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Based on the boundary element method and the decentralized fuzzy inference algorithm, the thermal conductivity in the two-
dimensional unsteady-state heat transfer system changing with the temperature is deduced.Themore accurate inversion results are
obtained by introducing the variable universe method. The concrete method is as follows: using experimental means to obtain the
instantaneous temperature in the material or on the boundary, to determine the thermal conductivity of the material by solving
the inversion problem. The boundary element method is used to calculate the regional boundary and internal temperature in the
direct problem.With the inversion problem, the decentralized fuzzy inference algorithm is used to compensate for the initial guess
of the thermal conductivity by using the difference between the temperature measurement and the temperature calculation. In the
inversion problem, the influence of the initial guess of different thermal conductivities, different numbers of measuring points, and
the existence of measurement errors on the results is discussed. The example calculation and analysis prove that, with different
initial guesses, existence of measurement errors, and the number of boundary measurements decrease, the methods adopted in
this paper still maintain good validity and accuracy.

1. Introduction

Inversion heat transfer problems refer to the fact that some of
the output information of the heat transfer system is obtained
through experimental methods to invert some structural
features or input information in the system. For example, the
inversion of information such as the shape of the temperature
boundary layer, the thermal conductivity of the material, and
the heat flux density are all typical inversion heat conduction
problems. Inversion heat transfer problems have been widely
used in many fields such as nondestructive testing, geo-
metrical shape optimization, aerospace engineering, power
engineering, mechanical engineering, constructional engi-
neering, bioengineering, metallurgical engineering, material
processing, biological medicine, and food engineering, all
of which achieve great success [1–13]. For inversion heat
conduction problems, a lot of researches have been done by
scholars at home and abroad.

The boundary element method and the complex variable
derivation method are applied by Yu to invert the thermal
conductivity of heterogeneous materials, which can effec-
tively identify the thermal conductivity of single or multiple
parameters [14]. When the heat conduction boundary value
of the stability boundary is inverted by Yaparova, Laplace
and Fourier transforms [15] are applied. The boundary
elementmethod is used to analyze two-dimensional transient
conduction problems by Zhou et al. and the conjugate gra-
dient method is introduced to solve the thermal conduction
coefficient, which verify the effectiveness and stability of this
method [16]. Mera et al. use iterative BEM to generate a
stable numerical solution, which increases the number of
boundary elements and reduces the amount of noise added
in the input data [17]. Chen and Tanaka use a coupling
application of the dual reciprocity boundary element method
and dynamic programming filter to some inversion heat con-
duction problems [18]. A new and simple boundary element
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method is presented by Gao andWang; this method is called
interface integral boundary element method for solving heat
conduction problems consisting ofmultiplemedia [19].Wang
et al. apply a nonsingular indirect boundary element method
for the solution of three-dimensional inversion heat con-
duction problems. The exact geometrical representation of
computational domain is adopted by parametric equations to
eliminate the errors in traditional approaches of polynomial
shape functions [20].

The differential transformation is studied and a stable
differential calculusmethod is proposed to solve the inversion
heat conduction problem [21] by Baranov et al. A newmethod
to invert the thermal conductivity of material with temper-
ature is proposed Miao et al., by which the temperature of
measurement point is obtained by finite elementmethod, and
the residual between calculated value and measured value of
temperature at the measurement point is minimized to get
numerical solution, proving the effectiveness and accuracy of
the algorithm [22].

The thermal conductivity of material with temperature
changes is piecewise discrete by temperature range by Tang
et al., and the genetic algorithms and the adjoint equation
are used to carry out the inversion [23] of the thermal
conductivity of the full temperature range. Based on the
semi-infinite one-dimensional thermal model, the thermal
conductivity inversion algorithm is studied by Lei; by chang-
ing the mathematical model, different intensity of noise
is simulated, and the impact of noise on the accuracy of
inversion is observed and studied; themethod to improve the
accuracy is proposed [24].

The decentralized fuzzy inference algorithm is success-
fully applied to the unsteady-state heat transfer system
by Ran, which shows good anti-ill-posedness and obvious
advantages and effectiveness [25]. In this paper, the bound-
ary element method is used to solve the boundary and
internal temperature in the two-dimensional unsteady-state
heat transfer system, and the decentralized fuzzy inference
algorithm is used to compensate for the initial guess of
the thermal conductivity in order to minimize the residual
between the calculated and the measured values of the
temperature, and the true thermal conductivity is obtained.

