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The finite-time consensus problem in the networks of multiple mobile agents is comprehensively investigated. In order to resolve
this problem, a novel nonlinear information exchange protocol is proposed. The proposed protocol ensures that the states of the
agents are converged to a weighted-average consensus in finite time if the communication topology is a weighted directed graph
with a spanning tree and each strongly connected component is detail-balanced. Furthermore, the proposed protocol is also able
to solve the finite-time consensus problem of networks with a switching topology. Finally, computer simulations are presented to
demonstrate and validate the effectiveness of the theoretical analysis under the proposed protocol.

1. Introduction

In recent years, the cooperative control has received consid-
erable attentionmainly due to its broad applications tomulti-
agent systems such as the state consensus seeking of multiple
mobile vehicles [1–3], flocking, rendezvous, and containment
in natural and social systems [4–9], analysis and control of
cyberphysical networks [10], and distributed control and dis-
patching in smart grids [11–17]. The cooperative control is an
interdisciplinary subject and several researchers from differ-
ent scientific communities have conducted various research
studies concerning the abovementioned applications [2, 18].
Among the numerous research topics in cooperative control,
consensus problem is one of the most important issues
[19, 20]. The consensus problem can be generally described
as how to design appropriate protocols based on the local
information under some communication topology to ensure
that the concerned agents reach an agreement on certain
quantities of interest.

The main concern of this paper is the consensus seeking
problem in the distributed control systems. Consensus seek-
ing problem is a long-standing issue in computer science and
sometimes called agreement problem. The communication
topology and the consensus protocol are crucial for the

consensus of multiagent systems. The researchers have
mainly focused on the following two issues: one is the deter-
mination of the weakest and the simplest communication
topology under which the given protocol can ensure the
agents reach an agreement; the second is the design of a
protocol to ensure that the states of the agents are converged
to consensus under the given interaction topology. The
multiagent consensus problem has been addressed by using
the graph theory and the matrix analysis methods under var-
ious interaction topologies with given information exchange
protocols. Vicsek et al. [4] have introduced an interesting
discrete-time model of mobile agents. Each agent’s motion
is updated according to a local rule based on its own and its
neighbors states.The theoretical explanation of the consensus
property of the Vicsek mode has been introduced in [5],
where each agent’s set of neighbors should change over time
with evolution of the system. Later, a general framework of
the consensus problem for networks of dynamics agents with
fixed or switching topology and communication time-delays
has been established [19]. The consensus conditions derived
in [19] have been further relaxed in [20]. Lin et al. [21, 22] have
studied the consensus problem in the context of formation
control of autonomous vehicles and have demonstrated that
formation stabilization to a certain point is only feasible
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if the sensor digraph has a globally reachable node. The
consensus problem has also been studied for switching
communication topology [23, 24], asynchronous consensus
[25, 26], high-dimensional consensus [27], consensus with
sampled communication [28], and consensus with external
disturbances and model uncertainties [29]. The research so
far has focusedmore on the determination of the weakest and
the simplest communication topology than the design of the
information exchange protocol to achieve consensus under
the given topology. The convergence rate is a very important
performance index to evaluate the protocols. Although the
enlargement of the algebraic connectivity can increase the
convergence rate but still the protocols are unable to ensure
that the states of the agents will reach a consensus in finite
time. Finite-time consensus is desirable in many real-time
scenarios. Recently, Wang and Xiao have studied the finite-
time consensus problems and provided several finite-time
consensus protocols to ensure that the multiagents reach a
consensus in finite time with appropriate communication
topology [30–32]. Finite-time consensus in multiple Euler-
Lagrange systems over undirected topology has been studied
in [33]. More recently, finite-time consensus tracking prob-
lem of multiple high-order systems has been considered in
[34, 35]. In this paper, a new nonlinear protocol based on the
abovementioned works is proposed. The proposed protocol
ensures that the agents reach the finite-time consensus with
a better convergence rate than the typical linear protocol [19]
and the nonlinear protocol proposed by Feng and Long [30].
Furthermore, a number of sufficient consensus conditions are
derived and discussed using the tools fromLyapunov stability
analysis. Finally, numerical examples are provided to validate
the analytical results.

The remainder of the paper is organized as follows: in
Section 2, some preliminary notions in graph theory are
provided. Then, the problem is formulated in Section 3. The-
oretical analysis results are given in Section 4. In Section 5,
simulation results are presented followed by concluding
remarks in Section 6.

2. Preliminary Notations

Graph plays an important role in representing the commu-
nication topology among multiagents. Therefore, some basic
notions and results in algebraic graph theory [36, 37] and a
algebraic inequality [38] are provided.

Let G(V,E,A) be a directed graph of order 𝑛, where
V = {𝜐1, . . . , 𝜐𝑛} is the set of nodes, E ⊆ V × V is the set
of edges, and A = [𝑎𝑖𝑗]𝑛×𝑛 is a weighted adjacency matrix
such that (𝜐𝑖, 𝜐𝑗) ∈ E(𝐴) ⇔ 𝑎𝑗𝑖 > 0. An edge of G(V,E,A)
is denoted by 𝜀𝑖𝑗 = (𝜐𝑖, 𝜐𝑗), where the first element 𝜐𝑖 and
the other element 𝜐𝑗 are called the root and child vertices,
respectively. The set of neighbors of vertex 𝜐𝑖 is defined as
N(G(V,E,A), 𝜐𝑖) = {𝜐𝑗 : (𝜐𝑗, 𝜐𝑖) ∈ E}. The corresponding
index set is denoted by N(G(V,E,A), 𝑖) = {𝑗 : 𝜐𝑗 ∈
N(G, 𝜐𝑖)}. The Laplacian of the graphG(V,E,A) is defined
as 𝐿 = D − A, where D = [𝑑𝑖𝑗]𝑛×𝑛 is a diagonal matrix
with 𝑑𝑖𝑖 = ∑𝑛𝑖=1 𝑎𝑖𝑗. A path of graphG(V,E,A) is a sequence𝜐1, . . . , 𝜐𝑘 of vertices satisfying (𝜐𝑖𝑗 , 𝜐𝑖𝑗+1) ∈ E. A directed

graph is said to be strongly connected, if there exists a directed
path between each pair of distinct vertices. A directed tree is
a directed graph such that each vertex has only one parent
vertex, except one special vertex (root vertex) without any
parent vertex.

