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The consensus problem is presented for the switched multiagent system (MAS), where the MAS is switched between continuous-
and discrete-time systems with relative state constraints. With some standard assumptions, we obtain the fact that the switched
MAS with relative state constraints can achieve consensus under both fixed undirected graphs and switching undirected graphs.
Furthermore, based on the absolute average value of initial states, we propose sufficient conditions for consensus of the switched
MAS.The challenge of this study is that relative state constraints are considered, whichwillmake the consensus problemmuchmore
complex. One of the main contributions is that, for the switched MAS with relative state constraints, we explore the solvability of
the consensus problem. Finally, we present two simulation examples to show the effectiveness of the results.

1. Introduction

Inspired by the works of [1, 2], the attention to the consensus
problem of the MAS has grown in the research community.
The definition of consensus implies that all the agents shall
converge to a common value using a distributed interaction
among these agents [3, 4]. The practical applications of
consensus are diverse and can be found in many fields, such
as biology, physics, control systems, and robotics [5–11]. The
consensus problem was first discussed for first order [12–
15] and then generalized to second order [16, 17], general
linear dynamics [18, 19], and nonlinear dynamics [20, 21] in
communication networks and sensor networks.

In applications, many dynamical systems interact with
the environment or have physical limitations. As such, they
are often affected by saturation constraints that can disrupt
consensus. Therefore, the consensus problem of the MAS
subject to constraints is practically important. For example,
the consensus subject to input constraints was considered
in [22–27], while, for the consensus with relative state
constraints, only a few results were found [28, 29]. It has been
known that the consensus subject to state constraints cannot
be achieved due to saturations, such as the consensus with
state/output saturation in [30].

It is observed that the above-mentioned MAS is focused
on a single type of systems, that is, single continuous-time
MAS or single discrete-time MAS. In fact, a large number
of systems can be found where there exist both continuous-
and discrete-time MASs simultaneously. More recently, [31]
studied the stability problem of single switched systems,
while the consensus of a switched MAS was presented in
[32, 33]. Furthermore, there are other references concerning
the switched MAS. For the switched MAS, [34] studied
the finite-time control problem, while the containment con-
sensus problem was presented in [35]. However, saturation
constraints are not considered in the stability or consensus
analysis of switched systems [31, 32].

Motivated by the work discussed above, we study the
consensus of the switched MAS under the fixed undirected
graph and the switching undirected graph. Firstly, by using
some standard assumptions, the consensus shall be reached
for the switched MAS under fixed undirected graph with the
assumption that the absolute value of initial states is bounded.
We next extend the consensus results to switched undirected
graphs with a similar condition of initial states of agents. The
main contributions are stated as follows: Firstly, compared
with existing results [32], the challenge of this study is
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that state constraints are considered in the switched MAS,
which increases the complexity. Secondly, the solvability of
consensus problem is explored for the switched MAS with
state constraints.

In what follows, we formulate the consensus problem for
the switched MAS in Section 2, while the main results are
illustrated in Section 3. Section 4 provides two examples to
show the effectiveness, and Section 5 concludes the results of
this paper.

Notation.The sign(𝑦) equals to +1 when 𝑦 ≥ 0 and −1 when𝑦 < 0. Let diag{𝜔1, 𝜔2, . . . , 𝜔𝑛} be a diagonal matrix, and its
entries are 𝜔𝑖, 𝑖 = 1, 2, . . . , 𝑛. 𝑃 > 0 implies a positive definite
matrix.

