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Most empirical evidence on switch costs is based on bilingual production and

interpreted as a result of inhibitory control. It is unclear whether such a top–down control

process exists in language switching during comprehension. This study investigates

whether a non-lexical switch cost is involved in reading code-switched sentences and

its relation to language dominance with cross-script bilingual readers. A maze task is

adopted in order to separate top–down inhibitory effects, from lexical effects driven by

input. The key findings are: (1) switch costs were observed in both L1–L2 and L2–L1

directions; (2) these effects were driven by two mechanisms: lexical activation and

inhibitory control; (3) language dominance modulated the lexical effects, but did not

affect the inhibitory effects. These results suggest that a language control mechanism is

involved in bilingual reading, even though the control process is not driven by selection

as in production. At the theoretical level, these results lend support for the Inhibitory

Control model during language switching in comprehension; while the BIA/BIA+ model

needs to incorporate a top–down control mechanism to be able to explain the current

findings.

Keywords: code-switching, language switching, bilingual language comprehension, switch cost, inhibitory

control, language dominance, bilingualism

Introduction

Code-switching (CS) is a common and natural occurrence in multilingual societies which,

due to language contact, has existed for centuries. Like other linguistic behavior, CS is not a
haphazard occurrence but is in various ways governed by rules and linguistic constraints (Muysken,

2004). Because CS involves a switch from one language to another, many psycholinguistics
researchers have investigated whether this process of switching incurs processing costs (e.g.,

Heredia and Altarriba, 2001). Most of this research has focused on bilingual production. Studies
have demonstrated significantly slower reaction times (RTs) when bilinguals switched languages

between items in a picture- or number-naming task, compared to when they named non-switched
trials (e.g., Meuter and Allport, 1999; Costa and Santesteban, 2004; Costa et al., 2006). That is, when

bilinguals switched from one language to the other, a cognitive cost incurred. For instance, Meuter
and Allport (1999) presented Spanish–English bilinguals with Arabic numerals and instructed

them to name them in either English or Spanish. In a non-switch trial, subjects named the numerals
in the same language twice in a row, while a switch trial required them to switch from one
language to the other. Their RTs for switch trials were significantly slower than for non-switch

trials, suggesting the presence of a switch cost. Even though this type of robust cost was often
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observed in controlled, cued tasks that involved involuntary

language switching, recent evidence from tasks that elicited
voluntary language switching in a more natural scenario

demonstrates that bilinguals might also need time to switch from
one language to the other even when given freedom to name

trials without cues (Gollan and Ferreira, 2009; Gollan et al., 2014).
These results suggest that such switch costs could also occur

during CS in natural conversations.
Another key finding associated with language switching is

the role that language dominance plays: switching into the
dominant language incurs a greater switch cost than switching

into the non-dominant language, i.e., there is a switch cost
asymmetry (e.g., Hernandez and Kohnert, 1999; Jackson et al.,

2001; Philipp et al., 2007; Verhoef et al., 2009). This asymmetry
can be explained by Green’s (1998) Inhibitory Control (IC)

model, which specifies a resolution of cross-language competition
through an inhibitory mechanism that regulates the bilingual
lexico-semantic system for language processes. This is based on

the question of how a bilingual can accurately bind external
cues with one of their two possible linguistic representations

in a given language task. According to the IC model, this is
achieved by suppressing lemmas with language tags irrelevant to

the task, while activating/selecting lemmas in the target language
to communicate. For instance, if a Chinese–English bilingual

is asked to complete a picture naming task in English, they
will suppress lemmas tagged as Chinese and activate lemmas

tagged as English so that ‘ ’ (mean ‘apple’) will not compete
with ‘APPLE’ for selection. Therefore, if bilinguals intend to

switch from one language to the other, they operate control
processes to suppress the active language and activate the other

language for output. The IC model also predicts that the control
process is not effortless and might induce a time lag for language

switching. Switching back to the dominant language may incur
larger costs, as inhibition of the dominant language takes more

executive effort and thus takes longer to overcome in reactivation
than the mirroring process in non-dominant language trials.
Furthermore, recent neural evidence (e.g., PET, fMRI) suggests

that L1 and L2 representations share a common neural network
and that competition to control output in language selection is

mediated by the left dorsolateral prefrontal cortex (Price et al.,
1999; Hernandez et al., 2001; Chee et al., 2003; Abutalebi and

Green, 2007), as well as by sub-cortical areas like the left caudate
(Abutalebi and Green, 2008; Luk et al., 2011; Wang et al.,

2013).
On the other hand, a concern over the IC model to account

for switch cost asymmetries is that some studies reported
symmetrical switch costs in bilingual production (e.g., Costa and

Santesteban, 2004; Costa et al., 2006; Christoffels et al., 2007).
This type of evidence suggests that equal inhibition could be

applied to both languages or the inhibition mechanism itself
is not sufficient (or even wrong) to explain switch costs in

production (Finkbeiner et al., 2006; Philipp et al., 2007; Gollan
and Ferreira, 2009; Verhoef et al., 2009; Runnqvist et al., 2012;

Bobb and Wodniecka, 2013; Declerck and Philipp, 2015). The
IC model relies on the notion of persisting inhibition; while

alternative accounts to explain switch cost asymmetries favor
other mechanisms based on empirical evidence from various

paradigms with bilinguals of different levels of proficiency.

Common to these accounts is that inhibition is not necessarily
involved in language switching; rather, persistent activation or

fast–speed lexical selection can explain the switch cost asymmetry
(Finkbeiner et al., 2006; Philipp et al., 2007; Runnqvist et al.,

2012). In particular, Verhoef et al. (2009) demonstrated that
unbalanced Dutch–English bilinguals produced asymmetrical

switch costs for short cue-to-stimulus intervals (CSI) but
symmetrical switch costs for long CSI. These results indicate that

bilinguals could bias the response of the target language through
endogenous control given long CSI (i.e., long preparation times).

