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A novel data-driven model-free adaptive control (DDMFAC) approach is first proposed by combining the advantages of model-
free adaptive control (MFAC) and data-driven optimal iterative learning control (DDOILC), and then its stability and convergence
analysis is given to prove algorithm stability and asymptotical convergence of tracking error. Besides, the parameters of presented
approach are adaptively adjusted with fuzzy logic to determine the occupied proportions of MFAC andDDOILC according to their
different control performances in different control stages. Lastly, the proposed fuzzy DDMFAC (FDDMFAC) approach is applied
to the control of particle quality in drug development phase of spray fluidized-bed granulation process (SFBGP), and its control
effect is compared withMFAC and DDOILC and their fuzzy forms, in which the parameters of MFAC and DDOILC are adaptively
adjusted with fuzzy logic. The effectiveness of the presented FDDMFAC approach is verified by a series of simulations.

1. Introduction

Spray fluidized-bed granulation process (SFBGP) is a process
that forms small particles into larger granules using the liquid
binding solution sprayed onto fluidized particles by a spray
nozzle above the powder bed [1]. Because of advantage of sin-
gle unit operation, SFBGPhas beenwidely applied to produce
granules aiming at improving power flowability and physico-
chemical properties of drugs [2, 3]. As a key technique in the
production of pharmaceutical solid dosage forms of tablets
and capsules, the primary target of SFBGP is to produce
granules with consistent product quality for the following
pharmaceutical processes. Therefore, particle quality control
of SFBGP is of great theoretical and practical significance.

For a SFBGP, the quality of particles can be evaluated by
many factors such as production yield, drug content, size,
density, friability, flowability, and compressibility [2, 4], and
among them granule size is the key characteristic to control
[5–8]. To achieve the desired granule size, model-based

control (MBC) schemes, which require a priori physical
and mathematical knowledge of the process, may be the
effective techniques. Previous works have introduced MBC
frameworks and examined the implementation of MBC
strategies on conventional granulation design [3, 9–13].

It is well known that SFBGP is a complicated process that
is significantly influenced by both thematerial-related factors
such as the nature and characteristics of powder particles
and binding agents and the process factors associated with
granulation such as fluidizing air velocity and binder feed rate
[2, 3, 5, 7, 14, 15]. In the drug development phase, however,
the frequent adjustment of prescription will give rise to the
variation of material attributes. So for a brand-new prescrip-
tion, the operating condition space should be redesigned in
order to accurately and rapidly achieve the desired particle
quality. But for such a SFBGP whose material attributes
have already changed and that we have never encountered
before, the absence of process operating experience and
historical data leads to great difficulty in developing accurate
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process models. If traditional MBC schemes are used, lots of
experiments in the actual process should first be implemented
as long as the prescription is changed to get enough process
data used for developing precisemathematicalmodels. Such a
way is laborious, time-consuming, and resource-wasting, so
that the MBC techniques are no more applicable to quality
control task in this work.

Data-driven control (DDC) [16, 17] means that only the
input/output (I/O) measurement data of controlled plant are
used in controller design. DDC approaches do not require a
model of a plant, and the modeling process, the unmodeled
dynamics, and the theoretical assumptions all disappear [16–
19]. Therefore, DDC has attracted considerable attention
in recent years [18], and there are many DDC approaches
together with their practical applications in many fields that
could be found in the literature, like the following: model-
free adaptive control (MFAC) [16, 17, 20–24], data-driven
optimal iterative learning control (DDOILC) [25–27], virtual
reference feedback tuning [28–30], lazy learning control [31],
dynamic programming methods [32], and others [33–36]. In
spite of this, to the best of authors’ knowledge, there is no
report about the research on application of DDC to SFBGP
that has been published in the literature. In this work, a study
on particle quality control based on DDC approaches in the
drug development phase of a SFBGP is conducted to resolve
the practical difficulty encountered in redesigning operating
condition when prescription and material attributes are all
changed.

The mechanism model of SFBGP should first be intro-
duced to conduct such quality control research. Such a
process model plays several significant roles: first, modeling
analyzes the mechanism of SFBGP, identifies the important
manipulated variables and quality indices, and establishes
the relationship between them. Second, such a model can be
used as a simulator of a real SFBGP to generate the required
process data used for simulation and analysis. In this work,
a widely accepted mechanistic model for SFBGP [37, 38] is
introduced to simulate the actual SFBGP and produce the
required process data.

In this work, we select two classical and representative
DDC approaches, MFAC and DDOILC, to study data-driven
model-free adaptive control (DDMFAC) of average particle
size (APS) for SFBGP with simulation experiment research.
MFAC algorithm is proposed by Hou and Jin [16, 17] based
on a new dynamic linearization technique (DLT) and then
applied in several areas [18]. The main feature of MFAC
is that the controller design depends merely on the I/O
measurement data of the controlled plant. Instead of iden-
tifying a nonlinear process model of a plant, an equivalent
local dynamical linearization model is constructed along
the dynamic operation points of the system using the DLT
with a novel concept called pseudo-partial derivative (PPD).
The time-varying PPD could be estimated merely using the
I/O measurement data of the controlled plant. DDOILC is
developed and applied to both linear and nonlinear systems
by Chi et al. [25]. For this approach, the only required
knowledge of a controlled system is that theMarkovmatrices
of linear systems or the partial derivatives of nonlinear
systems with respect to control inputs are bounded. DDOILC

is actually the extension of MFAC, and these two approaches
have the same systematic framework. Compared with other
DDC methods, MFAC and DDOILC have several attractive
advantages that make them more suitable for many practical
control applications [16]. First, they do not require any
process model and structural information of the controlled
plant and merely depend on the real time measurement I/O
data of the controlled plant, which indicates that it is feasible
to independently design a generic controller for a certain class
of practical industrial processes. Second, they are lower cost
controllers because they do not need any training process.
Third, they are simple and easily implemented with small
computational burden and have strong robustness. Finally,
they have been successfully implemented in many practical
fields, such as chemical industry [20, 21, 25, 26], linear
motor control and injectionmoulding process [22], PH value
control [23], and robotic welding process [24].

The controllers of MFAC and DDOILC all consist of
a control input iterative learning law and a PPD matrix
iterative updating law. From this respect, the prime difference
between them is whether or not to use the predicted data
of system output of current iteration in controller design.
In MFAC, the predicted system output of current iteration
is utilized, but merely the output measurement data of
previous iterations are used in DDOILC, which makes their
different characteristics.Through theory analysis, MFAC and
DDOILC both have advantages with regard to different initial
values (IVs) for particle quality. When IV is far away from
desired particle quality, that is, the initial tracking error is
larger, DDOILC has quicker convergence speed. The reason
for this is that the utilization of actual output of previous
iterations in controller design of DDOILC will give larger
updating step size for control input and PPD vector. However,
as IV gets closer to desired output,MFACwill gradually show
its advantages since the prediction accuracy of its dynamic
linearization model (DLM) is getting higher and higher. To
verify the conclusion obtained through theoretical analysis,
we conducted several comparative experimental studies by
constructing a series of IVs, and the simulation results
validate our conclusion.

