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This paper focuses on neural learning from adaptive neural control (ANC) for a class of flexible joint manipulator under the output
tracking constraint. To facilitate the design, a new transformed function is introduced to convert the constrained tracking error
into unconstrained error variable. Then, a novel adaptive neural dynamic surface control scheme is proposed by combining the
neural universal approximation. The proposed control scheme not only decreases the dimension of neural inputs but also reduces
the number of neural approximators. Moreover, it can be verified that all the closed-loop signals are uniformly ultimately bounded
and the constrained tracking error converges to a small neighborhood around zero in a finite time. Particularly, the reduction of
the number of neural input variables simplifies the verification of persistent excitation (PE) condition for neural networks (NNs).
Subsequently, the proposed ANC scheme is verified recursively to be capable of acquiring and storing knowledge of unknown
system dynamics in constant neural weights. By reusing the stored knowledge, a neural learning controller is developed for better
control performance. Simulation results on a single-link flexible joint manipulator and experiment results on Baxter robot are given
to illustrate the effectiveness of the proposed scheme.

1. Introduction

Due to the great demands in industrial applications, the
tracking control problem for flexible joint robot (FJR)manip-
ulator has attracted much attention in recent years. Unlike
rigid joint robot, the joint flexibility of FJR results in complex
control situation, so that the control problem of FJR becomes
much more difficult. In the past few decades, lots of efforts
have been made on the research of FJR systems. Based on the
model of FJR presented in [1], multifarious nonlinear control
methods are presented such as backstepping method [2–4],
sliding-mode control [5–8], switching control [9], fuzzy con-
trol [10], and neural network control [11, 12]. In consideration
of the problem caused by the inherent structure of FJR under
practical circumstance, such as friction, time delay, and vari-
able stiffness, some researchers proposed effective strategies
to solve such problem [13–15]. Moreover, the teleoperation
control method is also widely used in robot research [16, 17].

The backstepping control [18] is known as one of the
popular method for designing the control scheme of FJR.
Nevertheless, it should be pointed out that this method has a
drawback called “explosion of complexity” [19].This problem
generally occurs in the design of neural networks (NNs) dur-
ing backstepping procedure. To overcome this problem, some
researchers used the intermediate variables as neural inputs
to reduce the dimension of neural network input vector [20].
The method in [20] did work well but the problem remained
unsolved.Thenother researchers proposed a dynamic surface
control (DSC) method by introducing a first-order filter at
each step of the backstepping procedure [21]. Due to the
property of DSC method, many researchers presented their
control schemes combined with DSC method [22–27]. In
[24], a new robust output feedback control approach for
flexible joint electrically driven robots via the observer-based
dynamic surface method was proposed, which only requires
position measurement of the system.
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Besides, the transient and steady-state tracking perfor-
mance constraints of system’s output are an important issue
that needs to be taken into consideration [28, 29]. According
to the practical operating environment, the manipulator is
not only demanded to trace the reference trajectory accu-
rately but also required to keep the tracking error within a
specified range. To satisfy this condition, a performance func-
tion transformation was used to convert the “constrained”
system into the “unconstrained” one [30]. Based on the
idea in [30], further researches on prescribed performance
for a variety of systems are proposed [31–36]. Authors in
[31, 32] presented novel controllers for FJRs to achieve
tracking control of link angles with any prescribed perfor-
mance requirements. By combining neural learning control
scheme, further results are given in [33–35]. In [36], an
adaptive prescribed performance tracking control scheme is
investigated for a class of output feedback nonlinear systems
with input unmodeled dynamics based on dynamic surface
control method.

In addition, adaptive neural control of nonlinear system
has been widely studied for decades, but most of the tra-
ditional works focus on the system stability through online
adjustment of neural weights and less works discuss the
knowledge acquisition, storage, and utilization of optimal
neural weights. To achieve such learning ability, the key prob-
lem is to verify the persistent excitation (PE) condition.
Thanks to the results in [37], a deterministic learning mech-
anism is proposed, which proved the satisfaction of PE
condition for the localized radial basis function (RBF) NN
centered in a neighborhood along recurrent orbits.The result
was extended to nonlinear systems satisfying matching con-
ditions [38–40]. By combining recursive design technologies
such as backstepping control and the system decomposition
strategy, the deterministic learning was also applied to solve
learning problem of accurate identification of ocean surface
ship and robot manipulation in uncertain dynamical envi-
ronments [41–44]. However, due to the recursive property of
backstepping control, the convergence of neural weights has
to be recursively verified based on the system decomposition
strategy. It would be a tedious and complex process since the
intermediate variables grow drastically as the order of system
increases. Therefore, it is difficult to prove all neural weights
convergence for high-order system by existing works.

This paper focuses on learning from adaptive neural
control of flexible joint manipulator with unknown dynamics
under the prescribed constraints. A performance function is
introduced to transform the constrained tracking error into
the unconstrained variable. To avoid the curse of dimen-
sionality of RBF NN, first-order filters are introduced to
reduce the number of NN approximators and decrease the
dimension ofNN inputs.The control law is constructed based
on Lyapunov stability, which guarantees the closed-loop
stability and the tracking error satisfying the prescribed per-
formance during the transient process. Subsequently, due to
the property of DSC and structure features of the considered
manipulator, a system decomposition strategy is employed
to decompose the stable closed-loop system into two linear
time-varying (LTV) perturbed subsystems on the basis of the
number of NNs in the whole system. Through the recursive

design, the recurrent properties of NN input variables are
easily proven. Consequently, with the satisfaction of the PE
condition of RBF NNs, the convergence of partial neural
weights is verified, and the unknown dynamics of system
are approximated accurately in a local region along recurrent
orbits. By utilization of the constant neural weights stored, a
neural learning controller is developed to achieve the closed-
loop stability and better control performance under the
prescribed constraints for the same or similar control task.
Compared with the existing neural learning results, the pro-
posedneural learning control schemenot only achieves better
control performance with specified transient and steady-state
constraints but also reduces the dimension of NN inputs and
the number of NNs significantly.

This paper is organized as follows. In Section 2, the
problem formulation and preliminaries are stated before the
control scheme design. In Section 3, a novel adaptive neural
dynamic surface control scheme is proposed to guarantee that
the constrained tracking error converges to a small neigh-
borhood around zero with the prescribed performance in
a finite time, and all the signals in the closed-loop system
are uniformly ultimately bounded. Section 4 shows that the
knowledge acquisition, expression, storage, and utilization of
the manipulator’s unknown dynamics can be achieved after
the steady-state control process. To verify the effectiveness of
the proposed control scheme, simulation results on a single-
link flexible joint manipulator and experiment results on
Baxter robot are given in Section 5. Last but not least, the
conclusions are drawn in Section 6.

2. Problem Formulation and Preliminaries

2.1. System Formulation. In this paper, we consider an 𝑛-link
manipulator with flexible joints, whose model is described by
[1]

𝑀(𝑞1) ̈𝑞1 + 𝐶 (𝑞1, ̇𝑞1) ̇𝑞1 + 𝑔 (𝑞1) + 𝐾 (𝑞1 − 𝑞2) = 0,
𝐽 ̈𝑞2 − 𝐾 (𝑞1 − 𝑞2) = 𝑢, (1)

where 𝑞1 ∈ 𝑅𝑛 is the vector of links’ angle positions and𝑞2 ∈ 𝑅𝑛 is the vector of motors’ angle positions.𝑀(𝑞1) ∈ 𝑅𝑛×𝑛
is the link inertia matrix and 𝐽 ∈ 𝑅𝑛×𝑛 is the diagonal and
positive definite motor inertia matrix. Moreover, 𝐶(𝑞1, ̇𝑞1) ∈𝑅𝑛×𝑛 denotes the Coriolis and centrifugal matrix and 𝑔(𝑞1) ∈𝑅𝑛 represents the gravitational terms. 𝐾 ∈ 𝑅𝑛×𝑛 is a diagonal
and positive definite matrix of joint spring constants; thus𝐾−1 is also positive definite. Finally, 𝑢 ∈ 𝑅𝑛 is the control
input of system (1), and the output of system (1) is 𝑞1.
Property 1 (see [2]). The inertia matrix𝑀(𝑞1) is symmetric
and positive definite; both𝑀(𝑞1) and𝑀−1(𝑞1) are uniformly
bounded.

Property 2 (see [2]). The Coriolis and centrifugal matrix𝐶(𝑞1, ̇𝑞1) can be defined such that 𝑀̇(𝑞1) − 2𝐶(𝑞1, ̇𝑞1) is skew
symmetric; that is, 𝑥𝑇(𝑀̇(𝑞1) − 2𝐶(𝑞1, ̇𝑞1))𝑥 = 0, ∀𝑥 ∈ 𝑅𝑛.



