
Research Article
Exponential Stabilization for a Class of Nonlinear Switched
Systems with Mixed Delays under Asynchronous Switching

Yongzhao Wang

School of Mathematics and Statistics, Anyang Normal University, Xuange Avenue 436, Anyang, China

Correspondence should be addressed to Yongzhao Wang; wangyongzhao1987@126.com

Received 3 April 2018; Revised 4 August 2018; Accepted 5 August 2018; Published 30 August 2018

Academic Editor: Lingzhong Guo

Copyright © 2018 Yongzhao Wang. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

This paper deals with the exponential stabilization problem for a class of nonlinear switched systems with mixed delays under
asynchronous switching. The switching signal of the switched controller involves delay, which results in the asynchronous
switching between the candidate controllers and subsystems. By constructing the parameter-dependent Lyapunov-Krasovskii
functional and the average dwell time approach, some sufficient conditions in forms of linear matrix inequalities are presented
to ensure the exponential stability of the switched nonlinear system under arbitrary switching signals. In addition, through the
special deformation of the matrix and Schur complement, the controllers with asynchronous switching are designed. Finally, a
numerical example and a practical example of river pollution control are provided to show the validity and potential of the
developed results.

1. Introduction

The switched system is a relatively complex and typical
dynamic system. It is composed of a group of discrete or con-
tinuous dynamic subsystems and a switching rule that coor-
dinates the operation of each subsystem. In recent years, the
research achievements of a switched system are widely used
in aerospace, artificial intelligence, and biochemical and
industrial manufacturing [1–3]. Moreover, the research of
switched systems has attracted more and more domestic
and foreign scientific research workers’ attention [4, 5]. Thus,
switched systems are of significant interest not only for their
applicability in practice but also for their interesting theoret-
ical properties. This is motivated by the need for systematic
approach to investigate switched systems.

It is well known that time delay, perturbation, and sto-
chastic term are inevitable in some practical control systems,
which are often the main cause for instability or undesirable
system performance of a control system [6–8]. In the past few
years, the subject of switched systems with time-varying
delays has attracted considerable attention due to a strong
engineering background. For instance, Bingi et al. [9] investi-
gate the phenomenon of time-dependent transmittance of

evanescent Bloch modes (EBM) in ZnS random photonic
crystal (RPC) which forms the basis for photonic delay
switching. Exponential stability and L1-gain analysis for pos-
itive time delay Markovian jump systems with switching
transition rates subject to average dwell time have been inves-
tigated in [10]. Among these studies, stability is a crucial and
fundamental problem for a switched system. Therefore, the
research on stability of system has attracted a large number
of domestic and foreign scientific researchers’ attention
[11, 12]. However, the problems of stability for switched
nonlinear systems are a great challenge and few results have
been reported for a switched nonlinear system with time
delay. Hence, many researchers have paid more attention to
studying nonlinear switched systems in the past few years
and some stability results related to switched nonlinear sys-
tems have been reported in the literature [13, 14]. Moreover,
Sun et al. and Daafouz et al. [15, 16] obtain sufficient condi-
tions guaranteeing the exponential stability by a common
Lyapunov functional (CLF). However, a common Lyapunov
functional approach might become too conservative when
stability is assessed. To address this issue, scholars investigate
the systems by using multiple Lyapunov functional (MLF)
[17, 18] and average dwell time (ADT) method [19, 20] in
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recent years. In particular, average dwell time technique plays
an important role in switched system analysis and control
synthesis. In this paper, our main goal is to provide a novel
multiple Lyapunov-Krasovskii functional to study the expo-
nential stabilization of switched nonlinear uncertain systems
with mixed delays by an average dwell time method under
asynchronous switching.