In the drug development phase, the frequent variations
of prescription will lead to diversity of material properties.
For different material properties, the same group of empirical
operating conditionswill give entirely different IVs of particle
quality. It is demanded that the DDC approaches must
accommodate various IVs in the practice. Therefore, to
further improve the overall control effect, a novel hybrid
DDC approach, which is namedDDMFAC and combines the
advantages ofMFAC andDDOILC, is presented in this paper.
The newly designed controller is able to exhibit the features
of MFAC and DDOILC in different extent by adjusting their
weighted factors. Compared withMFAC andDDOILC, how-
ever, evenDDMFACdoes not have overwhelming superiority
for all IVs. Simulation results have revealed that DDMFAC
may be inferior to DDOILC or MFAC in particle quality
control if there is no reasonable adjustment strategy of
weighted parameters. By the previous theoretical analysis
for MFAC and DDOILC and the subsequent simulation
verification, we can sum up weighted parameters adjustment
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Figure 1: The schematic diagram of SFBGP.

rules for DDMFAC.Then fuzzy adaptive adjustment of target
weighted parameters is implemented with the aim of rapidly
converging DDMFAC by making full use of the advantage
of MFAC or DDOILC at different control stages. We named
the final DDC approach presented in this paper as fuzzy
DDMFAC (FDDMFAC), and a series of simulations validate
its effectiveness.

2. Preliminaries

2.1. Mathematical Mechanism Model of Spray Fluidized-Bed
Granulation Process. SFBGP is a commonly used unit oper-
ation in the pharmaceutical industry. The powders can be
mixed, granulated, and dried in the same equipment, which
minimizes the equipment costs, loss of product transfers, and
possibility of the cross-contamination [3]. The rationale of
spray fluidized-bed granulation can be briefly described as
follows: (1) Particles circulate within granulator by pumping
hot air from the bottom of granulator and meanwhile binder
liquid is sprayed on the fluidized particles in the forms of
small droplets [38]. (2) As a result of collisions and coales-
cence between the surface-wetted particles, liquid bridges are
formed and aggregation of particles occurs leading to the
growth of granules [1, 39].

The schematic diagram of SFBGP is shown in Figure 1.
The overall granulation process in fluidized-bed spray gran-
ulator is divided into three stages: powder mixing, granula-
tion, and drying. Firstly, mixed raw materials for drug and
ingredients are put in granulator. Passing through the filter
and heater, hot air pumped in by blower is pumped into
granulator from the bottom of granulator, which forces the
fluidization of powder to sufficiently blend materials. After-
wards, liquid binder is pumped into spray nozzle from liquid
supply unit and atomized into droplets by compressed air that
is simultaneously pumped into spray nozzle from compressed
air unit. The droplets are dispersed over the surface of
fluidized particles, which contributes to the agglomeration
of colliding and surface-wetted powder particles to form
granules. Finally, the granules are dried to a predetermined
moisture content level. The dust-arrester installation is used
to prevent powder particles that are not in contact with
droplets from being carried out by off-gas.

PBMs have been widely used for modeling SFBGP, in
which the granule size density distribution evolves as a
function of time.The population balance is a number balance
around each size fraction of the size distribution based on
number conservation law. The rate of change of the number
of particles in a given size interval is equal to the rate at which
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the granules enter and leave that size interval. The mathe-
matical mechanism model of SFBGP is developed based on
following assumptions: (1) Each particle is spherical. (2)The
total volume of the particles is conserved. (3) The particle
size in a certain particular size interval is represented by the
left boundary of the interval. (4) The relative growth rate is
uniform for each particle within the same volume interval.
A one-dimensional PBM that describes the rate of change in
particle number density function 𝑛(𝑡, 𝑙) is given by

𝜕𝑛 (𝑡, 𝑙)𝜕𝑡 = 12
⋅ ∫𝑙
0

𝛽(𝑡, (𝑙3 − 𝜇3)1/3 , 𝜇) 𝑛 (𝑡, (𝑙3 − 𝜇3)1/3) 𝑛 (𝑡, 𝜇)
(𝑙3 − 𝜇3)2/3 𝑑𝜇

− 𝑛 (𝑡, 𝑙) ∫∞
0

𝛽 (𝑡, 𝑙, 𝜇) 𝑛 (𝑡, 𝜇) 𝑑𝜇,

(1)

where 𝑛(𝑡, 𝑙) is the particle number density function in terms
of particle diameter, 𝑙, and𝛽 is the aggregationmodel [37, 38].𝛽(𝑡, 𝑙, 𝜇) can generally be partitioned into size dependent and
size independent parts [3, 37, 38, 40, 41],

𝛽 (𝑡, 𝑙, 𝑢) = 𝛽0 (𝑡) 𝛽∗ (𝑙, 𝜇) , (2)

where 𝛽0(𝑡) is the granulation rate constant that can be
thought of as an aggregation efficiency and depends on
all parameters involved in the aggregation process except
particle size, such as the operating condition and binder
properties. The latter term 𝛽∗(𝑙, 𝜇) reflects the influence of
particle size on the likelihood of aggregation.

In order to solve a PBM in (1), the discretized approach
[42, 43] is applied to determine the change in number of
particles𝑁𝑖 in interval 𝑖 as

d𝑁𝑖
d𝑡 = 𝑖−2∑

𝑗=1

2𝑗−𝑖+1𝛽𝑖−1,𝑗𝑁𝑖−1𝑁𝑗 + 12𝛽𝑖−1,𝑖−1𝑁2𝑖−1

− 𝑁𝑖 𝑖−1∑
𝑗=1

2𝑗−𝑖𝛽𝑖,𝑗𝑁𝑗 − 𝑁𝑖
𝑛max∑
𝑗=𝑖

𝛽𝑖,𝑗𝑁𝑗,
(3)

where𝑁𝑖 is the number of particles within particle size range(𝐿 𝑖, 𝐿 𝑖+1); 𝐿 𝑖 and 𝐿 𝑖+1 are the lower and upper limits of 𝑖th
particle size interval, 𝑖 = 1, 2, . . . , 𝑛max; and 𝑛max is the total
number of particle size intervals with a value of 12 in this
paper. In the discretization scheme, the length domain of
particles is divided into geometric intervals in the way that
the upper and lower limits of each size interval are in a ratio
of 𝑟 = 𝐿 𝑖+1/𝐿 𝑖 = 3√2. The size range used in modeling is
from 50 𝜇m to 800𝜇mwhich is divided into 12 intervals. The
function “ode45” inMATLAB is used to solve (3) to obtain the
final number of particles in each size interval. Then the APS
of final granules𝐷𝑚 is calculated by the following formula:

𝐷𝑚 = 𝑛max∑
𝑖=1

𝑉(𝑁𝑓,𝑖) 𝑑𝑝𝑖, (4)

where 𝑉(𝑁𝑓,𝑖) is the volume fraction of end granules at size
interval 𝑖 = 1, 2, . . . , 𝑛max;𝑁𝑓,𝑖 is the number of end granules
in the 𝑖th size interval; and 𝑑𝑝𝑖 is the geometric mean of lower
limit and upper limit of 𝑖th size interval, 𝑖 = 1, 2, . . . , 𝑛max.

We have just briefly introduced the general framework of
PBM-basedmechanismmodel of SFBGP.Detailed derivation
process and setting of model parameters are given in [37, 38],
and they will not be covered here.The developed mechanism
model is capable of not only linking APS of particles with
the operating variable (binder spray rate), but also reflecting
the relationship between APS and material attributes, such
as viscosity of binder and particle density. Hence, this
mechanism model can be used for simulating the practical
challenges in particle quality control of SFBGP. For example,
a series of IVs can be constructed by changing the material
attributes while keeping the operating condition unchanged.
To veritably simulate the actual granulation process, the input
control curve should be time-varying. But to simplify things,
the input control curve is divided into three stages in the
whole granulation process in this work.

