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An inertial measurement unit-based pedestrian navigation system that relies on the intelligent learning algorithm is useful for
various applications, especially under some severe conditions, such as the tracking of firefighters and miners. Due to the
complexity of the indoor environment, signal occlusion problems could lead to the failure of certain positioning methods. In
complex environments, such as those involving fire rescue and emergency rescue, the barometric altimeter fails because of the
influence of air pressure and temperature. This paper used an optimal gait recognition algorithm to improve the accuracy of gait
detection. Then a learning-based moving direction determination method was proposed. With the Kalman filter and a zero-
velocity update algorithm, different gaits could be accurately recognized, such as going upstairs, downstairs, and walking flat.
According to the recognition results, the position change in the vertical direction could be reasonably corrected. The obtained
3D trajectory involving both horizontal and vertical movements has shown that the accuracy is significantly improved in
practical complex environments.

1. Introduction

Pedestrian navigation refers to a user achieving real-time
navigation and positioning by carrying different sensors,
which can transmit the movement information to moni-
toring personnel; thus, it is extremely significant for those
personnel who need to work in an unknown or dangerous
environment. As an important branch of navigation,
pedestrian navigation has been paid increasing attention
in various industries.

At present, technologies suitable for pedestrian naviga-
tion can be divided into two technologies, satellite-based
Global Navigation Satellite System (GNSS) [1] providing
global position solution and ground-based positioning using
radio signals. The first kind is relatively mature, but the sig-
nals are blocked by tall buildings or when users are indoor
or inside places like caves or jungles. The second kind based
on the wireless frequency signal (such as wireless fidelity [2],
radio frequency identification [3], and ultrawideband [4])
requires preinstallation of signal transmitting equipment in

the positioning area, which is costly and has a limited appli-
cation range. It cannot be used in the positioning area and in
rooms where there are no signal transmitting/receiving
devices. People who have dangerous occupations, such as
firefighters or police officers, usually work in such situations
and have a high demand for precise locations. This is because
the pedestrian navigation system is used in an unknown
environment. Compared with other positioning technologies
based on self-contained sensors, the inertial measurement
unit (IMU) has the advantage of strong independence and
mainly adopts sensors, such as accelerometers and gyro-
scopes, to calculate pedestrian position information [5, 6].

Thanks to miniaturization technologies, such as micro-
electromechanical systems or nanoelectromechanical sys-
tems, IMUs have become smaller, low-cost, less power
consuming, and can be fixed to a pedestrian foot. The
foot-mounted IMU has many indoor applications, such
as in antiterrorism efforts and in providing help for fire
and other dangerous situations [7]. For example, in the
antiterrorism application, the IMU system can provide
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locations to facilitate smooth conduct of police operations
and indoor cooperation; this has great application value.

The main algorithm structure of the pedestrian navigation
system was proposed by Foxlin [8]; this is a shoe-mounted
method using the extended Kalman filter, zero-velocity
updates, and a strapdown inertial navigation system (SINS).
Over the past few years, some researchers have tried to add
other information sources to this main algorithm structure,
such as building heading information proposed by Cai et al.
[9], prior maps used by Lategahn et al. [10], and visual sensors
used by Flores et al. [11], to solve the problem of system error
drift. However, the applications of these methods are limited to
only some specific situations, and the system accuracy is
affected heavily by the selected sensors.