Directed graph G𝑠(V𝑠,E𝑠,A𝑠) is a subgraph of G(V,
E,A) such that V𝑠 ⊆ V,E𝑠 ⊆ E. If V𝑠 = V,E𝑠 ⊆
E, G𝑠(V𝑠,E𝑠,A𝑠) is called a spanning subgraph. We say
G𝑠(V𝑠,E𝑠,A𝑠) is induced by V𝑠, if, for any (𝜐𝑖, 𝜐𝑗) ∈ E𝑠,(𝜐𝑖, 𝜐𝑗) ∈ E𝑠 ⇔ (𝜐𝑖, 𝜐𝑗) ∈ E. A spanning tree of G(V,
E,A) is a directed tree as well as a spanning subgraph
of G(V,E,A). A strongly connected component of G(V,
E,A) is an induced subgraph and is subjected to be
strongly connected. Suppose that graph G(V,E,A) has𝑘 strongly connected components, denoted by G𝑐1(V𝑐1,
E𝑐1,A𝑐1), . . . ,G𝑐𝑘(V𝑐𝑘,E𝑐𝑘,A𝑐𝑘). According to the above defini-
tions, each vertex of directed graph G(V,E,A) lies exactly
in one strongly connected component and the strongly
connected component of G(V,E,A) partitions its vertices.
Another directed graph G𝑐(V𝑐,E𝑐,A𝑐) is presented in [37],
where V𝑐 consists of all strongly connected components
G𝑐1(V𝑐1,E𝑐1,A𝑐1), . . . ,G𝑐𝑘(V𝑐𝑘,E𝑐𝑘,A𝑐𝑘) ofG(V,E,A), and, for
any 𝑖, 𝑗 ∈ {1, . . . , 𝑘}, (Gc

𝑖 (V𝑐𝑖 ,E𝑐𝑖 ,A𝑐𝑗),G𝑐𝑗(V𝑐𝑗,E𝑐𝑗,A𝑐𝑗)) ∈ E𝑐

if only if there exist 𝜐𝑚 ∈ V𝑐𝑖 and 𝜐𝑛 ∈ V𝑐𝑗 such that (𝜐𝑚, 𝜐𝑛) ∈
E.

Without causing any confusion, G(A) can be used to
denote the directed graphG(V,E,A).
Definition 1. For directed graph G(A), if there exist some
scalars 𝜔𝑖 > 0, 𝑖 ∈ 𝐼𝑛, yields 𝜔𝑖𝑎𝑖𝑗 = 𝜔𝑗𝑎𝑗𝑖, and then it can be
said thatG satisfies the detailed balance condition orG(A) is
a detail-balanced graph.

Definition 2. Let 𝑥 = [𝑥1, . . . , 𝑥𝑛] ∈ R𝑛, and then 𝑥 is called a
positive vector if 𝑥𝑖 > 0, 𝑖 ∈ 𝐼𝑛.
Definition 3. For 𝑥 ∈ R,

sign (𝑥) = {{{{{{{{{
1 𝑥 > 00 𝑥 = 0−1 𝑥 < 0. (1)

Lemma 4 (𝐶𝑟 − inequality [38]). For any 𝑎 = [𝑎1, . . . , 𝑎𝑛] ∈
R𝑛, 𝑝 > 0, and then

( 𝑛∑
𝑖=1

󵄨󵄨󵄨󵄨𝑎𝑖󵄨󵄨󵄨󵄨)𝑝 ≤ 𝐶 𝑛∑
𝑖=1

󵄨󵄨󵄨󵄨𝑎𝑖󵄨󵄨󵄨󵄨𝑝 ,
𝐶 = 1, 0 < 𝑝 ≤ 1,𝐶 = 𝑛𝑝−1, 𝑝 > 1.

(2)

Lemma 5 (see [39]). Suppose that there exists a positive
definite continuous function𝑉 : D → R such that the following
condition holds.



Complexity 3

There exist real numbers 𝑐 > 0 and 𝜌 ∈ (0, 1) and an open
neighborhoodV ⊆ D of the origin such that𝑉̇ (𝑥) + 𝑐𝑉𝜌 (𝑥) ≤ 0, 𝑥 ∈ V \ {0} . (3)

Then, the origin is finite-time stable and, depending on the
initial sate 𝑥(0) = 𝑥0, the setting time satisfies the following:

𝑇 (𝑥0) ≤ 𝑉 (𝑥0)𝑐 (1 − 𝜌) . (4)

3. Problem Formulation

The multiple mobile agent system studied in this paper
consists of 𝑛 autonomous agents, for example, particles or
robots, labeled 1 − 𝑛. All these agents share a common state
space R. For convenience, 𝐼𝑛 is used to denote the set{1, 2, . . . , 𝑛}. The state of agent 𝑖 is denoted by 𝑥𝑖, 𝑖 ∈ 𝐼𝑛, and
let 𝑥 = [𝑥1, 𝑥2, . . . , 𝑥𝑛]𝑇.

Suppose that the communication topology is G(𝐴) and
the agent 𝑖, 𝑖 ∈ 𝐼𝑛, is with the following dynamics:𝑥̇𝑖 (𝑡) = 𝑢𝑖 (𝑡) , (5)

where 𝑢𝑖(𝑡) is the protocol to be designed.
The following information exchange protocol is used to

solve a weighted-average finite-time consensus problem:

𝑢𝑖 (𝑡) = 𝛼 ∑
𝑗∈N(G(𝐴),𝑖)

𝑎𝑖𝑗 sign (𝑥𝑗 − 𝑥𝑖) 󵄨󵄨󵄨󵄨󵄨𝑥𝑗 − 𝑥𝑖󵄨󵄨󵄨󵄨󵄨𝛽
+ 𝛾 ∑
𝑗∈N(G(𝐴),𝑖)

𝑎𝑖𝑗 (𝑥𝑗 − 𝑥𝑖) , (6)

where 𝛼 > 0, 0 < 𝛽 < 1, 𝛾 ≥ 0.
Particularly, the following cases can be obtained:

(i) For 𝛼 = 0, 𝛾 = 1, then𝑢𝑖 (𝑡) = ∑
𝑗∈N(G(𝐴),𝑖)

𝑎𝑖𝑗 (𝑥𝑗 − 𝑥𝑖) , (7)

and the nonlinear protocol (7) reduces to the typical
linear protocol proposed by Olfati-Saber and Murray
[19]. The dynamical behaviors of the multiagents
have received considerable attention under this linear
protocol and significant results have been established.
Further details can be found in the survey papers
[2, 18].