2.2. The Data-Driven Control Approaches Used in This Work.
As the classic and representative DDC methods, MFAC and
DDOILChave somemerits thatmake themmore competitive
in practical control applications. Therefore, in view of these
merits, MFAC and DDOILC are selected and applied to
perform data-driven particle quality control for SFBGP in
this work. Now we first briefly introduce their controller
design procedures. For details, please refer to [16, 25].

A repeatable batch process system to be controlled is
given as follows:

𝑦 (𝑘) = 𝑓 (u (𝑘)) , (5)

where 𝑦(𝑘) and u(𝑘) are the system output and input at 𝑘th
iteration, respectively, 𝑘 is the number of iterations, and 𝑓(∙)
is an unknown nonlinear function.This nonlinear system (5)
satisfies the following assumptions:

(1) The derivatives of 𝑓(∙) with respect to control input
u(𝑘) are continuous.

(2) System (5) is generalized Lipschitz; that is, |Δ𝑦(𝑘 +1)| ≤ 𝑏‖Δu(𝑘)‖ for any 𝑘 and ‖Δu(𝑘)‖ ̸= 0, whereΔ𝑦(𝑘 + 1) = 𝑦(𝑘 + 1) − 𝑦(𝑘), Δu(𝑘) = u(𝑘) − u(𝑘 − 1),
and 𝑏 is a positive constant.

2.2.1. MFAC Design. For the one-step-ahead controller [44],
the control goal is to seek a control input sequence u(𝑘) that
brings 𝑦(𝑘 + 1) to 𝑦𝑑, where 𝑦𝑑 is the desired system output
signal. In general, the weighted one-step-ahead controller
may lead to steady-state tracking error [16]. So the following
control input criterion function is used to design the control
law:

𝐽 (u (𝑘)) = 󵄨󵄨󵄨󵄨𝑦𝑑 − 𝑦1 (𝑘 + 1)󵄨󵄨󵄨󵄨2 + 𝜆 ‖Δu (𝑘)‖2 , (6)

where 𝜆 > 0 is a weighting constant.
Substituting the dynamic linearization form

𝑦1 (𝑘 + 1) = 𝑦 (𝑘) + 𝜑𝑇 (𝑘) Δu (𝑘) (7)
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into (6), as well as letting 𝜕𝐽/𝜕u(𝑘) be zero, gives
u (𝑘) = u (𝑘 − 1) + 𝜌1𝜑 (𝑘) (𝑦𝑑 − 𝑦 (𝑘))

𝜆 + 󵄩󵄩󵄩󵄩𝜑 (𝑘)󵄩󵄩󵄩󵄩2 , (8)

where 𝜌1 ∈ (0, 1] is a step-size constant that is added to make
(8) more general and 𝜑(𝑘) is PPD vector.

Because PPD vector 𝜑(𝑘) is unknown, it needs to be
estimated. Define criterion function for the unknown PPD
vector as follows:

𝐽 (𝜑̂ (𝑘)) = 󵄨󵄨󵄨󵄨󵄨Δ𝑦 (𝑘) − 𝜑̂𝑇 (𝑘) Δu (𝑘 − 1)󵄨󵄨󵄨󵄨󵄨2
+ 𝜇 󵄩󵄩󵄩󵄩Δ𝜑̂ (𝑘)󵄩󵄩󵄩󵄩2 ,

(9)

where 𝜇 > 0 is a weighting factor and 𝜑̂(𝑘) is the estimation
of 𝜑(𝑘).

Using optimal condition 𝜕𝐽/𝜕𝜑̂(𝑘) = 0 then gives

𝜑̂ (𝑘)
= 𝜑̂ (𝑘 − 1)

+ 𝜂Δu (𝑘 − 1) (Δ𝑦 (𝑘) − 𝜑̂𝑇 (𝑘 − 1) Δu (𝑘 − 1))
𝜇 + ‖Δu (𝑘 − 1)‖2 ,

(10)

where 𝜂 ∈ (0, 2) is a step-size constant.
Defining the tracking error 𝑒(𝑘) = 𝑦𝑑 − 𝑦(𝑘) and

combining PPD estimation and input control law, MFAC
scheme is designed as follows:

𝜑̂ (𝑘)
= 𝜑̂ (𝑘 − 1)

+ 𝜂Δu (𝑘 − 1) (Δ𝑦 (𝑘) − 𝜑̂𝑇 (𝑘 − 1) Δu (𝑘 − 1))
𝜇 + ‖Δu (𝑘 − 1)‖2 ,

u (𝑘) = u (𝑘 − 1) + 𝜌1𝜑̂ (𝑘)𝜆 + 󵄩󵄩󵄩󵄩𝜑̂ (𝑘)󵄩󵄩󵄩󵄩2 𝑒 (𝑘) .

(11)

2.2.2. DDOILC Design. The control objective is to find an
appropriate control input sequence u(𝑘), such that the system
output 𝑦(𝑘) follows 𝑦𝑑. Consider the control input criterion
function as

𝐽 (u (𝑘)) = 󵄨󵄨󵄨󵄨𝑦𝑑 − 𝑦2 (𝑘)󵄨󵄨󵄨󵄨2 + 𝜆 ‖Δu (𝑘)‖2 . (12)

Substituting the dynamic linearization equation

𝑦2 (𝑘) = 𝑦 (𝑘 − 1) + 𝜑𝑇 (𝑘) Δu (𝑘) (13)

into (12) and the optimal condition leads to

u (𝑘) = u (𝑘 − 1) + 𝜌2𝜑 (𝑘)𝜆 + 󵄩󵄩󵄩󵄩𝜑 (𝑘)󵄩󵄩󵄩󵄩2 𝑒 (𝑘 − 1) , (14)

where 𝜌2 ∈ (0, 1] determines the step size and 𝑒(𝑘 − 1) =𝑦𝑑 − 𝑦(𝑘 − 1).

Let 𝜑̂(𝑘) denote its estimation at 𝑘th iteration.Thendefine
the criterion function as

𝐽 (𝜑̂ (𝑘)) = 󵄨󵄨󵄨󵄨󵄨Δ𝑦 (𝑘 − 1) − 𝜑̂𝑇 (𝑘) Δu (𝑘 − 1)󵄨󵄨󵄨󵄨󵄨2
+ 𝜇 󵄩󵄩󵄩󵄩Δ𝜑̂ (𝑘)󵄩󵄩󵄩󵄩2 .

(15)

According to optimal condition, the iterative updating law of
estimate 𝜑̂(𝑘) is developed as

𝜑̂ (𝑘) = 𝜑̂ (𝑘 − 1)
+ 𝜂Δu (𝑘 − 1) (Δ𝑦 (𝑘 − 1) − 𝜑̂𝑇 (𝑘 − 1) Δu (𝑘 − 1))

𝜇 + ‖Δu (𝑘 − 1)‖2 , (16)

where 𝜇 > 0, 0 < 𝜂 < 2.
The DDOILC scheme is designed as follows:

𝜑̂ (𝑘) = 𝜑̂ (𝑘 − 1)
+ 𝜂Δu (𝑘 − 1) (Δ𝑦 (𝑘 − 1) − 𝜑̂𝑇 (𝑘 − 1) Δu (𝑘 − 1))

𝜇 + ‖Δu (𝑘 − 1)‖2 ,
u (𝑘) = u (𝑘 − 1) + 𝜌2𝜑̂ (𝑘)𝜆 + 󵄩󵄩󵄩󵄩𝜑̂ (𝑘)󵄩󵄩󵄩󵄩2 𝑒 (𝑘 − 1) .