For the 3D positioning of indoor floors [12, 13], due to
the drift and integral error of the IMU, the positioning results
are very unstable, especially in the vertical direction. Further-
more, because of the influence of gravity acceleration, there is
a great deviation in the calculation of the height displace-
ment. To solve this problem, some researchers used the
IMU to combine building structures, such as Fei et al. who
proposed a method using a building heading-aided low-cost
inertial navigation [14]. However, firefighters often execute
rescue missions where there are no prior maps. Additionally,
Jiang et al. used visual tracking assists in IMU calibration to
avoid the bias drift during pedestrian navigation [15]; exper-
imental results show that the IMU and visual tracking are
complementary to each other. However, visual sensors may
be useless when it is dark or when the environment is full
of smoke. Furthermore, Zeng et al. used UWB/IMU sensor
fusion for indoor pedestrian tracking, which has the advan-
tage of higher accuracy and stronger anti-interference capa-
bility due to the features of UWB [16]. Its disadvantage is
that the UWB base station must be arranged beforehand. A
conventional solution uses the IMU with the barometer
height to achieve vertical positioning of the stairs [17], but
the barometer is easily affected by temperature flow intensity
and other factors in fire and other harsh environments.

This paper used an optimal gait recognition algorithm to
improve the accuracy of gait detection. Then we combined
this with Kalman filter and the zero-velocity update algo-
rithm to accurately recognize gait using our proposed mov-
ing direction learning method. According to the results of
direction determination, we took different coping methods.
Finally, accurate tracking between floors was obtained. The
proposed method was evaluated with walking experiments
and comparisons with other methods without using our
method and only applying SINS and the method using the
IMU and barometric pressure fusion to solve 3D pedestrian
trajectory. The experimental results show the effectiveness
of the proposed method. The error in the horizontal direc-
tion was less than 0.08m per 10m, and the error in the
vertical direction was less than 0.14m per 10m. The main
contribution of this paper is that the proposed method is
independent of various kinds of sensors. It even achieved
better performance than the existing multisensor fusion
methods [12, 18]. In addition, the optimal gait recognition
and the moving direction learning method will also bring
much benefit to indoor positioning problems.

This paper is organized as follows. Section 2 intro-
duces the system structure of the proposed pedestrian
navigation system (PNS), including hardware structure
and algorithm composition. The optimal gait recognition
algorithm, which plays an important role throughout the
system, is discussed in Section 3. In Section 4, Kalman filter
is applied for online computation of attitude transform
matrix, position, and velocity. Then, the moving direction
learning method is proposed in Section 5. Section 6 shows
the evaluation results of two sets of experiments. In Section
7, we give the main conclusions drawn from this work.

2. System Structure

The PNS used in this paper only included one IMU, which
was fixed on the left foot, as shown in Figure 1. The IMU
adopted in our system was the MTi integrated sensor from
Holland Xsens company as in Figure 2 [19]. It contains a
three-axis accelerometer, three-axis gyroscope, and three-
axis magnetometer, which can be connected to a computer
by an RS232 interface or USB interface. The sampling rate
was set as 100Hz, and its dynamic range was ±50 m/s2, ±
300 deg/s, and 600mg.

The algorithm flow of the PNS was as follows: (1) An
improved zero-velocity update algorithm that could more
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Figure 1: The IMU fixed on the shoe.

Figure 2: Xsens IMU.
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accurately determine when the IMU should be stationary and
could be used as a reference in the Kalman filter to correct the
predicted position, velocity, and attitude angle of SINS; and
(2) a linear gait discrimination method used to judge the
walking state of pedestrians and solve the inaccurate posi-
tioning problem on floor height estimation, thus realizing
accurate indoor trajectory reconstruction. The algorithm
architecture is shown in Figure 3.

3. The Optimal Gait Recognition Algorithm

3.1. Zero-Velocity Detection. Zero-velocity detection deter-
mines whether the pedestrian foot is on the ground. The
detected zero-velocity state could be used as the external
measurement information for the system to reduce speed
error and improve positioning accuracy. One of two different
states, that is, moving and static, was an output of the zero-
velocity detection algorithm based on the signal source.
Zero-velocity detection [20, 21] plays an important role in
the whole system.

In this study, a generalized likelihood ratio test algo-
rithm was used, where the equivalent moving variance of

acceleration and the moving mean square value of angular
velocity are used for zero-velocity detection.