(ii) 𝛼 > 0, 0 < 𝛽 < 1, 𝛾 = 0, and the consensus
transforms into the nonlinear protocol proposed by
Feng and Long [30]. Feng and Long have proved
that their nonlinear protocol can solve the finite-
time average-agreement problem and can be applied
to the systems with switching topologies assuming
that the communication topology is represented by a
connected undirected graph.

(iii) 𝛼 ̸= 0, 𝛽 = 0, 𝛾 = 0, and in this case the pro-
tocol becomes discontinuous with respect to the state

variables. The research on this topic is still under
development. It is worth mentioning that the case
when 𝛼 ̸= 0, 𝛽 = 0, 𝛾 = 0, and the adjacency matrix𝐴 of the communication topology G(𝐴) is a 0 − 1
symmetric matrix has been addressed in [40].

4. Theoretical Analysis

This section describes some theoretical results of the agents
dynamics under the proposed protocol.

4.1. Fixed Communication Topology. In this subsection, dy-
namic behaviors of the multiagents under fixed topology are
considered.

Theorem 6. If the communication topology G(𝐴) has a
spanning tree and each strongly connected component is detail-
balanced, then the nonlinear protocol (6) can ensure that the
states of agents converge to a weighted-average consensus in
finite time.

Proof. The proof is similar to that of [37] and is divided into
the following three steps.

Step 1. Suppose that G(𝐴) is strongly connected and detail-
balanced.

As G(𝐴) is a strongly connected and detail-balanced
graph, according to Definition 1, there exists a positive vector𝜔 = [𝜔1, 𝜔2, . . . , 𝜔𝑛]𝑇 ∈ R𝑛 such that 𝜔𝑖𝑎𝑖𝑗 = 𝜔𝑗𝑎𝑗𝑖 for all𝑖, 𝑗 ∈ 𝐼𝑛. Then, the following can be obtained:

𝑛∑
𝑖=1

𝜔𝑖𝑥̇𝑖 (𝑡) = 0. (8)

Let

Δ = 1∑𝑛𝑖=1 𝜔𝑖 𝑛∑𝑖=1𝜔𝑖𝑥𝑖 (𝑡) . (9)

Then Δ is a constant and can be considered as a weighted-
average of the initial sates of the agents. Let 𝛿(𝑡) =[𝛿1(𝑡), . . . , 𝛿𝑛(𝑡)]𝑇, where 𝛿𝑖(𝑡) = 𝑥𝑖(𝑡) − Δ. Taking Lyapunov
function 𝑉1(𝑡) = (1/2)∑𝑛𝑖=1 𝜔𝑖𝛿𝑖(𝑡)2, then ̇𝛿𝑖(𝑡) = 𝑥̇𝑖(𝑡) and𝜔𝑇𝛿(𝑡) = 0. In [19], 𝛿(𝑡) is referred to as the group
disagreement vector. In the following analysis, 𝛿(𝑡) is assumed
to be a nonzero vector.

Differentiating 𝑉1(𝑡) with respect to 𝑡 provides𝑑𝑉1 (𝑡)𝑑𝑡 = 𝑛∑
𝑖=1

𝜔𝑖𝛿𝑖 (𝑡) ̇𝛿𝑖 (𝑡) = 𝛼 𝑛∑
𝑖=1

𝜔𝑖𝛿𝑖 (𝑡) ∑
𝑗∈N(G(𝐴),𝑖)

𝑎𝑖𝑗
⋅ sign (𝛿𝑗 (𝑡) − 𝛿𝑖 (𝑡)) 󵄨󵄨󵄨󵄨󵄨𝛿𝑗 (𝑡) − 𝛿𝑖 (𝑡)󵄨󵄨󵄨󵄨󵄨𝛽 + 𝛾 𝑛∑

𝑖=1

𝜔𝑖𝛿𝑖 (𝑡)
⋅ ∑
𝑗∈N(G(𝐴),𝑖)

𝑎𝑖𝑗 (𝛿𝑗 (𝑡) − 𝛿𝑖 (𝑡))
= 12 {{{[[𝛼 𝑛∑

𝑖,𝑗=1

𝜔𝑖𝑎𝑖𝑗𝛿𝑖 (𝑡) sign (𝛿𝑗 (𝑡) − 𝛿𝑖 (𝑡))
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⋅ 󵄨󵄨󵄨󵄨󵄨𝛿𝑗 (𝑡) − 𝛿𝑖 (𝑡)󵄨󵄨󵄨󵄨󵄨𝛽 + 𝛾 𝑛∑
𝑖,𝑗=1

𝜔𝑖𝑎𝑖𝑗𝛿𝑖 (𝑡) (𝛿𝑗 − 𝛿𝑖)]]
+ [[𝛼 𝑛∑
𝑖,𝑗=1

𝜔𝑗𝑎𝑗𝑖𝛿𝑗 (𝑡) sign (𝛿𝑖 (𝑡) − 𝛿𝑗 (𝑡))
⋅ 󵄨󵄨󵄨󵄨󵄨𝛿𝑖 (𝑡) − 𝛿𝑗 (𝑡)󵄨󵄨󵄨󵄨󵄨𝛽 + 𝛾 𝑛∑

𝑖,𝑗=1

𝜔𝑗𝑎𝑗𝑖𝛿𝑗 (𝑡) (𝛿𝑖 − 𝛿𝑗)]]}}}
= −12 [[𝛼 𝑛∑

𝑖,𝑗=1

𝜔𝑖𝑎𝑖𝑗 󵄨󵄨󵄨󵄨󵄨𝛿𝑗 − 𝛿𝑖󵄨󵄨󵄨󵄨󵄨1+𝛽
+ 𝛾 𝑛∑
𝑖,𝑗=1

𝜔𝑖𝑎𝑖𝑗 (𝛿𝑗 − 𝛿𝑖)2]] = −𝛼2 𝑛∑
𝑖,𝑗=1

[(𝜔𝑖𝑎𝑖𝑗)2/(1+𝛽)
⋅ (𝛿𝑗 − 𝛿𝑖)2](1+𝛽)/2 − 𝛾2 𝑛∑

𝑖,𝑗=1

𝜔𝑖𝑎𝑖𝑗 (𝛿𝑗 − 𝛿𝑖)2 .
(10)