(17)

3. Theoretical Analysis of MFAC and DDOILC
and Simulations in SFBGP

3.1. Theoretical Analysis of MFAC and DDOILC. The con-
troller design procedures of MFAC and DDOILC have been
introduced in previous sections. Although they have the same
systemic framework and similar expression form of con-
troller, there are still differences between them, which makes
them two different methods. Comparing the controllers of
MFAC and DDOILC, the main differences can be listed as
follows:

(1) Δ𝑦(𝑘) and Δ𝑦(𝑘 − 1) are, respectively, used in PPD
iterative updating laws.

(2) 𝑒(𝑘) and 𝑒(𝑘−1) are separately utilized in control input
iterative learning laws.

The expressions of Δ𝑦(𝑘), Δ𝑦(𝑘−1), 𝑒(𝑘), and 𝑒(𝑘−1) are
listed as follows:

MFAC:
{{{
Δ𝑦 (𝑘) = 𝑦 (𝑘) − 𝑦 (𝑘 − 1)
𝑒 (𝑘) = 𝑦𝑑 − 𝑦 (𝑘) ,

DDOILC:
{{{
Δ𝑦 (𝑘 − 1) = 𝑦 (𝑘 − 1) − 𝑦 (𝑘 − 2)
𝑒 (𝑘 − 1) = 𝑦𝑑 − 𝑦 (𝑘 − 1) .

(18)

Obviously, the main differences between MFAC and
DDOILC can be described as follows: system output 𝑦(𝑘) at𝑘th iteration is used in MFAC but is not used in DDOILC. In
practical application, all the system outputs used inDDOILC,𝑦(𝑘−1) and 𝑦(𝑘−2), are the actual values at (𝑘−1)th and (𝑘−2)th iterations. In MFAC, however, the actual value of system
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Figure 2: The variable relations during control process of MFAC and DDOILC.

output 𝑦(𝑘) is obtained only after the calculation of u(𝑘). So𝑦(𝑘) does not have actual value when computing u(𝑘), and
a predicted system output 𝑦(𝑘) will be used to replace 𝑦(𝑘)
in practical application of MFAC. 𝑦(𝑘) is estimated by the
following DLM:

𝑦 (𝑘) = 𝑦 (𝑘 − 1) + 𝜑𝑇 (𝑘 − 1) Δu (𝑘 − 1) , (19)

and 𝑒(𝑘) is replaced by 𝑒(𝑘) = 𝑦𝑑 − 𝑦(𝑘).
Figure 2 gives the variable relations during control pro-

cess of MFAC and DDOILC. In terms of a single control
process curve, when system output 𝑦 is greatly different from𝑦𝑑, that is, the tracking error 𝑒 is relatively great, 𝑒(𝑘 − 1)
is much larger than 𝑒(𝑘) and DDOILC will achieve a bigger
updating step size for control input, which gives DDOILC a
faster convergence speed. As 𝑦 keeps getting closer to 𝑦𝑑, it
is found that DLM prediction error 𝑒𝑝 is getting smaller and
smaller until 𝑒𝑝 = 0. The difference between 𝑒(𝑘 − 1) and 𝑒(𝑘)
will also be smaller and smaller. DDOILC will not only lose
its advantage, but also perform worse than MFAC when 𝑦 is
very close to𝑦𝑑, because a larger updating step size for control
input will bring difficulty in convergence, while, at this time,
MFAC will achieve a fast and stable control effect due to the
improvement of prediction accuracy of DLM. From another
point of view, if IV of system output 𝑦0 is far away from 𝑦𝑑,
the initial tracking error and DLM prediction error will be
both at a high level and DDOILC will perform better than
MFAC because a greater updating step size for control input
is necessary to give a faster convergence speed. But as𝑦0 keeps
getting closer to 𝑦𝑑, 𝑒𝑝 will gradually decrease and MFAC
will gradually show its advantage. Therefore, the conclusions

obtained from theoretical analysis can be summarized as
follows:

(1) When tracking error is large and 𝑦0 is relatively far
away from𝑦𝑑, DDOILCwill have a faster convergence
speed and a better control performance.

(2) When tracking error gradually decreases and 𝑦0
gradually gets closer to 𝑦𝑑, MFAC will gradually
reveal its advantage and achieve better control effect.

3.2. SimulationVerification. To validate conclusions obtained
from theoretical analysis, simulation verification in SFBGP is
conducted. In this simulation, particle quality to be controlled
is APS, and the desired quality is 𝑦𝑑 = 120 𝜇m.The viscosity
of binder is treated as material attribute to be changed, and
then a series of IVs (𝑦0) are constructed by adjusting viscosity
of binder while keeping the operating condition unchanged.
Four sets of IVs are selected as representatives in this work,
and the detailed establishing information of them is shown
in Table 1. Besides, the parameter settings of MFAC and
DDOILC for different IVs are listed in Table 2.

For different IVs, we conduct particle quality control in
SFBGP based on MFAC and DDOILC, and the control per-
formances are plotted in Figure 3.Moreover, DLMprediction
error profiles of MFAC are shown in Figure 4. Then the
explanation and analysis of simulation results will be given.
As is shown in Figure 3(a), DDOILC performs better than
MFAC when 𝑦0 = 60; that is, 𝑦0 is relatively far away from𝑦𝑑. When 𝑦0 = 70, as is described in Figure 3(b), DDOILC
has a faster convergence speed when APS is controlled from
70 𝜇m to about 110 𝜇m, but MFAC achieves a relatively better
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Figure 3: The control profiles of APS in SFBGP based on MFAC and DDOILC.

Table 1:The detailed establishing information of representative IVs.

Info IV
𝑦0 = 60 𝑦0 = 70 𝑦0 = 80 𝑦0 = 100

Operating
conditions
(g/s)

First stage: 0.3; second stage: 0.1; third stage: 0.15

Viscosity of
binder (Pa⋅s) 0.0214 0.0250 0.0304 0.0625

control performance when it is controlled from 110 𝜇m to 𝑦𝑑,
which indicates that both DDOILC and MFAC have certain
advantages in such case. However, from Figure 3(c), it can be
seen that MFAC is slightly superior to DDOILC in control
effect when 𝑦0 = 80, and this just manifests the advantage of
MFAC. As 𝑦0 gets closer and closer to 𝑦𝑑, such as 𝑦0 = 100

Table 2:The parameter settings ofMFAC andDDOILC for different
IVs.