But the long CSI did not benefit the L1 non-switch/repeat trials,
suggesting interference of the non-target language influences

all trial types except for the L1-repeat trials. They term this
effect as “L1-repeat-benefit” for unbalanced bilinguals to account

for switch cost asymmetries. It is beyond the scope of this
paper to discuss all the alternative accounts for the switch
cost asymmetry on the production side, yet, the presence

of switch costs, even if symmetric effects, indicates some
kind of processing costs associated to alternating between two

languages, some of which can be explained by an inhibitory
mechanism.

In the domain of language comprehension, similar questions
have been investigated to determine the presence of a switch

cost and its relation to language dominance (e.g., Grainger
and Beauvillain, 1987; Von Studnitz and Green, 1997; Thomas

and Allport, 2000; Proverbio et al., 2004; Grainger et al., 2010;
Ibáñez et al., 2010). The major debates center on the locus of

switch costs in comprehension vs. production and the relevant
theoretical models accounting for empirical evidence associated

with comprehension vs. production tasks. In production, the
switch cost is attributed to the inhibitory control mechanism

that operates in a top–down fashion; while a similar effect in
comprehension is more likely to be driven by a mechanism

that operates reactively to input and context. Given the available
comprehension studies, the findings are rather mixed and show
different switch cost patterns from language production.

First, one line of research in bilingual visual word recognition
demonstrate that both languages are active even when the

input is exclusively in one language (e.g., Van Hell and De
Groot, 1998; Brysbaert et al., 1999). In particular, the cross-

language masked priming paradigm has demonstrated the
robust influence of one language on the other even when the

bilingual participants were only aware of the target language
(Grainger, 1993; Gollan et al., 1997; Jiang and Forster, 2001;

Davis et al., 2003; Wang, 2007, 2013; Wang and Forster, 2010).
All of this evidence suggests that bilinguals do not selectively

activate or deactivate their two languages. Rather, both of a
bilingual’s language systems are available during lexical retrieval

until the best candidate is selected to match an input word.
When tasked with comprehending language switches, a bilingual

needs to be able to access the mental representation of the
target language (i.e., the switched language) immediately after

retrieving the lexical information in the non-target language.
This raises the question whether a cognitive cost is incurred in

the process of comprehending language switches (and/or code-
switches). If so, can the inhibitory control mechanism account
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for the switch cost pattern in comprehension the way it can in

production?
Second, behavioral data of switch costs are not always

consistent with ERP (i.e., Event-Related Potential) measures
in comprehension. For instance, Ibáñez et al. (2010) showed

no evidence of switch costs in reading switched sentences,
and Bultena et al. (2014) found switch costs from L1 to L2,

but not from L2 to L1; however, ERP measures indicate that
such costs do occur (e.g., Moreno et al., 2002; Proverbio

et al., 2004; Chauncey et al., 2008; Van Der Meij et al.,
2011). In a single word reading task, Chauncey et al. (2008)

showed language switching effects in both L1–L2 and L2–L1
directions, as reflected in the N250 ERP component, in a

priming paradigm regardless of whether the primes were
masked or unmasked to the French–English participants. They

interpreted the results as a consequence of greater cognitive
efforts exerted in processing French-English prime-target pairs
(e.g., cheveu-loan, ‘cheveu’ means ‘hair’ in English), compared to

within-English prime-target ones (e.g., dust-loan). Two crucial
implications, as argued by the authors, can be drawn from

their results: first, the language switching effects in reading
unrelated cross-language prime-target pairs indicate language

membership information is automatically computed in bilingual
reading because unrelated masked primes in L1 or L2 were

largely invisible to bilinguals; second, it is unlikely for a control
mechanism external to the lexicon, as specified in the IC model,

to be able to account for the switch effects when the primes
were invisible and the similar effects when the primes were

visible. Thus, the language switching effects observed in ERPs
were interpreted as the result of inhibiting lexical representations

in the non-response language through the language node in
the lexicon, as specified in the Bilingual Interactive Activation

model (Grainger and Dijkstra, 1992; Van Heuven et al., 1998),
when reading from the prime to target (i.e., switching between

languages).
Third, evidence of asymmetry in switch cost between

the dominant and non-dominant language during language

switching in comprehension contrasts with the pattern observed
in production. Both Proverbio et al. (2004) and Chauncey et al.

(2008) demonstrated a larger switch cost from the dominant
language to the non-dominant language, while a larger cost

was usually observed when switching to the dominant language
in production (e.g., Meuter and Allport, 1999; Costa and

Santesteban, 2004). In Bultena et al.’s (2014) study, Dutch–
English bilinguals completed a self-paced reading task consisting

of sentences that alternated between L1 and L2 right after the
main verbs. Switch costs were observed from L1 to L2, but not

vice versa (i.e., asymmetry). In addition, Bultena et al. (2014)
found that language dominance played a role in switch costs.

That is, the magnitude of the costs was correlated with relative
proficiency in L2: low proficiency readers took more time to

switch. As Bultena et al. (2014) argue, these results are best
explained by the relative activation strength of the two languages,

rather than an inhibitory control mechanism. The inhibitory
account assumes a top–down process where lexical competition

at the conceptual level needs to be resolved for output to occur
in the target language (Levelt, 1992; Costa et al., 1999; De

Bot, 2007). It is less likely for such a mechanism to play a

role in bilingual reading, as comprehension is driven by input,
implying a bottom–up process at the initial stage. A switch cost

in comprehension is more likely to be the result of relative
resting-level activation in L1 and L2. L1 lexical representations

are easier and faster to activate than L2 representations due
to their frequency of usage. Hence, a different pattern is

observed in comprehension: switching to L2 incurs a cost due
to more effort/time required to activate L2, while switching to

L1 yields little cost. This activation account is able to explain
the language dominance effect: more effort/time is needed to

activate low-proficiency L2 in processing, inducing a larger
switch cost.

