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Quasi-linear autoregressive with exogenous inputs (Quasi-ARX) models have received considerable attention for their usefulness
in nonlinear system identification and control. In this paper, identification methods of quasi-ARX type models are reviewed and
categorized in threemain groups, and a two-step learning approach is proposed as an extension of the parameter-classifiedmethods
to identify the quasi-ARX radial basis function network (RBFN) model. Firstly, a clustering method is utilized to provide statistical
properties of the dataset for determining the parameters nonlinear to the model, which are interpreted meaningfully in the sense
of interpolation parameters of a local linear model. Secondly, support vector regression is used to estimate the parameters linear to
the model; meanwhile, an explicit kernel mapping is given in terms of the nonlinear parameter identification procedure, in which
the model is transformed from the nonlinear-in-nature to the linear-in-parameter. Numerical and real cases are carried out finally
to demonstrate the effectiveness and generalization ability of the proposed method.

1. Introduction

Many real-world systems exhibit complex nonlinear char-
acteristics and hence cannot be identified directly by linear
methods. In the last two decades, nonlinear models such
as neural networks (NNs), radial basis function networks
(RBFNs), neurofuzzy networks (NFNs), and multiagent net-
works have received considerable research attention for
nonlinear system identification [1–4]. However, from a user’s
point of view, the conventional nonlinear black-box models
have been criticized mostly for not being user-friendly: (1)
they neglect some good properties of the successful linear
black-boxmodeling, such as the linear structure and simplic-
ity [5, 6]; (2) an easy-to-use model is to interpret properties
of nonlinear dynamics rather than being treated as vehicles
for adjusting fit to the data [7].Therefore, careful modeling is
needed for a model structure favorable to certain applica-
tions.

To obtain the nonlinear models favorable to applications,
a quasi-linear autoregressive with exogenous inputs (quasi-
ARX) modeling scheme has been proposed with two parts
included: a macro-part and a core-part [14]. As shown in
Figure 1, the macro-part is a user-friendly interface favorable
to specific applications, and the core-part is used to represent
the complicated coefficients of the macro-part. To this end,
by using Taylor expansion or othermathematical transforma-
tion techniques, a class of ARX-like interfaces is constructed
as macro-parts, in which useful properties of linear models
can be introduced, while their coefficients are represented by
some nonlinear models such as RBFNs. In this way, a quasi-
ARX predictor linear with input variable 𝑢(𝑡) can be further
designed, where 𝑢(𝑡) in the core-part is replaced skillfully
by an extra variable. Thereafter, a nonlinear controller can
be generated directly from the quasi-ARX predictor, which
is similar to the simple linear control method [15, 16].
In contrast, complex nonlinear controller design should
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Figure 1: Quasi-ARX modeling. Basic idea of the quasi-ARX modeling is shown in (a), where a macro-part and a core-part are included in
the constructed model. An example is illustrated in (b). An ARX-like linear structure works as macro-part for specific application, whose
coefficients are parameterized by a flexible RBFN model.

be considered in NN based control methods, where two
independent NNs are often contained: the one used for
predictor and the other used for controller [17].

Actually, similar block-typemodels have been extensively
studied and named in several forms according to their
features, such as the state-dependent parameter models [18–
20] and local linear models [10, 21]. Basically, identification
methods can be categorized into three schemes:

(1) Hierarchical identification scheme: quasi-ARXmodel
structure can be considered as an “ARX submodel
+ NN” when NNs are utilized in the core-part [15,
16], and a hierarchical method has been proposed to
identify the ARX submodel and the NN by a dual-
loop scheme, where parameters in the ARX submodel
are fixed and treated as constants in one loop, with
the NN trained by a back propagation (BP) algorithm
(only a small number of epochs are implemented);
then the resultant NN is fixed to estimate the param-
eters of the ARX submodel in another loop. The two
loops are executed alternatively to achieve a great
approximation ability for nonlinear systems.

(2) Parameter-classified identification scheme: when the
nonlinear basis function models are embedded in the
core-part of the quasi-ARXmodels, all the parameters
can be classified as nonlinear (e.g., the center and
width parameters in the embeddedRBFNs) and linear
(e.g., the linear weights in the embedded RBFNs) to
the model. A structured nonlinear parameter opti-
mizationmethod (SNPOM) has been presented in [9]
to optimize both the nonlinear and the linear param-
eters simultaneously for a RBF-type state-dependent
parameter model, and improvement has been further
given in [19, 22]. On the other hand, by using heuristic
prior knowledge, the authors in [14, 23] estimate the

nonlinear parameters of a quasi-ARX NFN model,
and the least square algorithm is used to estimate the
linear parameters. Similarly, a prior knowledge has
been used for nonlinear parameters in a quasi-ARX
wavelet network (WN) model, where identification
can be explained in an integrated approach [24, 25].