IV Parameter𝜌1 𝜌2 𝜆 𝜂 𝜇
𝑦0 = 60 0.0505 0.0712

0.0010 0.0750 1.0000𝑦0 = 70 0.0047 0.0503𝑦0 = 80 0.0032 0.0199𝑦0 = 100 0.0020 1.49𝐸 − 4

plotted in Figure 3(d),MFAC has a huge advantage compared
with DDOILC. It is obvious that the simulation results have
verified the conclusions obtained from theoretical analysis.
The reason for increasing superiority of MFAC is attributed
to the smaller and smaller prediction error 𝑒𝑝 of DLM. As
is shown in Figure 4, on the one hand, the curves of 𝑒𝑝 for
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Figure 4: The DLM prediction error profiles of MFAC for different
IVs.

different IVs all show a decreasing trend along with iteration
until 𝑒𝑝 = 0 as APS keeps getting closer to 𝑦𝑑, which is in
accordance with our obtained conclusion. On the other hand,
for different IVs, 𝑒𝑝 will also decrease with the increase of IV,
which is proved by comparing the curves of 𝑒𝑝 under different
IVs. To further illustrate this point, the averages of 𝑒𝑝 for
different IVs are computed and then listed in Figure 4, and
the decreasing averages of 𝑒𝑝 along with the increase of IV
also validate the rationality of our analysis.

4. The Proposed Hybrid DDC Approach and
Simulation Study in SFBGP

Through theoretical analysis and simulation study, we have
proved that MFAC and DDOILC both have strengths in
particle quality control under different IVs. In real-world
applications, the same operating condition may give entirely
different IVs due to the changes in material properties, which
brings great difficulties in the selection of control methods.
Thus, the uncertainties of IV have to be considered during
control application. In order to achieve favourable overall
control effect, it is demanded that the DDC approaches must
accommodate various IVs. Therefore, we try to combine
advantages of MFAC and DDOILC to present a hybrid
approach that is named DDMFAC. The basic idea is that the
features of MFAC and DDOILC are both reflected in the
criterion functions when designing controller of DDMFAC.
The expected features of hybrid approach can be summarized
as the following three points:

(1) When tracking error is large, DDMFACmanifests the
feature of DDOILC to acquire a faster convergence
speed.

(2) When tracking error is small enough, DDMFAC has
the ability ofMFAC to achieve a fast and stable control
effect.

(3) DDMFAC is able to achieve better control perfor-
mance for different IVs.

Through such combination, the shortcomings of MFAC
and DDOILC will be complemented and their respec-
tive advantages will be highlighted in DDMFAC. Next we
describe the controller design for DDMFAC in Section 4.1.

4.1. DDMFAC Design. Consider the following control input
criterion function:

𝐽 (u (𝑘)) = 𝛼𝑀 󵄨󵄨󵄨󵄨𝑦𝑑 − 𝑦1 (𝑘 + 1)󵄨󵄨󵄨󵄨2 + 𝛼𝐷 󵄨󵄨󵄨󵄨𝑦𝑑 − 𝑦2 (𝑘)󵄨󵄨󵄨󵄨2
+ 𝜆1 ‖Δu (𝑘)‖2 , (20)

where |𝑦𝑑 − 𝑦1(𝑘 + 1)|2 and |𝑦𝑑 − 𝑦2(𝑘)|2, respectively, come
from MFAC and DDOILC and 𝛼𝑀, 𝛼𝐷 are the respective
weighted factors and 𝛼𝑀 + 𝛼𝐷 ̸= 0.

Substituting (7) and (13) into (20) gives

𝐽 (u (𝑘)) = 𝛼𝑀 󵄩󵄩󵄩󵄩󵄩𝑒 (𝑘) − 𝜑𝑇 (𝑘) Δu (𝑘)󵄩󵄩󵄩󵄩󵄩2
+ 𝛼𝐷 󵄩󵄩󵄩󵄩󵄩𝑒 (𝑘 − 1) − 𝜑𝑇 (𝑘) Δu (𝑘)󵄩󵄩󵄩󵄩󵄩2
+ 𝜆1 ‖Δu (𝑘)‖2 .

(21)

Using optimal condition 𝜕𝐽/𝜕u(𝑘) = 0 then gives

Δu (𝑘) = 𝜑 (𝑘) (𝛼𝑀𝑒 (𝑘) + 𝛼𝐷𝑒 (𝑘 − 1))
𝜆1 + (𝛼𝑀 + 𝛼𝐷) 󵄩󵄩󵄩󵄩𝜑 (𝑘)󵄩󵄩󵄩󵄩2 . (22)

Dividing numerator and denominator by 𝛼𝑀+𝛼𝐷 at the right
hand of (22), we have
Δu (𝑘)
= 𝜑 (𝑘) ((𝛼𝑀/ (𝛼𝑀 + 𝛼𝐷)) 𝑒 (𝑘) + (𝛼𝐷/ (𝛼𝑀 + 𝛼𝐷)) 𝑒 (𝑘 − 1))

(𝜆1/ (𝛼𝑀 + 𝛼𝐷)) + 󵄩󵄩󵄩󵄩𝜑 (𝑘)󵄩󵄩󵄩󵄩2 . (23)

Letting 𝜌𝑀 = 𝛼𝑀/(𝛼𝑀 + 𝛼𝐷), 𝜌𝐷 = 𝛼𝐷/(𝛼𝑀 + 𝛼𝐷), and 𝜆 =𝜆1/(𝛼𝑀 + 𝛼𝐷), then
u (𝑘) = u (𝑘 − 1) + 𝜑 (𝑘) (𝜌𝑀𝑒 (𝑘) + 𝜌𝐷𝑒 (𝑘 − 1))

𝜆 + 󵄩󵄩󵄩󵄩𝜑 (𝑘)󵄩󵄩󵄩󵄩2 , (24)

where 𝜆 > 0 is the weighted factor and 𝜌𝑀, 𝜌𝐷 ∈ [0, 1] are the
step-size factors.

Define the following PPD vector criterion function:

𝐽 (𝜑̂ (𝑘))
= 󵄩󵄩󵄩󵄩󵄩𝛽𝑀Δ𝑦 (𝑘) + 𝛽𝐷Δ𝑦 (𝑘 − 1) − 𝜑̂𝑇 (𝑘) Δu (𝑘 − 1)󵄩󵄩󵄩󵄩󵄩2

+ 𝜇 󵄩󵄩󵄩󵄩Δ𝜑̂ (𝑘)󵄩󵄩󵄩󵄩2 ,
(25)

where 𝛽𝑀, 𝛽𝐷 ∈ [0, 1] are the weighted factors and 𝛽𝑀+𝛽𝐷 =1.
We rewrite (25) as

𝐽 (𝜑̂ (𝑘)) = 󵄨󵄨󵄨󵄨󵄨𝛽𝑀Δ𝑦 (𝑘) + 𝛽𝐷Δ𝑦 (𝑘 − 1)
− 𝜑̂𝑇 (𝑘 − 1) Δu (𝑘 − 1) − Δ𝜑̂𝑇 (𝑘) Δu (𝑘 − 1)󵄨󵄨󵄨󵄨󵄨2
+ 𝜇 󵄩󵄩󵄩󵄩Δ𝜑̂ (𝑘)󵄩󵄩󵄩󵄩2 .