2. Direct Heat Conduction Problem

2.1. The Boundary Integral Equation. The mathematical
model of the two-dimensional unsteady-state heat transfer
problem [26]:

𝜕2𝑇
𝜕𝑥2 + 𝜕2𝑇

𝜕𝑦2 = 1
𝛼

𝜕𝑇
𝜕𝑡 (∈ Ω, 𝑡 > 𝑡0) ,

𝑇 = 𝑇 (∈ Γ1, 𝑡 > 𝑡0) ,
𝑞 = −𝑛𝑘 (𝑇) 𝜕𝑇

𝜕𝑛 = 𝑞 (∈ Γ2, 𝑡 > 𝑡0) ,
𝑇 = 𝑇0,
𝑡 = 0.

(1)

In the mathematic model formula, there are Γ1, Γ2 and
the boundary of domain Ω, which meets Γ = Γ1 + Γ2. And𝛼 is the thermal conductivity coefficient 𝛼 = 𝑘(𝑇)/𝜌𝑐, 𝜌 is the
density of the object, and 𝑐 is the specific heat capacity of the
object. And 𝑘(𝑇) is the heat transfer coefficient of the object
changing with temperature, 𝑇 is the temperature, and 𝑛 is the
outer normal vector of the boundary. And 𝑇𝑓 is the ambient
temperature, and 𝑞 is the heat flux density.The letter with “−”
denotes the known quantity.

Weight function 𝑇∗ is introduced into the expression of
weighted residual of governing equation [27].

∫𝑡1
𝑡0

∫
Ω

(∇2𝑇 − 1
𝛼

𝜕𝑇
𝜕𝑡 )𝑇∗𝑑Ω𝑑𝜏

= ∫𝑡1
𝑡0

∫
Γ2

(𝑞 − 𝑞) 𝑇∗𝑑Γ𝑑𝜏
− ∫𝑡1
𝑡0

∫
Γ1

(𝑇 − 𝑇) 𝜕𝑇∗
𝜕𝑛 𝑑Γ𝑑𝜏.

(2)

The left side of the equation is decomposed to get:

∫𝑡1
𝑡0

∫
Ω

(∇2𝑇 − 1
𝛼

𝜕𝑇
𝜕𝑡 )𝑇∗𝑑Ω𝑑𝜏

= ∫𝑡1
𝑡0

∫
Ω

𝑇∗∇2𝑇𝑑Ω𝑑𝜏 − ∫𝑡1
𝑡0

∫
Ω

1
𝛼

𝜕𝑇
𝜕𝑡 𝑇∗𝑑Ω𝑑𝜏.

(3)

In Green’s theorem for the Laplacian, ∬
𝐷
(V∇2𝑢 −

𝑢∇2V)𝑑Ω = ∫
𝑧
(V(𝜕𝑢/𝜕𝑛) − 𝑢(𝜕V/𝜕𝑛))𝑑𝑠 of which 𝑧 is the

boundary curve of plane closed Region 𝐷 and 𝑑𝑠 is the arc
differential.

According to Laplace Green function, the following is
obtained:

∫𝑡1
𝑡0

∫
Ω

∇2𝑇𝑇∗𝑑Ω𝑑𝜏 = ∫𝑡1
𝑡0

∫
Γ
(𝑇∗ 𝜕𝑇𝜕𝑛 − 𝑇𝜕𝑇∗

𝜕𝑛 ) 𝑑Γ𝑑𝜏
+ ∫𝑡1
𝑡0

∫
Ω

𝑇∇2𝑇∗𝑑Ω𝑑𝜏.
(4)

Equation (4) is taken into (3) and (2) becomes

∫𝑡1
𝑡0

∫
Γ
(𝑇∗ 𝜕𝑇𝜕𝑛 − 𝑇𝜕𝑇∗

𝜕𝑛 ) 𝑑Γ𝑑𝜏 + ∫𝑡1
𝑡0

∫
Ω

𝑇∇2𝑇∗𝑑Ω𝑑𝜏
− ∫𝑡1
𝑡0

∫
Ω

1
𝛼

𝜕𝑇
𝜕𝑡 𝑇∗𝑑Ω𝑑𝜏

= ∫𝑡1
𝑡0

∫
Γ2

(𝑞 − 𝑞) 𝑇∗𝑑Γ𝑑𝜏
− ∫𝑡1
𝑡0

∫
Γ1

(𝑇 − 𝑇) 𝜕𝑇∗
𝜕𝑛 𝑑Γ𝑑𝜏.