(3) Global identification scheme: in this category, all the
parameters in the quasi-ARX models are optimized
regardless of the parameter features and model struc-
ture. For instance, a hybrid algorithm of particle
swarm optimization (PSO) with diversity learning
and gradient descent method has been proposed
in [10] to identify the WN-type quasi-ARX model,
which is always used in time series prediction. More-
over, NN [26] and support vector regression (SVR)
[13] are applied, respectively, to identify all the quasi-
ARX model parameters.

In this paper, specific efforts are made to extend the
second identification scheme based on classifying the model
parameters. Compared with the other schemes, this one
explores the model properties deeply and provides a promis-
ing solution to a wide range of basis function embedded
quasi-ARX models. It is known that SNPOM is an efficient
optimization method fallen into this category, which makes
good use of the model parameters feature and gives impres-
sive performance in time series prediction and nonlinear
control. However, this technique is still considered as a “non-
transparent” approach since it is aimed at data-fitting only,
and model parameters are difficult to be interpreted along
with physical explanation of real world or nonlinear dynam-
ics of systems [7]. Therefore, it may constrain further devel-
opment of the model. In contrast, a prior knowledge based
nonlinear parameter estimation makes sense to interpret
system properties meaningfully, especially with respect to the
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quasi-ARX RBFN model as discussed later in Section 3. The
useful prior knowledge can evolve a quasi-ARX model from
a “black-box” tool into a “semianalytical” one [27], which
makes some parameters interpretable by our intuition, just
following the principle of application favorable in quasi-ARX
modeling. Owing to this fact, nonlinear parameters are deter-
mined in terms of prior interpretable knowledge, and linear
parameters are adjusted to fit the data. It may contribute to
low computational cost and high generalization of the model
as parallel computation. Nevertheless, the problem is how to
generate useful prior knowledge for an accurate nonlinear
parameter estimation.

In the current study, a two-step approach is proposed
to identify the quasi-ARX RBFN model for the nonlinear
systems. Firstly, a clusteringmethod is applied to generate the
data distribution information for the system, whereby center
parameters of the embedded RBFN are determined as cluster
centers, and thewidth parameter of eachRBF is set in terms of
distance fromother nearby centers.Then, it is straightforward
to utilize the linear SVR for linear parameter estimation. The
main purpose of this work is to provide an interpretable iden-
tification approach for the quasi-ARX models, which can be
regarded as complementary to the identification procedures
[6, 9, 13]. Compared with the heuristic prior knowledge used
in quasi-ARXNFNmodel identification, the clustering based
method gives an alternative approach to prior knowledge
for nonlinear parameter estimation, and the quasi-ARX
RBFN model is interpreted as a local linear model with
interpolation.Moreover, when linear SVR is applied for linear
parameter estimation, identification of the quasi-ARX RBFN
model can be treated as an SVR with novel kernel mapping
and associated feature space, and the kernelmapping is equiv-
alent to the nonlinear parameter estimation procedure, which
is transformed from a nonlinear-in-nature model to the
linear-in-parameter one. Unlike the SVR-based method [9],
the kernel function proposed in this study takes an explicit
mapping, which is effective in coping with potential overfit-
ting for some complex and noisy learning tasks [28]. Finally,
in the proposed method, nonlinear parameters are estimated
directly based on the prior knowledge; to some extent, it can
be considered as an algorithmic approach for initialization of
SNPOM.

The remainder of the paper is organized as follows.
Section 2 introduces a quasi-ARX RBFN modeling scheme.
Section 3 proposes the identification method of the quasi-
ARX RBFN model. Section 4 investigates two numerical
examples and a real case. Finally, some discussions and
conclusions are made in Section 5.