2. Problem Formulation

In the beginning, the graph theory will be introduced. A
graph G can be defined as a three-tuple (V,E,A), whereV
is the node set as V = {V1, V2, . . . , V𝑁}, E ⊆ V × V is the
edge set, and A = [𝑎𝑖𝑗] ∈ R𝑁×𝑁, where 𝑎𝑖𝑗 is the underlying
weighted adjacency matrix defined as 𝑎𝑖𝑗 > 0 if (𝑖, 𝑗) ∈ E and𝑎𝑖𝑗 = 0 otherwise. The set of neighbors of node V𝑖 is denoted
byN𝑖 = {V𝑖 ∈ V : (V𝑖, V𝑗) ∈ E}. The Laplacian matrix of the
graph is defined as 𝐿 = D − A, where D = [𝑑𝑖𝑗] ∈ R𝑁×𝑁

is a diagonal matrix, with 𝑑𝑖𝑖 = ∑𝑗∈V 𝑎𝑖𝑗. In this paper, the
undirected and connected graphGwill be considered, where
its 𝐿 is positive semidefinite and its eigenvalues are presented
by 0 = 𝜆1 < 𝜆2 ≤ ⋅ ⋅ ⋅ ≤ 𝜆𝑁.

Inwhat follows, we consider the switchedMAS,which are
given as follows:

�̇�𝑖 (𝑡) = 𝑢𝑖 (𝑡) , 𝑖 = 1, 2, . . . , 𝑁, 𝑡 ∈ R
+, (1)

for the continuous-time systems, and
𝑥𝑖 (𝑡 + 1) = 𝑥𝑖 (𝑡) + 𝑢𝑖 (𝑡) , 𝑖 = 1, 2, . . . , 𝑁, 𝑡 ∈ N, (2)

for the discrete-time systems, where 𝑥𝑖(𝑡) ∈ R is the state and𝑢𝑖(𝑡) ∈ R in the control input. To achieve the consensus of
the above switchedMAS, the following control protocol from
[32] has been proposed:
𝑢𝑖 (𝑡)
= {{{{{{{

∑
𝑗∈V

𝑎𝑖𝑗 (𝑡) (𝑥𝑗 (𝑡) − 𝑥𝑖 (𝑡)) , 𝑖 = 1, 2, . . . , 𝑁, 𝑡 ∈ R+

ℎ∑
𝑗∈V

𝑎𝑖𝑗 (𝑡) (𝑥𝑗 (𝑡) − 𝑥𝑖 (𝑡)) , 𝑖 = 1, 2, . . . , 𝑁, 𝑡 ∈ N,
(3)

where ℎ > 0 is the sampling period. However, in practice,
the measurement part may have bounded nonlinearities or
saturation constraints due to sensor limitations. Therefore,
we will consider the consensus of the switched MAS with
relative state constraints. That is, for each 𝑖 = 1, 2, . . . , 𝑁, the
following control protocol will be considered:
𝑢𝑖 (𝑡)
= {{{{{{{

∑
𝑗∈V

𝑎𝑖𝑗 (𝑡) (sat𝑀 (𝑥𝑗 (𝑡)) − sat𝑀 (𝑥𝑖 (𝑡))) , 𝑡 ∈ R+

ℎ∑
𝑗∈V

𝑎𝑖𝑗 (𝑡) (sat𝑀 (𝑥𝑗 (𝑡)) − sat𝑀 (𝑥𝑖 (𝑡))) , 𝑡 ∈ N.
(4)

Then, for each 𝑖, the closed-loop switched MASs with state
constraints are given as

�̇�𝑖 (𝑡) = ∑
𝑗∈V

𝑎𝑖𝑗 (sat𝑀 (𝑥𝑗 (𝑡)) − sat𝑀 (𝑥𝑖 (𝑡))) ,
𝑡 ∈ R
+,

(5)

𝑥𝑖 (𝑡 + 1) = 𝑥𝑖 (𝑡)
+ ℎ∑
𝑗∈V

𝑎𝑖𝑗 (sat𝑀 (𝑥𝑗 (𝑡)) − sat𝑀 (𝑥𝑖 (𝑡))) ,
𝑡 ∈ N,

(6)

where the function sat𝑀(⋅) is described as a saturated charac-
teristic given by

sat𝑀 (𝑥) = {{{
𝑥, if |𝑥| ≤ 𝑀
𝑀sign (𝑥) , if |𝑥| > 𝑀, (7)

where 𝑀 > 0 is the saturation limit. At any time instant,
the activated subsystem can be chosen by a switching rule,
where we consider the arbitrary switching rule in this paper.
For convenience, let 𝑖 = 1, 2, . . . , 𝑁 be 𝑖 ∈ I𝑁.