(5)
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It is further simplified, and ∫𝑡1
𝑡0

∫
Ω
(1/𝛼)(𝜕𝑇/𝜕𝑡)𝑇∗𝑑Ω𝑑𝜏 is

transformed to get

∫𝑡1
𝑡0

∫
Ω

1
𝛼

𝜕𝑇
𝜕𝑡 𝑇∗𝑑Ω𝑑𝜏 = ∫𝑡1

𝑡0

∫
Ω

1
𝛼

𝜕𝑇
𝜕𝑡 𝑇∗𝑑Ω𝑑𝜏

+ ∫𝑡1
𝑡0

∫
Ω

1
𝛼

𝜕𝑇∗
𝜕𝑡 𝑇 𝑑Ω𝑑𝜏

− ∫𝑡1
𝑡0

∫
Ω

1
𝛼

𝜕𝑇∗
𝜕𝑡 𝑇 𝑑Ω𝑑𝜏.

(6)

One Integration by parts (∫ 𝑢 𝑑V + ∫ V 𝑑𝑢 = 𝑢V) is carried
out in the equation for 𝑡 to get

∫𝑡1
𝑡0

∫
Ω

1
𝛼

𝜕𝑇
𝜕𝑡 𝑇∗𝑑Ω𝑑𝜏 = −∫𝑡1

𝑡0

∫
Ω

1
𝛼

𝜕𝑇∗
𝜕𝑡 𝑇 𝑑Ω𝑑𝜏

+ [∫
Ω

1
𝛼𝑇∗𝑇𝑑Ω]

𝑡=𝑡1

𝑡=𝑡0

.
(7)

Equation (6) is taken into (5) to get

∫𝑡1
𝑡0

∫
Ω

𝑇∇2𝑇∗𝑑Ω𝑑𝜏 + ∫𝑡1
𝑡0

∫
Ω

1
𝛼

𝜕𝑇∗
𝜕𝑡 𝑇 𝑑Ω𝑑𝜏

− [∫
Ω

1
𝛼𝑇∗𝑇𝑑Ω]

𝑡=𝑡1

𝑡=𝑡0

= ∫𝑡1
𝑡0

∫
Γ2

(𝑞 − 𝑞) 𝑇∗𝑑Γ𝑑𝜏
− ∫𝑡1
𝑡0

∫
Γ1

(𝑇 − 𝑇) 𝜕𝑇∗
𝜕𝑛 𝑑Γ𝑑𝜏

− ∫𝑡1
𝑡0

∫
Γ
(𝑇∗ 𝜕𝑇𝜕𝑛 − 𝑇𝜕𝑇∗

𝜕𝑛 ) 𝑑Γ𝑑𝜏.

(8)

Because of Γ = Γ1 + Γ2 and 𝜕𝑇∗/𝜕𝑛 = 𝑞∗, 𝜕𝑇/𝜕𝑛 =
𝑞, ∫𝑡1
𝑡0

∫
Γ
(𝑇∗(𝜕𝑇/𝜕𝑛) − 𝑇(𝜕𝑇∗/𝜕𝑛))𝑑Γ𝑑𝜏 is discomposed and

taken into (8) to get

∫𝑡1
𝑡0

∫
Ω

𝑇(∇2𝑇∗ + 1
𝛼

𝜕𝑇∗
𝜕𝑡 ) 𝑑Ω𝑑𝜏 − [∫

Ω

1
𝛼𝑇∗𝑇𝑑Ω]

𝑡=𝑡1

𝑡=𝑡0

= ∫𝑡1
𝑡0

∫
Γ2

(𝑞 − 𝑞) 𝑇∗𝑑Γ𝑑𝜏 − ∫𝑡1
𝑡0

∫
Γ1

(𝑇 − 𝑇) 𝑞∗𝑑Γ𝑑𝜏
− ∫𝑡1
𝑡0

∫
Γ1+Γ2

(𝑇∗𝑞 − 𝑇𝑞∗) 𝑑Ω𝑑𝜏.