2. Quasi-ARX RBFN Modeling

Let us consider a single-input-single-output (SISO) nonlin-
ear time-invariant system whose input-output dynamics is
described as

𝑦 (𝑡) = 𝑔 (𝜑 (𝑡)) + 𝑒 (𝑡) , (1)

where 𝜑(𝑡) = [𝑦(𝑡 − 1), . . . , 𝑦(𝑡 − 𝑛𝑦), 𝑢(𝑡 − 1), . . . , 𝑢(𝑡 − 𝑛𝑢)]𝑇;𝑢(𝑡) ∈ R, 𝑦(𝑡) ∈ R, and 𝑒(𝑡) ∈ R are the system input, output,

and a stochastic noise of zero-mean at time 𝑡, respectively; 𝑛𝑢
and 𝑛𝑦 are the unknown maximum delays of the input and
output, respectively. 𝜑(𝑡) ∈ R𝑛 with 𝑛 = 𝑛𝑦 + 𝑛𝑢 is the regres-
sion vector composed of the delayed input-output data. 𝑔(⋅)
is an unknown function (black-box) describing the dynamics
of system under study, which is assumed to be continuously
differentiable and satisfies 𝑔(0) = 0.

Performing the Taylor expansion to 𝑔(𝜑(𝑡)) at 𝜑(𝑡) = 0,
one has

𝑦 (𝑡) = 𝑒 (𝑡) + 𝑔 (0) + (𝑔󸀠 (0))𝑇 𝜑 (𝑡)
+ 12𝜑𝑇 (𝑡) 𝑔󸀠󸀠 (0) 𝜑 (𝑡) + ⋅ ⋅ ⋅ .

(2)

Then (1) is reformalized with an ARX-like linear structure:

𝑦 (𝑡) = 𝜑𝑇 (𝑡) 𝜃 (𝜑 (𝑡)) + 𝑒 (𝑡) , (3)

where

𝜃 (𝜑 (𝑡)) = 𝑔󸀠 (0) + 12𝑔󸀠󸀠 (0) 𝜑 (𝑡) + ⋅ ⋅ ⋅
= [𝑎1,𝑡 ⋅ ⋅ ⋅ 𝑎𝑛𝑦 ,𝑡 𝑏0,𝑡 ⋅ ⋅ ⋅ 𝑏𝑛𝑢−1,𝑡]𝑇 .

(4)

In (4), coefficients 𝑎𝑖,𝑡 = 𝑎𝑖(𝜑(𝑡)) and 𝑏𝑗,𝑡 = 𝑏𝑗(𝜑(𝑡)) are
nonlinear functions of 𝜑(𝑡) for 𝑖 = 1, 2, . . . , 𝑛𝑦 and 𝑗 =0, 1, . . . , 𝑛𝑢 − 1; thus it can be represented by RBFN as

𝜃 (𝜑 (𝑡)) = Ω0 + 𝑀∑
𝑗=1

Ω𝑗N (𝑝𝑗, 𝜑 (𝑡)) , (5)

where 𝑝𝑗 includes the center parameter vector 𝜇𝑗 and the
width parameter𝜎𝑗 of the 𝑗th RBFN(𝑝𝑗, 𝜑(𝑡)),𝑀 denotes the
number of basis functions utilized, and Ω𝑗 = [𝜔1𝑗, . . . , 𝜔𝑛𝑗]𝑇
is a connection matrix between the input variables and
the associated basis functions. According to (3) and (5), a
compact representation of quasi-ARX RBFN model is given
as

𝑦 (𝑡) = 𝑀∑
𝑗=0

𝜑𝑇 (𝑡) Ω𝑗N (𝑝𝑗, 𝜑 (𝑡)) + 𝑒 (𝑡) , (6)

in which the set of RBFs with scaling parameter 𝜆 (the default
value of 𝜆 is 1) is

N (𝑝𝑗, 𝜑 (𝑡)) = {{{{{{{
exp(−󵄩󵄩󵄩󵄩󵄩𝜑 (𝑡) − 𝜇𝑗󵄩󵄩󵄩󵄩󵄩2𝜆𝜎2𝑗 ) 𝑗 ̸= 0
1 𝑗 = 0.

(7)

3. Parameter Estimation of
Quasi-ARX RBFN Model

From (6) and (7), it is known that 𝑝𝑗 (i.e., 𝜇𝑗, 𝜎𝑗) for 𝑗 =1, . . . ,𝑀 and are 𝑀 nonlinear parameters for the model,
whereas Ω𝑗 (𝑗 = 0, . . . ,𝑀) become linear when all the
nonlinear parameters are determined/fixed. In the following,
the clustering method and SVR are, respectively, applied to
estimate those two types of parameters.
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Figure 2: A local linear interpretation for the quasi-ARX RBFN
model. A one-dimensional nonlinear system is approximated by
three linear submodels, whose operating areas are decided by the
associated RBFs; meanwhile, the RBFs also provide interpolations
or weighs for all the linear submodels dependent on the operating
points. A main interpolation is obtained from a linear submodel
when the operating point is near to the center of the associated RBF,
while only a minor one can be received when the operating point is
far from the corresponding RBF.