Complexity 3

The reference trajectory vector 𝑦𝑑 ∈ 𝑅𝑛 is generated by
the following smooth and bounded reference model:

𝑥̇𝑑𝑖 = 𝑥𝑑,𝑖+1, 𝑖 = 1, . . . , 𝑚 − 1,
𝑥̇𝑑𝑚 = 𝑓𝑑 (𝑥𝑑) ,
𝑦𝑑 = 𝑥𝑑1,

(2)

where 𝑥𝑑 = [𝑥𝑇𝑑1, . . . , 𝑥𝑇𝑑𝑚]𝑇 ∈ 𝑅𝑚⋅𝑛 and 𝑦𝑑 is the system
outputs vector. 𝑓𝑑(⋅) is a smooth known nonlinear function.
Assume 𝑥𝑑𝑖 ∈ 𝑅𝑛, 1 ≤ 𝑖 ≤ 𝑚 are recurrent signals and the
reference orbit (denoted as 𝜓𝑑(𝑥𝑑(0))) is a recurrent motion.
Moreover,𝑀−1(𝑞1), 𝐶(𝑞1, ̇𝑞1), 𝑔(𝑞1),𝐾, and 𝐽 are assumed as
unknown terms.

Our goal is to design a neural learning controller, which
forces the tracking error vector (i.e., 𝑒1 = 𝑞1 − 𝑦𝑑) con-
verges to a small neighborhood around zero with prescribed
performance in a finite time. Before the design of learning
control (LC) scheme, a stable adaptive neural dynamic
surface controller with prescribed performance is developed
to verify the feasibility of ANC scheme. According to the
deterministic learning theory, the unknown systemdynamics
are accurately approximated by localized RBF networks along
the recurrent orbits of NN inputs. Then, based on the ANC
scheme and the approximation of localized RBF networks,
the knowledge on unknown system dynamics is stored in
static neural weights, which is also reused to develop a neural
learning controller. This neural learning controller is verified
to achieve the closed-loop system stability and better control
performance with prescribed constraints for the same or
similar tasks.

2.2. Prescribed Tracking Performance. In this paper, the out-
put error vector of system (1) is defined as 𝑒1 = 𝑞1 − 𝑦𝑑 =[𝑒11, 𝑒12, . . . , 𝑒1𝑛] ∈ 𝑅𝑛. To achieve the prescribed perfor-
mance (i.e., overshoot, convergence rate, and convergence
accuracy), each element in 𝑒1 is constrained into the following
prescribed region:

−𝛿1𝑘𝛽 (𝑡) < 𝑒1𝑘 < 𝛿2𝑘𝛽 (𝑡) , 𝑘 = 1, 2, . . . , 𝑛, (3)

where 𝛿1𝑘 and 𝛿2𝑘 are positive design constants. 𝛽(𝑡) is a
bounded, smooth, strictly positive, and decreasing perfor-
mance function. In addition, 𝛽(𝑡) is chosen as the following
form by setting lim𝑡→0𝛽(𝑡) = 𝛽0 and lim𝑡→∞𝛽(𝑡) = 𝛽∞:

𝛽 (𝑡) = (𝛽0 − 𝛽∞) 𝑒−𝜅𝑡 + 𝛽∞, (4)

where 𝛽0, 𝛽∞, and 𝜅 are positive constants. With (3) and
(4), it can be concluded that the convergence rate of 𝑒1𝑘(𝑡)
is constrained by the decreasing rate 𝜅 of 𝛽(𝑡), while its maxi-
mum bound of overshoot at initial moment is constrained by−𝛿1𝑘𝛽0 and 𝛿2𝑘𝛽0, and its steady error is constrained within a
range from −𝛿1𝑘𝛽∞ to 𝛿2𝑘𝛽∞.
2.3. RBF Neural Network. According to [45], RBF NN can
approximate any continuous function vector 𝐹(𝑍) ∈ 𝑅𝑛 over
a compact setΩ𝑍 ∈ 𝑅𝑚 to any arbitrary accuracy as

𝐹 (𝑍) = 𝑊∗𝑇𝑆 (𝑍) + 𝜖 (𝑍) , ∀𝑍 ∈ Ω𝑍 ∈ 𝑅𝑚, (5)

where 𝑊∗ ∈ 𝑅𝑙×𝑛 is the ideal weights matrix, 𝑙 is the NN
node number, 𝑆(𝑍) = [𝑠1(𝑍), 𝑠2(𝑍), . . . , 𝑠𝑙(𝑍)]𝑇 ∈ 𝑅𝑙 is the
basis function vector with 𝑠𝑖(𝑍) (𝑖 = 1, 2, . . . , 𝑙) chosen as the
Gaussian function 𝑠𝑖(𝑍) = exp[−(𝑍 − 𝜇𝑖)𝑇(𝑍 − 𝜇𝑖)/2𝜂2𝑖 ], and𝜖(𝑍) = [𝜖1(𝑍), 𝜖2(𝑍), . . . , 𝜖𝑛(𝑍)]𝑇 ∈ 𝑅𝑛 is the approximation
error vector which satisfies ‖𝜖𝑖(𝑍)‖ ≤ 𝜖∗𝑖 , 𝑖 = 1, 2, . . . , 𝑛, with
constant 𝜖∗𝑖 > 0.

On the other hand, it has been shown in [46] that, for
any bounded trajectory 𝑍(𝑡) over the compact set Ω𝑍, the
continuous and smooth function 𝐹(𝑍) can be approximated
to an arbitrary accuracy using the localized RBF NNs with a
limited number of neurons located in a local region along the
trajectory:

𝐹 (𝑍) = 𝑊∗𝑇𝜁 𝑆𝜁 (𝑍) + 𝜖𝜁 (𝑍) , (6)

where 𝑆𝜁(𝑍) ∈ 𝑅𝑙𝜁 is the subvector of 𝑆(𝑍) and𝑊∗𝑇𝜁 ∈ 𝑅𝑙𝜁 with𝑙𝜁 < 𝑙. 𝜖𝜁(𝑍) is the approximation error which is close to 𝜖(𝑍).
Lemma 1 ((partial PE condition for RBF NNs) [46]). Con-
sider any continuous recurrent trajectory 𝑍(𝑡). Assume that𝑍(𝑡) is a continuous map from [0,∞) into 𝑅𝑞, and 𝑍(𝑡)
remains in a bounded compact setΩ𝑍 withΩ𝑍 ⊂ 𝑅𝑞. Then, for
the RBF NN 𝑊𝑇𝑆(𝑍) with centers placed on a regular lattice
(large enough to cover the compact set Ω𝑍), the regression
subvector 𝑆𝜁(𝑍) consisting of RBFs with centers located in a
small neighborhood of 𝑍(𝑡) is persistently exciting.
3. Adaptive Neural DSC Design with
Predefined Tracking Performance

In this section, performance function is introduced for
describing constraints of system (1). Then an adaptive neural
DSC is developed, with the design of adaptive control law
based on the transformed error. Meanwhile, RBF NN is used
to approximate the unknown dynamics.

Step 1. Similarly to the traditional backstepping design, we set

𝑒1 = 𝑞1 − 𝑦𝑑 = [𝑒11, 𝑒12, . . . , 𝑒1𝑛]𝑇 ∈ 𝑅𝑛. (7)

It should be pointed out that any errors set in previously
traditional design are under unrestricted condition [20],
while 𝑒1 is constrained to satisfy condition (3) in this paper,
which is rewritten as

−𝛿1𝑘 < 𝑒1𝑘𝛽 (𝑡) < 𝛿2𝑘, 𝑘 = 1, 2, . . . , 𝑛. (8)

It implies that 𝑒1 can not be used for design directly due
to the limitation of the traditional design method. To solve
the constrained tracking control problem, the constrained
error should be transformed into the unconstrained one
equivalently. Therefore, a new error vector is defined as𝑧1 = [𝑧11, 𝑧12, . . . , 𝑧1𝑛]𝑇 ∈ 𝑅𝑛 called transformed error vec-
tor. Define a smooth transformed functions vector Φ(𝑧1) =[𝜙(𝑧11), 𝜙(𝑧12), . . . , 𝜙(𝑧1𝑛)]𝑇 with 𝜙(𝑧1𝑘) being chosen as

𝜙 (𝑧1𝑘) = 𝛿𝑎𝑘 arctan(𝑧1𝑘 − tan(𝛿𝑏𝑘𝛿𝑎𝑘)) + 𝛿𝑏𝑘, (9)
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Figure 1: Transformed function 𝜙(𝑧1𝑘).

where 𝛿𝑎𝑘 = (𝛿2𝑘 +𝛿1𝑘)/𝜋, and 𝛿𝑏𝑘 = (𝛿2𝑘 −𝛿1𝑘)/2. Moreover,
for the symmetric tracking error constraints −𝛿𝑘𝛽(𝑡) < 𝑒1𝑘 <𝛿𝑘𝛽(𝑡), 𝑘 = 1, 2, . . . , 𝑛, the transformation function (9) can
be constructed as 𝜙(𝑧1𝑘) = (2/𝜋)𝛿𝑘 arctan(𝑧1𝑘). For clarity,
Figure 1 illustrates the relationship between 𝜙(𝑧1𝑘) and 𝑧1𝑘.