According to 𝐶𝑟-inequality
𝑑𝑉1 (𝑡)𝑑𝑡 ≤ −𝛼2 [[

𝑛∑
𝑖,𝑗=1

(𝜔𝑖𝑎𝑖𝑗)2/(1+𝛽) (𝛿𝑗 − 𝛿𝑖)2]]
(1+𝛽)/2

− 𝛾2 𝑛∑
𝑖,𝑗=1

𝜔𝑖𝑎𝑖𝑗 (𝛿𝑗 − 𝛿𝑖)2 .
(11)

Let 𝑀1(𝛿(𝑡)) = ∑𝑛𝑖,𝑗=1(𝜔𝑖𝑎𝑖𝑗)2/(1+𝛽)(𝛿𝑗 − 𝛿𝑖)2, 𝑁1(𝛿(𝑡)) =∑𝑛𝑖,𝑗=1 𝜔𝑖𝑎𝑖𝑗(𝛿𝑗 − 𝛿𝑖)2 and 𝐵 = [𝑏𝑖𝑗]𝑛×𝑛, 𝐶 = [𝑐𝑖𝑗]𝑛×𝑛, where𝑏𝑖𝑗 = (𝜔𝑖𝑎𝑖𝑗)2/(1+𝛽), 𝑐𝑖𝑗 = 𝜔𝑖𝑎𝑖𝑗. It is obvious that 𝐵 = 𝐵𝑇,𝐶 = 𝐶𝑇, 𝐿(𝐵), and 𝐿(𝐶) denote the Laplacian matrices of
the graphs G(𝐵), and G(𝐶), respectively. Let 𝜆(𝐿(𝐵)) =[𝜆1, 𝜆2, . . . , 𝜆𝑛], where 0 = 𝜆1 ≤ 𝜆2 ≤ ⋅ ⋅ ⋅ ≤ 𝜆𝑛, represents
the spectrum of matrix 𝐿(𝐵). It can easily be checked that 0 is
an algebraically simple eigenvalue and 1 = [1, . . . , 1]𝑇 is the
associated eigenvector. As 𝐿(𝐵) is a real symmetric matrix,
there exists orthogonal matrix Φ = [𝜑1, 𝜑2, . . . , 𝜑𝑛]𝑇, such
that 𝜑1 = (1/√𝑛)[1, 1, . . . , 1]𝑇 and Φ𝐿(𝐵)Φ𝑇 = diag(𝜆(𝐵)).
Then𝑀(𝛿 (𝑡)) = 2𝛿 (𝑡)𝑇 𝐿 (𝐵) 𝛿 (𝑡)= 2 (Φ𝛿 (𝑡))𝑇 diag (𝜆 (𝐿 (𝐵)))Φ𝛿 (𝑡) . (12)

Let 𝛿(𝑡) = Φ𝛿(𝑡) = [𝛿1, 𝛿2, . . . , 𝛿𝑛]𝑇, and then 𝛿1(𝑡) =(1/√𝑛)∑𝑛𝑖=1 𝛿𝑖(𝑡). It is obvious that 𝛿𝑇(𝑡)𝛿(𝑡) = 𝛿𝑇(𝑡)𝛿(𝑡).
According the above analysis, (12) can be rewritten as

𝑀(𝛿 (𝑡)) = 2 [𝜆2 (𝐿 (𝐵)) 𝛿2 (𝑡)2 + 𝜆3 (𝐿 (𝐵)) 𝛿3 (𝑡)2+ ⋅ ⋅ ⋅ + 𝜆𝑛 (𝐿 (𝐵)) 𝛿𝑛 (𝑡)2]

≥ 2[[𝜆2 (𝐿 (𝐵)) 𝛿 (𝑡)𝑇 𝛿 (𝑡)
− 𝜆2 (𝐿 (𝐵))𝑛 ( 𝑛∑

𝑖=1

𝛿𝑖 (𝑡))2]]
= 2{𝜆2 (𝐿 (𝐵)) 𝛿 (𝑡)𝑇 𝛿 (𝑡) [1 − (∑𝑛𝑖=1 𝛿𝑖 (𝑡))2𝑛∑𝑛𝑖=1 𝛿2𝑖 (𝑡) ]} .

(13)

Recalling the fact 𝜔𝑇𝛿(𝑡) = 0, it can be found that𝛿1(𝑡), 𝛿2(𝑡), . . . , 𝛿𝑛(𝑡) do not have the same sign. By using the𝐶𝑟-inequality, one can obtain

1 − (∑𝑛𝑖=1 𝛿𝑖 (𝑡))2𝑛∑𝑛𝑖=1 𝛿2𝑖 (𝑡) > 1 − (∑𝑛𝑖=1 󵄨󵄨󵄨󵄨𝛿𝑖 (𝑡)󵄨󵄨󵄨󵄨)2𝑛∑𝑛𝑖=1 𝛿2𝑖 (𝑡) ≥ 0. (14)

Similar to [31], let U = {𝜉 : nonzero elements of𝜉1, . . . , 𝜉𝑛 are not with the same sign}, and letU0 = U⋂{𝜉 :𝜉𝑇𝜉 = 1}. It is obvious that U0 is compact set. For
convenience, construct function

𝑊(𝛿) = (∑𝑛𝑖=1 󵄨󵄨󵄨󵄨𝛿𝑖 (𝑡)󵄨󵄨󵄨󵄨)2 − (∑𝑛𝑖=1 𝛿𝑖 (𝑡))2𝑛∑𝑛𝑖=1 𝛿2𝑖 (𝑡) . (15)