3.1. Nonlinear Parameters Estimation. The choice of the
center parameters plays an important role in performance of
the RBF-type model [29]. In this paper, these parameters are
estimated by means of prior knowledge from the clustering
method rather than by minimizing the mean square of
the training error. It should be mentioned that using the
clusteringmethod for initializing the center parameters is not
a new idea in RBF-type models, and sophisticated clustering
algorithms have been proposed in [30, 31]. In the present
work, nonlinear parameters are estimated in a clustering
way, which have meaningful interpretations. From this point
of view, (6) is investigated as a local linear model with 𝑀
submodels 𝑦𝑗 = 𝜑𝑇(𝑡)Ω𝑗 (𝑗 = 1, . . . ,𝑀), and the 𝑗th
RBF N(𝑝𝑗, 𝜑(𝑡)) is regarded as a time-varying interpolation
function for associated linear submodel to preserve the local
property. Figure 2 gives a schematic diagram to illustrate the
quasi-ARX RBFN model via a local linear mean.

In this way, the local linear information of the data
can be generated by means of clustering algorithm, where
the number of clusters (linear subspaces) is equivalent to
the number of RBF neurons, and each cluster center is set
as the center parameter of the associated RBF. In order to
determine appropriately the operating area of each local
linear submodel, width of each RBF is set to well cover
the corresponding subspace. Generally speaking, we can set
the width parameters of the RBF neurons according to the
distances among those centers. For instance, a proper width

parameter 𝜎𝑗 of certain RBF can be obtained as a mean value
of distances from its center 𝜇𝑗 to its nearest two others. From
(7), one knows that an excessive small value of the width
parameters may result in insufficient local linear operating
areas for all data, while a wide-shape setting will make all the
RBFs overlapped and hence the local property of each linear
submodel is weakened.

Remark 1. Figure 2 only gives a meaningful interpretation of
the model parameters. In real applications, since the data dis-
tribution is complex and the exact local linear subspaces may
not exist, the clustering partition approach is used to provide
several rational operating areas, and the scaling parameter𝜆 can be set to adjust the width parameters for good
weighting to each associated area.

3.2. Linear Parameters Estimation. After estimating and fix-
ing the nonlinear parameters, (6) can be rewritten in a linear-
in-parameter manner as

𝑦 (𝑡) = Φ𝑇 (𝑡) Θ + 𝑒 (𝑡) , (8)

where Φ(𝑡) is an abbreviation ofΦ(𝜑(𝑡)) with
Φ (𝑡) = [𝜑𝑇 (𝑡) ,N1 (𝑡) 𝜑𝑇 (𝑡) , . . . ,N𝑀 (𝑡) 𝜑𝑇 (𝑡)]𝑇 , (9)

Θ = [Ω𝑇0 , Ω𝑇1 , . . . , Ω𝑇𝑀]𝑇 , (10)

in which, since 𝑝𝑗 in the 𝑗th RBF has already been estimated,
we represent the 𝑗th RBF N(𝑝𝑗, 𝜑(𝑡)) by a shorten form as
N𝑗(𝑡) in (9). Therefore, the nonlinear system identification
problem is reduced to a linear regression one with respect toΦ(𝑡), and all the linear parameters are denoted by Θ.
Remark 2. As a result of nonlinear parameter estimation,Φ(𝑡) plays an important role in transforming the quasi-
ARX RBFN models from nonlinear-in-nature to linear-in-
parameter with respect to Θ. Accordingly, it also transforms
the nonlinear mapping from the original input space of 𝑔(⋅)
into a high feature space; that is, 𝜑(𝑡) → Φ(𝑡). This explicit
mapping will be utilized for an inner-product kernel in the
later part.