On the other hand, it is noted that the majority of the
results mentioned above were based on an ideal assumption
that the switching between the controller and the system is
synchronous. In fact, since it is inevitable that some time is
needed to identify the system mode and apply the matching
controller, there is an asynchronous phenomenon between
the system mode switching and the controller switching.
Therefore, it is significant to study the problem of asynchro-
nous switching and such system has gradually become a hot
research field. With the deepening of research, some valuable
achievements of asynchronous switching have emerged.
Xiang andWang [21] investigate robust control for uncertain
switched systems with time delay under asynchronous
switching, and some new delay-dependent exponential sta-
bilization criteria for the system were established. Wang
et al. [22] study the influence of random interference on
the switching system by average dwell time technique
under asynchronous switching, and H∞ control issue for
a class of switching system is considered in [23]. However,
based on the above discussion, the problem of exponential
stabilization for a class of nonlinear switched systems with
mixed delays under asynchronous switching has not been
well reported.

The core of this paper adds to the further development of
switched nonlinear systems under asynchronous switching.
Compared with the existing results on switched systems,
the results of this paper have four contributions. Firstly, the
switching signal of the Lyapunov-Krasovskii functional con-
structed in the paper is dependent on the controller switching
signal, which is convenient for the analysis of the proposed
issue. Secondly, the problem of the asynchronous switching
between the subsystems and the candidate controllers is con-
sidered. We derive some sufficient conditions for exponential
stability of the switched nonlinear systems with mixed delays
by an average dwell time approach. Thirdly, based on matrix
deformation technique and Schur complement, the state
feedback controllers of switched nonlinear systems are
designed under asynchronous switching, while on the exist-
ing work, the controller design problem was not considered.
Finally, the results of this paper are extended to a practical
example of river pollution control.

The rest of the paper is organized as follows. The problem
description and preliminary knowledge are presented in
Section 2. In Section 3, a novel multi-Lyapunov-Krasovskii
functions related to parameters are constructed and a suf-
ficient condition for exponential stabilization of a class of
nonlinear switched systems with mixed delays under asyn-
chronous switching is given by using average dwell time
and matrix inequality. Moreover, the controllers of the
switching system are designed through a special matrix
deformation method, which is the important conclusion of
this paper. Section 4 gives a numerical example and a

practical example of river pollution control to show the valid-
ity and potential of the developed results. A conclusion is
shown in Section 5.

2. Problem Description and Preliminaries

This paper studies a class of nonlinear switching systems as
follows:

x t =A1σ t x t +A2σ t x t − τ t + Bσ t u t

+ f t, x t − τ t + g t, x t − h t ,
x t = φ t , t ∈ max −τ, h , 0 ,

1

where u t ∈ Rm is control input, x t ∈ Rn denotes a system
state, and φ s ∈ Rn is the initial condition. A1i, A2i, and Bi,
i ∈ L, are constant matrices, and σ t : 0,∞ → L = 1, 2,
… , n is the switching signal, which is a piecewise con-
tinuous function, n is the number of subsystems. Spe-
cially, switching sequence of the system is expressed as
t0, σ t0 , t1, σ t1 ,… , tk, σ tk , where t0 and tk rep-

resent the initial and the kth switching time, respectively. τ t
and h t represent the mixed delays of the switched system
and satisfy the following cases:

0 ≤ τ t ≤ τ,
τ t ≤ d < 1,

0 ≤ h t ≤ h,

h t ≤ υ < 1

2

f t, x t − τ t and g t, x t − h t are nonlinear per-
turbation functions, which satisfy the following condition:

f t, x t − τ t ≤ ε x t − τ t ,
g t, x t − h t ≤ ρ x t − h t ,

3

where ε > 0 and ρ > 0 are known constants, noting that the
nonlinear perturbations are widely applicable in practice
and considered by many researchers.