It can be concluded from (9) and Figure 1 that the trans-
formation function 𝜙(𝑧1𝑘) is smooth and strictly increasing
while possessing the following properties:

−𝛿1𝑘 < 𝜙 (𝑧1𝑘) < 𝛿2𝑘, ∀𝑧1𝑘 ∈ 𝐿∞,
lim
𝑧1𝑘→+∞

𝜙 (𝑧1𝑘) = 𝛿2𝑘,
lim
𝑧1𝑘→−∞

𝜙 (𝑧1𝑘) = −𝛿1𝑘.
(10)

By combining (8) with (10), 𝑒1𝑘 can be rewritten as

𝑒1𝑘 = 𝜙 (𝑧1𝑘) 𝛽 (𝑡) , 𝑘 = 1, 2, . . . , 𝑛. (11)

Since 𝜙(⋅) is a strictly monotonic increasing function and𝛽(𝑡) ̸= 0, the inverse function 𝑧1𝑘 of 𝜙(⋅) exists, which can be
expressed as

𝑧1𝑘 = tan( 𝑒1𝑘𝛿𝑎𝑘𝛽 (𝑡) −
𝛿𝑏𝑘𝛿𝑎𝑘) + tan(𝛿𝑏𝑘𝛿𝑎𝑘) . (12)

Noting that 𝑧1 = [𝑧11, 𝑧12, . . . , 𝑧1𝑛]𝑇, its derivative can be
presented as

𝑧̇1 = Υ( ̇𝑞1 − ̇𝑦𝑑 − ̇𝛽 (𝑡)𝛽 (𝑡) 𝑒1) , (13)

where Υ = diag(𝛾1, 𝛾2, . . . , 𝛾𝑛), with 𝛾𝑘 (𝑘 = 1, 2, . . . , 𝑛) being
presented as

𝛾𝑘 = 1𝛿𝑎𝑘𝛽 (𝑡) [1 + tan2 ( 𝑒1𝑘𝛿𝑎𝑘𝛽 (𝑡) −
𝛿𝑏𝑘𝛿𝑎𝑘)] . (14)

It is clear thatΥ is positive definite, which is helpful for the
stability analysis. By introducing a new filter variable 𝛼1𝑓 ∈𝑅𝑛 and noting 𝑧2 = ̇𝑞1 − 𝛼1𝑓, then the virtual controller 𝛼1 ∈𝑅𝑛 is constructed as

𝛼1 = − (Υ−1𝐶1 + Υ) 𝑧1 + ̇𝑦𝑑 + ̇𝛽 (𝑡)𝛽 (𝑡) 𝑒1, (15)

where 𝐶1 ∈ 𝑅𝑛×𝑛 is a diagonal and positive design matrix.
Take 𝛼1 as the input of a first-order filter and 𝛼1𝑓 as the output
of it, a differential equation is constructed as

𝜏1𝛼̇1𝑓 + 𝛼1𝑓 = 𝛼1, 𝛼1𝑓 (0) = 𝛼1 (0) , (16)

where 𝜏1 is the filter time constant and set 𝑦1 = 𝛼1𝑓 −𝛼1; then
(13) can be rewritten as

𝑧̇1 = − (𝐶1 + Υ𝑇Υ) 𝑧1 + Υ𝑧2 + Υ𝑦1. (17)

Step 2. Let 𝑧2 = ̇𝑞1 − 𝛼1𝑓, its derivative can be obtained:

𝑧̇2 = 𝑀−1 (𝑞1)𝐾 (𝑞2 − 𝑞1 − 𝐾−1𝐶 (𝑞1, ̇𝑞1) 𝛼1𝑓
− 𝐾−1𝑔 (𝑞1) − 𝐾−1𝑀(𝑞1) 𝛼̇1𝑓 − 𝐾−1𝐶 (𝑞1, ̇𝑞1) 𝑧2) . (18)

Define the unknown dynamics in (18) as

𝐻2 (Ψ2) = −𝐾−1𝐶 (𝑞1, ̇𝑞1) 𝛼1𝑓 − 𝐾−1𝑔 (𝑞1)
− 𝐾−1𝑀(𝑞1) 𝛼̇1𝑓, (19)

where

Ψ2 = [𝑞𝑇1 , ̇𝑞𝑇1 , 𝛼̇𝑇1𝑓]𝑇 ∈ 𝑅3𝑛. (20)

According to the property of RBF NN, 𝐻2(Ψ2) can be
approximated accurately by RBF NN and (19) is rewritten as

𝐻2 (Ψ2) = 𝑊∗𝑇2 𝑆2 (Ψ2) + 𝜖2, (21)

where 𝜖2 ∈ 𝑅𝑛 is the bounded approximation error vector
which satisfies ‖𝜖2‖ ≤ 𝜖∗2 . Define 𝑊̂2 as the estimate of 𝑊∗2
and set 𝑊̃2 = 𝑊̂2 − 𝑊∗2 . Then a new filter variable 𝛼2𝑓 ∈ 𝑅𝑛
is introduced and note 𝑧3 = 𝑞2 −𝛼2𝑓; (18) can be rewritten by
combining (19) and (21):

𝑧̇2 = 𝑀−1 (𝑞1)𝐾 (𝑧3 + 𝛼2𝑓 − 𝑞1 +𝑊∗𝑇2 𝑆2 (Ψ2) + 𝜖2
− 𝐾−1𝐶 (𝑞1, ̇𝑞1) 𝑧2) . (22)

Then the virtual controller 𝛼2 ∈ 𝑅𝑛 is constructed as

𝛼2 = −Υ𝑧1 − 𝐶2𝑧2 − 𝑊̂𝑇2 𝑆2 (Ψ2) + 𝑞1, (23)

where𝐶2 ∈ 𝑅𝑛×𝑛 is a diagonal and positive designmatrix.The
updated law of NN weights is given by

̇̂𝑊2 = Γ2 [𝑆2 (Ψ2) 𝑧𝑇2 − 𝜎2𝑊̂2] (24)

with diagonal matrix Γ2 = Γ𝑇2 > 0 and small value 𝜎2 > 0 for
enhancing the robustness of the controller (23).

Take 𝛼2 as the input of a first-order filter and 𝛼2𝑓 as the
output of it, a differential equation is constructed as

𝜏2𝛼̇2𝑓 + 𝛼2𝑓 = 𝛼2, 𝛼2𝑓 (0) = 𝛼2 (0) , (25)

where 𝜏2 is the filter time constant and set 𝑦2 = 𝛼2𝑓 −𝛼2; then
(22) can be rewritten as

𝑧̇2 = 𝑀−1 (𝑞1)𝐾 (−Υ𝑧1 − 𝐶2𝑧2 + 𝑧3 + 𝑦2
− 𝑊̃𝑇2 𝑆2 (Ψ2) + 𝜖2 − 𝐾−1𝐶 (𝑞1, ̇𝑞1) 𝑧2) . (26)
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Step 3. Define 𝑧3 = 𝑞2 − 𝛼2𝑓, its derivative can be obtained:

𝑧̇3 = ̇𝑞2 − 𝛼̇2𝑓. (27)

Introduce a new filter variable 𝛼3𝑓 ∈ 𝑅𝑛 and note 𝑧4 =̇𝑞2 −𝛼3𝑓. Then the virtual controller 𝛼3 ∈ 𝑅𝑛 is constructed as
𝛼3 = −𝑧2 − 𝐶3𝑧3 + 𝛼̇2𝑓, (28)

where 𝐶3 ∈ 𝑅𝑛×𝑛 is a diagonal and positive design matrix.
Take 𝛼3 as the input of a first-order filter and 𝛼3𝑓 as the output
of it, a differential equation is constructed as

𝜏3𝛼̇3𝑓 + 𝛼3𝑓 = 𝛼3, 𝛼3𝑓 (0) = 𝛼3 (0) , (29)

where 𝜏3 is the filter time constant and set 𝑦3 = 𝛼3𝑓 −𝛼3; then
(27) can be rewritten as

𝑧̇3 = −𝑧2 − 𝐶3𝑧3 + 𝑧4 + 𝑦3. (30)

Step 4. Let 𝑧4 = ̇𝑞2 − 𝛼3𝑓; the following can be obtained:

𝑧̇4 = 𝐽−1 [𝑢 + 𝐾 (𝑞1 − 𝑞2) − 𝐽𝛼̇3𝑓] . (31)

Define the unknown dynamics of the system as

𝐻4 (Ψ4) = 𝐾 (𝑞1 − 𝑞2) − 𝐽𝛼̇3𝑓, (32)

where

Ψ4 = [𝑞𝑇1 , 𝑞𝑇2 , 𝛼̇𝑇3𝑓]𝑇 ∈ 𝑅3𝑛. (33)

According to the property of RBF NN, 𝐻4(Ψ4) can be
approximated accurately by RBF NN and (32) is rewritten as

𝐻4 (Ψ4) = 𝑊∗𝑇4 𝑆4 (Ψ4) + 𝜖4, (34)

where𝑊∗4 ∈ 𝑅𝑗×𝑛 is the ideal constant weight matrix with 𝑗
being the NN node number, 𝑆4(Ψ4) ∈ 𝑅𝑗 is the basis function
vector, and 𝜖4 is the bounded approximation error vector
which satisfies ‖𝜖4‖ ≤ 𝜖∗4 . Define 𝑊̂4 as the estimate of𝑊∗4 and
let 𝑊̃4 = 𝑊̂4 − 𝑊∗4 . Then (31) can be rewritten by combining
(32) and (34):