In the following, the linear parameters are estimated by
a linear SVR, considering the structural risk minimization
principal as

min J ≜ 12Θ𝑇Θ + 𝐶
𝑁∑
𝑡=1

(𝜉𝑡 + 𝜉∗𝑡 ) (11)

subject to

𝑦 (𝑡) − Φ𝑇 (𝑡) Θ ≤ 𝜖 + 𝜉𝑡,
− 𝑦 (𝑡) + Φ𝑇 (𝑡) Θ ≤ 𝜖 + 𝜉∗𝑡 , (12)

where𝑁 is the number of observations, 𝜉𝑡 ≥ 0 and 𝜉∗𝑡 ≥ 0 are
slack variables, 𝐶 is a nonnegative weight determining how
much the prediction errors are penalized, which exceeds the
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threshold value 𝜖. The solution can be transformed to find a
saddle point of the associated Lagrange function:

L (Θ, 𝜉𝑡, 𝜉∗𝑡 , 𝛼𝑡, 𝛼∗𝑡 , 𝛽𝑡, 𝛽∗𝑡 )
≜ 12Θ𝑇Θ + 𝐶

𝑁∑
𝑡=1

(𝜉𝑡 + 𝜉∗𝑡 )
+ 𝑁∑
𝑡=1

𝛼𝑡 (𝑦 (𝑡) − Φ𝑇 (𝑡) Θ − 𝜖 − 𝜉𝑡)
+ 𝑁∑
𝑡=1

𝛼∗𝑡 (−𝑦 (𝑡) + Φ𝑇 (𝑡) Θ − 𝜖 − 𝜉∗𝑡 )
− 𝑁∑
𝑡=1

(𝛽𝑡𝜉𝑡 + 𝛽∗𝑡 𝜉∗𝑡 ) ,

(13)

where 𝛼𝑡, 𝛼∗𝑡 , 𝛽𝑡, and 𝛽∗𝑡 are nonnegative parameters to
be designed later. The saddle point could be acquired by
minimizingL with respect to Θ, 𝜉∗𝑡 , and 𝜉𝑡:

𝜕L𝜕Θ = 0 󳨐⇒ Θ = 𝑁∑
𝑡=1

(𝛼𝑡 − 𝛼∗𝑡 )Φ (𝑡) , (14a)

𝜕L𝜕𝜉∗𝑡 = 0 󳨐⇒ 𝛽∗𝑡 = 𝐶 − 𝛼∗𝑡 , (14b)

𝜕L𝜕𝜉𝑡 = 0 󳨐⇒ 𝛽𝑡 = 𝐶 − 𝛼𝑡. (14c)

Thus, one can convert the primal problem (11) into an
equivalent dual problem as

max W (𝛼𝑡, 𝛼∗𝑡 )
≜ −12

𝑁∑
𝑡,𝑘=1

(𝛼𝑡 − 𝛼∗𝑡 ) (𝛼𝑘 − 𝛼∗𝑘 )Φ𝑇 (𝑡) Φ (𝑘)
+ 𝑁∑
𝑡=1

(𝛼𝑡 − 𝛼∗𝑡 ) 𝑦 (𝑡) − 𝜖 𝑁∑
𝑡=1

(𝛼𝑡 + 𝛼∗𝑡 )
(15)

subject to

𝑁∑
𝑡=1

(𝛼𝑡 − 𝛼∗𝑡 ) = 0, 𝛼𝑡, 𝛼∗𝑡 ∈ [0, 𝐶] . (16)

To do this, the training results 𝛼̂𝑡 and 𝛼̂∗𝑡 are obtained from
(15), and the linear parameter vector Θ is then obtained by
the training value:

Θ = 𝑁∑
𝑡=1

(𝛼̂𝑡 − 𝛼̂∗𝑡 )Φ (𝑡) . (17)

In the above way, contributions of the SVR-based linear
parameter estimation method can be concluded as follows.

(1) The robust performance for parameter estimation is
introduced because of the structural risk minimiza-
tion of SVR.

(2) There is no need to calculate the linear parameterΘ directly. Instead, it becomes a dual form of the
quadratic optimization, which is represented by uti-
lizing 𝛼𝑡 and 𝛼∗𝑡 depending on the size of the training
data. It is very useful to alleviate the computational
cost especially when themodel suffers from the curse-
of-dimensionality.

(3) Identification of quasi-ARX model is specified as an
SVR with explicit kernel mapping Φ(𝑡), which has
been mentioned in Remark 2. To this end, the quasi-
ARX RBFN model is reformalized as

𝑦 (𝑡) = Φ𝑇 (𝑡) 𝑁∑
𝑡󸀠=1

(𝛼̂𝑡󸀠 − 𝛼̂∗𝑡󸀠)Φ (𝑡󸀠)
= 𝑁∑
𝑡󸀠=1

(𝛼̂𝑡󸀠 − 𝛼̂∗𝑡󸀠)K (𝑡, 𝑡󸀠) ,
(18)

where 𝑡󸀠 is time of training data, and a quasi-linear kernel,
which is explicitly explained in the following remark, is
defined as an inner product of the explicit nonlinearmappingΦ(𝑡):