Definition 1. Consider 𝑁 agents, and the network of these
agents is given by a graphG. The switched MAS with (5) and
(6) is said to achieve the consensus problem, if

lim
𝑡→∞

𝑥𝑖 (𝑡) − 𝑥𝑗 (𝑡) = 0, (8)

for all initial conditions 𝑥𝑖(0) ∈ R, 𝑖 ∈ I𝑁.

It is worth pointing out that the switched MAS with (5)
and (6) cannot achieve consensus directly. Therefore, in this
paper, we will find the conditions, with which the consensus
of the switched MAS with state constraints can be reached.

3. Main Results

This section is to derive some conditions for consensus of the
switched MAS with fixed and switching undirected graphs.

In what follows, consensus of the switched MAS on fixed
undirected graphs is considered; that is, G(𝑡) = G for any 𝑡.
We firstly introduce a lemma, which is used in the following
sections.

Lemma 2. Assume that graphG is connected. Consider agent
(5) or (6); the average state value (1/𝑁)∑𝑁𝑖=1 𝑥𝑖(𝑡) is invariant.
Proof. Let 𝜉(𝑡) = (1/𝑁)∑𝑁𝑖=1 𝑥𝑖(𝑡). For the continuous-time
subsystems (5), it is proved that ̇𝜉(𝑡) = (1/𝑁)1𝑇𝑁𝐿sat𝑀(𝑥) = 0.
Therefore, 𝜉(𝑡) is invariant. For the discrete-time subsystems
(6), we can obtain the fact that 𝜉(𝑡 + 1) = (1/𝑁)∑𝑁𝑖=1 𝑥𝑖(𝑡) −(1/𝑁)ℎ1𝑇𝑁𝐿sat𝑀(𝑥(𝑡)) = 𝜉(𝑡), which implies that 𝜉(𝑡) is
invariant. This completes the proof.

According to Lemma 2, one of the main results is given as
follows.
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Theorem 3. Assume that graph G is connected and the
condition is 0 < ℎ < 1/max𝑖∈I𝑁{∑𝑗∈V 𝑎𝑖𝑗}. Then the switched
MAS with (5) and (6) can achieve consensus with arbitrary
switching signals if


1𝑁
𝑁∑
𝑖=1

𝑥𝑖 (0)
 ≤ 𝑀. (9)

Furthermore, the final consensus state is lim𝑡→∞𝑥𝑖(𝑡) =(1/𝑁)∑𝑁𝑖=1 𝑥𝑖(0).
Proof. According to Lemma 2, we have the fact that 𝜉(𝑡) =(1/𝑁)∑𝑁𝑖=1 𝑥𝑖(𝑡) is invariant, which implies the final consen-
sus state is 𝜉 = (1/𝑁)∑𝑁𝑖=1 𝑥𝑖(0).

Consider a Lyapunov function

𝑉 (𝑡) = 𝑁∑
𝑖=1

𝑥2𝑖 (𝑡) ≥ 0, (10)

for (5) and (6). It is clear that 𝑉(𝑡) = 0 only when 𝑥𝑖(𝑡) =0, 𝑖 ∈ I𝑁. That is, 𝑉(𝑡) = 0 if and only if 𝑥𝑖(𝑡) = 𝑥𝑗(𝑡).
For a time period 𝑡𝑐, if system (5) is switched on, we have