Thus, the debate remains whether inhibitory control processes
play any role in bilingual comprehension of language switches,

even though the IC model is assumed to broadly explain how
bilinguals select between active representations in both languages
through control at different levels of processing. Specifically,

the question is whether switch costs in comprehension are
driven by a general task control mechanism (i.e., the IC model)

or a control mechanism of language activation specific to the
lexicon (i.e., the BIA/BIA+model). The main difference between

these two accounts is the locus of switch costs: the IC model
attributes the effect to the resolution of competition between two

language task schemas; while the BIA/BIA+ model attributes
the effect to the modulation of lexical activation within the

bilingual lexicon. Further evidence from studies that do not
involve language switching suggests that inhibitory processes

associated with executive control were present in bilingual
language comprehension (Macizo et al., 2010; Pivneva et al.,

2014). In Macizo et al.’s (2010) study, Spanish–English bilinguals
were instructed to judge whether English words presented in

pairs (e.g., pie-toe) were semantically related or not. One of the
English words was an interlingual homograph (e.g., pie, which

means foot in Spanish). Macizo et al. (2010) found that despite
the task being run exclusively in English, the Spanish meaning of
these homographs influenced participants’ subsequent processing

of their English translation equivalents (e.g., foot-present).
This suggests that the selection of the appropriate meaning

in English involves inhibition of the non-target meaning in
Spanish. In addition, Pivneva et al. (2014) found that executive

control modulates cross-language activation during L2 sentence
reading. To be specific, they found greater executive control

among bilinguals but not L2 proficiency reduced cross-language
activation in terms of interlingual homograph interference, thus

suggesting a role of a domain-general control in bilingual
comprehension. As these two studies were done exclusively in

one language, the findings appear to be more in line with
the idea of a language control mechanism external to the

lexicon.
Another motivation to investigate the language control effect

in reading is to test whether the BIA/BIA+ model of word
recognition would be sufficient to explain bilingual reading.

The BIA/BIA+ model of word recognition would predict
both bottom–up and top–down processes in bilingual reading.

Language membership, which the model represents through
a language node, is identified at the word level, relatively
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late in processing; however, the model also incorporates top–

down schemas that steer task-specific processing (Dijkstra and
Van Heuven, 2002). In the context of sentence processing,

Bultena et al. (2014) argue that the activation of the language
nodes can influence the processing of subsequent switch trials

through this top–down control mechanism. That is, switching
to the target language involves inhibiting the language nodes

in the non-target language to allow effective comprehension,
and this can induce a processing cost. It is unclear to what

extent this top–down control process takes place in bilingual
reading. Would an inhibitory control mechanism external to

the lexicon be necessary to account for language switching in
reading?

The Current Study

One purpose of the current work is to advance the

methodological practice in order to tease apart the lexical
effect from the language control effect (non-lexical) during

language switching in comprehension. In measuring the switch
cost in comprehension, previous studies have always compared

the switch trials to the non-switch trials in order to demonstrate
the behavioral difference. For instance, in the self-paced reading

paradigm adopted by Bultena et al. (2014) comparisons were
made between reading non-switch sentences in L2 English (e.g.,

“The surprised women bake a pie for their aunt”) and switch
sentences from L2 English to L1 Dutch (e.g., “The surprised

women bake een taart voor hun tante”). The switch point was
always located directly after the verb and the reading times were

recorded in a word-by-word fashion. Reading time differences,
if there were any, could be observed by comparing ‘a pie for

their aunt’ and ‘een taart voor hun tante.’ If we would expect
any switch effects driven by mechanisms external to the lexicon,

this measurement is confounded by the stimulus itself (e.g.,
L2 sentences vs. L1 sentences); naturally, one would expect
differences between readings in L1 vs. L2. Therefore, it is hard to

tease apart this input-driven lexical effect from other non-lexical
effects. This might be the reason why mixed findings of switch

costs were reported in the comprehension literature. Ideally, to
tease apart the lexical effect in reading a sentence, one needs

to find a comparable condition where the same lexical items in
one language were either preceded by lexical items in the same

language or by their counterparts in the other language. Here, the
counterparts should be the lexical items on which bilinguals most

likely code-switch in communication. Any robust difference
observed on the same input preceded by a non-switch lexical

item vs. a switch one can be interpreted as switch effects apart
from lexical effects.

This can be achieved by using a different reading paradigm,
the maze task (Forster et al., 2009; Forster, 2010). In this task,

the objective for the participant is to continue a sentence –
from the first word/trial to the last word/trial – by choosing

one of two alternatives presented on the computer screen
(i.e., a word “maze”). The participant was presented with two

words/alternatives at a time, only one of which was grammatically
acceptable to continue the sentence. If the participant chose an

FIGURE 1 | The rain fell silently.

incorrect word, an error message appeared and a new sentence

would begin (see Figure 1, more on this in the Materials and
Methods section). Empirical evidence suggests that the maze

task is sensitive to frequency effects and closely corresponds
with data generated from other reading paradigms, such as

eye-tracking (Witzel et al., 2012). One advantage of this task,
compared to other reading paradigms, is that it forces the

reader into a strictly incremental mode of processing with
little spill-over effects (Forster et al., 2009). Eye-tracking places

few restrictions on the way participants approach reading and
allows for strategies on any given item in reading a sentence.

Therefore, spill-over effects occur if the gaze is shifted to the
next word too quickly before it has been completely processed.

In a similar way, participants might adopt a strategy whereby
they press the button to move on to the next word as soon

as they have recognized the word and integrated it into the
developing sentence representation in a self-paced reading task.

