADS  Google Scholar 

  43. Han, R., Leuchs, G., Bergou, J.A.: Helstrom measurement: a nondestructive implementation. Phys. Rev. A 101(3), 032103 (2020)

    Article  ADS  Google Scholar 

  44. Flatt, K., Barnett, S.M., Croke, S.: Multiple-copy state discrimination of noisy qubits. Phys. Rev. A 100(3), 032122 (2019)

    Article  ADS  Google Scholar 

  45. Rovelli, C.: What Is observable in classical and quantum gravity? Class. Quant. Grav. 8, 297–316 (1991)

    Article  ADS  MathSciNet  Google Scholar 

  46. Wilczek, F.: Quantum time crystals. Phys. Rev. Lett. 109, 160401 (2012)

    Article  ADS  Google Scholar 

  47. Faizal, M., Khalil, M.M., Das, S.: Time crystals from minimum time uncertainty. Eur. Phys. J. C 76(1), 30 (2016)

  48. Khorasani, S.: Time operator in relativistic quantum mechanics. Commun. Theor. Phys. 68(1), 35 (2017)

  49. Faizal, M., Ali, A.F., Das, S.: Discreteness of time in the evolution of the universe. Int. J. Mod. Phys. A 32(10), 1750049 (2017)

  50. Garattini, R., Faizal, M.: Cosmological constant from a deformation of the Wheeler–DeWitt equation. Nucl. Phys. B 905, 313–326 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  51. Watanabe, H., Oshikawa, M.: Absence of quantum time crystals. Phys. Rev. Lett. 114(25), 251603 (2015)

  52. Arkani-Hamed, N., Dimopoulos, S., Dvali, G.R.: The Hierarchy problem and new dimensions at a millimeter. Phys. Lett. B429, 263–272 (1998)

  53. Giudice, G.F., Rattazzi, R., Wells, J.D.: Quantum gravity and extra dimensions at high-energy colliders. Nucl. Phys. B 544, 3–38 (1999)

  54. Dvali, G.R., Tye, S.H.H.: Brane inflation. Phys. Lett. B 450, 72–82 (1999)

  55. Hewett, J.L.: Indirect collider signals for extra dimensions. Phys. Rev. Lett. 82, 4765–4768 (1999)

  56. Balasubramanian, V., Kar, A., Ross, S.F., Ugajin, T.: Spin structures and baby universes. JHEP 09, 192 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  57. Marolf, D., Maxfield, H.: Transcending the ensemble: baby universes, spacetime wormholes, and the order and disorder of black hole information. JHEP 08, 044 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  58. Kozin, V.K., Kyriienko, O.: Quantum time crystals from Hamiltonians with long-range interactions. Phys. Rev. Lett. 123(21), 210602 (2019)

  59. Gassner, S., Cafaro, C., Capozziello, S.: Transition probabilities in generalized quantum search Hamiltonian evolutions. Int. J. Geom. Methods Mod. Phys. 17(01), 2050006 (2019)

Download references

Acknowledgements

S.B. was supported by the Estonian Research Council grants PRG356 “Gauge Gravity” and by the European Regional Development Fund through the Center of Excellence TK133 “The Dark Side of the Universe”. J.Q.Q. acknowledges the nancial support of the Ramsay Fellowship. S.B. also acknowledges JSPS Postdoctoral Fellowships for Research in Japan and KAKENHI Grant-in-Aid for Scientific Research No. JP21F21789.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mir Faizal.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wani, S.S., Quach, J.Q., Faizal, M. et al. A Quantum Informational Approach to the Problem of Time. Found Phys 52, 25 (2022). https://doi.org/10.1007/s10701-022-00540-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10701-022-00540-6

Keywords

Navigation