(26)
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Utilizing optimal condition 𝜕𝐽/𝜕𝜑̂(𝑘) = 0, we have

𝜑̂ (𝑘) = 𝜑̂ (𝑘 − 1) + 𝜂Δu (𝑘 − 1) (𝛽𝑀Δ𝑦 (𝑘) + 𝛽𝐷Δ𝑦 (𝑘 − 1) − 𝜑̂𝑇 (𝑘 − 1) Δu (𝑘 − 1))
𝜇 + ‖Δu (𝑘 − 1)‖2 . (27)

Thus, the controller of DDMFAC is designed as follows:

𝜑̂ (𝑘) = 𝜑̂ (𝑘 − 1) + 𝜂Δu (𝑘 − 1) (𝛽𝑀Δ𝑦 (𝑘) + 𝛽𝐷Δ𝑦 (𝑘 − 1) − 𝜑̂𝑇 (𝑘 − 1) Δu (𝑘 − 1))
𝜇 + ‖Δu (𝑘 − 1)‖2 , (28)

u (𝑘) = u (𝑘 − 1) + 𝜑 (𝑘) (𝜌𝑀𝑒 (𝑘) + 𝜌𝐷𝑒 (𝑘 − 1))
𝜆 + 󵄩󵄩󵄩󵄩𝜑 (𝑘)󵄩󵄩󵄩󵄩2 . (29)

4.2. Stability and Convergence Analysis of DDMFAC

(1)The Boundedness of 𝜑̂(𝑘). Define the parameter estimation
error of 𝜑(𝑘) as follows:

𝜑̃ (𝑘) = 𝜑 (𝑘) − 𝜑̂ (𝑘) . (30)

Substituting (28) into (30) gives

𝜑̃ (𝑘) = 𝜑 (𝑘) − 𝜑̂ (𝑘 − 1) − 𝜂Δu (𝑘 − 1) [𝛽𝑀Δ𝑦 (𝑘) + 𝛽𝐷Δ𝑦 (𝑘 − 1) − 𝜑̂𝑇 (𝑘 − 1) Δu (𝑘 − 1)]
𝜇 + ‖Δu (𝑘 − 1)‖2 . (31)

Similarly, define 𝜑̃(𝑘 − 1) = 𝜑(𝑘 − 1) − 𝜑̂(𝑘 − 1), and then
𝜑̂ (𝑘 − 1) = 𝜑 (𝑘 − 1) − 𝜑̃ (𝑘 − 1) . (32)

Combining (31) and (32), we have

𝜑̃ (𝑘) = 𝜑̃ (𝑘 − 1) − 𝜂Δu (𝑘 − 1) [𝛽𝑀Δ𝑦 (𝑘) + 𝛽𝐷Δ𝑦 (𝑘 − 1) − 𝜑̂𝑇 (𝑘 − 1) Δu (𝑘 − 1)]
𝜇 + ‖Δu (𝑘 − 1)‖2 + 𝜑 (𝑘) − 𝜑 (𝑘 − 1) . (33)

According to (7) and (13), it can be obtained that

Δ𝑦 (𝑘) = 𝜑𝑇 (𝑘 − 1) Δu (𝑘 − 1) ,

Δ𝑦 (𝑘 − 1) = 𝜑𝑇 (𝑘 − 1) Δu (𝑘 − 1) .
(34)

Substituting (34) into (33), we have

𝜑̃ (𝑘) = 𝜑̃ (𝑘 − 1) − 𝜂Δu (𝑘 − 1) ((𝛽𝑀 + 𝛽𝐷)𝜑𝑇 (𝑘 − 1) Δu (𝑘 − 1) − 𝜑̂𝑇 (𝑘 − 1) Δu (𝑘 − 1))
𝜇 + ‖Δu (𝑘 − 1)‖2 + 𝜑 (𝑘) − 𝜑 (𝑘 − 1)

= 𝜑̃ (𝑘 − 1) − 𝜂Δu (𝑘 − 1) ((𝜑 (𝑘 − 1) − 𝜑̂ (𝑘 − 1))𝑇 Δu (𝑘 − 1))
𝜇 + ‖Δu (𝑘 − 1)‖2 + 𝜑 (𝑘) − 𝜑 (𝑘 − 1)

= 𝜑̃ (𝑘 − 1) − 𝜂 𝜑̃ (𝑘 − 1) ‖Δu (𝑘 − 1)‖2
𝜇 + ‖Δu (𝑘 − 1)‖2 + 𝜑 (𝑘) − 𝜑 (𝑘 − 1)

= 𝜑̃ (𝑘 − 1) (1 − 𝜂 ‖Δu (𝑘 − 1)‖2
𝜇 + ‖Δu (𝑘 − 1)‖2) + 𝜑 (𝑘) − 𝜑 (𝑘 − 1) .

(35)
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Because |𝜑(𝑘)| ≤ 𝑏 is bounded [16], |𝜑(𝑘)−𝜑(𝑘−1)| ≤ 2𝑏.
Taking the modulus of both sides of (35), we can obtain

󵄩󵄩󵄩󵄩𝜑̃ (𝑘)󵄩󵄩󵄩󵄩
≤ 󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝜑̃ (𝑘 − 1) (1 − 𝜂 ‖Δu (𝑘 − 1)‖2

𝜇 + ‖Δu (𝑘 − 1)‖2)
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩 + 2𝑏, (36)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝜑̃ (𝑘 − 1) (1 − 𝜂 ‖Δu (𝑘 − 1)‖2
𝜇 + ‖Δu (𝑘 − 1)‖2)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
2

= 󵄩󵄩󵄩󵄩𝜑̃ (𝑘 − 1)󵄩󵄩󵄩󵄩2 + (−2 + 𝜂 ‖Δu (𝑘 − 1)‖2
𝜇 + ‖Δu (𝑘 − 1)‖2)

× 𝜂󵄩󵄩󵄩󵄩𝜑̃ (𝑘 − 1) Δu (𝑘 − 1)󵄩󵄩󵄩󵄩2𝜇 + ‖Δu (𝑘 − 1)‖2 .

(37)

Given that 0 < 𝜂 < 2, 𝜇 > 0,
(−2 + 𝜂 ‖Δu (𝑘 − 1)‖2

𝜇 + ‖Δu (𝑘 − 1)‖2) < 0. (38)

Synthesizing (37) and (38), we have

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝜑̃ (𝑘 − 1) (1 − 𝜂 ‖Δu (𝑘 − 1)‖2
𝜇 + ‖Δu (𝑘 − 1)‖2)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
2

≤ 󵄩󵄩󵄩󵄩𝜑̃ (𝑘 − 1)󵄩󵄩󵄩󵄩2 .
(39)

According to (36) and (39), there is obviously a positive
number 𝑑1 ∈ (0, 1), which makes

󵄩󵄩󵄩󵄩𝜑̃ (𝑘)󵄩󵄩󵄩󵄩 ≤ 𝑑1 󵄩󵄩󵄩󵄩𝜑̃ (𝑘 − 1)󵄩󵄩󵄩󵄩 + 2𝑏 ≤ ⋅ ⋅ ⋅
≤ 𝑑𝑘1 󵄩󵄩󵄩󵄩𝜑̃ (0)󵄩󵄩󵄩󵄩 + 2𝑏 (1 − 𝑑𝑘1)1 − 𝑑1 . (40)

Therefore, 𝜑̂(𝑘) is bounded.
(2)TheConvergence of Tracking Error 𝑒(𝑘). Tracking error 𝑒(𝑘)
is derived as

𝑒 (𝑘) = 𝑦𝑑 − 𝑦 (𝑘) = 𝑦𝑑 − 𝑦 (𝑘 − 1) − 𝜑𝑇 (𝑘) Δu (𝑘)
= 𝑒 (𝑘 − 1) − 󵄩󵄩󵄩󵄩𝜑 (𝑘)󵄩󵄩󵄩󵄩2 (𝜌𝑀𝑒 (𝑘) + 𝜌𝐷𝑒 (𝑘 − 1))

(𝜆 + 󵄩󵄩󵄩󵄩𝜑 (𝑘)󵄩󵄩󵄩󵄩2)
= (1 − 𝜌𝐷 󵄩󵄩󵄩󵄩𝜑 (𝑘)󵄩󵄩󵄩󵄩2𝜆 + 󵄩󵄩󵄩󵄩𝜑 (𝑘)󵄩󵄩󵄩󵄩2)𝑒 (𝑘 − 1)

− 𝜌𝑀 󵄩󵄩󵄩󵄩𝜑 (𝑘)󵄩󵄩󵄩󵄩2𝜆 + 󵄩󵄩󵄩󵄩𝜑 (𝑘)󵄩󵄩󵄩󵄩2 𝑒 (𝑘) .