This strategy would buffer each word for reconstruction later
in the sentence, leading to spill-over effects. However, the

maze task limits these strategies (e.g., ‘wait-and-see’) available
to participants by forcing them to process each word carefully
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enough to continue the sentence. In this way, the maze task has

the potential to provide highly localized indications of processing
time differences during online sentence comprehension. Thus it

should indicate processing time differences at precisely the words
predicted to yield such effects. And although processing time

differences incurred at a given point in a sentence could influence
decisions on subsequent words (i.e., lead to “spillover” effects),

empirical evidence shows that these effects were not reliable
(Forster et al., 2009; Witzel et al., 2012). The other advantage

is that the task cannot be performed unless the sentence is
understood. These merits of this paradigm would allow us to

measure the same input/word, not being confounded by spill-
over effects, by manipulating the preceding words/trials (switch

vs. non-switch).
The second purpose is to investigate cross-script switch

effects in reading, as distinctive orthographies of a language
pair would be more indicative of whether a general task control
mechanism is involved in bilingual reading. To identify and

process language switches, a within-script reader would need to
identify language membership following lexical activation. The

BIA/BIA+model predicts that this process takes place after word
identification by activating the language node associated with

one of the bilingual’s two languages and inhibiting the other.
A bi-script reader (e.g., Chinese–English), however, would be able

to identify which language the input belongs to fairly early in
processing, because the orthographic features of one language

(e.g., Chinese, a logographic language) are quite distinct from
the other (e.g., English, an alphabetical language). It is unlikely

that the lexical processor would ‘wait’ for the word recognition
process to identify language membership; rather, the input would

directly cue bilinguals to the language membership. Therefore,
the language node does not seem necessary for a bilingual lexicon

with two separate orthographies. Rather, the BIA model predicts
no non-lexical costs in reading cross-script language switches.

Alternatively, the BIA+ model might predict non-lexical switch
costs through the task schema; however, it is unlikely these effects
are generated from task demands or participants strategies in the

maze.
The third goal of this study is to simulate CS in natural

communication, by adopting code-switched structures/sentences
frequently used among the Chinese–English bilingual

community, rather than artificially locating a switch point
(more on this in the Materials and Methods section).

Finally, to understand whether/how ‘language dominance’
plays a role in language switching, two groups of Chinese–English

bilinguals (Chinese-dominant bilinguals vs. English-dominant
bilinguals) will be recruited to test on the same language

materials.

Materials and Methods

Participants
Participants were English–Chinese bilingual undergraduates or
graduates recruited from the National University of Singapore

(NUS), upon approval from the NUS-IRB ethics committee.
In assessing bilingual dominance, the present study adopted a

recent language survey measure, namely the bilingual dominance

scale, devised by Dunn and Fox Tree (2009) to classify and
select bilingual participants (see Appendix A in Supplementary

Material). We administered the language dominance scale to 250
students at the NUS, without revealing the purpose of the survey.

Eventually, we selected 25 English-dominant bilinguals who
scored +15 or above for English after subtracting the scores for

Chinese, and 25 Chinese-dominant bilinguals who scored +15
or above for Chinese after subtracting their scores for English.

These cut-off values to gage language dominance were suggested
in Dunn and Fox Tree (2009). In addition, we only recruited

participants who had lived in Singapore for at least 10 years to
ensure the consistence of their linguistic environment, as the

materials used in the experiment were specifically constructed
based on the English–Chinese CS context in Singapore. Further,

five more questions (Q12–Q16) were added into the survey for a
more accurate assessment of the participants’ linguistic profiles.

Task
During the maze task, the first word of each sentence was always

given, and the participant started choosing the correct word from
the second trial onward by pressing the ‘LEFT’ or ‘RIGHT’ key.

The ‘LEFT’ key was associated with the word on the left and the
‘RIGHT’ key with the word on the right. The RTs taken to select

the correct word at every word/trial of the sentence were recorded
by DMDX (Forster and Forster, 2003). Figure 1 provides an
illustration of the task.

Materials and Design
As this study focuses on the comprehension of CS, it is
essential that the CS materials replicate the qualities of natural

CS utterances and do not read complex or odd to bilingual
participants. A quick review of the CS corpus literature

indicates that the predominant English–Chinese CS among
the Singaporean community is in functional-lexical phrases,
particularly Determiner Phrases (Ong and Zhang, 2010). As such,

single-word switches are preferred to phrasal switches among the
target bilingual community. This CS pattern is consistent with

the Matrix Language Frame (MLF) model proposed by Myers-
Scotton (2005). According to theMLFmodel, thematrix language

provides themorpho-syntactic frame of a code-switched sentence
(e.g., Det + Noun); while the other participating language is

known as the embedded language. In order to have a systematic
measure, we used CS sentences whose matrix language was

English, with embedded lexical nouns in Chinese. Instead of
choosing the switch point at the phrasal boundary (i.e., the whole

DP), we used CS lexical nouns preceded by a determiner in the
matrix language. The embedded Chinese nouns were translation

equivalents of their counterparts in English.
To ensure that the sentences were natural instances of CS used

by the local bilingual community, all of the originally constructed
CS sentences were judged by five Singaporean bilinguals, who

frequently code-switched between English and Chinese, on a
1–7 Likert scale. They were instructed to read each sentence aloud

and then judge the likelihood of producing such utterances in real
conversations from 1 to 7, 1 being extremely rare and 7 being
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extremely frequent. Only sentences rated above 6 were selected

for the study.
A total of 110 sentences were constructed, including 30 filler

sentences (15 English sentences and 15 code-switched sentences)
and 40 pairs of critical sentences (a switch and a non-switch

version of each sentence). Sentences in each pair were identical
to each other except that the lexical noun was in Chinese in

the switch version. Translation equivalents were used in all the
instances of code-switches. All the sentences were constructed

so that they were at least five words long, and RTs on three
different words/regions of each critical and control sentence were

measured. An illustration of this design is presented in Table 1.
The Chinese character is the translation equivalent of

shoe and the character is the translation equivalent of think.
Subjects would have to select the target word at each step to

continue the sentence ‘I polished my shoe/ yesterday.’ In
order to measure whether processing CS input takes time, the
alternative/distracter should be comparable across the switch and

non-switch conditions.
In addition, the two alternatives in each trial were unrelated

semantically and syntactically and could not be collocated. For
instance, if the target word was ‘very,’ then a word like ‘handsome’

would not be a suitable alternative even if the word ‘handsome’
is not a syntactically acceptable option following the preceding

word, because the phrase ‘very handsome’ would incur additional
processing load/time.