�̇� (𝑡) = 2 𝑁∑
𝑖=1

𝑥𝑖 (𝑡) �̇�𝑖 (𝑡) = 2 𝑁∑
𝑖=1

𝑥𝑖 (𝑡) ∑
𝑗∈V

𝑎𝑖𝑗𝑥𝑖 (𝑡)
⋅ (sat𝑀 (𝑥𝑗 (𝑡)) − sat𝑀 (𝑥𝑖 (𝑡)))
= − 𝑁∑
𝑖=1

∑
𝑗∈V

𝑎𝑖𝑗 (𝑥𝑖 (𝑡) − 𝑥𝑗 (𝑡))
⋅ (sat𝑀 (𝑥𝑖 (𝑡)) − sat𝑀 (𝑥𝑗 (𝑡))) ≤ 0,

(11)

where we have used ∑𝑁𝑖=1∑𝑗∈V 𝑎𝑖𝑗𝜀𝑖(𝜁𝑖 − 𝜁𝑗) =(1/2)∑𝑁𝑖=1∑𝑗∈V 𝑎𝑖𝑗(𝜀𝑖 − 𝜀𝑗)(𝜁𝑖 − 𝜁𝑗) for any 𝜀𝑖, 𝜁𝑖 ∈ R, 𝑖 =1, 2, . . . , 𝑁, under the undirected and connected graph. Since
we know sign(sat𝑀(𝑥𝑖(𝑡))− sat𝑀(𝑥𝑗(𝑡))) = sign(𝑥𝑖(𝑡)−𝑥𝑗(𝑡)),
there exists some constant 𝜖1 > 0 such that 1 ≥ (sat𝑀(𝑥𝑖(𝑡)) −
sat𝑀(𝑥𝑗(𝑡)))/(𝑥𝑖(𝑡) − 𝑥𝑗(𝑡)) ≥ 𝜖1. Then, we have

�̇� (𝑡) = − 𝑁∑
𝑖=1

∑
𝑗∈V

𝑎𝑖𝑗 (𝑥𝑖 (𝑡) − 𝑥𝑗 (𝑡))
⋅ (sat𝑀 (𝑥𝑖 (𝑡)) − sat𝑀 (𝑥𝑗 (𝑡)))
≤ −𝜖1 𝑁∑

𝑖=1

∑
𝑗∈V

𝑎𝑖𝑗 (𝑥𝑖 (𝑡) − 𝑥𝑗 (𝑡))2 = −𝜖1𝜆2𝑉1 (𝑡) ,
(12)

where 𝜆2 > 0.

For a period 𝑡𝑑, if the discrete-time subsystem (6) is
activated, the time shift of 𝑉(𝑡) is

△ 𝑉 (𝑡) = 𝑁∑
𝑖=1

𝑥2𝑖 (𝑡 + 1) − 𝑁∑
𝑖=1

𝑥2𝑖 (𝑡) = − 𝑁∑
𝑖=1

(2𝑥𝑖 (𝑡)

− ℎ∑
𝑗∈V

𝑎𝑖𝑗 (sat𝑀 (𝑥𝑖 (𝑡)) − sat𝑀 (𝑥𝑗 (𝑡))))
× ℎ∑
𝑗∈V

𝑎𝑖𝑗 (sat𝑀 (𝑥𝑖 (𝑡)) − sat𝑀 (𝑥𝑗 (𝑡)))

= −ℎ 𝑁∑
𝑖=1

∑
𝑗∈V

𝑎𝑖𝑗 (𝑥𝑖 (𝑡) − 𝑥𝑗 (𝑡))
⋅ (sat𝑀 (𝑥𝑖 (𝑡)) − sat𝑀 (𝑥𝑗 (𝑡)))
+ ℎ2 𝑁∑
𝑖=1

(∑
𝑗∈V

𝑎𝑖𝑗 (sat𝑀 (𝑥𝑗 (𝑡)) − sat𝑀 (𝑥𝑖 (𝑡))))
2

.