When the controller synchronizes with the switching
subsystem, the state feedback controller is often designed as

u t =Kσ t x t , 4

where Ki, i ∈ L, denote the feedback gain matrix. However, in
actual operation, the controller switching time lags behind
the subsystem switching time. In other words, the controller
and the switching subsystem are asynchronous. At this point,
we assume that the delay of the switching signal of the con-
troller is τd, where the lag time τd < c and c is a known con-
stant. Then, the state feedback controller is designed as

u t =Kσ t−τd x t 5

Remark 1. This article studies switched systems under asyn-
chronous switching. We suppose that the jth subsystem is
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activated at the switching instant tk−1 and the ith subsystem
is activated at the switching instant tk, then the correspond-
ing switching controllers are activated at the switching
tk−1 + τd and tk + τd, respectively. Therefore, the closed-
loop system of system (1) in the interval tk, tk+1 can be
represented as follows:

x t = A1i + BiK j x t + A2ix t − τ t

+ f t, x t − h t + g t, x t − τ t ,
 ∀t ∈ tk, tk + τd mismatched periods ,

x t = A1i + BiKi x t + A2ix t − τ t

+ f t, x t − h t + g t, x t − τ t ,
 ∀t ∈ tk + τd, tk+1 matched periods

6

To facilitate the calculation, define A1ij = A1i + CiK j and
A1i = A1i + CiKi. Then, the closed-loop system is abbreviated
as follows:

x t = A1ijx t + A2ix t − τ t

+ f t, x t − τ t + g t, x t − h t ,
 ∀t ∈ tk, tk + τd mismatched periods ,

x t = A1ix t + A2ix t − τ t

+ f t, x t − τ t + g t, x t − h t ,
 ∀t ∈ tk + τd, tk+1 matched periods

7

In order to prove the next statements, the following def-
initions and lemmas are introduced.

Definition 1 [24]. The equilibrium x∗ = 0 of the closed-loop
system (7) is called to be exponential stabilization under
the switching signal σ and feedback control (5), if the
solution of the closed-loop system (7) satisfies the follow-
ing inequality.

x t ≤ ω sup
−max τ,h ≤θ≤0

x t0 + θ e−λ t−t0 ,

 ∀t ≥ t0, ω ≥ 1, λ > 0
8

Definition 2 [25]. For given N0 ≥ 0, τa ≥ 0, and any t2 >
t1 ≥ 0, let Nσ t1, t2 be the number of switching signals σ
t in the interval t1, t2 , if the following equation

Nσ t1, t2 ≤N0 +
t2 − t1
τa

, 9

holds, then τa is said to be average dwell time. The
authors choose N0 = 0 in this paper.

Lemma 1 [25]. S1, S2, and S3 are symmetric matrices of
appropriate dimensions with S1 = ST1 < 0, S3 = ST3 > 0, then
S1 + S2S−13 ST2 < 0 if and only if

S1 S2
ST2 −S3

< 0 10

3. Main Results

In this section, we derive some sufficient conditions of the
exponential stabilization for switched nonlinear systems by
an average dwell time approach under asynchronous switch-
ing. Moreover, the state feedback controllers of switched
nonlinear systems are designed.

Proposition 1. For given positive constants α, β, τ, d, h, υ, and
μ ≥ 1, if there is Pi, Qi, and Ri, which are symmetric and pos-
itive definite matrices, such that

Pi ≤ μPj,
Qi ≤ μQj,
Ri ≤ μRj,

 ∀i, j ∈ L,

11

Πi =

φi
11 φi

12 0 Pi Pi

∗ φi
22 0 0 0

∗ ∗ φi
33 0 0

∗ ∗ ∗ −I 0
∗ ∗ ∗ ∗ −I

< 0, 12

Ξi =

ωi
11 φi

12 0 Pi Pi

∗ ωi
22 0 0 0

∗ ∗ ωi
33 0 0

∗ ∗ ∗ −I 0
∗ ∗ ∗ ∗ −I

< 0, 13

where

φi
11 = PiA1i + AT

1iPi +Qi + Ri + αPi,
φi
22 = ε2 − 1 − d e−ατQi,

φi
12 = PiA2i,

φi
33 = ρ2 − 1 − υ e−αhRi,

ωi
22 = ε2 − 1 − d Qi,

ωi
33 = ρ2 − 1 − υ Ri,

ωi
11 = PiA1ij + AT

1ijPi +Qi + Ri + αPi

14

Then, the closed-loop system (7) is exponentially stable
under the feedback controller (5) for arbitrary switching signal
with the average dwell time satisfying

τa > τ∗a =
ln μ + α + β τd

α
15
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Proof 1. There exist two periods during the whole running
time of stability for switched systems (7): matched and mis-
matched periods.