It is important that the point of CS remained unpredictable
throughout the experiment. To achieve this, half of the switches

occurred at the subject position, while the other half occurred at
the object position. Furthermore, a wide range of determiners was

selected preceding the CS lexical noun. These included a, the, this,
that, his, her, they, their, my, its, our, and some. A few of the CSs

were preceded by the preposition of as well.
Two counterbalanced lists were constructed so that the CS

sentences appearing on List A would appear as non-CS sentences
on List B, and vice versa (see Appendix B). Within each list, there
were two conditions (20 switch vs. 20 non-switch sentences), with

half of the switches at the subject position and the other half at the
object position. Thirty fillers were included in each list so that the

participants were not biased toward processing CS noun phrases.

TABLE 1 | Design of code-switching (CS) and non-CS sentences.

Target Alternative Region

Switch mode

I xxx

polished thus

my drew 1

2

yesterday sad 3

Non-switch mode

I xxx

polished thus

my drew 1

shoe think 2

yesterday sad 3

The 15 CS fillers switched on lexical adjectives, verbs, or adverbs.

In addition, each list included five practice sentences prior to the
actual test. An equal number of subjects were randomly assigned

to each list for testing.

Procedure
Each subject was given written instructions that the task was
to complete sentences through a maze game, as demonstrated

in Figure 1, and that the sentences would be completed in a
word-by-word procedure. They were aware that each trial would

present two alternatives from which they needed to choose the
correct one. If they failed to choose the correct one, that sentence

would stop and a new sentence would begin. They were asked
to respond as accurately and quickly as possible on the maze

task, by pressing either the left or right button to continue a
sentence.

At the end of the experiment, all subjects were checked on
the Chinese characters used in the experiment (see Appendix C),

to ensure that they were familiar with the Chinese characters.
RTs on three words, or “Regions,” were measured for each critical

sentence: the code-switched word (the CS, namely, Region 2), the
word before the CS word (before CS, namely, Region 1), and the

word after the CS word (after CS, namely, Region 3). The same
regions were measured in the control sentences.

Results and Discussion

Among the three measured regions, Region 3 is critical, where
any behavioral difference between the switch and non-switch

conditions should not be driven by the input, but due to language
switching itself. If there was an inhibitory effect apart from

the lexical effect involved in reading CSs, one would expect
a significant delay in Region 3 across switch vs. non-switch

conditions. The comparison in Region 2 is similar to previous
studies (e.g., Bultena et al., 2014), which involves the switched

lexical items in the other language. One would expect the effects
observed in Region 2 are most likely to be attributed to the

lexicon, plus an effect of language switching due to the similar
mechanism in Region 3. Therefore, in the current design, one

would predict an inhibitory effect observed in Region 3 if the
control processes were involved in reading code-switches, as well

as lexical effects in Region 2 potentially confounded by inhibitory
effects.

Data Trimming and Statistical Procedure
The experimental design was a factorial 2 × 3 × 2, with

Group (2 levels) as a between-subject independent variable and
Region (three levels) and Switch Mode (two levels) as within-

subject independent variables. In analysing the data, subjects
who made more than 10% errors and those who failed to

recognize any Chinese character in the post-experiment test were
rejected. Six English-dominant bilinguals were rejected because

they failed to recognize some of the Chinese characters on the list
after the experiment. Another six English-dominant bilinguals

were recruited to replace them. They completed a re-run of
the experiment, and their data were included in the analysis.
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Additionally, in trimming the data, RTs lower than 300 ms or

higher than 1500 ms were excluded from analysis.
Statistical analyses were performed by fitting a linear mixed

effects model to response times (RTs) (Baayen, 2008). Unlike
more traditional ANOVAs, mixed-effects models take raw un-

averaged data as input and incorporate both random effects of
participants and items within a single analysis. The fixed-effect

factors were Group (Chinese-dominant and English-dominant),
Region (before CS, CS, and after CS), and Switch Mode (switch

vs. non-switch). Models were fitted using a restricted maximum
likelihood technique. The lmer function from the lme4 package

in R was used (version 3.1.0; CRAN project; R Core Team, 2013).
P-values were derived by Markov Chain Monte Carlo simulation

(Baayen et al., 2008); all significant main effects and interactions
with t-values greater than 2 are reported.

Data Analysis
As shown in Table 2, collapsing all the Regions, in error analysis,

there was a main effect of language dominance (t = 4.81,
p < 0.0001), but neither main effect of switch mode (t = 0.97,
p = 0.33), nor interactions between language dominance and

switch mode (t = 0.38, p = 0.71). This pattern indicates that
Chinese-dominant bilinguals made significantly more errors in

processing both switch and non-switch English matrix sentences
than English-dominant bilinguals. This is expected, as Chinese-

dominant bilinguals were less proficient in English.
In RT mixed-effects analysis, there was a main effect of

language dominance (t = 7.72, p < 0.0001), which means that
both groups showed different levels of language proficiency in

reading sentences, consistent with the error data. In addition,
there was a significant interaction between switch mode and

language dominance (t = 7.88, p < 0.0001). This suggests that
these two groups performed differently on the code-switched

trials. That is, the English-dominant group suffered more in
processing the switched sentences; while the Chinese-dominant

group behaved similarly across the switch and non-switch
conditions.

Tables 3 and 4 present the results of the RTs and error rates
of both groups in three different regions. Taking region into

the model along with language dominance and switch mode,
in error analysis, there was only a main effect of language
dominance (t = 3.43, p < 0.001), without other main effects nor

interactions. In RT mixed-effects analysis, three-way interactions
were observed between Regions 1 and 2 (t = 11, p < 0.0001),

as well as between Regions 2 and 3 (t = 10.97, p < 0.0001),
but not between Regions 1 and 3 (t = 0.55, p = 0.58). This

demonstrates that these two groups differed from each other
significantly in switch effects between Regions 1 and 2, as well

as between Regions 2 and 3.

TABLE 2 | Mean reaction times (RTs; in ms) and error rates (in % in

parentheses) of English-dominant and Chinese-dominant Bilinguals.

Non-switch Switch Difference

Chinese-Dominant 877 (9.3) 873 (8.5) 4 (0.8)

English-Dominant 731 (3.5) 820 (3.1) 89 (0.4)

TABLE 3 | Mean RTs (in ms) and error rates (ERs in %) of English-dominant

Bilinguals with SD in parentheses.