(13)

According to the Cauchy-Schwarz inequality, we have

△ 𝑉 (𝑡) = −ℎ 𝑁∑
𝑖=1

∑
𝑗∈V

𝑎𝑖𝑗 (𝑥𝑖 (𝑡) − 𝑥𝑗 (𝑡))
⋅ (sat𝑀 (𝑥𝑖 (𝑡)) − sat𝑀 (𝑥𝑗 (𝑡)))
+ ℎ2 𝑁∑
𝑖=1

(∑
𝑗∈V

√𝑎𝑖𝑗√𝑎𝑖𝑗 (sat𝑀 (𝑥𝑗 (𝑡)) − sat𝑀 (𝑥𝑖 (𝑡))))
2

≤ −ℎ 𝑁∑
𝑖=1

∑
𝑗∈V

𝑎𝑖𝑗 (𝑥𝑖 (𝑡) − 𝑥𝑗 (𝑡))
⋅ (sat𝑀 (𝑥𝑖 (𝑡)) − sat𝑀 (𝑥𝑗 (𝑡)))
+ ℎ2 𝑁∑
𝑖=1

∑
𝑗∈V

𝑎𝑖𝑗∑
𝑗∈V

𝑎𝑖𝑗 (sat𝑀 (𝑥𝑗 (𝑡)) − sat𝑀 (𝑥𝑖 (𝑡)))2

= −ℎ 𝑁∑
𝑖=1

∑
𝑗∈V

𝑎𝑖𝑗 (sat𝑀 (𝑥𝑖 (𝑡)) − sat𝑀 (𝑥𝑗 (𝑡)))

× ((𝑥𝑖 (𝑡) − 𝑥𝑗 (𝑡))

− ℎ∑
𝑗∈V

𝑎𝑖𝑗 (sat𝑀 (𝑥𝑖 (𝑡)) − sat𝑀 (𝑥𝑗 (𝑡)))) ≤ 0,

(14)

where the fact is that the sign of (𝑥𝑖(𝑡) − 𝑥𝑗(𝑡)) −ℎ∑𝑗∈V 𝑎𝑖𝑗(sat𝑀(𝑥𝑖(𝑡)) − sat𝑀(𝑥𝑗(𝑡))) is equivalent to the sign
of 𝑥𝑖(𝑡) − 𝑥𝑗(𝑡), since 0 < ℎ < 1/max𝑖∈I𝑁{∑𝑗∈V 𝑎𝑖𝑗}. Fur-
thermore, we define (𝑥𝑖(𝑡) − 𝑥𝑗(𝑡)) − ℎ∑𝑗∈V 𝑎𝑖𝑗(sat𝑀(𝑥𝑖(𝑡)) −
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sat𝑀(𝑥𝑗(𝑡))) = 𝜖2(𝑥𝑖(𝑡) − 𝑥𝑗(𝑡)), where 0 < 𝜖2 < 1. Then, we
have

△ 𝑉 (𝑡) ≤ −𝜖2ℎ 𝑁∑
𝑖=1

∑
𝑗∈V

𝑎𝑖𝑗 (𝑥𝑖 (𝑡) − 𝑥𝑗 (𝑡))
⋅ (sat𝑀 (𝑥𝑖 (𝑡)) − sat𝑀 (𝑥𝑗 (𝑡))) ≤ −𝜖1𝜖2ℎ𝜆2𝑉 (𝑡) .

(15)

If we give a time period 𝑡 = 𝑡𝑐 + 𝑡𝑑, where 𝑡𝑐 is the time for the
continuous-time system (5) and 𝑡𝑑 is the time for the discrete-
time system (6), then we have

𝑉 (𝑡) ≤ 𝑒−𝜖1𝜆2𝑡𝑐 (1 − 𝜖1𝜖2ℎ𝜆2)𝑡𝑑 𝑉 (0)
= 𝑒−𝜖1𝜆2𝑡𝑐𝑒−𝑡𝑑ln(1/(1−𝜖1𝜖2ℎ𝜆2))𝑉 (0) ≤ 𝑒−2𝛾𝑡𝑉 (0) , (16)