K (𝑡, 𝑡󸀠) = Φ𝑇 (𝑡) Φ (𝑡󸀠)
= 𝜑𝑇 (𝑡) 𝜑 (𝑡󸀠) 𝑀∑

𝑖=0

N𝑖 (𝑡)N𝑖 (𝑡󸀠) . (19)

Remark 3. The quasi-linear kernel name is twofold. Firstly, it
is derived from the quasi-ARX modeling scheme. Secondly,
from (19) it is known that when 𝑀 is as small as zero, the
kernel is reduced to a linear one, and nonlinearity of the
kernel mapping is improved when increasing the value of𝑀.
Comparedwith conventional kernels andwith implicit kernel
mapping, the nonlinear mapping of the quasi-linear kernel
is turnable by𝑀, which also reflects the nonlinearity of the
quasi-ARX RBFNmodels in the sense of the number of local
linear subspaces utilized. A proper value of𝑀 is essentially
helpful to cope with the potential overfitting which will be
shown in the following simulations.

4. Experimental Studies

In this section, identification performance of the above
proposed approach to quasi-ARX RBFN model is evaluated
by three examples. The first one is an example to show the
performance of quasi-ARX RBFN model for time series pre-
diction. Second, a rational system generated from Narendra
and Parthasarathy [17] is simulated with a small amount of
training data, which is used to demonstrate the generalization
of the proposed quasi-linear kernel. At last, an example
modeling a hydraulic robot actuator is carried out for a
general comparison.

In the nonlinear parameter estimation procedure, affinity
propagation (AP) clustering algorithm [32] is utilized to
partition the input space and automatically generate the size
of clusters in terms of data distribution, where Euclidean
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distance is evaluated as the similarity between exemplars.
Then, centers of all clusters are selected as the RBF center
parameters in the quasi-ARXmodel, and thewidth parameter
of a certain RBF is decided as the mean value of distances
from the associated center to the nearest two others. For the
linear parameter estimation, LibSVM toolbox [33] is applied,
where ]-SVR is used with default ] setting by Matlab 7.6.
Finally, the model performance is evaluated by root mean
square error (RMSE) as

RMSE = √∑𝑡 (𝑦 (𝑡) − 𝑦 (𝑡))2𝐾 , (20)

where 𝑦(𝑡) is the prediction value of the system output 𝑦(𝑡)
and𝐾 is the number of regression vectors.

4.1. Modeling the Mackey-Glass Time Series. The time series
prediction on the chaotic Mackey-Glass differential equation
is one of the most famous benchmarks for comparing the
learning and generalization abilities of different models. This
time series is generated from the following equation:

𝑑𝑥 (𝑡)𝑑𝑡 = 𝑎𝑥 (𝑡 − 𝜏)1 + 𝑥10 (𝑡 − 𝜏) − 𝑏𝑥 (𝑡) , (21)

where 𝑎 = 0.2, 𝑏 = 0.1, and 𝜏 = 17, which are the most often
used values in the previous research, and the equation does
show chaotic behavior with them. To make the comparisons
fair with the earlier works, we will predict 𝑥(𝑡 + 6) using
the input variables 𝑥(𝑡), 𝑥(𝑡 − 6), 𝑥(𝑡 − 12), and 𝑥(𝑡 − 18).
Two thousand data points are generatedwith initial condition
taken as 𝑥(𝑡) ≡ 1.2 for 𝑡 ∈ [−17, 0] based on the fourth-order
Runge–Kutta method with time step Δ𝑡 = 0.1. Then, one
thousand input-output data pairs are selected from 𝑡 = 201
to 𝑡 = 1200, which is shown in Figure 3. The first 500 data
pairs are used as training data, while the remaining 500 are
used to predict 𝑥(𝑡 + 6) followed by

𝑥 (𝑡 + 6) = 𝜑𝑇 (𝑡) Ω0 + 𝑀̂∑
𝑗=1

𝜑𝑇 (𝑡) Ω𝑗N (𝜇𝑗, 𝜎̂𝑗, 𝜑 (𝑡)) (22)

with

N (𝜇𝑗, 𝜎̂𝑗, 𝜑 (𝑡)) = exp(−󵄩󵄩󵄩󵄩󵄩𝜑 (𝑡) − 𝜇𝑗󵄩󵄩󵄩󵄩󵄩2𝜎̂2𝑗 ) , (23)

where 𝜑(𝑡) = [𝑥(𝑡 − 18), 𝑥(𝑡 − 12), 𝑥(𝑡 − 6), 𝑥(𝑡)]𝑇.
The prediction of the Mackey-Glass time series using

a quasi-ARX RBFN model starts, where 20 clusters are
obtained from the AP clustering algorithm, and thus 20RBF
neurons are correspondingly constructed. Thereafter, SVR is
used for linear parameter estimation, in which the super-
parameter 𝐶 is set as 100. The predicted result is compared
with the original time series of test data in Figure 4, which
gives a RMSE of 0.0091.