Region 1

(before CS)

e.g., “my”

Region 2

(CS)

e.g., “ ”/“shoe”

Region 3

(after CS)

e.g., “yesterday”

Switch RT 680 (242) 1002 (258) 780 (236)

Non-switch RT 686 (241) 772 (222) 736 (217)

Switch ER

Non-switch ER

RT Difference

2.8

3

−6

3

3.2

230∗∗∗

3.5

4.3

44∗∗∗

∗∗∗p < 0.001.

TABLE 4 | Mean RTs (in ms) and error rates (ERs in %) of Chinese-

dominant Bilinguals with SD in parentheses.

Region 1

(before CS)

e.g. “my”

Region 2

(CS)

e.g. “ ”/“shoe”

Region 3

(after CS)

e.g. “yesterday”

Switch RT 802 (249) 886 (236) 951 (272)

Non-switch RT 802 (239) 945 (220) 890 (257)

Switch ER

Non-switch ER

Difference

6.8

8.4

0

8.6

9.2

–59∗∗∗

10.3

10.5

61∗∗∗

∗∗∗p < 0.001.

Critical comparisons should be conducted on Regions 2 and 3
separately. In critical Region 3, the mixed-effects analysis of RTs

showedmain effects of language dominance (t = 6.43, p< 0.0001)
and switch mode (t = 4.43, p < 0.0001), but no interactions

between language dominance and switch mode (t = 1, p = 0.32).
These results suggest that the inhibitory effects in Region 3 were

not modulated by language dominance. That is, a similar size
of cost incurred when the English-dominant bilinguals switched

from L2 to L1 and the Chinese-dominant bilinguals switched
from L1 to L2.

In Region 2, the mixed-effects analysis of RTs showed main
effects of language dominance (t = 6.51, p < 0.0001), and switch

mode (t = 3.76, p < 0.001), as well as interactions between
language dominance and switch mode (t = 14.4, p < 0.0001).

These results suggest that switch costs in Region 2 were
modulated by language dominance, with the English-dominant

group producing an inhibitory effect and the Chinese-dominant
group producing a facilitation effect. This pattern is consistent

with the lexical activation account, due to the relative proficiency
in bilinguals’ L1 and L2.

English-Dominant Bilinguals

The average error rate was 3.27%, and did not differ significantly
across conditions. The discarded outliers comprised of 4.06% of

the total trials. A delay of 230 and 44 ms was observed in Regions
2 and 3 in the switch condition respectively.

Based on current 3 (Region 1, 2, 3) × 2 (Switch vs. Non-
switch) design, the overall RTs analysis in mixed-effects modeling

showed that there were a main effect of switch mode (t = 11.50,
p < 0.001), as well as main effects on region: Regions 1 and

2 differed significantly (t = 6.44, p < 0.001); Regions 1 and 3
differed significantly (t = 2.36, p = 0.02 < 0.05); Regions 2 and 3
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differed significantly (t = 3.86, p < 0.001). These results suggest

that English-dominant bilinguals encountered more difficulty in
processing code-switched sentences.

Significant interactions between switch mode and region were
also observed. In Region 2, the 230 ms difference across the

switch and non-switch condition differed significantly from the
difference in Region 1 (t = 13.2, p < 0.0001), as well as

Region 3 (t = 9.9, p < 0.0001). In a similar way, the 44 ms
inhibitory effect in Region 3 also differed significantly from

the difference in Region 1 (t = 2.83, p = 0.005 < 0.01).
Restricting the analysis to just Regions 1, 2, and 3, the mixed-

effects analysis of the RTs showed significant switch costs
in both Region 2 (t = 16.69, p < 0.0001), and Region 3

(t = 3.64, p < 0.001), while there was no difference in Region
1 (t = 0.69, p = 0.49). Therefore, these results show that the

English-dominant bilinguals suffered from code-switched input
in Region 2, as well as the same input in Region 3 when
switching back. The interaction suggests that the switch cost

induced in Region 2 (230 ms) was significantly larger than that in
Region 3 (44 ms). In other words, switching into the weaker/less

proficient language (L2) and back to the stronger/more proficient
language (L1) both induced costs for the English-dominant

bilinguals.
The results from the English-dominant bilinguals confirmed

the presence of switch costs in reading CSs from Region 1 to
Region 2 (L1–L2) and from Region 2 to Region 3 (L2–L1). The

delay observed in Region 3 was unlikely to be a spill-over effect,
namely, a slower response to the following word in Region 3 due

to a delay in Region 2. Because the advantage of the maze task
is to prevent the spill-over effect to a large extent, as discussed

above (e.g., Forster et al., 2009). On the other hand, the lexical
activation account is an input-driven explanation and consistent

with the inhibitory effects observed in Region 2 due to the lower
proficiency in L2; however, this account would not apply here in

Region 3, where bilinguals were measured upon the same stimuli
for both switch and non-switch conditions. Therefore, a non-
lexical mechanism is required to explain the inhibitory effects in

Region 3, such as the IC model.