(9)

The corresponding basic solution to this formula is

𝑇∗ = 1
[4𝜋𝛼 (𝑡1 − 𝑡)]𝑑/2 exp(− 𝑟2

4𝛼 (𝑡1 − 𝑡)) , (10)

where 𝑑 is the dimensionality of space, for two-dimensional
problem, 𝑑 = 2 𝑟 = √[(𝑥 − 𝑥𝑖)2 + (𝑦 − 𝑦𝑖)2].

Differential derivation of (10) is done to get

𝑞∗ = 𝜕𝑇∗
𝜕𝑛 = − 𝐷

8𝜋𝛼2 (𝑡1 − 𝑡)2 exp(− 𝑟2
4𝛼 (𝑡1 − 𝑡)) . (11)

In the formula, 𝐷 is the vertical distance from the source
point “𝑖” to the boundary element line.

The basic solution has the following characteristics:

∇2𝑇∗ + 1
𝛼

𝜕𝑇∗
𝜕𝑡 = 0,

∫
Ω

𝑇𝑇∗𝑑Ω = 𝑇𝑖 (𝑡 = 𝑡1) .
(12)

Equations (12) and (11) are taken into (10) and a good
merger of similar items is done to get

1
𝛼𝐶𝑖𝑇𝑖 = ∫𝑡1

𝑡0

∫
Γ
𝑞𝑇∗𝑑Γ𝑑𝜏 − ∫𝑡1

𝑡0

∫
Γ
𝑇𝑞∗𝑑Γ𝑑𝜏

+ [∫
Ω

1
𝛼𝑇∗𝑇𝑑Ω]

𝑡=𝑡0

.
(13)

2.2.The Boundary Element Equation. Thechange of the func-
tion 𝑇, 𝑞 over time is small enough to be negligible compared
to that of 𝑇∗, 𝑞∗, which can be reasonably approximated as a
constant over small time intervals, and (13) can be segmented
into time integration [28].

𝐶𝑖𝑇𝑖 + 𝛼∫
Γ
𝑇∫𝑡1
𝑡0

𝑞∗𝑑𝜏𝑑Γ
= 𝛼∫
Γ
𝑞∫𝑡1
𝑡0

𝑇∗𝑑𝜏𝑑Γ + [∫
Ω

𝑇∗𝑇𝑑Ω]
𝑡=𝑡0

.
(14)

And the interval integral for 𝑡 is
∫𝑡1
𝑡0

𝑞∗𝑑𝜏 = − 𝐷
2𝜋𝛼𝑟2 exp(− 𝑟2

4𝛼 (𝑡1 − 𝑡0)) ,

∫𝑡1
𝑡0

𝑇∗𝑑𝜏 = 1
4𝜋𝛼𝐸𝑖 (𝑏) , 𝑏 = 𝑟2

4𝛼 (𝑡1 − 𝑡0) .
(15)

In the formula, 𝐸𝑖(𝑏) is the exponential integral function,
which can be calculated by the series, which is

𝐸𝑖 (𝑏) = −𝐶 − ln 𝑏 + ∞∑
𝑘=1

(−1)(𝑘−1) 𝑏𝑘
𝑘 ⋅ 𝑘! . (16)

In the formula, 𝐶 is Euler function, 𝐶 = 0.57721566, for0 ≤ 𝑏 ≤ 1; generally the first five approximations are taken.
According to the above formula, (17) can be written as

𝐶𝑖𝑇𝑡1𝑖 + 𝛼∫
Γ
𝑇𝑡1𝑞∗𝑡 𝑑Γ = 𝛼∫

Γ
𝑞𝑡1𝑇∗𝑡 𝑑Γ

+ [∫
Ω

𝑇∗𝑇𝑑Ω]
𝑡=𝑡0

.
(17)
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For the spatial domain division, the boundary Γ is divided
into 𝑁 units and the domain Ω is divided into 𝑀 units.
Equation (17) becomes

𝐶𝑖𝑇𝑡1𝑖 + 𝛼 𝑁∑
𝑗=1

∫
Γ𝑗

𝑇𝑡1𝑗 𝑞∗𝑡 𝑑Γ

= 𝛼 𝑁∑
𝑗=1

∫
Γ𝑗

𝑞𝑡1𝑗 𝑇∗𝑡 𝑑Γ +
𝑀∑
𝑙=1

[∫
Ω𝑚

𝑇∗𝑇𝑑Ω]
𝑡=𝑡0

.
(18)

Linear element interpolation is adopted and the interpo-
lation function of linear element is {𝜑1(𝜉) = (1−𝜉)/2, 𝜑2(𝜉) =(1 + 𝜉)/2}. Therefore, the boundary curve is approximated
by a straight line. The values of 𝑇 and 𝑞 in the unit are
approximated by the linearity with two endpoint values.