𝑧̇4 = 𝐽−1 [𝑢 +𝑊∗𝑇4 𝑆4 (Ψ4) + 𝜖4] . (35)

Then the control input 𝑢 is constructed as

𝑢 = −𝑧3 − 𝐶4𝑧4 − 𝑊̂𝑇4 𝑆4 (Ψ4) , (36)

where𝐶4 ∈ 𝑅𝑛×𝑛 is a diagonal and positive designmatrix.The
updated law of NN weights is given by

̇̂𝑊4 = Γ4 [𝑆4 (Ψ4) 𝑧𝑇4 − 𝜎4𝑊̂4] (37)

with diagonal matrix Γ4 = Γ𝑇4 > 0 and small value 𝜎4 > 0
for enhancing the robustness of the controller (36).Then (35)
can be rewritten as

𝑧̇4 = 𝐽−1 [−𝑧3 − 𝐶4𝑧4 − 𝑊̃𝑇4 𝑆4 (Ψ4) + 𝜖4] . (38)

Let us construct the following Lyapunov function candi-
date:

𝑉 = 12
4∑
𝑖=1

𝑧𝑇𝑖 𝐾𝑖𝑧𝑖 + 12
2∑
𝑘=1

tr [𝑊̃𝑇2𝑘Γ−12𝑘 𝑊̃2𝑘] + 12
3∑
𝑙=1

𝑦𝑇𝑙 𝑦𝑙, (39)

where 𝐾1 = 𝐼, 𝐾2 = 𝐾−1𝑀(𝑞1), 𝐾3 = 𝐼, and 𝐾4 = 𝐽.
Remark 2. It should be pointed out that, in the adaptive
neural backstepping design [20], the derivative 𝛼̇2 of the
virtual control𝛼2 in Step 2 is usually used to design the virtual
control 𝛼3 in Step 3. However, according to (1) and (23), it can
be seen clearly that 𝛼̇2 is not available because the unknown
terms, such as𝑀−1(𝑞1), 𝐶(𝑞1, ̇𝑞1), and 𝑔(𝑞1), are included in𝛼̇2. Therefore, a neural network has to be employed in Step 3
of backstepping to approximate the unknown dynamics in𝛼̇2. However, too many neural networks employed make the
control scheme implemented difficultly. To solve this prob-
lem, this paper introduces a new variable 𝛼2𝑓 in (25) to design
virtual control 𝛼2 using a first-order filter. From (25), it is easy
to calculate that 𝛼̇2𝑓 = (𝛼2 −𝛼2𝑓)/𝜏2 = −𝑦2/𝜏2. The advantage
of the proposed approach is that the unknown dynamics
in the previous step does not affect the design of virtual
control in next step, so that the number of NNs employed
can be greatly reduced. Moreover, the proposed method uses𝛼̇𝑖𝑓, instead of the intermediate variables used in [20], as
neural input variable, so that there are only 3𝑛 neural input
variables for neural networks 𝑊∗𝑇2 𝑆2(Ψ2) and 𝑊∗𝑇4 𝑆4(Ψ4),
respectively, which reduces significantly the number of neural
input variables used in [20], where 4𝑛 and 8𝑛 neural input
variables are used in𝑊∗𝑇2 𝑆2(Ψ2) and𝑊∗𝑇4 𝑆4(Ψ4).
Theorem 3. Consider the manipulator model (1), the reference
trajectory 𝑦𝑑, the prescribed performance bounds (8), the state
transformation (11), the adaptive NN control law (36), the
weight updated law (24), (37), and Lyapunov function (39).
Given any constant 𝜇 > 0, for any bounded initial conditions
satisfying the prescribed performance (8) and 𝑉(0) < 𝜇, there
exists design parameters𝐶1,𝐶2,𝐶3,𝐶4, Γ2,𝜎2, Γ4,𝜎4, 𝜏1, 𝜏2, and𝜏3, such that the proposed control scheme guarantees that (1) all
the signals in the closed-loop system are uniformly ultimately
bounded and (2) the tracking error converges to a small
neighborhood around zero with the prescribed performance (8)
in a finite time 𝑇1.
Proof. See Appendix A.

4. Dynamic Neural Learning

In this section, we will show the learning ability of RBF NNs
for unknown systemdynamics𝐻2(Ψ2) and𝐻4(Ψ4) in the case
of the manipulator with predefined tracking performance.
Subsequently, the stored knowledge on the unknown dynam-
ics will be utilized to design a neural learning controller
achieving better control performance, while satisfying the
prescribed performance.

4.1. Learning from Adaptive Neural DSC. According to
Lemma 1, it can be concluded that a recurrent orbit can make
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regression subvectors 𝑆𝜁(𝑍) satisfy the partial PE condition,
which is a key condition to ensure the accurate convergence
of neural weights.

Theorem 4. Consider the closed-loop system consisting of the
flexible joint manipulator model (1), the reference trajectory𝑦𝑑, the prescribed performance bounds (8), the state trans-
formation (11), the adaptive NN control law (36), and the
weight updated law (24) and (37). Then, for any recurrent
orbit 𝜓𝑑(𝑥𝑑(𝑡))|𝑡≥0 and initial condition 𝑥(0) ∈ Ω0 (Ω0 is
an appropriately chosen compact set) satisfying the prescribed
performance (8) and 𝑊̂2(0) = 𝑊̂4(0) = 0, we have that the
neural weights 𝑊̂𝑖 converge to small neighborhoods around
optimal values𝑊∗𝑖 , and the locally accurate approximation of
the system dynamics𝐻𝑖(Ψ𝑖) is obtained by the stored knowledge𝑊𝑖:

𝑊𝑖 = mean𝑡∈[𝑡𝑎𝑖1 ,𝑡𝑏𝑖2]𝑊̂𝑖 (𝑡) (40)

with 𝑖 = 2, 4, 𝑇1 ≤ 𝑡𝑎22 ≤ 𝑡𝑏22 ≤ 𝑇2 ≤ 𝑡𝑎41 ≤ 𝑡𝑏42. [𝑡𝑎21, 𝑡𝑏22]
and [𝑡𝑎41, 𝑡𝑏42] are time segments after the steady-state control
process.

Proof. From Theorem 3, all the signals in the closed-loop
system are uniformly ultimately bounded and the tracking
error vector 𝑒1 = 𝑞1 − 𝑦𝑑 converges to a small neighborhood
around zero with the prescribed performance in a finite time𝑇1.Thus, the state 𝑞1 converges closely to the recurrent signals𝑦𝑑 for all 𝑡 ≥ 𝑇1. In addition, it can be obtained from the proof
of Theorem 3 that the transformed error vector 𝑧1 converges
exponentially to a small neighborhood around zero in a finite
time 𝑇1. From (15), it can be concluded that virtual control𝛼1 is recurrent with the same period as ̇𝑦𝑑 by combining the
convergence of 𝑧1 and 𝑒1. Noting ̇𝑞1 = 𝑧2 + 𝑦1 + 𝛼1 with𝑧2 and 𝑦1 being close to a small neighborhood around zero
based on Theorem 3, then ̇𝑞1 is a recurrent signal with the
same period as 𝛼1. In addition, 𝛼1𝑓 is also a recurrent signal
with the same period as𝛼1 since𝑦1 = 𝛼1𝑓−𝛼1 and𝑦1 is a small
value. From (16), it can be obtained that 𝛼̇1𝑓 is a recurrent
signal as well. Therefore, the NN inputs Ψ2 = [𝑞𝑇1 , ̇𝑞𝑇1 , 𝛼̇𝑇1𝑓]𝑇
are recurrent for all 𝑡 ≥ 𝑇1, and a partial PE condition
of 𝑆2(Ψ2) is satisfied according to Lemma 1. By combining
the convergence of 𝑧1 and the localized RBF NN along the
recurrent signals Ψ2(𝑡) (𝑡 > 𝑇1), it can be obtained from (24)
and (26) that

𝑧̇2 = 𝑀−1 (𝑞1)𝐾 [−Υ𝑧1 − 𝐶2𝑧2 + 𝑧3 + 𝑦2
− 𝑊̃𝑇2𝜁𝑆2𝜁 (Ψ2) + 𝜖2𝜁 − 𝐾−1𝐶 (𝑞1, ̇𝑞1) 𝑧2]
̇̃𝑊2𝜁 = Γ2𝜁 [𝑆2𝜁 (Ψ2) 𝑧𝑇2 − 𝜎2𝑊̂2𝜁] ,

(41)

̇̃𝑊
2𝜁
= Γ
2𝜁
[𝑆
2𝜁
(Ψ2) 𝑧𝑇2 − 𝜎2𝑊̂2𝜁] , (42)

where the subscript 𝜁 stands for the region near the orbitsΨ2(𝑡), 𝑆2𝜁(Ψ2) is the subvector of 𝑆2(Ψ2) consisting of the cor-
responding RBFs, and 𝑊̂2𝜁 is the corresponding weight sub-
matrix of 𝑊̂2. Moreover, the subscript 𝜁 represents the region

away from the orbits Ψ2(𝑡), and 𝜖2𝜁 = 𝜖2(Ψ2) − 𝑊̃𝑇2𝜁𝑆2𝜁(Ψ2)
is the NN approximation error along the orbits Ψ2(𝑡). Since‖𝑊̂𝑇
2𝜁
𝑆
2𝜁
(Ψ2)‖ is small, ‖𝜖2𝜁‖ is close to ‖𝜖2(Ψ2)‖.