where 𝛾 = min{𝜖1𝜆2/2, ln(1/(1 − 𝜖1𝜖2ℎ𝜆2))/2}. It follows
that |𝑥𝑖(𝑡)| ≤ 𝑒−𝛾𝑡𝑥𝑖(0), 𝑖 ∈ I𝑁. Furthermore, as for|(1/𝑁)∑𝑁𝑖=1 𝑥𝑖(0)| ≤ 𝑀, we know from (11) and (14) that�̇�(𝑡) = 0 or △𝑉(𝑡) = 0 only if 𝑥𝑖(𝑡) = 𝑥𝑗(𝑡) or
sat𝑀(𝑥𝑖(𝑡)) = sat𝑀(𝑥𝑗(𝑡)), 𝑖, 𝑗 ∈ I𝑁. Thus, the switched
MAS with (5) and (6) can achieve consensus if sat𝑀(𝑥𝑖(𝑡)) =
sat𝑀(𝑥𝑗(𝑡)), 𝑖, 𝑗 ∈ I𝑁, can make 𝑥𝑖(𝑡) = 𝑥𝑗(𝑡), 𝑖, 𝑗 ∈ I𝑁.
Note that sat𝑀(𝑥𝑖(𝑡)) = sat𝑀(𝑥𝑗(𝑡)), 𝑖, 𝑗 ∈ I𝑁, only when𝑥𝑖(𝑡) ≥ 𝑀 or𝑥𝑖(𝑡) ≤ −𝑀 and |𝑥𝑖(𝑡)| ≤ 𝑀with𝑥1(𝑡) = 𝑥2(𝑡) =⋅ ⋅ ⋅ = 𝑥𝑁(𝑡). Since |(1/𝑁)∑𝑁𝑖=1 𝑥𝑖(0)| ≤ 𝑀, then the condition
that 𝑥𝑖(𝑡) ≥ 𝑀 or 𝑥𝑖(𝑡) ≤ −𝑀 is not satisfied. Therefore,
sat𝑀(𝑥𝑖(𝑡)) = sat𝑀(𝑥𝑗(𝑡)) only when 𝑥𝑖(𝑡) = 𝑥𝑗(𝑡), 𝑖, 𝑗 ∈ I𝑁
is satisfied. This completes the proof.

Remark 4. With the Gershgorin disk theorem, the maximal
eigenvalues of 𝐿 are satisfied: 𝜆𝑁 ≤ 2max𝑖∈I𝑁{𝑑𝑖𝑖} =2max𝑖∈I𝑁{∑𝑗∈V 𝑎𝑖𝑗}. Thus, the sampling period can be
replaced by 0 < ℎ < 2/𝜆𝑁.
Remark 5. Note that if 𝑡𝑐 = 0 (or 𝑡𝑑 = 0), the consensus of
the switched MAS becomes the standard consensus of single
discrete-time (or continuous-time) MAS, and it is easy to
show that the obtained setup (9) is correct.

In what follows, we consider the switched MAS with (5)
and (6) on switched and undirected graphs.That is, the graph
G(𝑡) will be randomly switched among 𝑠 distinct and finite
topologies G(𝑡) ∈ {G1,G2, . . . ,G𝑠}, and G(𝑡) = G𝑘 if and
only if the random switching signal 𝜎(𝑡) = 𝑘 ∈ {1, 2, . . . , 𝑠}.
Then, the following results can be obtained.

Theorem 6. Assume graphG𝑘 is undirected and connected for
each G𝑘 ∈ {G1,G2, . . . ,G𝑠} and the condition is 0 < ℎ <
min𝑘∈{1,2,...,𝑠}(2/𝜆𝑁(𝐿𝑘)), where the Laplacian matrix of graph
G𝑘 is 𝐿𝑘. Then, the switched MAS with (5) and (6) can solve
the consensus problem if


1𝑁
𝑁∑
𝑖=1

𝑥𝑖 (0)
 ≤ 𝑀. (17)

Furthermore, the final consensus state is lim𝑡→∞𝑥𝑖(𝑡) =(1/𝑁)∑𝑁𝑖=1 𝑥𝑖(0).