Clearly, 𝑊(𝛿) > 0. The expression can be rewritten as

𝑊(𝛿) = 1𝑛 [[
𝑛∑
𝑖=1

sign (𝛿𝑖) 𝛿𝑖‖𝛿‖ − ( 𝑛∑
𝑖=1

𝛿𝑖‖𝛿‖)2]] . (16)

Let 𝑆(𝑥) = ∑𝑛𝑖=1 sign(𝑥𝑖)𝑥𝑖 and 𝑇(𝑥) = (∑𝑛𝑖=1 𝑥𝑖)2, where𝑥 = [𝑥1, . . . , 𝑥𝑛] ∈ R𝑛. Obviously, 𝑆(𝑥) and 𝑇(𝑥) are continu-
ous functions with respect to 𝑥. Then, one can get

𝑊(𝛿) = 𝑊 (𝜁) = 1𝑛 [𝑆 (𝜁) − 𝑇 (𝜁)] ≥ 𝐾1 > 0, (17)

where 𝜁 = [𝛿1/‖𝛿‖, . . . , 𝛿𝑛/‖𝛿‖] and 𝐾1 = min𝜃∈U0(1/𝑛)[𝑆(𝜁) − 𝑇(𝜁)]. Hence,
𝑀(𝛿 (𝑡)) ≥ 2𝐾1𝜆2 (𝐿 (𝐵)) 𝛿𝑇 (𝑡) 𝛿 (𝑡)

≥ 2𝐾1𝜆2 (𝐿 (𝐵))𝜔max

𝑛∑
𝑖=1

𝜔𝑖𝛿𝑖 (𝑡)2 . (18)

Similar to the above analysis, there exists a constant𝐾2 >0 such that 𝑁(𝛿 (𝑡)) = 2𝛿 (𝑡)𝑇 𝐿 (𝐶) 𝛿 (𝑡)
≥ 2𝐾2𝜆2 (𝐿 (𝐶))𝜔max

𝑛∑
𝑖=1

𝜔𝑖𝛿𝑖 (𝑡)2 , (19)

where𝜆2(𝐿(𝐵)), 𝜆2(𝐿(𝐶)) represents the second largest eigen-
value of the matrixes 𝐿(𝐵) and 𝐿(𝐶), respectively.



Complexity 5

Let

𝐾3 = 𝛼2 [2𝐾1𝜆2 (𝐿 (𝐵))𝜔max
](1+𝛽)/2 ,

𝐾4 = 4𝛾𝐾2𝜆2 (𝐿 (𝐶))𝜔max
. (20)

Obviously,𝐾3, 𝐾4 > 0 and
𝑑𝑉1 (𝑡)𝑑𝑡 ≤ − (𝐾3 + 𝐾4𝑉1 (𝑡)2/(1+𝛽))𝑉1 (𝑡)(1+𝛽)/2 . (21)

The above analysis indicates that protocol (7) is able to solve
the weighted-average consensus problem if the interaction
topology is represented by a strongly connected detail-
balanced graph. The last inequality also indicates that the
proposed protocol in this paper is capable of providing
a faster convergence rate than the typical linear protocol
proposed in [19] and the nonlinear finite-time consensus
protocol

𝑢𝑖 (𝑡) = 𝛼 ∑
𝑗∈N(G(𝐴),𝑖)

𝑎𝑖𝑗 sign (𝑥𝑗 − 𝑥𝑖) 󵄨󵄨󵄨󵄨󵄨𝑥𝑗 − 𝑥𝑖󵄨󵄨󵄨󵄨󵄨𝛽 , (22)

proposed by Feng and Long in [30].

Step 2. Suppose that G(𝐴) has a spanning tree and the
associated root vertex is 𝜐𝑖 and 𝑎𝑖𝑗 = 0, for any 𝑗 ∈ 𝐼𝑛.
Furthermore, assume that the subgraph induced by the child
vertices {𝜐𝑗}𝑗∈𝐼𝑛,𝑗 ̸=𝑖 is strongly connected and detail-balanced.

Without loss of generality, assume that the root vertex 𝜐𝑖
is 𝜐1. Therefore, one can obtain that 𝑎11 = 𝑎12 = ⋅ ⋅ ⋅ = 𝑎1𝑛 =0 and 𝑎11, 𝑎21, . . . , 𝑎(𝑛−1)1 are not all zeros. G(𝐴) denotes the
subgraph induced by the vertices excluding the vertex 𝜐1. In
this case, as 𝑢1(𝑡) ≡ 0, the dynamic behaviors of the other
agents may be focused. Then, one can obtain

𝑢𝑖 (𝑡) = 𝛼 ∑
𝑗∈N(G(𝐴),𝑖)\{1}

𝑎𝑖𝑗 sign (𝑥𝑗 − 𝑥𝑖) 󵄨󵄨󵄨󵄨󵄨𝑥𝑗 − 𝑥𝑖󵄨󵄨󵄨󵄨󵄨𝛽
+ 𝛾 ∑
𝑗∈N(G(𝐴),𝑖)\{1}

𝑎𝑖𝑗 (𝑥𝑗 − 𝑥𝑖) , 𝑖 ̸= 1. (23)

That is,

𝑢𝑖 (𝑡) = 𝛼 𝑛∑
𝑗=2

𝑎𝑖𝑗 sign (𝑥𝑗 − 𝑥𝑖) 󵄨󵄨󵄨󵄨󵄨𝑥𝑗 − 𝑥𝑖󵄨󵄨󵄨󵄨󵄨𝛽
+ 𝛾 𝑛∑
𝑗=2

𝑎𝑖𝑗 (𝑥𝑗 − 𝑥𝑖) + 𝛼
⋅ 𝑎𝑖1 sign (𝑥1 − 𝑥𝑖) 󵄨󵄨󵄨󵄨𝑥1 − 𝑥𝑖󵄨󵄨󵄨󵄨𝛽 + 𝛾⋅ 𝑎𝑖1 (𝑥1 − 𝑥𝑖) , 𝑖 ̸= 1.