The output of IMU was defined as

xn = xan, xwn , 1

where xan and xwn ∈Ω3 are the specific acceleration and angu-
lar velocity measurement vectors, respectively and n repre-
sents the index for sampling instants when the sensor data
was collected. By the Neyman–Pearson rule, we assumed
the value zn = xn, xn+1, … , xn+W−1 , where W represents
the number of samples. We can get the T zn model as
follows:

T zn = 1
W

〠
n+W−1

k=n

1
δa

2 xak − g
xak
xak

2
+ 1
δw

2 xak 2 ,

2

where T zn is the test statistics as shown by the red curves in
Figure 4, g represents the acceleration due to gravity, xak and
xwk represent the means of the samples, respectively, and δ2a
and δ2w represent the noise variances of accelerometers and
gyroscopes, respectively.

In the stage of gait division, detection threshold Td zn
must be preset. In this study, we set Td zn = 0 3 × 105, as
shown by the blue line in Figure 4. By comparing the detec-
tion statistic T zn with the threshold Td zn , the gait detec-
tion results were obtained. Gait detection results were
expressed as follows:

Sk =
0, T zn > Td zn ,
1, T zn < Td zn ,

3

where Sk stands for the detection result, corresponding to the
black solid lines shown in Figure 5. When Sk equaled to 1, it
indicated the static phase; when it equaled to 0, it indicated
the moving phase.

Read IMU data
ax, ay, and az
wx, wy, and wz

Zero bias
correction

Zero velocity
detection and

labeled motion
state

Calculated
position

/velocity by
integration

Zero velocity
correction

Position/veloci
ty/transform

matrix update
by Kalman

Linear gait
discriminant

function

Update
according to

different
states

Output (position
and velocity)

Up, down, and flat walk

Figure 3: The algorithm architecture.
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3.2. Improved Zero-Velocity Detection Algorithm. When the
foot steps on the floor, it is actually static. However, due to
the drift of the measurement data of IMU, the data shows
that the foot is moving. Therefore, we call this phase the
pseudomoving phase, which can be induced by the local
uplift fluctuation of the static phase and usually lasts a short
time. The test result is shown in Figure 5. The improved zero-
velocity detection algorithm added a preset time threshold Tl
on the basis of the generalized likelihood ratio detection algo-
rithm. The improved zero-velocity detection results were
expressed by the following formula:

Sk =
0, L T zn > Td > Tl,
1, L T zn > Td < Tl,

4

where L T zn > Td represents the duration of the gait
phase. The modified gait detection result is shown in
Figure 6. Traditional zero-velocity detection results contain
a lot of pseudomoving phases, which results in inaccurate
location calculations. The improved gait detection algorithm
segmented the gait effectively.

4. Position Estimation Based on Kalman Filter

After getting the gait detection result, we needed to estimate
and correct the location of pedestrians through the zero-
velocity reference combined with the Kalman filter
algorithm.

4.1. Calculation of Attitude Transform Matrix. Data in body
coordinate b and navigation coordinate nmeets the following
equation:

xn, yn, zn T = Cn
b xb, yb, zb T , 5

where the attitude transform matrix Cn
b represents the rota-

tion relationship between the two coordinates, xn, yn, and
zn represent the geographical coordinates east, north, and
up, respectively, while xb, yb, and zb indicate the forward, left,
and upward directions in the body coordinate system.