Proof. Similar toTheorem 3, it is proved that the average of all
agents’ states (1/𝑁)∑𝑁𝑖=1 𝑥𝑖(𝑡) is invariant, which implies the
final consensus state is 𝜉 = (1/𝑁)∑𝑁𝑖=1 𝑥𝑖(0) if the consensus
is reached.

In view of the proof of Theorem 3, for a time period 𝑡𝑐, if
system (5) is switched on, we have

�̇� (𝑡) = − 𝑁∑
𝑖=1

∑
𝑗∈V

𝑎𝑖𝑗 (𝑡) (𝑥𝑖 (𝑡) − 𝑥𝑗 (𝑡))
⋅ (sat𝑀 (𝑥𝑖 (𝑡)) − sat𝑀 (𝑥𝑗 (𝑡))) ≤ −𝜖1𝜆2 (𝐿 (𝑡))
⋅ 𝑉 (𝑡) ≤ −𝜖1𝜃𝑉 (𝑡) ,

(18)

where 𝜃 = min𝑘∈{1,2,...,𝑠}𝜆2(𝐿𝑘) and 𝜖1 has been defined before.
For a time period 𝑡𝑑, if the discrete-time system (6) is

switched on, the time shift of 𝑉(𝑡) is shown as

△ 𝑉(𝑡)
≤ −ℎ 𝑁∑
𝑖=1

∑
𝑗∈V

𝑎𝑖𝑗 (𝑡) (sat𝑀 (𝑥𝑖 (𝑡)) − sat𝑀 (𝑥𝑗 (𝑡)))

× ((𝑥𝑖 (𝑡) − 𝑥𝑗 (𝑡))

− ℎ∑
𝑗∈V

𝑎𝑖𝑗 (𝑡) (sat𝑀 (𝑥𝑖 (𝑡)) − sat𝑀 (𝑥𝑗 (𝑡)))) ≤ 0,

(19)

since 0 < ℎ < min𝑘∈{1,2,...,𝑠}(2/𝜆𝑁(𝐿𝑘)). It is clear that𝑉(𝑡) = 0
if and only if 𝑥𝑖(𝑡) = 𝑥𝑗(𝑡). Furthermore, we have

△ 𝑉 (𝑡) ≤ −ℎ 𝑁∑
𝑖=1

∑
𝑗∈V

𝑎𝑖𝑗 (𝑡)

⋅ (sat𝑀 (𝑥𝑖 (𝑡)) − sat𝑀 (𝑥𝑗 (𝑡))) × ((𝑥𝑖 (𝑡)
− 𝑥𝑗 (𝑡)) − ℎ∑

𝑗∈V

𝑎𝑖𝑗 (𝑡)

⋅ (sat𝑀 (𝑥𝑖 (𝑡)) − sat𝑀 (𝑥𝑗 (𝑡))))

≤ −𝜖2ℎ 𝑁∑
𝑖=1

∑
𝑗∈V

𝑎𝑖𝑗 (𝑡) (𝑥𝑖 (𝑡) − 𝑥𝑗 (𝑡))
⋅ (sat𝑀 (𝑥𝑖 (𝑡)) − sat𝑀 (𝑥𝑗 (𝑡))) ≤ −𝜖1𝜖2ℎ𝜃𝑉 (𝑡) ,

(20)

where 𝜖2 has been defined in Theorem 3. For any 𝑡 = 𝑡𝑐 + 𝑡𝑑,
we have

𝑉 (𝑡) ≤ 𝑒−𝜖1𝜃𝑡𝑐 (1 − 𝜖1𝜖2ℎ𝜃)𝑡𝑑 𝑉 (0)
= 𝑒−𝜖1𝜃𝑡𝑐𝑒−𝑡𝑑ln(1/(1−𝜖1𝜖2ℎ𝜃))𝑉 (0) ≤ 𝑒−2𝜂𝑡𝑉 (0) , (21)
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Figure 1: The structure of switching topology with 3 fixed and undirected graphs.
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(a) |(1/5)∑5𝑖=1 𝑥𝑖(0)| = 0.4
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(b) |(1/5)∑5𝑖=1 𝑥𝑖(0)| = 4.8