(24)

Let 𝛿𝑖 = 𝑥𝑖 −𝑥1, 𝑖 ∈ 𝐼𝑛. It is obvious that 𝛿1 ≡ 0. Recalling that𝑥̇1 ≡ 0, one can get

̇𝛿𝑖 = 𝛼 𝑛∑
𝑗=2

𝑎𝑖𝑗 sign (𝛿𝑗 − 𝛿𝑖) 󵄨󵄨󵄨󵄨󵄨𝛿𝑗 − 𝛿𝑖󵄨󵄨󵄨󵄨󵄨𝛽 + 𝛾 𝑛∑
𝑗=2

𝑎𝑖𝑗 (𝛿𝑗 − 𝛿𝑖)
− 𝛼𝑎𝑖1 sign (𝛿𝑖) 󵄨󵄨󵄨󵄨𝛿𝑖󵄨󵄨󵄨󵄨𝛽 − 𝛾𝑎𝑖1𝛿𝑖, 𝑖 ̸= 1. (25)

Take the Lyapunov function 𝑉2(𝑡) = (1/2)∑𝑛𝑖=1 𝜔𝑖𝛿𝑖(𝑡)2.
Differentiating 𝑉2(𝑡) with respect to 𝑡 leads to

𝑑𝑉2 (𝑡)𝑑𝑡 = 𝑛∑
𝑖=1

𝜔𝑖𝛿𝑖 (𝑡) ̇𝛿𝑖 (𝑡) = 𝑛∑
𝑖=2

𝜔𝑖𝛿𝑖 (𝑡) [[𝛼 𝑛∑
𝑗=2

𝑎𝑖𝑗
⋅ sign (𝛿𝑗 − 𝛿𝑖) 󵄨󵄨󵄨󵄨󵄨𝛿𝑗 − 𝛿𝑖󵄨󵄨󵄨󵄨󵄨𝛽 + 𝛾 𝑛∑

𝑗=2

𝑎𝑖𝑗 (𝛿𝑗 − 𝛿𝑖) − 𝛼
⋅ 𝑎𝑖1 sign (𝛿𝑖) 󵄨󵄨󵄨󵄨𝛿𝑖󵄨󵄨󵄨󵄨𝛽 − 𝛾 ⋅ 𝑎𝑖1𝛿𝑖]]
= 12 {{{[[𝛼 𝑛∑

𝑖,𝑗=2

𝜔𝑖𝑎𝑖𝑗𝛿𝑖 (𝑡) sign (𝛿𝑗 (𝑡) − 𝛿𝑖 (𝑡))
⋅ 󵄨󵄨󵄨󵄨󵄨𝛿𝑗 (𝑡) − 𝛿𝑖 (𝑡)󵄨󵄨󵄨󵄨󵄨𝛽 + 𝛾 𝑛∑

𝑖,𝑗=2

𝜔𝑖𝑎𝑖𝑗𝛿𝑖 (𝑡) (𝛿𝑗 − 𝛿𝑖)]]
+ [[𝛼 𝑛∑
𝑖,𝑗=2

𝜔𝑗𝑎𝑗𝑖𝛿𝑗 (𝑡) sign (𝛿𝑖 (𝑡) − 𝛿𝑗 (𝑡))
⋅ 󵄨󵄨󵄨󵄨󵄨𝛿𝑖 (𝑡) − 𝛿𝑗 (𝑡)󵄨󵄨󵄨󵄨󵄨𝛽 + 𝛾 𝑛∑

𝑖,𝑗=2

𝜔𝑗𝑎𝑗𝑖𝛿𝑗 (𝑡) (𝛿𝑖 − 𝛿𝑗)]]}}}− 𝛼 𝑛∑
𝑖=2

𝜔𝑖𝑎𝑖1 󵄨󵄨󵄨󵄨𝛿𝑖 (𝑡)󵄨󵄨󵄨󵄨1+𝛽 − 𝛾 𝑛∑
𝑖=2

𝜔𝑖𝑎𝑖1 (𝛿𝑖 (𝑡))2
= −12 [[𝛼 𝑛∑

𝑖,𝑗=2

𝜔𝑖𝑎𝑖𝑗 󵄨󵄨󵄨󵄨󵄨𝛿𝑗 − 𝛿𝑖󵄨󵄨󵄨󵄨󵄨1+𝛽
+ 𝛾 𝑛∑
𝑖,𝑗=2

𝜔𝑖𝑎𝑖𝑗 (𝛿𝑗 − 𝛿𝑖)2]] − 𝛼 𝑛∑
𝑖=2

[(𝜔𝑖𝑎𝑖1)2/(1+𝛽)
⋅ (𝛿𝑖 (𝑡))2](1+𝛽)/2 − 𝛾 𝑛∑

𝑖=2

𝜔𝑖𝑎𝑖1 (𝛿𝑖 (𝑡))2
= −𝛼2 {{{

𝑛∑
𝑖,𝑗=2

[(𝜔𝑖𝑎𝑖𝑗)2/(1+𝛽) (𝛿𝑗 − 𝛿𝑖)2](1+𝛽)/2
+ 2 𝑛∑
𝑖=2

[(𝜔𝑖𝑎𝑖1)2/(1+𝛽) (𝛿𝑖 (𝑡))2](1+𝛽)/2}}}
− 𝛾2 [[

𝑛∑
𝑖,𝑗=2

𝜔𝑖𝑎𝑖𝑗 (𝛿𝑗 − 𝛿𝑖)2 + 2 𝑛∑
𝑖=2

𝜔𝑖𝑎𝑖1 (𝛿𝑖 (𝑡))2]] .