Equation (18) is done as

𝐶𝑖𝑇𝑡1𝑖 + 𝑁∑
𝑗=1

[ℎ𝑖𝑗(1)𝑇𝑡1𝑗 + ℎ𝑖𝑗(2)𝑇𝑡2𝑗+1]

= 𝑁∑
𝑗=1

[𝑔𝑖𝑗(1)𝑞𝑡1𝑗 + 𝑔𝑖𝑗(2)𝑞𝑡1𝑗+1]

+ 𝑀∑
𝑙=1

[∫
Ω𝑚

𝑇∗𝑇𝑑Ω]
𝑡=𝑡0

.

(19)

In the formula, {ℎ(𝑒)𝑖𝑗 = 𝛼∫
Γ𝑗

𝜑𝑒𝑞∗𝑡 𝑑Γ, 𝑔(𝑒)𝑖𝑗 =
𝛼∫
Γ𝑗

𝜑𝑒𝑇∗𝑡 𝑑Γ} 𝑒 = (1, 2). The formula is written in matrix
form:

𝐻𝑇𝑡1 = 𝐺𝑄𝑡1 + 𝑝𝑡1 , 𝑝 = 𝑀∑
𝑙=1

[∫
Ω𝑚

𝑇∗𝑇𝑑Ω]
𝑡=𝑡0

. (20)

𝑇 and 𝑞 at the boundary node can be obtained by (21).
Take 𝐶𝑖 = 1 and the inner point temperature is obtained by
(13) and (18).

3. Decentralized Fuzzy Inversion

3.1. Inversion of Thermal Conductivity. The thermal conduc-
tivity inverted in this paper varies with the temperature of
the material, the function of which is known. By the known
measured temperature at a particular measurement point,
the inversion algorithm is used to determine the constant
coefficients of the function.

The difference between the temperature measurement
and the temperature calculation is taken as the objective
function, which is minimized as

𝐽 (𝑋) = 𝐵∑
𝑏=1

𝑅∑
𝑟=1

[𝑇𝑏𝑘+𝑟−1 (𝑋) − 𝑌𝑘+𝑟−1𝑏 ]2 . (21)

𝑋 is the inversion parameter in the objective function;
𝑇𝑏𝑘+𝑟−1 and 𝑌𝑘+𝑟−1𝑏 , respectively, represent the temperature
measurement and the temperature calculation at the measur-
ing point 𝑇𝐶𝑏 at time 𝑡𝑘+𝑟−1; 𝐵 is the number of temperature

measuring points; 𝑅 is the number of future time steps;
and the minimum value of the objective function 𝐽(𝑋)
is calculated as the parameter vector 𝑋 in the inversion
problem.

3.2. Decentralized Fuzzy Inference Method. The difference
between the temperature measurement and the tempera-
ture calculation is used to correspondingly compensate for
the initial guess of the thermal conductivity. Therefore, a
multiple-input multiple-output fuzzy inference system is
established. Each independent measurement point is a single
fuzzy inference unit (FIU). Fuzzy inference unit is shown
in Figure 1. The independent fuzzy inference controller is
divided into four parts: fuzzy interface, knowledge base,
inference engine, and fuzzy decision interface (defuzzy).