In Figure 4, the predicted result fits the original data
very well; however, it is still not as good as the results
from some famous models/methods listed in Table 1. Since
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Figure 3: Time series generated from the Mackey-Glass equation.
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Figure 4: Prediction result with the quasi-ARX RBFN model.

no disturbance is contained in this example, it is found
that the prediction performance can be easily improved by
minimizing the training prediction error. In the comparison
list, SNPOM for RBF-AR model, hybrid learning method
for local linear wavelet neural network (LLWNN), and
genetic algorithm (GA) for RBFN are all optimization-based
identification methods, and it is relatively easy for them to
achieve small RMSEs of the prediction by iterative training.
However, these methods are much more time-costing in
comparison with only 6 seconds by the proposed method
for the quasi-ARX RBFN model. In addition, although the𝑘-means clustering method for RBFN is implemented in a
deterministic way and shows efficient result, the number of
RBF neurons used is as big as 238. In fact, a small prediction
RMSE obtained from these methods does not mean good
identification of the models, since overtraining may happen
some times.

In the present example, we confirm the effectiveness of
the optimization-based method given above and propose a
hybrid approach for identification of the quasi-ARX RBFN
model, where prediction result from the proposed method
can be further improved by SNPOM (the function “lsqnon-
lin” in the Matlab Optimization Toolbox is used [9]). It is
seen that the prediction RMSE can be improved to 2.1 ×10−3 by only 15 iterations of implementation in SNPOM,
and the result becomes compatible with others. However,
such optimization is not always effective, especially in model
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Table 1: Results of different models for Mackey-Glass time series prediction.

Model Method Number of neurons RMSE
Autoregressive model Least square 5 0.19
FNT [8] PIPE Not provided 7.1 × 10−3
RBF-AR [9] SNPOM 25 5.8 × 10−4
LLWNN [10] PSO + gradient decent algorithm 10 3.6 × 10−3
RBF [11] 𝑘-means clustering 238 1.3 × 10−3
RBF [12] GA 98 1.5 × 10−3
Quasi-ARX RBFN model Proposed 20 9.1 × 10−3
Quasi-ARX RBFN model Proposed + SNPOM 20 2.1 × 10−3

simulations on testing data, such as in the model 𝑥(𝑡) =𝑓(𝑥(𝑡 − 1), 𝑥(𝑡 − 2)), where 𝑥(𝑡 − 1) is the prediction value
of 𝑥(𝑡 − 1). In the following, a rational system is evaluated
by simulated quasi-ARX RBFN models to show advantages
of the proposed method.

4.2. Modeling a Rational System. Accurate identification
of nonlinear systems usually requires quite long training
sequences which contain a sufficient amount of data from the
whole operating region. However, as the amount of data is
often limited in practice, it is important to study the iden-
tification performance for shorter training sequences with a
limited amount of data.The systemunder study is a nonlinear
rational model described as

𝑦 (𝑡) = 𝑓 (𝑦 (𝑡 − 1) , 𝑦 (𝑡 − 2) , 𝑦 (𝑡 − 3) , 𝑢 (𝑡 − 1) ,
𝑢 (𝑡 − 2)) + 𝑒 (𝑡) , (24)

where

𝑓 (𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5) = 𝑥1𝑥2𝑥3𝑥5 (𝑥3 − 1) + 𝑥41 + 𝑥22 + 𝑥23 (25)

and 𝑒(𝑡) ∈ (0, 0.01) is the white noise.
Difficulty of this example lies in the fact that only 100

samples are provided for training, which is created by 100
random sequences distributed uniformly in the interval[−1, 1], while 800 testing data samples are generated from the
system with input:

𝑢 (𝑡)
= {{{{{

sin(2𝜋𝑡250) if 𝑡 ≤ 500
0.8 sin(2𝜋𝑡250) + 0.2 sin(2𝜋𝑡25 ) otherwise.