(26)
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Applying the𝐶𝑟-inequality to the above equation, the follow-
ing is obtained:

𝑑𝑉2 (𝑡)𝑑𝑡 ≤ −𝛼2 [[
𝑛∑
𝑖,𝑗=2

(𝜔𝑖𝑎𝑖𝑗)2/(1+𝛽) (𝛿𝑗 − 𝛿𝑖)2
+ 2 𝑛∑
𝑖=2

(𝜔𝑖𝑎𝑖1)2/(1+𝛽) (𝛿𝑖 (𝑡))2]]
(1+𝛽)/2

− 𝛾2 [[
𝑛∑
𝑖,𝑗=2

𝜔𝑖𝑎𝑖𝑗 (𝛿𝑗 − 𝛿𝑖)2 + 2 𝑛∑
𝑖=2

𝜔𝑖𝑎𝑖1 (𝛿𝑖 (𝑡))2]] .
(27)

For simplicity, let

𝑀2 (𝛿 (𝑡)) = 𝑛∑
𝑖,𝑗=2

(𝜔𝑖𝑎𝑖𝑗)2/(1+𝛽) (𝛿𝑗 − 𝛿𝑖)2
+ 2 𝑛∑
𝑖=2

(𝜔𝑖𝑎𝑖1)2/(1+𝛽) (𝛿𝑖 (𝑡))2 ,
𝑁2 (𝛿 (𝑡)) = 𝑛∑

𝑖,𝑗=2

𝜔𝑖𝑎𝑖𝑗 (𝛿𝑗 − 𝛿𝑖)2 + 2 𝑛∑
𝑖=2

𝜔𝑖𝑎𝑖1 (𝛿𝑖 (𝑡))2 .
(28)

Let 𝐴 = [𝑎𝑖𝑗](𝑛−1)×(𝑛−1), where 𝑎𝑖𝑗 = (𝜔𝑖+1𝑎(𝑖+1)(𝑗+1))2/(1+𝛽)
denoted 𝑏̃ = [(𝜔2𝑎21)2/(1+𝛽), . . . , (𝜔𝑛𝑎𝑛1)2/(1+𝛽)]. Then one can
get that

𝑀2 (𝛿 (𝑡)) = 2𝛿𝑇𝐿 (𝐴) 𝛿 (𝑡) + 2𝛿𝑇 diag (𝑏̃) 𝛿. (29)

Then, 𝐵 = 𝐿(𝐴) + diag(𝑏̃) is real symmetric and positive defi-
nite. Let the smallest eigenvalue of 𝐵 be 𝜆1(𝐵). Then, 𝜆1(𝐵) >0, and, for any nonzero vector 𝜂 ∈ R𝑛−1, 𝜂𝑇𝐵𝜂 ≥ 𝜆1(𝐵)𝜂𝑇𝜂.
Therefore,

𝑀2 (𝛿 (𝑡)) ≥ 2𝜆1 (𝐵) 𝛿𝑇𝛿 ≥ 𝐾5 𝑛∑
𝑖=1

𝜔𝑖𝛿2𝑖 , (30)

where𝐾5 = 2𝜆1(𝐵)/𝜔max.
Similarly, one can obtain that

𝑁2 (𝛿 (𝑡)) ≥ 𝐾6 𝑛∑
𝑖=1

𝜔𝑖𝛿2𝑖 . (31)

Then, the following inequality holds:𝑑𝑉2 (𝑡)𝑑𝑡≤ − [𝛼2𝐾(1+𝛽)/25 + 𝛾2𝐾6𝑉2/(1+𝛽)2 (𝑡)]𝑉(1+𝛽)/22 (𝑡) . (32)

The above analysis indicates that protocol (7) is able to
solve the weighted-average consensus problem if G(𝐴) has
a spanning tree and each strongly connected component is
detail-balanced.

Step 3. Suppose that G(𝐴) has a spanning tree and each
strongly connected component is detail-balanced. Then, the
proposed protocol will solve a finite-time weighted-average
consensus problem.

Consider the directed graph G𝑐(𝐴) consisting of the
strongly connected components of G(𝐴). Obviously, G𝑐(𝐴)
is a directed tree. From the definition ofG𝑐(𝐴), the following
facts can be obtained:

(i) The dynamic behaviors of agents belonging to the
vertex set that corresponds to the root vertex ofG𝑐(𝐴)
are not affected by others and the local interaction
topology among them is strongly connected and
detail-balanced. Their states will reach an agreement
in a finite time in accordance with the conclusion
of Step 1. Considering G𝑐(𝐴), its root vertex (corre-
sponding to nonempty subset of V, where V is the
vertices set of graph G(𝐴)) is labeled 1 and the final
consensus state is denoted by 𝑥0.

(ii) Consider the dynamics of agents, denoted by𝜐𝑖1 , . . . , 𝜐𝑖𝑘𝑖 , corresponding to vertex 𝑖 (not the root
vertex) of G𝑐(𝐴). Their dynamic behaviors are only
affected by such agents, where there exists at least
one vertex that belongs to set {𝜐𝑙, 𝑙 = 1, . . . , 𝑘𝑖} and
they can provide information; that is, there exist
directed paths connecting them to 𝜐𝑙, 𝑙 = 1, . . . , 𝑘𝑖.
Suppose such agents excluding 𝜐𝑙, 𝑙 = 1, . . . , 𝑘𝑖, are𝜐𝑗1 , 𝜐𝑗2 , . . . , 𝜐𝑗𝑚𝑖 , their sates have already reached
consensus, and the consensus state is 𝑥0. Then, for
any 𝑙 ∈ {1, 2, . . . , 𝑘𝑖},
𝑘𝑖∑
𝑠=1

𝑎𝑖𝑙 ,𝑖𝑠 (𝑥𝑖𝑠 − 𝑥𝑖𝑙) + 𝑚𝑖∑
𝑠=1

𝑎𝑖𝑙 ,𝑗𝑠 (𝑥𝑗s − 𝑥𝑖𝑙)
= 𝑘𝑖∑
𝑠=1

𝑎𝑖𝑙 ,𝑖𝑠 (𝑥𝑖𝑠 − 𝑥𝑖𝑙) + (𝑚𝑖∑
𝑠=1

𝑎𝑖𝑙 ,𝑗𝑠)(𝑥0 − 𝑥𝑖𝑙) . (33)

Therefore, 𝜐𝑗1 , . . . , 𝜐𝑗𝑘𝑖 can be seen as one (virtual)
agent and as the leader of 𝜐𝑖𝑙 , 𝑙 = 1, . . . , 𝑘𝑖. If one
relabels the vertices 𝜐𝑖𝑙 , 𝑙 = 1, . . . , 𝑘𝑖, by 𝜐𝑙, 𝑙 =2, . . . , 𝑘𝑖+1, and labels the (virtual) agent by 1, then the
communication topology of agents 𝜐𝑙, 𝑙 = 1, . . . , 𝑘𝑖 +1, is 𝐺(𝐴0), where