The input to fuzzy inference unit FIU𝑟𝑏 (𝑏 = 1, 2, 3, . . . , 𝐵;𝑟 = 1, 2, 3, . . . , 𝑅) is the error 𝑒𝑟𝑏 of temperature calculation
and measurement at the time of 𝑡𝑘, 𝑡𝑘+1, . . . , 𝑡𝑘+𝑟−1 at the
measuring point 𝑇𝐶𝑏 on the known boundary condition 𝑇𝐶𝑏:

𝑒𝑟𝑏 = 𝑇𝑏𝑘+𝑟−1 (𝑋𝑘) − 𝑌𝑘+𝑟−1𝑏 . (22)

The independent fuzzy inference unit FIU𝑟𝑏 output Δ𝑢𝑟𝑏
is a fuzzy inference result corresponding to that of inputting𝑒𝑟𝑏 and is a numerical value for compensating for the guess
value of the inversion parameter with only one independent
measurement point 𝑇𝐶𝑏.

Linguistic values of each linguistic variable are defined:
seven fuzzy sets are defined on the universe of inputting
variable 𝑒𝑟𝑏 and output variable Δ𝑢𝑟𝑏 of FIU𝑟𝑏 and these are{𝐴1, 𝐴2, . . . , 𝐴7} and {𝐷1, 𝐷2, . . . , 𝐷7}. The linguistic values
corresponding to the fuzzy sets are, respectively, {PB, PM, PS,
ZO, NS, NM, NB}. There are a lot of files and the rules are
formulated flexibly and detailed. However, rules are toomany
and complex, and the programming is difficult, accounting
for more internal storage; rare files correspond to less rules,
which can be easy to implement. The disadvantage is that
control function becomes less detailed, whose effect cannot
be satisfactory. So setting the fuzzy rule base is to take into
account both the simplicity and accuracy.

The membership function of each language value and
triangle membership function are defined; the shape and
distribution of membership functions are shown in Figures
2 and 3.

The knowledge base is mainly composed of two parts, the
database and language control rule base.The language control
rules are based on the difference between the temperature
calculation and the temperature measurement. If 𝑒𝑟𝑏 < 0, it
is proved that the temperature calculation is smaller than the
temperature measurement; it is necessary to raise the guess
value of the inversion parameter to eliminate the temperature
error 𝑒𝑟𝑏, and the larger the |𝑒𝑟𝑏| is, the larger the range ability
of the guess value of the inversion parameter will be. When𝑒𝑟𝑏 > 0, it is proved that the temperature calculation is larger
than the temperature measurement; it is necessary to reduce
the guess value of the inversion parameter to eliminate the
temperature error 𝑒𝑟𝑏. The fuzzy control rules are shown in
Table 1.
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Figure 3: The degree of membership of fuzzy set Di.

Table 1: Fuzzy control rules state.

𝑒𝑟𝑏 NB NM NS ZO PS PM PB
Δ𝑢𝑟𝑏 PB PM PS ZO NS NM NB

The fuzzy inference engine is based on the fuzzy input
and language control rules and the fuzzy relational equation
is solved to obtain the fuzzy output. Mamdani Maximum -

Minimum Fuzzy Inference Algorithm is used to determine
the fuzzy set 𝐷 of output variables. The set 𝐷 of output
variables Δ𝑢𝑟𝑏 is from the following formula:

𝜇𝐷 (Δ𝑢𝑟𝑏,0) = 7max
𝑙=1

{min [𝜇𝐴𝑙 (𝑒𝑟𝑏,0) , 𝜇𝐵𝑙 (Δ𝑢𝑟𝑏,0)]} . (23)

In the fuzzy decision interface, the fuzzy output is done
with defuzzification to get a precise control. In the fuzzy set𝐷 output by the fuzzy inference engine, the center of gravity
is used to solve defuzzification:

Δ𝑢𝑟𝑏 = ∫Δ𝑢𝑟𝑏,0𝜇𝐷 (Δ𝑢𝑟𝑏,0) 𝑑Δ𝑢𝑖
∫𝜇𝐷 (Δ𝑢𝑟

𝑏,0
) 𝑑Δ𝑢𝑖

. (24)

3.3. Variable Universe. In variable universe, the appropriate
universe extension factor is to be selected; the error is
changed and some changes are also made to the universe,
and through the universe changing with the error changes,
the precise control effect can be achieved [29, 30].