Therefore, we could get the acceleration f of the naviga-
tion system as follows:

f =Cn
b × accX accY accZ T − 0 0 g T , 6

where accX, accY , and accZ represent the acceleration along
three axes in the body coordinate system. Besides, f can be
expressed as f 1 f 2 f 3 T , which represent the accelera-
tion along the xn-, yn-, and zn-axes, respectively. Based on
the acceleration data in the navigation coordinate, we could
obtain the pedestrian location and speed information via
integration computation. Therefore, the accuracy of Cn

b , acc
X, accY , and accZ were very important for accurate pedes-
trian trajectory reconstruction. The method of calculating
the attitude matrix by quaternion has been discussed by
many researchers [22], and thus, we just list them as follows:

q = q0 q1 q2 q3
T 7

Considering the relation between quaternions and gyro
measurement data in the body coordinate system, the
updated equation of quaternions is as follows, and we sup-
pose the quaternion is set as

q t = 1
2M w q t , 8

M w =

0 −wx −wy −wz

wx 0 −wz wy

wy wz 0 −wx

wz −wy wx 0

, 9

where wx, wy, and wz represent the x-axis, y-axis, and z-axis
angular velocity, respectively. According to (8), the quater-
nion matrix was obtained through the Picard approximation
method:

q t = cos Δθ0
2 I + sin Δθ0/2

Δθ0
Δθ q 0 , 10
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Figure 5: Gait recognition results based on zero-velocity detection.
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Figure 6: Gait recognition results based on improved zero-velocity
update algorithm.
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where q 0 is the initial quaternion and Δθ denotes the
change in angle, which can be obtained as follows:

Δθ =
t+Δt

t
Ωb

nb t dt =

0 −△θx −△θy −△θz

△θx 0 △θz −△θy

△θy −△θz 0 △θx

△θz △θy −θx 0

,

Δθ20 = Δθx 2 + Δθy
2 + Δθz 2,

11

where Δθx, Δθy, and Δθz are changes in angles and can be
obtained by Δθx =wx × Δt, Δθy =wy × Δt, and Δθz =wz × Δ
t, respectively. Then the attitude transform matrix Cn

bk can
be expressed in the form of quaternions, as shown in

Cn
bk =

2 q20 + q21 − 1 2 q1q2 − q0q3 2 q1q3 + q0q2

2 q1q2 + q0q3 2 q20 + q22 − 1 2 q2q3 + q0q1

2 q1q3 + q0q2 2 q2q3 − q0q1 2 q20 + q23 − 1
12

4.2. Prediction of Pedestrian Position and Velocity. Since the
IMU will have a certain drift and error will be accumulated
over time, the Kalman filter was applied here to correct the
distortion. In a regular walking cycle, the foot-mounted
IMU will periodically swing. Using the gait detection results,
the Kalman filter could estimate the errors of attitude, veloc-
ity, and position effectively.

The model of zero-velocity correction for the Kalman fil-
ter was constructed as follows [23]:

x = Fx +Gw, 13

where x is the system state vector, which is defined as

x = δsx δsy δsz δvx δvy δvz δρ δξ δψ
T 14

In the expression above, δsx, δsy , and δsz represent the
position errors of the target, δvx, δvy , and δvz are the velocity
errors of the target, δρ, δξ, and δψ are the errors in attitude
angles. w is the process noise with covariance Qw.

F in (13) is the state transition matrix with 9 rows and 9
columns:

F =
03×3 I3×3 03×3
03×3 03×3 Fm
03×3 03×3 03×3

, 15

and Fm is structured as follows:

Fm =
0 f 3 −f 2

−f 3 0 f 1
f 2 −f 1 0

16

Formula (13) introduces a continuous state model, and
the discretized equation is as follows:

xk+1 =Axk +wk, 17

where A = I + FΔt + 1/2 FΔt 2, xk represents the state of
time instant tk, and wk represents process noise. The covari-
ance of wk is calculated by Qk as

Qk =Qdt + 1
2 FQ +QFT dt2 + 1

6 2FQFT + FFQ +QFTFT dt3

18

Q is computed by Q =GkQwGT
k , where Gk is a matrix

with 9 rows and 6 columns:

Gk =
0 0

−Cn
bk 0

0 Cn
bk

19

The observation model is

zk =Hxk + τk, 20

where zk is the measurement matrix and τk is the white
Gaussian noise. H is the measurement matrix:

H =
0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0

21

Based on the output of IMU and the estimated state var-
iable at time tk−1, the velocity and position were calculated
with the acceleration f in the navigation coordinate obtained
by (6) as follows:

vk = vk−1 + f × Δt,

sk = sk−1 + sk−1 × Δt + 1
2 f × Δt2,

22

where the vk matrix is the velocity at time tk and vk =
vx, vy, vz . The sk matrix is the position vector at time
tk and sk = sx, sy, sz . vk−1 and sk−1 are the estimated
velocity and position at time tk−1, respectively. Δt is the
sampling time. It is known that vk and sk will gradually
drift away from the true value due to the error of the
measured accelerations accX, accY , and accZ.

4.3. Update Based on Kalman Filter. After the Kalman filter
predicted the velocity and position, the zero-velocity infor-
mation was used to correct the velocity. When the foot was
stationary, we used the measurement data

zk = 0 0 0 T 23

Then using the Kalman filter, we update the current state
as follows:

x̂k,k = x̂k,k−1 +Kk zk −Hx̂k,k−1 , 24

where x̂k,k−1 and x̂k,k are the estimated states updated by the
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measurement zk. Kk is the filter gain of the Kalman filter,
which can be calculated by

Kk = Pk,k−1HT Rk +HPk,k−1HT −1 25

The error covariance of the state estimation is calculated
by

Pk,k−1 =Ak−1Pk−1,k−1Ak−1
T +Qk−1 26

The error covariance of the update process can be com-
puted by

Pk,k = I −KkHk Pk,k−1, 27

where k, k − 1 refers to the predicted value from the sam-
pling k − 1 to k, k, k refers to the k point estimates, and
Pk,k−1 is the step prediction covariance.

We set the prediction error d as d = x̂k,k − x̂k,k−1,
where d is a 9-dimensional vector and can be described
as d = d 1 d 2 d 3 ⋯ d 9 T .

Then the updated position and velocity are calculated
as follows:

sk = sk + λd 1 − 3 ,
vk = vk + λd 4 − 6 ,

28

where sk is the position corrected at time tick tk and vk is the
velocity corrected at time tick tk. d 1 − 3 is the first, second,
and third elements of d; d 4 − 6 is the fourth, fifth, and sixth
elements of d; and λ is denoted as the coefficient of deviation.
By adjusting the value of λ, the errors of position and velocity
could be adjusted. It needs to be pointed out that λ is depen-
dent on the step length, which is related to the height of the
pedestrian.

In order to correct the rotation matrix, the correction
matrix Pe was constructed as follows:

Pe =
0 −d 9 d 8

d 9 0 −d 7
−d 8 d 7 0

29

With the above matrix, the transform matrix can then be
updated via the following equation:

Cn
bk = I + βPe ×Cn

bk−1, 30

where β is the coefficient closely related to the step length of
people and step length is usually proportional to the height.
The average height of adults is 1.5m to 2m; therefore, the
range of the parameter β is set to be 1.5–2.

5. Moving Direction Learning Method

In order to get the exact vertical height, we presented a
linear discriminant function based on the pedestrian gait.
First, we judged whether the pedestrian was climbing the
stairs or walking on the flat ground; then, if they were
climbing the stairs, we judged whether they went up or

down the stairs. According to the results of different judg-
ments, we presented a linear discriminant function based
on the pedestrian gait, by which the walk pattern of every
step, such as up or down the stairs, can be detected. Our
specific methods are as below.

The step size calculation formula is defined as follows:

dxy = xend − xstart
2 + yend − ystart

2, 31

where dxy is the displacement of each step, xend and yend are
the surface coordinates of the last point during the moving
phase, and xstart and ystart are the first points during the
moving phase.

According to the actual measurement, when an adult
walks, the horizontal displacement of each step is 0.9m–
1.15m. Meanwhile, when taking a step up or down, the hor-
izontal displacement is 0.3m–0.38m; taking two steps up or
down, the horizontal displacement is 0.6m–0.75m. It can be
seen that the two scenes are very different in step size. We set
the threshold ds = 0 8 m, by comparing horizontal displace-
ments, to distinguish between taking the stairs and walking
on a flat plane.