Chinese-Dominant Bilinguals

The average error rate was 8.90%, and did not differ significantly

across conditions. The discarded outliers comprised 12.10% of
the total trials. Region 2 produced a facilitation effect of 59 ms;

while Region 3 produced an inhibitory effect of 61 ms. This
group of bilinguals made more errors than the English-dominant

bilinguals in processing predominantly English sentences. This
suggests their lower proficiency in English, corresponding to the

language dominance measure.
In the same design, the overall mixed-effects analysis of the

RTs showed no main effect of switch mode (t = 0.27, p = 0.79),
unlike the English-dominant group. However, there were main

effects of Region, with significant differences between Region
1 and 2 (t = 3.08, p = 0.003 < 0.01), between Region 1

and 3 (t = 3.71, p < 0.001), but no significant difference
between Region 2 and 3 (t = 0.74, p = 0.46). These results

suggest that the Chinese-dominant bilinguals behaved similarly
across the switch and non-switch conditions in general. It is

likely that the differences in Regions 2 and 3 cancel out each

other.
In addition, there were significant interactions between switch

mode and region: in Region 2, the 59 ms facilitation effect differed
significantly from the difference (0 ms) in Region 1 (t = 2.91,

p = 0.004 < 0.01), as well as the 61 ms inhibitory effect in
Region 3 (t = 6.24, p < 0.0001); similarly, in Region 3, the 61 ms

difference differed significantly from that in Region 1 (t = 3.56,
p< 0.001) and Region 2. Restricting the analysis to just Regions 1,

2, and 3, the mixed-effects analysis of the RTs showed significant
effects in both Region 2 (t = 4.03, p < 0.0001) and Region 3

(t = 4.46, p < 0.0001), while there was no difference in Region 1.
These results showed that the Chinese-dominant bilinguals were

faster in switching into their stronger language (L1), but slowed
down when switching into the weaker one (L2).

Unlike the English-dominant group, switching from English
to Chinese (L2–L1) became a facilitation effect, rather than an
inhibitory effect. This result suggests that the Chinese-dominant

bilinguals were faster in accessing the Chinese words than
their English counterparts and the switch effect thus became

facilitatory. This is consistent with the lexical activation account
and in line with the pattern from the English-dominant group

in Region 2, as switching to a less proficient language induced
a cost while switching to a more proficient language facilitated

processing.
In Region 3, inhibitory effects were observed for both groups,

regardless of whether the target language (English) was the
more dominant or less dominant language of the bilingual.

For the same reason discussed above, the 61 ms delay was
unlikely to be a spill-over effect, in addition to the fact that

Region 2 elicited facilitation rather than a delay, nor could it be
explained by the lexical activation account. Instead, these results

confirm the presence of the switch cost observed in Region 3
in the English-dominant group and provide evidence for the

inhibitory control processes involved in reading code-switches.
Again, the inhibitory effects observed in Region 3 appear to
be unrelated to language proficiency as switching into a more

proficient or less proficient language equally slowed down the
lexical processor.

General Discussion

To summarize the results of this study, inhibitory effects were
observed in Region 3 for both English-dominant and Chinese-

dominant bilinguals. These results indicate that a cognitive cost
incurred in reading code-switches regardless of switching to

a stronger language (L2–L1) or a weaker language (L1–L2).
In other words, this effect was not modulated by language

dominance, unlike the switch costs reported in the production
literature. On the other hand, both a facilitation effect and

an inhibitory effect were observed in Region 2, which was
consistent with the lexical activation account. That is, switching

into a stronger/more proficient language (L2–L1) will facilitate
processing; while switching into a weaker/less proficient language

(L1–L2) will slow down the lexical processor. This effect
was modulated by language dominance. The main novelty of
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the current findings lies in Region 3, as an inhibitory effect

was observed in both directions (L1–L2 vs. L2–L1), which
was not reported by previous reading studies, as far as I

know.

Language Control Effects in Region 3
In the current experimental design, the critical Region 3,
where the input was the same across switch and non-

switch trials, provides an ideal condition to test whether
an inhibitory effect can be observed in processing code-

switches. Compared to the non-switch condition (e.g., "my shoe
yesterday"), bilinguals encountered two switches in reading “my

yesterday” in the switch condition, where and shoe are

translation equivalents. The cost incurred in Region 3 (e.g.,
yesterday) can only be explained by the cognitive effort to

control/inhibit the other language on the previous trials (i.e.,
Chinese) when integrating the current trials during sentence

comprehension. This effect was clearly generated by a non-
lexical mechanism. These results are best explained by the

inhibitory control mechanism, because an external mechanism
outside the lexicon is necessary to modulate the activation level

of the non-target language (i.e., the one switched from) and
the target language (i.e., the one switched to). For example,

the observed switch costs in Region 3 due to responses to
different languages are similar in nature to task switch costs

in general, even though bilinguals do not seem to encounter
the selection problem in reading CSs, unlike what they do in

production.
An alternative account can be proposed, however, using the

BIA/BIA+ framework, which attributes switch effects to the cost
of inhibiting one language node when switching to the other

language. It can be assumed that bilinguals need to identify the
language membership for effective reading/comprehension so
that they do not access the wrong lexicon. A Chinese word would

cue them to access the Chinese lexicon, while an English word
would cue them to access the English one. That is, in processing

CS sentences, a bilingual needs to operate two different processes:
one is word identification, namely, lexical access; the other is

language membership identification. A Dutch–English reader
would need to wait until the completion of word identification

in order to determine which language a word belongs to. This
process of language membership identification is realized by

activating language nodes in the BIA/BIA+ framework. Reading
code-switches involves activating a different language node, as

well as a different lexical representation, while inhibiting the
other activated language node. This inhibition has a slower

time course, producing the effects observed in Region 3 in the
current study. This explanation is consistent with the BIA/BIA+

model and supports Bultena et al.’s (2014) speculation about the
function of language nodes in bilingual reading. In addition,

this explanation is not contradictory to the IC model, as both
models implement a mechanism modulating cross-language
switch costs.

However, a more distinctive orthographic feature can cue the
language membership identification relatively earlier and faster

in processing, as in the case with English–Chinese switches.
This view is in line with the orthographic cue hypothesis

proposed in Gollan et al. (1997). The idea is that the script

itself provides a powerful access cue that unequivocally directs
the lexical processor to a specific lexicon. Empirical evidence

to support this comes from earlier masked priming work
that demonstrated reliable and robust cross-script translation

priming (e.g., Chinese–English in Jiang and Forster, 2001;
Hebrew–English in Gollan et al., 1997, etc.) but minimal or

no effects for within-script non-cognate translation priming
(e.g., Dutch–English in de Groot and Nas, 1991; Spanish–

English in Sanchez-Casas et al., 1992). That is, during the
rapid presentation of prime-target pairs, the bilingual lexical

processor could make a wrong attempt to access the wrong
lexicon for the masked prime, due to the similar orthographic

features of primes and targets. This can lead to null priming
effects.