In this paper, the thermal conductivity changing with
temperature is inverted; the error of the input information
has a more important influence on the inversion result.
Therefore, effectively reducing the sensitivity of the inversion
results to the error information 𝑒𝑟𝑏 is the prerequisite for
obtaining a stable inversion result. Universe 𝑆 increases
with 𝑒𝑟𝑏 decreasing, which makes the partition of universe 𝑆
rough, and the corresponding output becomesmore detailed.
Therefore, the following variable universe formula is applied:

𝑆𝑖 = 𝜂( 𝑆󵄨󵄨󵄨󵄨𝑒𝑟𝑏󵄨󵄨󵄨󵄨)
𝛼

, (25)

in which [−𝑆, 𝑆] is the initial input universe of 𝑒𝑟𝑏; [−𝑆𝑖, 𝑆𝑖]
is the universe of 𝑒𝑟𝑏 after being changed. In this paper, two
different sets 𝜂, 𝛼 are taken based on different assumptions.

3.4. Inversion Process. The process of inversing thermal
conductivity is as follows.

(1) Set the number of iterations ℎ = 0 and take the initial
guess of thermal conductivity 𝑋.

(2) Calculate the direct problem to get temperature
calculation at the temperature at point 𝑏.

(3) From (23), the deviation 𝑒𝑟𝑏 can be calculated to
determine whether the convergence condition 𝐽(𝑞) ≤ 𝜀 is
satisfied. If it is satisfied, the iteration is stopped. The value𝑋 is assumed to be the thermal conductivity; otherwise, the
next calculation is performed.
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Figure 4: Schematic diagram.

(4) Calculate the real-time universe [−𝑆𝑖, 𝑆𝑖] from (25).
(5) Determine Δ𝑢𝑟𝑏 by one-dimensional fuzzy inference

unit FIU𝑖.
(6) Calculate the new guess of thermal conductivity𝑋ℎ+1

and return to step (2).

4. The Instance Calculation and Analysis

The schematic diagram is shown in Figure 4. A transient
heat conduction problem in a 10 × 8 quadrilateral region is
considered and the thermal conductivity meets

𝐾 (𝑇) = 𝐾0 + 𝜆 (𝑇 − 𝑇0) . (26)

𝑇0 is the initial temperature, 𝐾0 is the thermal conduc-
tivity at temperature 𝑇0, and 𝜆 is an experimentally deter-
mined constant. For simplicity of description, the physical
properties of the material are set to 𝜌 = 1 𝑐 = 1.
The temperature of the four boundaries is 1∘C, the initial
temperature in the domain is 0∘C, the boundary is divided
into 36 boundary elements, and the domain is divided into
16 quadrilateral elements. The material thermal conductivity
inversion is done under the premise of the temperature at
the measuring point in the domain is known. The function
of thermal conductivity is known, 𝐾0 = 1 𝜆 = 1/10, the
correct thermal conductivity is introduced into the direct
problem to get the temperature at the measuring point at
different time, and the correct temperature is defined as the
temperature measurement. In the inversion process 𝐾(𝑇), 𝑇
is the temperature at this position at the previous moment.
The number of measuring points is selected as 𝐵 ∈ {3, 6, 9},
at each measuring four point temperature calculations of
different time are taken, and by inversion the three groups
of data of the temperature and the corresponding thermal
conductivity are obtained.

When there is a measurement error, temperature mea-
surement at the measuring point is

𝑌𝑘+𝑟−1𝑏 = 𝑌𝑘+𝑟−1𝑏 + 𝜔𝜎. (27)
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Figure 5: The inversion result of the thermal conductivity.

In this formula, 𝜔 is the random number of the normal
distribution 𝑁(0, 0.01) and 𝜎 is the standard deviation of the
measurement.

4.1.The Impact of the Number ofMeasuring Points. The initial
guess value is taken as 𝐾(𝑇) = 1.5, the standard deviation of
measurement is taken as 𝜎 = 0, the number of temperature
measurement points is taken as 𝐵 = 3, 𝐵 = 6, 𝐵 = 9, and the
temperature at the measuring point and the corresponding
thermal conductivity are obtained by inversion.The inversion
result is shown in Figure 5.

At the measuring point 𝐵 = 3, 𝐵 = 6, 𝐵 = 9, by the
least square method𝐾0 and 𝜆 are calculated, and the average
relative errors are shown in Table 2. When 𝐵 = 3, the average
relative errors of 𝐾0 and 𝜆 are 0.28% and 3.5%; when 𝐵 = 6,
the average relative errors of 𝐾0 and 𝜆 are 0.14% and 3.0%,
respectively; when𝐵 = 9, the average relative errors of𝐾0 and𝜆 are 0.05% and 2.1%, respectively. And thus it is shown that,
by increasing the number of measuring points, the average
relative error decreases and the inversion accuracy improves.