It would be shown that the perturbation term𝑀−1(𝑞1)𝐾𝜖2𝜁 may be large, which will make the accurate
convergence of neural weights become difficult. To solve
this problem, a state transformation 𝑧2𝑠 = 𝐾−1𝑀(𝑞1)𝑧2
is introduced to eliminate the influence of 𝑀−1(𝑞1)𝐾𝜖2𝜁.
Subsequently, set 𝑊̃2𝜁 = [𝑊̃21𝜁, 𝑊̃22𝜁, . . . , 𝑊̃2𝑛𝜁] ∈ 𝑅𝜁×𝑛 and𝑊̂2𝜁 = [𝑊̂21𝜁, 𝑊̂22𝜁, . . . , 𝑊̂2𝑛𝜁] ∈ 𝑅𝜁×𝑛; (41) can be transformed
into the following form:

[[[[[[[[
[

𝑧̇2𝑠̇̃𝑊21𝜁...
̇̃𝑊2𝑛𝜁

]]]]]]]]
]
= [ 𝐴2 (𝑡) 𝐵2 (𝑡)𝐶2 (𝑡) 0 ]

[[[[[[
[

𝑧2𝑠𝑊̃21𝜁...
𝑊̃2𝑛𝜁

]]]]]]
]

+
[[[[[[
[

𝜖󸀠2𝜁−𝜎2Γ2𝜁𝑊̂21𝜁...
−𝜎2Γ2𝜁𝑊̂2𝑛𝜁

]]]]]]
]
,

(43)

where

𝐴2 (𝑡) = −𝐹𝑀−1 (𝑞1)𝐾 ∈ 𝑅𝑛×𝑛
𝐵2 (𝑡) = − diag {𝑆𝑇2𝜁, . . . , 𝑆𝑇2𝜁} ∈ 𝑅𝑛×𝜁𝑛
𝐶2 (𝑡) = Γ2𝜁𝑆2𝜁𝑀−1 (𝑞1)𝐾 ∈ 𝑅𝜁𝑛×𝑛

𝐹 = 𝐶2 − 𝐾−1 [𝑀̇ (𝑞1) − 𝐶 (𝑞1, ̇𝑞1)] ∈ 𝑅𝑛×𝑛
Γ2𝜁 = diag {Γ2𝜁, . . . , Γ2𝜁} ∈ 𝑅𝜁𝑛×𝜁𝑛
𝑆2𝜁 = diag {𝑆2𝜁, . . . , 𝑆2𝜁} ∈ 𝑅𝜁𝑛×𝑛
𝜖󸀠2𝜁 = Υ𝑧1 + 𝑧3 + 𝑦2 + 𝜖2𝜁.

(44)

According to Theorem 3, 𝜖󸀠2𝜁 is a small value and−𝜎2Γ2𝜁𝑊̂2𝑖𝜁 (𝑖 = 1, 2, . . . , 𝑛) can be made as a small value by
choosing a small design parameter 𝜎2. Therefore, system (43)
can be considered as a linear time-varying (LTV) systemwith
a small pertubation term. Choose 𝑃(𝑡) = 𝑀−1(𝑞1)𝐾; then

𝑃̇ (𝑡) + 𝑃 (𝑡) 𝐴2 (𝑡) + 𝐴𝑇2 (𝑡) 𝑃 (𝑡)
= 𝑀̇−1 (𝑞1)𝐾 − (𝐹1𝐶2 + 𝐹2)𝑀−1 (𝑞1)𝐾, (45)

where 𝐹1 = 𝑀−1(𝑞1)𝐾+𝐾𝑀−1(𝑞1), 𝐹2 = 𝐾𝑀−1(𝑞1)[𝑀̇(𝑞1) −𝐶(𝑞1, ̇𝑞1)]𝐾−1 − 𝑀−1(𝑞1)[𝑀̇(𝑞1) − 𝐶(𝑞1, ̇𝑞1)]. Choose 𝐶2
appropriately such that 𝑃̇(𝑡) + 𝑃(𝑡)𝐴2(𝑡) + 𝐴𝑇2(𝑡)𝑃(𝑡) < 0.
Subsequently, based on the pertubation theory from Lemma4.6 in [47], both 𝑧2𝑠 and 𝑊̃2𝜁 converge exponentially to a small
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neighborhood around zero in a finite time 𝑇1, and the size
of neighborhood is determined by ‖𝜖󸀠2𝜁‖ and ‖ − 𝜎2Γ2𝜁𝑊̂2𝜁‖,
respectively. Noting 𝑊̃2𝜁 = 𝑊̂2𝜁 −𝑊∗2𝜁, it is clear that 𝑊̂2𝜁 can
converge to a small neighborhood of optimal weights𝑊∗2𝜁 in
a finite time 𝑇1, and the constant weights𝑊2 can be obtained
from (40). According to the localization property of RBFNN,
the system dynamics𝐻2(Ψ2) can be described by

𝐻2 (Ψ2) = 𝑊̂𝑇2𝜁𝑆2𝜁 (Ψ2) + 𝜖2𝜁 (Ψ2)
= 𝑊𝑇2 𝑆2 (Ψ2) + 𝜖2 (Ψ2) ,

(46)

where both 𝜖2𝜁(Ψ2) and 𝜖2(Ψ2) are close to 𝜖2(Ψ2) due to the
convergence of 𝑊̃2𝜁.

According to the above analysis and noting 𝛼2 = −Υ𝑧1 −𝐶2𝑧2 − 𝑊̂𝑇2 𝑆2(Ψ2) + 𝑞1, there exists a constant 𝑇2 > 𝑇1, such
that the virtual control 𝛼2 can be rewritten as

𝛼2 = −Υ𝑧1 − 𝐶2𝑧2 −𝑊𝑇2 𝑆2 (Ψ2) + 𝑞1 + 𝜀2 (47)

for all 𝑡 > 𝑇2, where 𝜀2 = [𝑊2 − 𝑊̂2]𝑇𝑆2(Ψ2) is a small value
because of the convergence of 𝑊̂2. According to Theorem 3,𝛼2 is a recurrent signal. Since 𝑦2 = 𝛼2𝑓 − 𝛼2 and 𝑦2 is a small
value, 𝛼2𝑓 is also recurrent with the same period as 𝛼2. From
(25), it can be obtained that 𝛼̇2𝑓 is also a recurrent signal as
well. From (28), by combining the convergence of 𝑧2 and 𝑧3,
virtual control 𝛼3 is a recurrent signal with the same period
as 𝛼̇2𝑓. Since 𝑦3 = 𝛼3𝑓 − 𝛼3 and 𝑦3 is a small value, 𝛼3𝑓 is also
recurrent with the same period as 𝛼3. From (29), it can be
obtained that 𝛼̇3𝑓 is also a recurrent signal as well. Therefore,
the NN inputsΨ4 = [𝑞𝑇1 , 𝑞𝑇2 , 𝛼̇𝑇3𝑓]𝑇 are recurrent for all 𝑡 ≥ 𝑇2,
and a partial PE condition of 𝑆4(Ψ4) is satisfied according
to Lemma 1. By combining the convergence of 𝑧4 and the
localized RBF NN along the recurrent signals Ψ4(𝑡) (𝑡 > 𝑇2),
it can be obtained from (37) and (38) that

𝑧̇4 = 𝐽−1 [−𝑧3 − 𝐶4𝑧4 − 𝑊̃𝑇4𝜁𝑆4𝜁 (Ψ4) + 𝜖4𝜁]
̇̃𝑊4𝜁 = Γ4𝜁 [𝑆4𝜁 (Ψ4) 𝑧𝑇4 − 𝜎4𝑊̂4𝜁] ,
̇̃𝑊
4𝜁
= Γ
4𝜁
[𝑆
4𝜁
(Ψ4) 𝑧𝑇4 − 𝜎4𝑊̂4𝜁] .

(48)

Similarly, 𝑆4𝜁(Ψ4) is the subvector of 𝑆4(Ψ4) consisting of
the RBFs near the orbits Ψ4(𝑡), and 𝑊̂4𝜁 is the corresponding
weight submatrix of 𝑊̂4. Moreover, 𝜖4𝜁 = 𝜖4(Ψ4)−𝑊̃𝑇4𝜁𝑆4𝜁(Ψ4)
is the NN approximation error along the orbits Ψ4(𝑡). Since‖𝑊̂𝑇
4𝜁
𝑆
4𝜁
(Ψ4)‖ is small, ‖𝜖4𝜁‖ is close to ‖𝜖4(Ψ4)‖.