𝐴0 = (((((
(

0 0 ⋅ ⋅ ⋅ 0
𝑚𝑖∑
𝑠=1

𝑎𝑖1 ,𝑗𝑠 𝑎𝑖1 ,𝑖2 ⋅ ⋅ ⋅ 𝑎𝑖1 ,𝑖𝑘𝑖... ... ... ...
𝑚𝑖∑
𝑠=1

𝑎𝑖𝑘𝑖 ,𝑗𝑠 𝑎𝑖𝑘𝑖 ,𝑖2 ⋅ ⋅ ⋅ 𝑎𝑖𝑘𝑖 ,𝑖𝑘𝑖
)))))
)

. (34)

Recalling the theoretical results produced in Step 2,
the multiagents 𝜐𝑙, 𝑙 = 1, . . . , 𝑘𝑖 + 1, will reach
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consensus in finite time, and the consensus state will
be 𝑥0.

(iii) In accordance with the above presented conclu-
sion, the proposed protocol has solved a finite-time
weighted-average consensus problem, and the con-
sensus state is 𝑥0.

The proof is completed.

4.2. Switching Topology. In practice, the information channel
among agents may not always be available due to the physical
equipment restrictions or the external interferences in the
signal, such as exceeding the sensing range or existence
of obstacles between the agents. Therefore, it would be
reasonable to assume that the communication topology is
dynamically changing.

Theorem 7. Suppose that G(𝐴(𝑡)) is strongly connected and
detail-balanced for all 𝑡 ≥ 0. Then, protocol (7) will solve
a finite-time weighted-average consensus under time-varying
topology G(𝐴(𝑡)) if there exists a common positive vector 𝜔 =[𝜔1, 𝜔2, . . . , 𝜔𝑛]𝑇 ∈ R𝑛 such that 𝜔𝑖𝑎𝑖𝑗(𝑡) = 𝜔𝑗𝑎𝑗𝑖(𝑡) for all𝑖, 𝑗 ∈ 𝐼𝑛.
Proof. The proof is similar to that of Theorem 6 with the
same notations, such as Δ and 𝛿(𝑡). Consider the Lyapunov
function 𝑉3(𝛿(𝑡)), then the constants, such as 𝐾3, 𝐾4, 𝐾5,𝐾6 that are derived in proof of Theorem 6, will transform
into time-varying parameters𝐾3(𝑡),𝐾4(𝑡),𝐾5(𝑡),𝐾6(𝑡). Take𝐾𝑖(𝑡) = min𝑖𝐾𝑖(𝑡), 𝑖 ∈ 3, 4, 5, 6, and then themultiagents will
reach an agreement in finite time.

It should be noted that a common Lyapunov can be
constructed for the consensus error system if G(𝐴(𝑡)) is
strongly connected and detail-balanced for all 𝑡 ≥ 0. Based on
this condition, a preliminary result for finite-time consensus
of multiagent system is given in theorem. However, how
to reach finite-time consensus in multiagent system with
switching topology without the condition that G(𝐴(𝑡)) is a
strongly connected and detail-balanced for all 𝑡 ≥ 0 is still an
unsolved issue.

5. Simulation and Applications

In this section, some simulations are performed by fixing 𝛼 =4, 𝛽 = 0.5, and 𝛾 = 3 in order to validate the effectiveness of
the theoretical results.

Two digraphs with 𝑛 = 6 and 𝑛 = 7 are presented in
Figures 1 and 2, respectively. The adjacency matrix of G1 is

𝐴 = (((((
(

0 3 0 0 0 22 0 3 0 0 00 9 0 3 0 00 0 0.75 0 5 00 0 0 10 0 30.8 0 0 0 1.2 0
)))))
)

. (35)

1 32

6 5 4

Figure 1: DigraphG1.

1

32

654 7

Figure 2: DigraphG2.

It can be seen that G1 is detailed balanced graph and𝜔1 = [2, 3, 1, 4, 2, 5]𝑇 is satisfying𝜔𝑖𝑎𝑖𝑗 = 𝜔𝑗𝑎𝑗𝑖.The adjacency
matrix ofG2 is

𝐴 = ((((((((
(

0 0 0 0 0 0 03 0 0 3 4 0 06 0 0 0 0 0 00 0.6 0 0 2 0 100 1 0 2.5 0 0 250 0 7 0 0 0 00 0 0 0 50 0 0

))))))))
)

. (36)

Digraph G2 has a spanning tree and each strongly
connected component is detail-balanced. And 𝜔2 =[2, 1, 3, 5, 4, 6, 2]𝑇 is satisfying 𝜔𝑖𝑎𝑖𝑗 = 𝜔𝑗𝑎𝑗𝑖.

Figures 3 and 4 provide the dynamic behaviors of
the multiagents under the interaction topology G1 with
initial state 𝑥(0) = [3, 4, 7, −6, 8, 5] and the state trajec-
tories of agents for communication G2 with initial state𝑥(0) = [3, −4, 7, −6, 2, 5, 6], respectively. The simulation
results demonstrate that the multiagents can reach a finite-
time consensus under the proposed protocol.
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Figure 3: Dynamics of agents under the communication topology
G2.
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Figure 4: Dynamics of agents under the communication topology
G2.

6. Conclusion

In this paper, finite-time consensus problem in multiagent
networks with first-order dynamics has been investigated and
examined. A new nonlinear information exchange protocol
has been developed to ensure the achievement of consensus.
The designed protocol ensures that the states of the agents
converge to a weighted-average consensus in a finite time,
provided that the communication topology is a weighted
directed graph with a spanning tree and each strongly

connected component is detail-balanced. Furthermore, the
theoretical analysis has demonstrated that the proposed
protocol is also capable of solving the finite-time consensus
problem of networks with a switching topology. Future work
will focus on achieving finite-time consensus with nonlinear
intrinsic dynamics and time-varying topology.
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