(41)

Transposition gives

𝑒 (𝑘) = [1 − (𝜌𝑀 + 𝜌𝐷) 󵄩󵄩󵄩󵄩𝜑 (𝑘)󵄩󵄩󵄩󵄩2𝜆 + (1 + 𝜌𝑀) 󵄩󵄩󵄩󵄩𝜑 (𝑘)󵄩󵄩󵄩󵄩2] 𝑒 (𝑘 − 1) . (42)

So as long as appropriate parameters 𝜌𝑀, 𝜌𝐷, and 𝜆 are
selected, there must be a positive number 𝑑2 ∈ (0, 1) that
makes

0 < 󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩1 −
(𝜌𝑀 + 𝜌𝐷) 󵄩󵄩󵄩󵄩𝜑 (𝑘)󵄩󵄩󵄩󵄩2𝜆 + (1 + 𝜌𝑀) 󵄩󵄩󵄩󵄩𝜑 (𝑘)󵄩󵄩󵄩󵄩2

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩 ≤ 𝑑2 < 1. (43)

By (42) and (43), it can be obtained that

‖𝑒 (𝑘)‖ ≤ 󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩(1 − (𝜌𝑀 + 𝜌𝐷) 󵄩󵄩󵄩󵄩𝜑 (𝑘)󵄩󵄩󵄩󵄩2𝜆 + (1 + 𝜌𝑀) 󵄩󵄩󵄩󵄩𝜑 (𝑘)󵄩󵄩󵄩󵄩2)𝑒 (𝑘 − 1)󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
≤ 𝑑2 ‖𝑒 (𝑘 − 1)‖ ≤ ⋅ ⋅ ⋅ ≤ 𝑑𝑘2 ‖𝑒 (0)‖ .

(44)

Therefore, lim𝑘→∞𝑒(𝑘) = 0; that is, 𝑒(𝑘) is proved to
converge to zero.

(3)The Boundedness of System Input and Output. By referring
to 𝑎2 + 𝑏2 ≥ 2𝑎𝑏, the relational expression can be obtained as
follows:

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
𝜑 (𝑘)

𝜆 + 󵄩󵄩󵄩󵄩𝜑 (𝑘)󵄩󵄩󵄩󵄩2
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩 ≤

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
𝜑 (𝑘)

2√𝜆 󵄩󵄩󵄩󵄩𝜑 (𝑘)󵄩󵄩󵄩󵄩
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩 =

1
2√𝜆. (45)

And we have

u (𝑘) = u (𝑘) − u (𝑘 − 1) + u (𝑘 − 1) − ⋅ ⋅ ⋅ + u (1)
− u (0) + u (0) = u (0) + 𝑘∑

𝑗=1

u (𝑗) . (46)

Combining (24), (44), (45), and (46), as well as utilizing
Schwartz’s inequality, gives

‖u (𝑘)‖ ≤ ‖u (0)‖ + 𝑘∑
𝑗=1

󵄩󵄩󵄩󵄩Δu (𝑗)󵄩󵄩󵄩󵄩

≤ ‖u (0)‖ + 1
2√𝜆

𝑘∑
𝑗=1

󵄩󵄩󵄩󵄩𝜌𝐷𝑒 (𝑗 − 1) + 𝜌𝑀𝑒 (𝑗)󵄩󵄩󵄩󵄩

≤ ‖u (0)‖ + 𝜌𝐷2√𝜆
𝑘∑
𝑗=1

𝑑𝑗−12 ‖𝑒 (0)‖

+ 𝜌𝑀2√𝜆
𝑘∑
𝑗=1

𝑑𝑗2 ‖𝑒 (0)‖

≤ ‖u (0)‖ + 𝜌𝐷2√𝜆
1 − 𝑑𝑗−121 − 𝑑2 ‖𝑒 (0)‖

+ 𝜌𝑀2√𝜆
𝑑2 (1 − 𝑑𝑗2)1 − 𝑑2 ‖𝑒 (0)‖

≤ ‖u (0)‖ + 𝜌𝐷(1 − 𝑑2) 2√𝜆 ‖𝑒 (0)‖
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Table 3: The parameter settings of DDMFAC for different IVs.

IV Parameter𝜌𝑀 𝜌𝐷 𝛽𝑀 𝛽𝐷 𝜆 𝜂 𝜇
𝑦0 = 60 0.0275 0.0275 0.5000 0.5000

0.0010 0.0750 1.0000𝑦0 = 70 5.0𝐸 − 4 5.0𝐸 − 4 0.5000 0.5000𝑦0 = 80 4.6𝐸 − 4 4.6𝐸 − 4 0.5000 0.5000𝑦0 = 100 1.8𝐸 − 4 1.8𝐸 − 4 0.5000 0.5000

+ 𝑑2𝜌𝑀(1 − 𝑑2) 2√𝜆 ‖𝑒 (0)‖
≤ ‖u (0)‖ + 𝜌𝐷 + 𝑑2𝜌𝑀(1 − 𝑑2) 2√𝜆 ‖𝑒 (0)‖ .

(47)

Because the initial tracking error 𝑒(0) and initial input
u(0) are given bounded, the system input u(𝑘) is bounded
according to (47). Besides, due to the boundedness of 𝑦𝑑 and𝑒(𝑘), the system output 𝑦(𝑘) is obviously bounded.
4.3. Fuzzy DDMFAC. The controller design and stability and
convergence analysis for DDMFAC have been, respectively,
discussed in detail in the above sections. Although the
designed controller has the characters of both MFAC and
DDOILC, weighted factors 𝜌𝑀, 𝜌𝐷, 𝛽𝑀, and 𝛽𝐷 are all
constant throughout control process. DDMFAC is incapable
of adaptively selecting the dominance of MFAC or DDOILC
to duly show the expected features in each stage of control
process.The aforementioned features of DDMFACwe expect
cannot be reflected in this case. Such DDMFAC approach
with fixed weighting factors has no advantage compared
with MFAC or DDOILC, which appeals to a reasonable and
adaptive adjustment strategy for 𝜌𝑀, 𝜌𝐷, 𝛽𝑀, and 𝛽𝐷. There-
fore, the adaptive adjustment strategy based on fuzzy logic
for weighting factors is considered because its advantageous
performance in parameter adjustment has been proven in
our previous work [45]. The formulation of fuzzy rules offers
us the opportunity to adjust weighting factors in the way
we expected. Such DDMFAC approach with fuzzy adaptive
adjustment for parameters is namedFDDMFAC in this paper.
Concretely, the fuzzy rules can be formulated by referring
to the expected features of DDMFAC. The input variables of
fuzzy rules are the absolute values of tracking error 𝑒(𝑘 − 1)
and DLM prediction error 𝑒𝑝(𝑘−1) of MFAC, and the output
variables are 𝜌𝑀, 𝜌𝐷, and 𝛽𝐷. Because of the relationship
between 𝛽𝑀 and 𝛽𝐷, there is no need to use 𝛽𝑀 as an output
and it is calculated by 𝛽𝑀 = 1 − 𝛽𝐷. The fuzzy rules can be
detailedly described as follows:

(1) If |𝑒(𝑘 − 1)| and |𝑒𝑝(𝑘 − 1)| are great, then the
dominance of DDOILC is preferred and that of
MFAC is restrained in DDMFAC. So 𝜌𝐷 and 𝛽𝐷 have
relatively large values, and 𝜌𝑀 is a relatively small
number.