If the direction of vertical movement is necessary, some
further rules need to be investigated as well. Here, the z-axis
displacement was calculated by using SINS. As we all know,
the vertical displacement cannot be obtained directly by inte-
grating the z-axis acceleration due to the drift of IMU data.
However, through a large number of experiments, we found
out that although there will always be a drift, the calculation
results can accurately reflect the going up or down the stairs.
Therefore, the difference between the upper and lower posi-
tion dz was computed as follows:

dz = zend − zstart, 32

where zstart and zend are the coordinates in the vertical
direction at the start and end points that are the same
as those in (31).

In summary, the linear gait discrimination function can
be obtained as follows:

l =
upstairs dxy < ds,dz > 0,

downstairs dxy < ds,dz < 0,
walking on a f lat plane dxy > ds

33

If it is judged that a staircase was climbed, the thresh-
old was further set to judge whether one or two steps were
climbed at a time; we set another threshold as dsl = 0 5 m.
If dz > dsl , then the z coordinate of the end point is
assigned zstart plus twice the stair height, that is, zend =
zstart + 2h. If dz < dsl, then the z coordinate of the end
point is assigned zstart plus the stair height, that is, zend
= zstart + h. If the pedestrian went downstairs, then zend =
zstart − 2h or zend = zstart − h; this is similar to going
upstairs. If it was judged that the pedestrian was walking
on a flat plane, then we set zend = zstart.
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The h value needed to be calculated at the first step of the
stairs. At the beginning of the test, the stair height calculation
was accurate. Because the drift was weak, acceleration could
be used for position computation in the vertical direction.
Besides, with the relationship between zend and zstart, the
value h could then be determined. If one step was climbed
at a time, then h = dz1 = zend1 − zstart1; if two steps were
climbed at a time, then 2h = dz1 = zend1 − zstart1. Here, dz1 is
the height of the first step of the staircase. The first step
height h was used in each subsequent calculation.

The verification result of the proposed stair height calcu-
lation method is shown in Table 1. Three different bench
heights were chosen as 0.15m, 0.16m, and 0.165m; each
group was verified by 20 sets of experiments; and the average
stair height was used as the h value.

6. Case Study

In this section, two different cases were discussed to illustrate
the effectiveness of the developed method. In Case 1, posi-
tioning in the 2D plane was considered and a reasonably
accurate result was derived. Furthermore, a 3D scenario
was implemented in Case 2, where the performance of the
linear gait discrimination method was verified.

Case 1. The experiment was conducted in the corridor of
Number 3 Teaching Building in Beijing Technology and

Business University, as shown in Figure 7. After using the
optimized zero-velocity detection algorithm and selecting
the appropriate parameters, the positioning results of the
2D horizontal plane were shown in Figure 8.
The actual walking distance in the corridor was 39.6m, while
the calculated value was 39.95m. In this case, the experimen-
tal error was 0.35m. The accuracy of the horizontal experi-
ment results were verified by Case 1.

Case 2. In Case 2, the linear gait discrimination method was
used to obtain an accurate 3D indoor trajectory reconstruc-
tion. The experiment was carried out in the stairwell in the
building, as shown in Figure 9.

Table 1: Performance of the stair height calculation method.

Bench height
(m)

Calculated average stair height h
(m)

Error
(m)

0.15 0.1503 0.0003

0.16 0.1603 0.0003

0.165 0.1646 0.0004

Figure 7: Experimental environment in Case 1.
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Figure 8: 2D plane trajectory optimized by the algorithm.