Firstly, when t ∈ tk + τd, tk+1 , σ tk = i ∈ L, the closed-
loop system (7) is active within the ith subsystem and the
corresponding ith switching controller is also activated. The
Lyapunov-Krasovskii functional is constructed as follows:

V1σ t t = xT t Pσ t x t +
t

t−τ t
eα s−t xT s Qσ t x s ds

+
t

t−h t
eα s−t xT s Rσ t x s ds

16

We can easily obtain the following inequalities:

V1i = 2xT t Pix t − α
t

t−τ t
eα s−t xT s Qix s ds

− α
t

t−h t
eα s−t xT s Rix s ds

− 1 − τ t e−ατ t xT t − τ t Qix t − τ t

− 1 − h t e−αh t xT t − h t Rix t − h t

+ xT t Rix t + xT t Qix t

≤ xT t PiA1i + AT
1iPi +Qi + Ri x t

− 1 − d e−ατxT t − τ t Qix t − τ t

+ xT t PiA2ix t − τ t + xT t Pi f t, x t − τ t

+ xT t − τ t AT
2iPix t + f T t, x t − τ t Pix t

− 1 − υ e−αhxT t − h t Rix t − h t

+ xT t Pig t, x t − h t + gT t, x t − h t Pix t

− α
t

t−τ t
eα s−t xT s Qix s ds

− α
t

t−h t
eα s−t xT s Rix s ds

17

The inequality (3) can be rearranged as follows:

ε2xT t − τ t x t − τ t

− f T t, x t − τ t f t, x t − τ t ≥ 0,

ρ2xT t − h t x t − h t

− gT t, x t − h t g t, x t − h t ≥ 0

18

Combining (17) with (18), we can get

V1i + αV1i ≤ xT t PiA1i + AT
1iPi +Qi + Ri + αPi x t

− gT t, x t − h t g t, x t − h t

+ xT t Pi f t, x t − τ t

+ xT t − τ t AT
2iPix t

+ f T t, x t − τ t Pix t

+ xT t − h t ρ2I − 1 − υ e−αhRi x t − h t

+ xT t Pig t, x t − h t

+ xT t PiA2ix t − τ t

+ xT t − τ t ε2I − 1 − d e−ατQi x t − τ t

+ gT t, x t − h t Pix t

− f T t, x t − τ t f t, x t − τ t

19

Let

Then,

V1i + αV1i ≤ ζT t Πiζ t < 0, 21

where Πi is given by (12). Therefore, the following formula is
established.

V1i < −αV1i 22

Secondly, when t ∈ tk, tk + τd , the closed-loop system
(7) is active within the ith subsystem and the corresponding

jth switching controller is also activated. We choose the
Lyapunov-Krasovskii functional candidate as follows:

V2σ t t = xT t Pσ t x t

+
t

t−τ t
eβ t−s xT s Qσ t x s ds

+
t

t−h t
eβ t−s xT s Rσ t x s ds

23

ζ t = xT t xT t − τ t xT t − h t f T t, x t − τ t gT t, x t − h t
T 20
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We can get the time derivative of V2σ t as follows:

V2i = 2xT t Pix t + xT t Qix t

+ β
t

t−τ t
eβ t−s xT s Qix s ds

− 1 − τ t eβτ t xT t − τ t Qix t − τ t

+ β
t

t−h t
eβ t−s xT s Rix s ds

− 1 − h t eβh t xT t − h t Rix t − h t

+ xT t Rix t

≤ xT t PiA1ij + AT
1ijPi +Qi + Ri x t

− 1 − d xT t − τ t Qix t − τ t

+ xT t PiA2ix t − τ t + xT t Pi f t, x t − τ t

+ f T t, x t − τ t Pix t

− 1 − υ xT t − h t Rix t − h t

+ xT t Pig t, x t − h t + gT t, x t − h t Pix t

+ xT t − τ t AT
2iPix t + β

t

t−h t
eβ s−t xT s Rix s ds

+ β
t

t−τ t
eβ s−t xT s Qix s ds

24

Recalling (18), it follows that

V2i − βV2i ≤ xT t PiA1ij + AT
1ijPi +Qi + Ri − βPi x t

+ xT t − τ t ε2I − 1 − d Qi x t − τ t

+ f T t, x t − τ t Pix t

+ xT t Pi f t, x t − τ t

+ xT t − τ t AT
2iPix t

+ xT t − h t ρ2I − 1 − υ Ri x t − h t

+ xT t Pig t, x t − h t

+ gT t, x t − h t Pix t

− gT t, x t − h t g t, x t − h t

+ xT t PiA2ix t − τ t

− f T t, x t − τ t f t, x t − τ t ,
25

that is,

V2i − βV2i ≤ ζT t Ξiζ t < 0 26

where Ξi is given by (13). Therefore, the following formula
is established.

V2i < βV2i 27

By recalling (2), we have

t

t−τ t
eα s−t xT s Qix s ds +

t

t−h t
eα s−t xT s Rix s ds

≤
t

t−τ t
xT s Qix s ds +

t

t−h t
eα s−t xT s Rix s ds

≤
t

t−τ t
eβ t−s xT s Qσx s ds +

t

t−h t
eβ t−s xT s Rσx s ds

28

Thus,

V1i t ≤ V2i t 29

In the entire interval t0, t , the Lyapunov-Krasovskii
function is expressed as

V t =
V t , ∀t ∈ tk + τd, tk+1 ,
V2σ t , ∀t ∈ tk, tk + τd ,

30

where k = 0, 1, 2,… , n.
When t ∈ tk + τd, tk+1 , integrating both sides of (22)

from tk + τd to t, we get

V t ≤ e−α t− tk+τd V1i tk + τd
+

≤ e−α t− tk+τd V2i tk + τd
−

≤ e−α t− tk+τd eβτdV2i tk
+

≤ μe−α t− tk+τd eβτdV1i tk
+

≤⋯≤ μke k+1 βτde−α t−t0− k+1 τd V t0

≤ e α+β τde ln u+ α+β τd /τa−α t−t0 V t0

31

When t ∈ tk, tk + τd , integrating both sides of (27) from
tk to t, we get

V t ≤ eβ t−tk V2i tk
+

≤ μeβ t−tk V1i tk
−

≤ μe−α t− tk−1−τd eβτdV1i tk−1 + τd
−

≤⋯ ≤ μke k+1 βτde−α t−t0− k+1 τd V t0

≤ e α+β τde ln u+ α+β τd /τa−α t−t0 V t0

32

Using the equality (16) and (23), we obtain

V t ≥ a x t 2,
V t0 ≤ b sup

−max τ,h ≤θ≤0
x t0 + θ 2, 33
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where

a =min
i∈L

λmin Pi ,

b =max
i∈L

λmax Pi + τeβτ max
i∈L

λmax Qi + heβh max
i∈L

λmax Ri

34

So,

x t ≤ e1/2 α+β τd
b
a

sup
−max τ,h ≤θ≤0

x t0 + θ eι , 35

where ι = −1/2 α − ln u + α + β τd /τa t − t0
According to Definition 1, it is easily to prove that the

closed-loop system (7) is exponential stabilization.

Remark 2. In [17, 21], stabilization of nonlinear switched
systems with delay was investigated under asynchronous
switching and some criteria of stability for nonlinear
switched systems were obtained. However, the nonlinear
term in [17, 21] did not consider time delay. Liu et al.
[8] focus on the problem of stability for a class of switched
nonlinear systems with time-varying delay, but they [8] do
not contain asynchronous switching. In this paper, we
consider nonlinear switched systems and the nonlinear term
in our system contains time-varying delay. In addition, some
exponential stabilization criteria are obtained under asyn-
chronous switching. Compared with [8, 17, 21], we have
overcome the situation where the controller switching
instant lags behind the subsystem switching instant and we
have a greater advantage when dealing with complex systems
in practice.