It would be shown that the perturbation term 𝐽−1𝜖4𝜁 may
be large, which will make the accurate convergence of neural
weights become difficult. To solve this problem, a state trans-
formation 𝑧4𝑠 = 𝐽𝑧4 is introduced to eliminate the influence

of 𝐽−1𝜖4𝜁. Subsequently, set 𝑊̃4𝜁 = [𝑊̃41𝜁, 𝑊̃42𝜁, . . . , 𝑊̃4𝑛𝜁] ∈𝑅𝜁󸀠×𝑛 and 𝑊̂4𝜁 = [𝑊̂41𝜁, 𝑊̂42𝜁, . . . , 𝑊̂4𝑛𝜁] ∈ 𝑅𝜁󸀠×𝑛; (46) can be
transformed into the following form:

[[[[[[[[
[

𝑧̇4𝑠̇̃𝑊41𝜁...
̇̃𝑊4𝑛𝜁

]]]]]]]]
]
= [ 𝐴4 (𝑡) 𝐵4 (𝑡)𝐶4 (𝑡) 0 ]

[[[[[[
[

𝑧4𝑠𝑊̃41𝜁...
𝑊̃4𝑛𝜁

]]]]]]
]

+
[[[[[[
[

𝜖󸀠4𝜁−𝜎4Γ4𝜁𝑊̂41𝜁...
−𝜎4Γ4𝜁𝑊̂4𝑛𝜁

]]]]]]
]
,

(49)

where

𝐴4 (𝑡) = −𝐶4𝐽−1 ∈ 𝑅𝑛×𝑛
𝐵4 (𝑡) = − diag {𝑆𝑇4𝜁, . . . , 𝑆𝑇4𝜁} ∈ 𝑅𝑛×𝜁󸀠𝑛
𝐶4 (𝑡) = Γ4𝜁𝑆4𝜁𝐽−1 ∈ 𝑅𝜁󸀠𝑛×𝑛
Γ4𝜁 = diag {Γ4𝜁, . . . , Γ4𝜁} ∈ 𝑅𝜁󸀠𝑛×𝜁𝑛
𝑆4𝜁 = diag {𝑆4𝜁, . . . , 𝑆4𝜁} ∈ 𝑅𝜁󸀠𝑛×𝑛
𝜖󸀠4𝜁 = −𝑧3 + 𝜖4𝜁.

(50)

Using the similar step and choosing 𝑃󸀠(𝑡) = 𝐽, we have
𝑃̇󸀠 (𝑡) + 𝑃󸀠 (𝑡) 𝐴4 (𝑡) + 𝐴𝑇4 (𝑡) 𝑃󸀠 (𝑡) = −2𝐽𝐶4𝐽−1 < 0 (51)

with 𝐶4 > 0. Then, it can be proven that 𝑊̂4𝜁 converges to a
small neighborhood of optimal weights 𝑊∗4𝜁 in a finite time𝑇2, and the constant weights𝑊4 can be obtained from (40).
According to the localization property of RBFNN, the system
dynamics𝐻4(Ψ4) can be described by

𝐻4 (Ψ4) = 𝑊𝑇4 𝑆4 (Ψ4) + 𝜖4 (Ψ4) , (52)

where 𝜖4(Ψ4) is close to 𝜖4(Ψ4) due to the convergence of 𝑊̃4𝜁.
Therefore, the dynamics 𝐻𝑖(Ψ𝑖), 𝑖 = 1, 2, can be accurately
approximated by the constant RBF NN 𝑊𝑇𝑖 𝑆𝑖(Ψ𝑖) with the
stored knowledge𝑊𝑖 obtained in (40).

4.2. Neural Learning Control Using the Stored Knowledge.
Since the locally accurate NN approximation can be achieved
by the constant RBF NN𝑊𝑇𝑖 𝑆𝑖(Ψ𝑖), for a similar control task,
we will reuse the knowledge𝑊𝑖 to design a neural learning
controller for system (1):

𝑢 = −𝑧3 − 𝐶4𝑧4 −𝑊𝑇4 𝑆4 (Ψ4) (53)
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Figure 2: Block diagram of the proposed learning control scheme.

with virtual controller

𝛼1 = − (Υ−1𝐶1 + Υ) 𝑧1 + ̇𝑦𝑑 + ̇𝛽 (𝑡)𝛽 (𝑡) 𝑒1
𝛼2 = −Υ𝑧1 − 𝐶2𝑧2 −𝑊𝑇2 𝑆2 (Ψ2) + 𝑞1
𝛼3 = −𝑧2 − 𝐶3𝑧3 + 𝛼̇2𝑓,

(54)

where 𝑊𝑇2 𝑆2(Ψ2) and 𝑊𝑇4 𝑆4(Ψ4) are the accurate neural
approximators of the unknown system dynamics 𝐻2(Ψ2)
and 𝐻4(Ψ4), respectively. 𝑊2 and 𝑊4 are constant weight
matrices, which are obtained from the previous control
process. Similar to the proof ofTheorem 3, another Lyapunov
function candidate is constructed as

𝑉 = 12
4∑
𝑖=1

𝑧𝑇𝑖 𝐾𝑖𝑧𝑖 + 12
3∑
𝑙=1

𝑦𝑇𝑙 𝑦𝑙, (55)

where𝐾1 = 𝐼,𝐾2 = 𝐾−1𝑀(𝑞1), 𝐾3 = 𝐼, and𝐾4 = 𝐽.
Theorem 5. Consider the closed-loop system consisting of
the manipulator model (1), the reference trajectory 𝑦𝑑, the
prescribed performance bounds (8), the state transformation
(11), the neural learning controller (53) with the constant
weights given by (40), and Lyapunov function (55). Then, for
initial conditions 𝑥𝑑(0) which generate the same or similar
recurrent reference orbit𝜓𝑑(𝑥𝑑(0)) as inTheorem 4, and initial
conditions 𝑥(0) satisfying the prescribed performance (8) and𝑉(0) ≤ 𝜇 with given 𝜇 > 0, such that all the closed-loop
signals remain uniformly ultimately bounded, and the tracking

error converges to a small neighborhood around zero with the
prescribed performance (8) when initial conditions 𝑥(0) are in
a close vicinity of 𝜓𝑑(𝑥𝑑(0)).
Proof. See Appendix B.

Remark 6. For clarity, a block diagram of the proposed
schemes is shown in Figure 2. From Figure 2, the main dif-
ference between adaptive neural control and learning neural
control lies in the adaptation of NN weights. The neural
weights 𝑊̂2 and 𝑊̂4 are updated online in the adaptive neural
control process, while the stored constant weights 𝑊2 and𝑊4 are reused in the neural learning process for the same
or similar control task. Without the repeat adjustment of
the neural weights, the neural learning controller (53) and
(54) can achieve the better control performance with faster
tracking convergence rate and smaller tracking error.

5. Simulation and Experiment

In this section, to illustrate the effectiveness of the proposed
approach, a single-linkmanipulator systemwith flexible joint
is considered by the following form:

𝐼 ̈𝑞1 +𝑀𝑔𝐿 sin (𝑞1) + 𝐾 (𝑞1 − 𝑞2) = 0
𝐽 ̈𝑞2 − 𝐾 (𝑞1 − 𝑞2) = 𝑢, (56)

where𝑀 is the mass, 𝑔 is the gravitational acceleration, and𝐿 is the length of link. Figure 3 illustrates the structure of a
single-link flexible joint manipulator. In the simulation, the
system parameter is chosen exactly as 𝑀 = 2.3, 𝐿 = 1,
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Figure 4: Tracking error: LC (-) and ANC (- -).

𝑔 = 9.8, 𝐼 = 𝑀𝐿2, 𝐽 = 0.5, and 𝐾 = 15. Then the desired
reference trajectory 𝑦𝑑 is generated from the following
equation:

2 ̈𝑦𝑑 + 3 ̇𝑦𝑑 + 𝑦𝑑 = 4 sin (1.5𝑡) . (57)

5.1. Numerical Simulation Results. Based on Theorem 3, the
adaptive control law is chosen as (36), and the virtual
controllers are chosen as (15), (23), and (28) with the virtual
control laws (24) and (37). In the performance function, 𝛽0 =1, 𝛽∞ = 0.05, 𝜅 = 2, and 𝛿1 = 𝛿2 = 1. 𝑊̂𝑇2 𝑆2(Ψ2) is
constructed by 121 neurons whose centers evenly spaced on[−0.8, 0.8] × [−2, 2] and widths 𝜂21 = 0.2, 𝜂22 = 0.5.
Similarly, 𝑊̂𝑇4 𝑆4(Ψ4) is constructed by 2783 neurons whose
centers evenly spaced on [−0.8, 0.8] × [−2, 2] × [−11, 11] and
widths 𝜂41 = 0.2, 𝜂42 = 0.5, 𝜂43 = 1.25. Other design
parameters are 𝑐1 = 2, 𝑐2 = 5, 𝑐3 = 2, 𝑐4 = 30, Γ2 = 5,Γ4 = 60, and 𝜎2 = 𝜎4 = 0.0001. The initial states are[𝑞1(0), ̇𝑞1(0), 𝑞2(0), ̇𝑞2(0)]𝑇 = [0.5, 0, 0.2, 0]𝑇 and [𝑦𝑑(0),̇𝑦𝑑(0)]𝑇 = [1, 0]𝑇. The initial weights 𝑊̂2(0) and 𝑊̂4(0) are
both set as zero vectors.