(2) 𝜌𝐷 and 𝛽𝐷 will show a decreasing trend with the
gradual decrease of |𝑒(𝑘 − 1)| and |𝑒𝑝(𝑘 − 1)|, while𝜌𝑀 will present an increasing trend.

4.4. Simulations and Result Analysis. The proposed DDM-
FAC approach is firstly applied to the particle quality control
in SFBGP, and then its control effect is compared withMFAC
and DDOILC under different IVs. In the simulation, just
like MFAC, 𝑦(𝑘) is replaced by a predicted value 𝑦(𝑘) that
is estimated using (19). See Table 3 for parameter settings of
DDMFAC. It is not hard to find 𝜌𝑀 = 𝜌𝐷 and 𝛽𝑀 = 𝛽𝐷
for a certain IV, which means that MFAC and DDOILC are
set to have the same dominance in DDMFAC. By the way,
MFAC and DDOILC can be regarded as the extreme cases of
DDMFAC described as follows:

MFAC: 𝜌𝑀 = 𝛽𝑀 = 1,
𝜌𝐷 = 𝛽𝐷 = 0;

DDOILC: 𝜌𝑀 = 𝛽𝑀 = 0,
𝜌𝐷 = 𝛽𝐷 = 1.

(48)

The control effects of DDMFAC with the parameter
settings in Table 3, together with control curves of MFAC
and DDOILC, are plotted in Figure 5. The simulation results
actually present the control effects of DDMFAC with three
sets of parameter settings. From simulation, it is indicated
that all three approaches have gained some certain advantages
under different IV conditions. Concretely, as is shown in
Figure 5(a), DDMFAC has advantage in control performance
compared with DDOILC and MFAC when 𝑦0 = 60, but
MFAC has absolute superiority when 𝑦0 = 100 plotted
in Figure 5(d). In addition, from the simulation results in
Figures 5(b) and 5(c), it can be seen that DDOILC and
MFAC have achieved certain but not absolute advantages,
respectively. This demonstrates that parameter setting has
important influence on the control effect of DDMFAC.
Therefore, the way to achieve satisfactory control effect is to
adaptively adjust weighted parameters of DDMFAC, instead
of keeping them constant.

Then, the idea of fuzzy adjustment is introduced to adjust
the weights 𝜌𝑀, 𝜌𝐷, and 𝛽𝐷. The fuzzy adjustment rules of
three weights are, respectively, shown in Tables 4 and 5. The
respective membership functions when 𝑦0 = 60 are shown
in Figure 6, and membership functions for the other IVs are
no longer displayed. Please see Figure 7 for control effect
of FDDMFAC and comparisons with MFAC and DDOILC
under different IVs. Obviously, DDMFAC approach with
fuzzy adjustment for parameters, that is, FDDMFAC, has the
best performance in particle quality control for all IVs. This
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Table 4: The fuzzy rules of 𝜌𝑀.
𝜌𝑀 󵄨󵄨󵄨󵄨󵄨𝑒𝑝(𝑘 − 1)󵄨󵄨󵄨󵄨󵄨|𝑒(𝑘 − 1)| NB NM NS Z PS PM PB
NB PB PB PB PB PB PB PB
NM PB PM PM PM PM PS PS
NS PM PM PM PS PS Z Z
Z Z Z Z NS NS NS NS
PS NS NS NM NM NB NB NB
PM NM NM NM NB NB NB NB
PB NB NB NB NB NB NB NB
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Figure 5: The comparison of control effects of MFAC, DDOILC, and DDMFAC.
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Figure 6: The membership functions of FDDMFAC when 𝑦0 = 60.

Table 5: The fuzzy rules of 𝜌𝐷, 𝛽𝐷.
𝜌𝐷, 𝛽𝐷 󵄨󵄨󵄨󵄨󵄨𝑒𝑝(𝑘 − 1)󵄨󵄨󵄨󵄨󵄨|𝑒(𝑘 − 1)| NB NM NS Z PS PM PB
NB NB NB NB NB NB NB NB
NM NB NM NM NM NM NS NS
NS NM NM NM NS NS Z Z
Z Z Z Z PS PM PM PM
PS PS PS PM PM PB PB PB
PM PM PM PM PB PB PB PB
PB PB PB PB PB PB PB PB

validates the effectiveness of FDDMFAC proposed in this
paper.

Although FDDMFAC approach has been proven to have
a better control performance than MFAC and DDOILC,
we still have a question of whether it is possible that the
superiority of FDDMFAC is entirely attributed to fuzzy
adjustment of parameters and has nothing to do with the
structure of DDMFAC itself. In order to clarify this problem,
another set of simulations are conducted, inwhich the control
performance of FDDMFAC is compared with fuzzy MFAC
(FMFAC) and fuzzy DDOILC (FDDOILC). The absolute
value of tracking error |𝑒(𝑘 − 1)| is regarded as the input
variable of fuzzy rules and the step-size factors 𝜌1, 𝜌2 of
MFAC andDDOILC are the output variables.The fuzzy rules
of FMFAC and FDDOILC are shown in Table 6, and the
membership functions when 𝑦0 = 60 are shown in Figure 8.
For the simulation results, please see Figure 9. From the
simulation, it is concluded that FDDMFAC achieves the best

Table 6: The fuzzy rules of FMFAC and FDDOILC.

|𝑒(𝑘 − 1)| NB NM NS Z PS PM PB
𝜌1, 𝜌2 NB NM NS Z PS PM PB

control performance, which demonstrates the effectiveness of
the proposed approach in this paper.

5. Conclusions

This paper aimed at solving the problem of particle quality
control in the drug development phase of SFBGP. The
model-based control approaches are incapable of handling
such quality control because the accurate process model
cannot be acquired. Thus, the data-driven and model-free
control approaches are considered in this work. We firstly
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Figure 7: The comparison of control effects of MFAC, DDOILC, and FDDMFAC.

analyzed the features of MFAC and DDOILC and then
conducted experimental research to compare the perfor-
mances of MFAC and DDOILC in particle quality control
under different IVs. The simulation results have verified
our theoretical analysis and concluded that MFAC and
DDOILC both have advantages under different IVs. To be
used in an actual production environment, the expectedDDC
approaches must accommodate various IVs because of the
changes in material attributes. Thus, the hybrid approach,
FDDMFAC, which combines the advantages of MFAC and
DDOILC by adaptively adjusting their respective weighted
factors with fuzzy logic, was proposed in this work to
complement their respective shortcomings. Through a series

of simulation results, we conclude that FDDMFAC achieves
better control performance than other approaches, which
validates the effectiveness of FDDMFAC.
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