In other words, it is unlikely that language nodes are necessary
for Chinese–English readers, as the orthography itself will cue
the reader to the appropriate language membership prior to

lexical access. It is inefficient for a bilingual lexical processor to
activate language nodes if they are not as useful in processing.

Therefore, to include a mechanism of language nodes for
Chinese–English bilingual readers is not an accurate reflection

of processing, unlike the Dutch–English case described in the
BIA/BIA+ framework. Because they reflect CS between two

different orthographic systems, the current results indicate that
it is more likely that an external mechanism modulates the

activation and switching of two languages, as in general task
switching. As discussed above, the IC model and the BIA/BIA+

model can be complementary to each other and the current
results suggest that a bilingual reading model needs to consider

a mechanism that links to a general task control mechanism to
explain language switching.

Lexical Effects in Region 2
As discussed above, the behavioral data observed in Region
2 were consistent with previous reports (e.g., Bultena et al.,
2014), which could be explained by the lexical activation

account. That is, accessing the lexicon in a different language
induced either inhibitory effects or facilitation effects, depending

on the relative proficiency in the target language. According
to the current results, L1–L2 switching induced a cost of

230 ms for the English-dominant bilinguals, as L2 was relatively
less proficient than L1; while L2–L1 switching produced a

facilitation effect of 59 ms, as activating L1 was easier than
activating L2.

However, the lexical activation account, consistent with the
input-driven processing mechanism illustrated by the BIA/BIA+

model, cannot rule out other mechanisms that can also impact
switch costs. On the basis of the analysis in Region 3, it is

important to note that the switch cost (or the reversal switch
cost) incurred in Region 2 should be attributable to both the

lexical effect and the language control effect. For the Chinese-
dominant group, the lexical effect superseded the inhibitory

effect, producing facilitation in Region 2; while the English-
dominant group demonstrated slower processing in Region 2,

as both the lexical effect and the language control effect were
inhibitory. This analysis is consistent with previous results (e.g.,
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Bultena et al., 2014) that demonstrated switch cost in L1–L2,

but not L2–L1. It is likely that the lexical effects observed
in previous studies, namely faster processing of L1, canceled

out the inhibitory effects driven by the language control
mechanism.

One caveat in the current design is the predictability of
a return trial in Region 3 after the switched lexical items. It

is possible that participants could anticipate a return trial on
Region 3 right after Region 2 in a sentence after some practice.

However, this expectancy strategy would reduce the inhibitory
effects observed on Region 3 (Declerck et al., 2015), thus further

supports a top–down control mechanism in processing code
switches. A better design in the future research is to completely

eliminate this expectancy effect.

The Effects of Language Dominance
The effect of language dominance was significant across switch

and non-switch conditions in Region 2. The less proficient
the target language was, the higher the cost incurred in

Region 2. This effect of language dominance in Region 2 is
expected, consistent with the lexical activation account and

previous findings. In Region 3, even though the Chinese-
dominant group demonstrated slower RTs than the English-

dominant group in general due to lower proficiency in English,
there was no interaction between language dominance and

switch mode. These results imply that switch costs in Region
3 were unrelated to language proficiency. Again, this pattern

supports an inhibitory mechanism to account for the effects in
Region 3.

Inhibitory Control in Bilingual Language
Comprehension
The remaining issue is the nature of the inhibitory control
mechanism involved in comprehension and how it is different

from that in production. Substantial empirical evidence of
switch costs comes from the domain of bilingual production,

as switching into a different language in production clearly
involves a control mechanism that would select the intended

expressions for output (e.g., Costa, 2005; Bialystok et al., 2009).
In production, the control operations involve processes of

maintaining a task goal, conflict monitoring, and interference
suppression (Hilchey and Klein, 2011; Green and Abutalebi,

2013).
Bilingual language comprehension is driven by input and

is unlikely to involve suppression of non-target language
word candidates. In the process of reading CS sentences, the
lexical processor encounters lexical items belonging to different

language membership and responds to different language task
schemas when switching. That is, switching from Language A

to Language B in reading involves two processes: (1) detecting
critical features that discriminate B from A (Kuipers and

Thierry, 2010); and (2) controlling interference from A while
activating B, similar to the notion of conflict monitoring, as

the orthography of A and B are in conflict/competition in
reading CSs (i.e., attending to B orthography while ignoring A

orthography). The first process, as part of the word recognition
process, prevents the lexical processor from accessing the

wrong lexicon and thus language membership identification is

necessary in bilingual reading. The cue to language membership
can vary depending on how similar the input from the two

languages are. In the case of reading Chinese–English switches,
the orthographic cues are rather distinct and the language

membership identification should be earlier and easier in the
recognition process, compared with reading Dutch–English

switches. The second process ensures the relative activation
levels of two languages are re-settled for effective reading on

a given trial. This process appears to be affected by the ability
to resolve cross-language conflicts, evidenced by the inhibitory

effects showed in Region 3 from both groups. Arguably,
the first process is part of lexical activation, yet the locus

of inhibitory effects observed in Region 3 derives from the
second process, where a control mechanism is required to

monitor cross-language conflicts/competition. It appears that
bilingual comprehension reactively resolves language conflicts in
a bottom–up manner (i.e., ignoring the irrelevant orthography

while attending to the relevant orthography during language
switching).

Conclusion

This study is the first to adopt the maze task and demonstrate
non-lexical inhibitory effects in the comprehension of CSs. The

current results demonstrate that switch effects in reading code-
switched sentences were driven by two separate mechanisms:

the lexical activation (i.e., Region 2) and the inhibitory control
(i.e., Region 3). In particular, the inhibitory effects in Region

3 were not modulated by language dominance, suggesting the
locus of switch costs in reading derives from conflict resolution

at the word form level, unlike that in production. In addition,
the inhibitory effects observed in Region 3 lend support to the

IC model, requiring a control mechanism external to the lexicon
in language switching. However, the BIA/BIA+ framework needs

to be modified to be able to explain these effects.
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