Remark 3. It is worth noting that the parameter-dependent
Lyapunov-Krasovskii functional constructed in the form
of (30) has three main features. On the one hand, the
Lyapunov-Krasovskii functional depends on the switching
signal of the controller, which is convenient for the analysis
of the controller design under asynchronous switching. On
the other hand, the Lyapunov-Krasovskii functional is incre-
mental both at switching instants and during the mismatched
periods, but it is decreasing as a whole and the stability of the
system is guaranteed. Finally, the subsystems are allowed to
be unstable during mismatched periods resulted from asyn-
chronous switching.

Proposition 2. For given α, β, τ, d, h, υ, and μ ≥ 1, if there is
Xi, Gi, Oi, and Yi, which are symmetric and positive definite
matrices, such that

X j ≤ μXi,
Gj ≤ μGi,
Oj ≤ μOi,

 ∀i, j ∈ L, i ≠ j,

36

φi
11 φi

12 0 I I εXi 0 Xi Xi

∗ φi
22 0 0 0 0 ρXi 0 0

∗ ∗ φi
33 0 0 0 0 0 0

∗ ∗ ∗ −I 0 0 0 0 0
∗ ∗ ∗ ∗ −I 0 0 0 0
∗ ∗ ∗ ∗ ∗ −I 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ −I 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ −Oi 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −Gi

< 0,

37

ωi
11 φi

12 0 I I εXi 0 Xi Xi

∗ ωi
22 0 0 0 0 ρXi 0 0

∗ ∗ ωi
33 0 0 0 0 0 0

∗ ∗ ∗ −I 0 0 0 0 0
∗ ∗ ∗ ∗ −I 0 0 0 0
∗ ∗ ∗ ∗ ∗ −I 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ −I 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ −Oi 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −Gi

< 0,

38

where

φi
11 = A1iXi + BiKiXi + A1iXi + BiKiXi

T + αXi,
φi
22 = 1 − d e−ατ Gi − 2Xi ,

φi
12 = A2iXi,

φi
33 = 1 − υ e−αh Oi − 2Xi ,

ωi
22 = 1 − d Gi − 2Xi ,

ωi
11 = A1iXi + BiK jXi + A1iXi + BiK jXi

T − βXi,

ωi
33 = 1 − υ Oi − 2Xi

39

Then, system (1) is exponentially stable if average dwell
time τa > τ∗a = ln μ + α + β τd /α holds. Furthermore, the
controller can be designed by the following formula:

Ki = YiXi
−1 40

Proof 2. From Gi > 0 and Oi > 0, we can get

Gi − Xi
TGi

−1 Gi − Xi ≥ 0,
Oi − Xi

TOi
−1 Oi − Xi ≥ 0

41
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Then,

Gi − 2Xi ≥ −XiGi
−1Xi,

Oi − 2Xi ≥ −XiOi
−1Xi

42

Both sides of (37) multiplies simultaneously Xi
−1, Xi

−1,
Xi

−1, I, I, I, I, I, I , and we have the following inequality:

φi
11 φi

12 0 X−1
i X−1

i ε 0 I I
∗ φi

22 0 0 0 0 ρ 0 0
∗ ∗ φi

33 0 0 0 0 0 0
∗ ∗ ∗ −I 0 0 0 0 0
∗ ∗ ∗ ∗ −I 0 0 0 0
∗ ∗ ∗ ∗ ∗ −I 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ −I 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ −Oi 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −Gi

< 0,

43

where

φi
11 = Xi

−1A1i + Xi
−1BiYiXi

−1

+ Xi
−1A1i + Xi

−1BiYiXi
−1 T + αXi

−1,

φi
12 = X−1

i A2i,
φi
22 = − 1 − d e−ατGi

−1,

φi
33 = − 1 − υ e−αhOi

−1

44

Let

Yi = KiXi,
Xi

−1 = Pi,
Gi

−1 =Qi,
Oi

−1 = Ri

45

Using Schur complement in (43), we can get that (12)
holds and the same method can be used to prove that for-
mula (13) holds. From (45), the controller gains are given
by (40). The proof is completed.