Figure 9: Experimental environment in Case 2.
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Pedestrian attitude discrimination experiment. Five people of
different height, weight, and sex were selected to carry out
this experiment. The heights of the test personnel were
160–185 cm. During the test, the testers walked randomly
up/down the stairs and along flat planes. They were asked
to keep a real walking posture. The actual pedestrian walking
posture and gait discrimination results were compared, and
the comparison results are shown in Table 2. It could be
clearly seen that the error rate of the algorithm was less than
1.35%. The results showed that the linear gait discrimination
method proposed in this paper had a high recognition rate.
In the table above, the error rate was calculated by
the formula

re =
le
2L ,

34

where re is the error rate, le is the wrong number of steps, and
L is the total steps walked, and the number of actual walked
steps was equal to the number of test steps.
Validation of height estimation algorithm. The subject
started from the sixth floor staircase, climbed to the ninth
floor, and then walked a distance in the corridor. The actual
floor height was 3.5m, and with three stories, this resulted to
10.5m in total. We carried out three experiments: Experi-
ment 1, without using our method and only applying SINS;
Experiment 2, using the linear gait discrimination method;
and Experiment 3, using the IMU and barometric pressure

fusion to solve the 3D pedestrian trajectory. All the starting
points were 0, 0, and 0.
The sampling frequency of the barometer was 0.01 s, and
the formula for calculating the height of the barometer
was as follows:

H = 44, 330∗ 1 − p
p0

0 19026
, 35

whereH is the current height value of the calculation, p is the
barometric value at a specific moment, and p0 is the initial
barometric value. Then the IMU and barometer results were
calculated by the fusion method [23]. The measured height of
the barometer was 10.74m.
The result of Experiment 1 was shown in Figure 10, and the
results of Experiments 2 and 3 were given in Figures 11
and 12, respectively. To better show the different perfor-
mances of these methods, a detailed comparison result was
given in Table 3. It could be clearly seen that the error in
Experiment 1 was large, up to 3.5m, and the proposed
method also behaved a bit better than the IMU/barometer
fusion method with the error of 0.14m only.
The above three experiments were carried out 30 times in
each group, and the errors of Experiment 2 and Experiment
3 were within 0.3m per 10m. However, in an environment
such as in a fire rescue, the barometer will fail, and therefore,
the combination of the barometer and IMU is used to
increase the computational complexity. The improved

Table 2: Comparison of gait discriminant results among different pedestrians with actual walking posture.

Person Case Up 1 step Up 2 steps Down 1 step Down 2 steps Flat ground Error rate (%)

Person 1 (male)
Actual 15 78 21 52 210

1.33
Test 14 80 20 55 207

Person 2 (male)
Actual 9 89 14 45 323

0.625
Test 10 87 15 47 321

Person 3 (female)
Actual 15 58 19 103 403

0.84
Test 14 61 18 105 400

Person 4 (female)
Actual 14 59 17 89 201

1.32
Test 13 57 20 87 203

Person 5 (male)
Actual 8 78 17 105 326

1.12
Test 9 81 15 101 328
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Figure 10: Using only SINS 3D indoor positioning results.
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Figure 11: 3D positioning results of the proposed linear gait
discriminant method.
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method using only the IMU not only overcame the
redundancy of multisensor fusion but also completed the
3D trajectory reconstruction.

7. Conclusions

The foot-mounted IMU-based pedestrian indoor navigation
is useful for various indoor applications, such as finding
and rescuing firefighters or other emergency first responders.
This paper presented an optimal gait recognition algorithm
to obtain more accurate gait detection results. Then the
Kalman filter was combined with the zero-velocity update
algorithm to accurately recognize gait using our proposed
moving direction learning method. The proposed method
was evaluated with walking experiments, and comparisons
of results illustrated the effectiveness of the proposed algo-
rithm. The error in the horizontal direction was less than
0.08m per 10m, and the error in the vertical direction was
less than 0.14m per 10m. In future work, we will study more
complicated movement cases, such as jumping and walking
backwards, as well as movement via elevators.
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