4.2. The Impact of Initial Guess. The number of measuring
points is 𝐵 = 9, the standard deviation of measurement is𝜎 = 0, and three different initial guesses, 𝐾(𝑇) = 1, 𝐾(𝑇) =1.5, and 𝐾(𝑇) = 2.0 are used, respectively, for numerical test.
The inversion result is shown in Figure 6.𝐾(𝑇) = 1, 𝐾(𝑇) = 1.5, and 𝐾(𝑇) = 2.0 are used,
respectively, by the least square method to calculate the value
of 𝐾0 and 𝜆; the average relative errors are shown in Table 3.
When 𝐾(𝑇) = 1, the average relative errors of 𝐾0 and 𝜆 are
0.02% and 4.4%; when𝐾(𝑇) = 1.5, the average relative errors
of𝐾0 and 𝜆 are 0.05% and 2.1%; when𝐾(𝑇) = 2.0, the average
relative errors of𝐾0 and 𝜆 are 0.06% and 3.0%. It can be seen
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Table 2: The value of 𝐾0, 𝜆 and the average relative error.

Test points Calculated value of 𝐾0 Calculated value of 𝜆 Relative error of 𝐾0 (%) Relative error of 𝜆 (%)
3 0.9972 0.1035 0.28 3.5
6 0.9986 0.1030 0.14 3.0
9 0.9995 0.1021 0.05 2.1

Table 3: The value of 𝐾0, 𝜆 and the average relative error.

Hypothetical value Calculated value of 𝐾0 Calculated value of 𝜆 Relative error of 𝐾0 (%) Relative error of 𝜆 (%)
1 1.0002 0.0966 0.02 4.4
1.5 0.9995 0.1021 0.05 2.1
2.0 1.0006 0.1030 0.06 3.0

Table 4: The value of 𝐾0, 𝜆 and the average relative error.

𝜎 Standard deviation Calculated value of 𝐾0 Calculated value of 𝜆 Relative error of 𝐾0 (%) Relative error of 𝜆 (%)
𝜎 = 0 0.9995 0.1021 0.05 2.1
𝜎 = 0.2 0.9980 0.0970 0.20 3.0
𝜎 = 0.4 0.9860 0.1361 1.4 36.1
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Figure 6: The inversion result of the thermal conductivity.

that the initial guess has a certain effect on the result, but the
satisfactory result can be obtained within a reasonable range.

4.3. The Impact of Measurement Error. The initial guess is𝐾(𝑇) = 1.5, the number of measuring points is 𝐵 = 9, and
three groups of standard deviation, 𝜎 = 0, 𝜎 = 0.2, 𝜎 = 0.4
are used, respectively, for numerical test. The inversion result
is shown in Figure 7.

The standard deviations of measurement are 𝜎 = 0,𝜎 = 0.2, 𝜎 = 0.4; the values of 𝐾0, 𝜆 are calculated by the
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Figure 7: The inversion result of the thermal conductivity.

least square method; the average relative errors are shown in
Table 4. When 𝜎 = 0, the average relative errors of 𝐾0 and𝜆 are 0.05% and 2.1%; when 𝜎 = 0.2, the average relative
errors of 𝐾0 and 𝜆 are 0.20% and 3.0%; when 𝜎 = 0.4, the
average relative errors of 𝐾0 and 𝜆 are 1.40% and 36.1%. It
can be seen that there are some measurement errors under
the premise of large amount of measurement data, and the
inversion results can still be satisfactory. However, the larger
the standard deviation of measurement is, the more distorted
the inversion results will be.



8 Complexity

5. Conclusion

In this paper, the boundary element method and decen-
tralized fuzzy inference algorithm are used to invert the
thermal conductivity changing with temperature in two-
dimensional unsteady-state heat transfer system. The effects
of initial guess, different number of measuring points, and
measurement errors on the results are discussed. It proves
that if the initial guess is taken within a reasonable range and
when there is some measurement error, inversion results can
be satisfactory.Through the calculation and analysis of exam-
ples, the accuracy and stability of the thermal conductivity
inversion algorithm are verified.
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