4. Simulation Examples

In this section, a numerical example and a practical example
are given to illustrate the effectiveness and applicability of the
proposed approach.

Example 1. We consider nonlinear switched systems with
mixed delays, which is consisted of two subsystems with the
following parameters:

A11 =
−0 5 0
0 −0 6

,

A21 =
−0 4 0
0 −0 6

,

A12 =
−0 8 0
0 −0 6

,

A22 =
−0 6 0
0 −0 7

,

B1 =
0 3
0 5

,

B2 =
0 2
0 6

46

We choose α = 1 05, β = 0 4, h = 0 9, τ = 0 8, d = 0 4, υ = 0 3,
τd = 0 3, μ = 1 9, ε = 0 3, ρ = 0 4,

f t, x t − τ t =
0 1 cos x1 t ,
0 2 sin x2 t − τ t − 0 1,

g t, x t − h t =
0 1 sin x1 t − h t ,
0 2 cos x2 t − 0 1

47

Through calculation, we get the average dwell time:

τa > τ∗a =
ln μ + α + β τd

α
= 1 0256 48

According to (38), (40), and (42), we can obtain

X1 =
0 2777 0 1202
0 1202 0 0866

,

X2 =
0 2686 0 1179
0 1179 0 0841

,

G1 =
0 4163 0 0270
0 0270 0 3832

,

G2 =
0 4109 0 0245
0 0245 0 3827

,

O1 =
0 4240 0 0340
0 0340 0 3813

,

O2 =
0 4177 0 0315
0 0315 0 3809

,

Y1 = 0 9355 0 9169 ,
Y2 = 0 4103 0 8936

49
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Controller gains of the system can be calculated by (40) and
be expressed as

K1 = −2 6819 13 9815 ,
K2 = −8 1572 22 0690

50

Figure 1 shows the switching signals of the system and
controller, while Figure 2 shows the state response with an
initial state x 0 = −1 1 T of the considered switched
nonlinear system under the designed switching signal
depicted in Figure 1. It is easy to find that the system is expo-
nentially stabilizable under asynchronous switching.

Example 2. We will illustrate the effectiveness of our
approach through river pollution control issues.
In a reach of a polluted river, the concentrations per unit
volume of biochemical oxygen demand and dissolved oxy-
gen are denoted as z t and q t , respectively. Let z∗ and
q∗ corresponding to some measure of water quality stan-
dards denote the desired steady values of z t and q t ,
respectively. Define x1 t = z t − z∗, x2 t = q t − q∗, and

x t = xT1 t xT2 t T
. Then, the dynamic equation for x t

can be written as [18, 19]:

x t = Ax t + Ax t − τ t + Bu t + ω t , 51

where

A =
−k10 − η1 − η2 0

−k30 −k20 − η1 − η2
,

A =
η2 0
0 η2

,

B =
η1

1

52

where u t = uT1 t uT2 t T
is the control variables of river

pollution, ki0 i = 1, 2, 3 , η1 and η2 are known constants,
and ω t is the disturbance input of the system. The phys-
ical meaning of these parameters can be found in [26, 27].
In accordance with the actual situation, we assumed that the
system actuators are subject to good performance or failure
in this paper. Therefore, the model is divided into two sub-
systems for discussion. Then, system (51) can be described
as the following switched system:

For the simulation of our purposes, we choose k10 = 1 6,
k20 = 1, k30 = 1 6, η1 = 0 3, and η2 = 0 7 and we can get