According to (40), the constant neural weights 𝑊2 and𝑊4 in (53) and (54) are obtained as𝑊2 = mean𝑡∈[200,300]𝑊̂2(𝑡)
and 𝑊4 = mean𝑡∈[400,500]𝑊̂4(𝑡). In order to be compared
with the adaptive neural DSC results, in this simulation, the
parameters in performance function and the initial states are
set the same as the values set in adaptive neural DSC, while
the control gain are set as 𝑐1 = 1, 𝑐2 = 4, 𝑐3 = 2, and 𝑐4 = 5.

The related simulation results are shown in Figures
4–10. Figure 4 illustrates that, for the proposed adaptive
neural DSC scheme, the tracking error 𝑒1 can ultimately
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Figure 5: System output: 𝑥1 (-) and 𝑦𝑑 (- -).
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Figure 6: State variables 𝑥2 (-), 𝑥3 (- -), 𝑥4 (-.-).
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Figure 7: Control input: LC (-) and ANC (- -).

converge to a small neighborhood of zero besides satisfy-
ing the prescribed performance; for the proposed learning
control scheme, not only does the tracking error satisfy the
prescribed performance, but also the convergence rate is
faster under the similar control input amplitude shown in
Figure 7. Moreover, the time consumption is decreased by
2/3 in contrast with adaptive neural DSC scheme. Figure 5
shows that the output 𝑥1 of system (56) tracks to the reference
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Figure 9: The convergence of partial NN weights 𝑊̂2.
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Figure 10: The convergence of partial NN weights 𝑊̂4.

trajectory𝑦𝑑 quickly. Figure 6 shows that other state variables
are bounded for the proposed scheme. Figure 8 gives the NN
approximation ability for the unknown dynamics. Figures 9
and 10 show that the NN weights converge to certain values
along with the updated laws of NN weights.

Remark 7. In order to compare with the difference of tracking
performance between different parameter selection in (3),
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Figure 11: Tracking error: 𝑒 (-) and 𝑒󸀠 (-.-).
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Figure 12: Overview of the experimental platform.

these parameters in (3) are chosen as 𝛽0 = 1, 𝛽∞ = 0.05,𝜅 = 2, and 𝛿1 = 𝛿2 = 1; the others are set as 𝛽󸀠0 = 1,𝛽󸀠∞ = 0.05, 𝜅󸀠 = 1, and 𝛿󸀠1 = 𝛿󸀠2 = 2. Define the tracking
error of the former as 𝑒 and the latter one as 𝑒󸀠. Figure 11
illustrates two different tracking performances of the system’s
output by selecting different parameters of constraints. It
is evident that the tracking performance is affected by the
parameter selection of performance function. And as the
range of permissible error gets smaller, the tracking error
is forced to converge faster and the tracking accuracy gets
higher.

5.2. Experiment Results on Baxter Robot. Moreover, in order
to validate the effectiveness of the proposed control scheme,
the Baxter bimanual robot is used in the experiment, as
shown in Figure 12. It is of two 7-DOF arms and advanced
sensing technologies, including position, force, and torque
sensors and control at every joint. The resolution for the
joint sensors is 14 bits with 360 degrees (0.022 degrees per
tick resolution), while the maximum joint torques that can
be applied to the joints are 50Nm (the first four joints) and
15Nm (the last three joints). To compare with the simulation’s
results, the desired reference trajectory in the experiment is
the same as one in the simulation, which is also generated
from (57). In the experiment, one of the Baxter robot’s links
(such as the wrist’s link of robot’s right arm) is commanded
to track the desired reference trajectory, and the tracking



Complexity 11





0 t

(rad)

Figure 13: The desired motion of the robot’s link.

−1

−0.5

0

0.5

1

2(t)

−1(t)

1 2 3 4 5 6 7 8 9 100
Time (sec)

Figure 14: Tracking error: LC (-) of Baxter robot and LC (- -) of
simulation.

error between link’s angle position and reference trajectory is
forced to converge to a small neighborhood around zero with
prescribed performance in a finite time, while other links of
the robot stay still. Figure 13 illustrates the desired motion of
the robot’s link.

To verify the effectiveness of neural learning control
scheme for Baxter robot, the constant weights 𝑊2 and 𝑊4
in Section 5.1 are reused in experiment. For comparison, the
parameters in performance function and the initial states are
set the same as these values in neural learning control, while
the control gains are set as 𝑐1 = 1.5, 𝑐2 = 3, 𝑐3 = 2, and 𝑐4 = 4.

The related results are shown in Figures 14–16. Figure 14
shows the difference between LC of simulation and LC of
Baxter robot. Although the vibration of the robot affects
the tracking performance, it is evident that the tracking
error of Baxter robot can also ultimately converge to a
small neighborhood of zero besides satisfying the prescribed
performance. Figure 15 show that the output of Baxter robot’s
link (i.e., 𝑞1 of system (56)) tracks to the reference trajectory𝑦𝑑 quickly, and other state variables are bounded for the
proposed learning control scheme. Figure 16 shows that the
control input of Baxter robot is also bounded with small
overshoot and small mechanical vibration.

6. Conclusion

In this paper, we studied learning from adaptive neural
dynamic surface control for a class of flexible joint manipula-
tor with unknown dynamics under the prescribed constraint.
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Figure 15: State variables ̇𝑞1 (-), 𝑞2 (- -), and ̇𝑞2 (-.-) of Baxter robot.
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Figure 16: Control input: LC (-) of Baxter robot and LC (- -) of
simulation.

A novel error transformed function was utilized to transform
the constrained tracking problem into the the equivalent
unconstrained one so as to facilitate the controller design.
Furthermore, by combining DSC method, which was used
to reduce the number of NN approximators and decrease
the dimension of NN inputs, a novel adaptive neural control
scheme was proposed to guarantee the prescribed perfor-
mance during the transient process. Then, the closed-loop
stability and control performance were achieved according to
the construction of the Lyapunov function. After the stable
control process, since two NNs were used in the controller
design, the recurrent property of the NN input variables
and the partial PE condition of RBF NNs were proved
recursively. Therefore, the locally accurate approximations
of unknown system dynamics by RBF NNs were achieved,
and the proposed control scheme was verified to be capable
of storing the learned knowledge in constant RBF NNs.
Finally, the stored knowledge was reused to develop the
neural learning controller for the same system model and
the same or similar control task, so that the closed-loop
stability and better control performance were achieved under
the prescribed constraint. Simulation results for a single-
link flexible joint manipulator and experiment results for
Baxter robot were presented to prove the effectiveness of the
proposed control scheme.
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Appendix

A. Proof of Theorem 3

Firstly, the derivative of 𝑦1, 𝑦2, and 𝑦3 can be expressed as

̇𝑦𝑙 = ̇𝑎𝑙𝑓 − ̇𝑎𝑙 = −𝑦𝑙𝜏𝑙 + 𝐷𝑙 (⋅) , 𝑙 = 1, 2, 3, (A.1)

where 𝐷1(⋅) fl 𝐷1(𝑧1, 𝑧2, 𝑦1, 𝑦𝑑, ̇𝑦𝑑, ̈𝑦𝑑) = 𝐶1𝑧̇1 − ̈𝑦𝑑 − ̈𝛽(𝑡)/𝛽(𝑡)𝑒1 − ̇𝛽(𝑡)/𝛽(𝑡)[ ̇𝑒1 − ̇𝛽(𝑡)/𝛽(𝑡)𝑒1]. Similarly,𝐷2(⋅) fl 𝐷2(𝑧1,𝑧2, 𝑧3, 𝑦1, 𝑦2, 𝑊̂2, 𝑦𝑑, ̇𝑦𝑑, ̈𝑦𝑑), 𝐷3(⋅) fl 𝐷3(𝑧1, 𝑧2, 𝑧3, 𝑧4, 𝑦1,𝑦2, 𝑦3, 𝑊̂2, 𝑦𝑑, ̇𝑦𝑑, ̈𝑦𝑑), and they are continuous functions. 𝑉̇
can be expressed as

𝑉̇ = − 4∑
𝑖=1

𝑧𝑇𝑖 𝐾󸀠𝑖 𝑧𝑖 + 𝑧𝑇1Υ𝑦1 + 3∑
𝑗=2

𝑧𝑇𝑗 𝑦𝑗 + 𝑧𝑇2 𝜖2 + 𝑧𝑇4 𝜖4

− 2∑
𝑘=1

tr [𝜎2𝑘𝑊̃𝑇2𝑘𝑊̂2𝑘]

+ 3∑
𝑙=1

[−𝑦𝑇𝑙 𝑦𝑙𝜏𝑙 + 𝑦𝑇𝑙 𝐷𝑙 (⋅)] ,

(A.2)

where𝐾󸀠1 = 𝐶1+Υ𝑇Υ,𝐾󸀠2 = 𝐶2+𝐾−1𝐶(𝑞1, ̇𝑞1)−𝐾−1𝑀̇(𝑞1)/2,𝐾󸀠3 = 𝐶3, 𝐾󸀠4 = 𝐶4. From 𝑊̃2𝑘 = 𝑊̂2𝑘 − 𝑊∗2𝑘 (𝑘 = 1, 2), the
following inequality can be obtained:

−tr [𝜎2𝑘𝑊̃𝑇2𝑘𝑊̂2𝑘] ≤ −12 tr [𝜎2𝑘𝑊̃𝑇2𝑘𝑊̃2𝑘]
+ 12 tr [𝜎2𝑘𝑊∗𝑇2𝑘 𝑊∗2𝑘] .