Figure 2: Consensus of switched systems on undirected graph with fixed topologies.

where 𝜂 = min{𝜖1𝜃/2, ln(1/(1 − 𝜖1𝜖2ℎ𝜃))/2}. It follows that|𝑥𝑖(𝑡)| ≤ 𝑒−𝜂𝑡𝑥𝑖(0), 𝑖 ∈ I𝑁. Then, similar to the proof of
Theorem 3, since |(1/𝑁)∑𝑁𝑖=1 𝑥𝑖(0)| ≤ 𝑀, we have �̇�(𝑡) = 0
or △𝑉(𝑡) = 0 only when 𝑥𝑖(𝑡) = 𝑥𝑗(𝑡), 𝑖, 𝑗 ∈ I𝑁. Thus, the
switchedMAS with (5) and (6) can achieve consensus, which
completes the proof.

4. Simulations

This section will present two examples to illustrate the results
on the fixed and switching undirected graphs.

Example 1. Let the fixed undirected graph be given as
Figure 1(a). According to Theorem 3, the fact that sampling
period condition is 0 < ℎ < 0.4463 can be calculated.
Let ℎ = 0.3 and 𝑀 = 2 in this example. Figure 2
shows the law of the switched MAS and the trajectories of
agents under different initial conditions. In Figure 2, the
switching signals of switched systems are presented by 1
and 0, where the continuous-time systems are presented by
the signal 1 and the discrete-time systems are presented by
the signal 0. Figure 2(a) is with the initial states 𝑥1(0) =[−5, −7, −8, 15, 3]𝑇, and Figure 2(b) is with the initial states𝑥2(0) = [20, 13, −10, −14, 15]𝑇. Under the initial states 𝑥1(0),
the absolute final value is |(1/5)∑5𝑖=1 𝑥𝑖(0)| = 0.4 ≤ 𝑀 = 2,
which satisfies condition (9), and then the switched MAS
can achieve consensus under arbitrarily given switching law.
However, under the initial states 𝑥2(0), the absolute final

value is |(1/5)∑5𝑖=1 𝑥𝑖(0)| = 4.8 ≥ 𝑀 = 2 in Figure 2(b),
which does not satisfy condition (9), and thus the switched
MAS cannot achieve consensus.

Example 2. Suppose that the switching undirected graph is
given in Figure 1, and the switching set G(𝑡) = G𝑘 ∈{G𝑎,G𝑏,G𝑐}. The sampling period condition can be calcu-
lated as 0 < ℎ < min{0.4463, 0.5528, 0.4796} = 0.4463. Letℎ = 0.4 and 𝑀 = 5. In the top panel of Figure 3, we give
the law of switching topologies, where the signals 1, 2, and 3
represent the graphsG𝑎, G𝑏, andG𝑐, respectively.The law of
switched systems is shown in the middle panel of Figure 3.
In the bottom panel of Figure 3, we give the trajectories of
agents with the initial states 𝑥3(0) = [2, 17, −15, −10, −5]𝑇.
The figure shows that, with the condition |(1/5)∑5𝑖=1 𝑥3𝑖 (0)| =2.2 < 5 in Theorem 6, the switched MAS can achieve
consensus.

5. Conclusions

In this study, the consensus was studied for the switchedMAS
with relative state constraints. Since saturation constraints
have been considered, the switchedMAS should satisfy some
conditions for achieving consensus. Therefore, considering
the switched MAS with saturations, we have proposed
the conditions for fixed and switching undirected graphs.
Furthermore, the general magnitude saturation function
has been considered. Then, by employing some standard
assumptions, sufficient conditions have been provided for
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Figure 3: Consensus of switched systems on undirected graph with
switching topologies.

the switched MAS with state constraints. Finally, we have
presented two examples to verify the main results.
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