A11 =
−2 6 0
−1 6 −2

,

A21 =
0 7 0
0 0 7

,

B1 =
0 3
1

54

Let τ t = 0 3 sin t , h t = 0 3 sin t , ω t = ω1 t + ω2 t ,

ω1 t = f t, x t − τ t =
0 1 sin x1 t

0 2 sin x2 t − τ t
,

ω2 t = g t, x t − h t =
0 2 cos x1 t

0 1 cos x2 t − h t

55

Then, we will use the above parameters to design a set of
switching sequences to stabilize the above system (53). At
the same time, we choose

A12 =
−2 9 0
1 2 −1 8

,

A22 =
0 5 0
0 0 5

,

B2 =
0 2
0 8

56

α = 0 3, β = 0 5, μ = 1 7, h = 0 8, τ = 0 9, τd = 0 4, d = 0 3,
υ = 0 3, τ t = 0 3 sin t , h t = 0 3 cos t , we get the
average dwell time:

τa > τ∗a =
ln μ + α + β τd

α
= 2 8354 57

By solving (38), (40), and (42), we have

X1 =
0 4161 0 0690
0 0690 0 4290

,

x t =
A11x t + A21x t − τ t + B1u t + f t, x t − τ t + g t, x t − h t no failures occur ,
A12x t + A22x t − τ t + B2u t + f t, x t − τ t + g t, x t − h t failures occur

53
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X2 =
0 2293 0 2241
0 2241 0 4260

,

G1 =
1 3080 0 0244
0 0244 1 2977

,

G2 =
1 3263 0 6489
0 6489 1 3533

,

O1 =
0 7389 0 0799
0 0799 0 7482

,

O2 =
0 5590 0 2137
0 2137 0 7364

,

Y1 = 0 9501 0 2311 ,

Y2 = 0 6068 0 4860
58

Then, the controller gains constructed by (40) are

K1 = 2 2541 0 1760 ,
K2 = 3 150 −0 5166

59

Figure 3 shows the switching signals of the system and
controller, while Figure 4 shows the state response with an
initial state x 0 = −1 5,1 5 T of the considered switched
nonlinear system under the designed switching signal
depicted in Figure 3. Therefore, the effectiveness of our
approach is verified by its application in the control of
the river pollution process.
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Remark 4. Zheng et al. [27] have investigated the pollution
problem of a single reach river modelled by the dynamics
of water quality subject to uncertainty in system parame-
ters; an adaptive controller is developed based on linear
matrix inequality technique, and it is shown that the con-
troller can guarantee the closed-loop system to converge,
globally and exponentially. However, the performance of
the actuator for the river pollution model may be deviated
in practical applications. This article has solved this situation
by changing the original system model to a switched system
for processing. Compared with [26, 27], we have stronger
application value in practice.

5. Conclusion

In this paper, the problem of exponential stabilization for a
class of a nonlinear switched system with mixed time delays
has been studied. The switching signal of the switched con-
troller involves delay, which results in the asynchronous
switching between the candidate controllers and subsystems.
Based on a novel parameter-dependent Lyapunov-Krasovskii
functional, some sufficient conditions for the exponential
stability of the switched system under asynchronous switch-
ing are obtained by the average dwell time approach. More-
over, the controllers of the switched system are designed
through a special matrix transformation method. Finally, a
numerical example and a practical example of river pollution
control are provided to show the validity and potential of the
developed results.

Through the research of this paper, we learned that
different piecewise Lyapunov functionals may lead to dif-
ferent conservatism. It deserves further study to choose an
improved piecewise Lyapunov functional so as to reduce
the conservativeness. In order to better study the asynchro-
nous switching problem in multiple aspects, we will further
optimize Lyapunov functionals and the dual controller
design for better performance. In this article, we did not
consider stochastic term. It is well known that stochastic
term is inevitable in some practical control systems [28],
which is often the main cause for instability or undesirable
system performance of a control system. Specifically, the
stabilization of stochastic switched nonlinear systems with
Markov jumps will be taken as a main direction of our
future research.
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