(A.3)

In addition, since 𝑦𝑑, ̇𝑦𝑑, and ̈𝑦𝑑 are recurrent signals,
there exists a compact setΩ𝑑 fl {(𝑦𝑑, ̇𝑦𝑑, ̈𝑦𝑑) : 𝑦2𝑑 + ̇𝑦2𝑑 + ̈𝑦2𝑑 ≤𝐵0} with 𝐵0 > 0. Furthermore, the set Ω fl {𝑉 ≤ 𝜇} is
also compact by function (39), which implies that Ω𝑑 × Ω
is compact as well. Consequently, 𝐷1(⋅), 𝐷2(⋅), and 𝐷3(⋅)
are in the compact set Ω𝑑 × Ω. Therefore, there exists a
maximum constant𝑁𝑙 for𝐷𝑙(⋅) onΩ𝑑×Ω such that ‖𝐷𝑙(⋅)‖ ≤𝑁𝑙, 𝑙 = 1, 2, 3. According to Young’s inequality, the following
inequalities are obtained:

𝑧𝑇1Υ𝑦1 ≤ 𝑧𝑇1ΥΥ𝑇𝑧1 + 𝑦
𝑇
1 𝑦14

𝑧𝑇𝑗 𝑦𝑗 ≤ 𝑧𝑇𝑗 𝑧𝑗 + 𝑦
𝑇
𝑗 𝑦𝑗4 , 𝑗 = 2, 3

𝑧𝑇𝑘 𝜖𝑘 ≤ 𝑧𝑇𝑘 𝑧𝑘 + 𝜖
∗2
𝑘4 , 𝑘 = 2, 4

𝑦𝑇𝑙 𝐷𝑙 (⋅) ≤ (𝑦
𝑇
𝑙 𝑦𝑙)(4𝜌) + 𝑁2𝑙 𝜌, 𝑙 = 1, 2, 3,

(A.4)

where 𝜌 is a positive design parameter. Let 𝐶2 > 2𝐼, 𝐶3 > 𝐼,
and 𝐶4 > 𝐼. Then the inequality for 𝑉̇ can be obtained:

𝑉̇ ≤ − 4∑
𝑖=1

𝑐𝑖𝑧𝑇𝑖 𝐾𝑖𝑧𝑖 − 2∑
𝑘=1

tr [𝜎2𝑘2 𝑊̃𝑇2𝑘𝑊̃2𝑘] −
3∑
𝑙=1

𝜉𝑙𝑦𝑇𝑙 𝑦𝑙
+ 2∑
𝑘=1

tr [𝜎2𝑘2 𝑊∗𝑇2𝑘 𝑊∗2𝑘] + (𝑁21 + 𝑁22 + 𝑁23) 𝜌

+ 𝜖∗224 + 𝜖∗244 ,

(A.5)

where 𝑐1 = 𝜆min(𝐶1), 𝑐2 = 𝜆min[(𝐶2 − 2𝐼)𝑀−1(𝑞1)𝐾], 𝑐3 =𝜆min(𝐶3 − 𝐼), 𝑐4 = 𝜆min[(𝐶4 − 𝐼)𝐽−1], 𝜉𝑙 = 1/𝜏𝑙 − 𝑁2𝑙 /(4𝜌) −1/4 (𝑙 = 1, 2, 3). Choose 𝜏𝑙 (𝑙 = 1, 2, 3) appropriately such
that 𝜉𝑙 > 0. Moreover, set values of 𝐶1, 𝐶2, 𝐶3, 𝐶4, Γ2, 𝜎2, Γ4,𝜎4 appropriately and (A.5) can be rewritten as

𝑉̇ ≤ −2𝑘0𝑉 + 𝑏0, (A.6)

where 𝑏0 = tr[𝜎2𝑊∗𝑇2 𝑊∗2 ]/2 + tr[𝜎4𝑊∗𝑇4 𝑊∗4 ]/2 + (𝑁21 + 𝑁22+𝑁23 )𝜌 + 𝜖∗22 /4 + 𝜖∗24 /4 and 𝑘0 = min{𝑐1, 𝑐2, 𝑐3, 𝑐4, 𝜎2𝜆min(Γ2)/2, 𝜎4𝜆min(Γ4)/2, 𝜉1, 𝜉2, 𝜉3} > 0. Let ] = 𝑏0/(2𝑘0); then
𝑉 ≤ [𝑉 (0) − ]] 𝑒−2𝑘0𝑡 + ] (A.7)

which means that, as 𝑡 → ∞, 𝑉 ≤ ], thus

󵄩󵄩󵄩󵄩𝑧𝑖󵄩󵄩󵄩󵄩 ≤ √ 2]𝜆min (𝐾𝑖) , 𝑖 = 1, 2, 3, 4. (A.8)

Since ] can be made arbitrarily small by choosing appro-
priate design parameters 𝑘0, 𝜌, 𝜎2, and 𝜎4.Thus, for given ]󸀠 >
], there exists a finite time 𝑇1 so that ‖𝑧𝑖‖ ≤ √2]󸀠/𝜆min(𝐾𝑖)
for all 𝑡 ≥ 𝑇1. Based on the error transformation (11), the
tracking error 𝑒1 converges to a small neighborhood around
zero with guaranteed prescribed performance (3) in a finite
time 𝑇1 as well, and all the signals in the closed-loop system
are uniformly ultimately bounded.

B. Proof of Theorem 5

Similar to the adaptive neural DSC design in the Section 3,
the derivative of 𝑧𝑖 (𝑖 = 1, 2, 3, 4) along (53) and (54) yields

𝑧̇1 = − (𝐶1 + Υ𝑇Υ) 𝑧1 + Υ𝑧2 + Υ𝑦1.
𝑧̇2 = 𝑀−1 (𝑞1)𝐾 (−Υ𝑧1 − 𝐶2𝑧2 + 𝑧3 + 𝑦2
−𝑊𝑇2 𝑆2 (Ψ2) + 𝐻2 (Ψ2) − 𝐾−1𝐶 (𝑞1, ̇𝑞1) 𝑧2)

𝑧̇3 = −𝑧2 − 𝐶3𝑧3 + 𝑧4 + 𝑦3
𝑧̇4 = 𝐽−1 [−𝑧3 − 𝐶4𝑧4 −𝑊𝑇4 𝑆4 (Ψ4) + 𝐻4 (Ψ4)]

(B.1)

According to Theorem 4, there exists a small positive
constant 𝜖󸀠𝑖 for the recurrent orbit 𝜓𝑑𝑖(𝑥𝑑𝑖(𝑡)) (𝑖 = 2, 4), such
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that ‖𝑊𝑇𝑖 𝑆𝑖(Ψ𝑖) − 𝐻𝑖(Ψ𝑖)‖ < 𝜖󸀠𝑖 . Thus, by Young’s inequality,
the derivative of 𝑉 along (A.1) and (B.1) yields

𝑉̇ ≤ − 4∑
𝑖=1

𝑐󸀠𝑖 𝑧𝑇𝑖 𝐾𝑖𝑧𝑖 − 3∑
𝑙=1

𝜉𝑙𝑦𝑇𝑙 𝑦𝑙 + (𝑁21 + 𝑁22 + 𝑁23) 𝜌

+ 𝜖󸀠224 + 𝜖󸀠244 ,
(B.2)

where 𝑐󸀠1 = 𝜆min(𝐶1), 𝑐󸀠2 = 𝜆min[(𝐶2 − 2𝐼)𝑀−1(𝑞1)𝐾], 𝑐󸀠3 =𝜆min(𝐶3 − 𝐼), 𝑐󸀠4 = 𝜆min[(𝐶4 − 𝐼)𝐽−1]. Let 𝐶2 > 2𝐼, 𝐶3 > 𝐼, and𝐶4 > 𝐼; (B.2) can be rewritten as

𝑉̇ ≤ −2𝑘󸀠0𝑉 + 𝑏󸀠0, (B.3)

where 𝑏󸀠0 = (𝑁21 + 𝑁22 + 𝑁23 )𝜌 + 𝜖󸀠22 /4 + 𝜖󸀠24 /4 and 𝑘󸀠0 =
min{𝑐󸀠1, 𝑐󸀠2, 𝑐󸀠3, 𝑐󸀠4, 𝜉1, 𝜉2, 𝜉3} > 0. Let ]󸀠 = 𝑏󸀠0/(2𝑘󸀠0); then, based
on the similar analysis in Theorem 3, it can be concluded
that the tracking error 𝑒1 converges to a small neighborhood
around zero with the prescribed performance, and all the
signals in the closed-loop system are uniformly ultimately
bounded.
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