(26)

The excited training signal 𝑢(𝑡) and system output 𝑦(𝑡) are
illustrated in Figure 5.

In this case, 9 clusters are automatically obtained from
the AP clustering algorithm; then the nonlinear parameters𝜇𝑗 and 𝜎𝑗 (𝑗 = 1, . . . , 9) of the quasi-ARX RBFN model are
estimated as Section 3 described. SVR is utilized thereafter
for linear parameter estimation, where super-parameters are
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Figure 5: Training data for rational system identification.

set with different values for testing. Following the training,
the simulated model is

𝑦 (𝑡) = 𝜑𝑇 (𝑡) Ω0 + 𝑀̂∑
𝑗=1

𝜑𝑇 (𝑡) Ω𝑗N (𝜇𝑗, 𝜎̂𝑗, 𝜑 (𝑡)) (27)

with

N (𝜇𝑗, 𝜎̂𝑗, 𝜑 (𝑡)) = exp(−󵄩󵄩󵄩󵄩󵄩𝜑 (𝑡) − 𝜇𝑗󵄩󵄩󵄩󵄩󵄩2𝜎̂2𝑗 ) , (28)

where 𝜑(𝑡) = [𝑦(𝑡 − 1), 𝑦(𝑡 − 2), 𝑦(𝑡 − 3), 𝑢(𝑡 − 1), 𝑢(𝑡 − 2)]𝑇
and 𝑦(𝑡 − 𝑛) denotes the simulated result in the previous 𝑛
step. Figure 6 simulates the quasi-ARX RBFN model on the
testing data, which gives a RMSE of 0.0379 under the super-
parameter 𝐶 = 10.

Due to the fact that identification of the quasi-ARXRBFN
model can be regarded as an SVR with quasi-linear kernel, a
general comparison is given to show advantages of the quasi-
ARX RBFN model from SVR-based identification. Not only
the short training sequence but also a long sequence with1000 pairs of samples, which is generated and implemented in
the same manner as the short one, is applied for comparing.
Table 2 presents the comparison results of the proposed
method (i.e., SVR with quasi-linear kernel), SVR with linear
kernel, SVR with Gaussian kernel, and quasi-ARX model
identified directly by an SVR (Q-ARX SVR), where various
choices of SVR super-parameters𝐶 and 𝛾 for Gaussian kernel
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Table 2: Simulated results of the SVR-based methods for rational system.

Method Super-parameters RMSE𝐶 𝛾 (Gaussian) Short training sequence Long training sequence

Proposed
1 - 0.0546 0.0287
10 - 0.0379 0.0216
100 - 0.0423 0.0216

SVR + linear kernel
1 - 0.0760 0.0710
10 - 0.0764 0.0708
100 - 0.0763 0.0708

SVR + Gaussian kernel

1

0.01 0.1465 0.0560
0.05 0.0790 0.0426
0.1 0.0808 0.0421
0.5 0.0895 0.0279

10

0.01 0.0782 0.0376
0.05 0.0722 0.0409
0.1 0.0866 0.0365
0.5 0.0699 0.0138

100

0.01 0.0722 0.0352
0.05 0.0859 0.0376
0.1 0.0931 0.0313
0.5 0.1229 0.0340

Q-ARX SVR [13]

1

0.01 0.0698 0.0362
0.05 0.0791 0.0384
0.1 0.0857 0.0345
0.5 0.0749 0.0116

10

0.01 0.0783 0.0412
0.05 0.0918 0.0328
0.1 0.0922 0.0242
0.5 0.1483 0.0338

100

0.01 0.0872 0.0400
0.05 0.1071 0.0237
0.1 0.8186 0.0166
0.5 0.1516 0.0487
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Figure 6: Simulated result with the quasi-ARX RBFN model for
rational system.

are provided. From the simulation results under a short train-
ing sequence (100 samples), it is seen that when the design

parameters are optimized, SVR with quasi-linear kernel
performsmuch better than the oneswithGaussian kernel and
linear kernel, and the quasi-linear kernel also performs little
sensitively with respect to the SVR super-parameter setting.
Moreover, although the Q-ARX SVR method utilizes the
quasi-ARXmodel structure, it only provides a similar simula-
tion RMSE to SVRwithGaussian kernel. However, these sim-
ulation results cannot be resorted to refute the effectiveness
of the SVR with Gaussian kernel and Q-ARX SVR method
for nonlinear system identification. In the simulations, for a
long training sequence (1000 samples), it is found that Q-
ARX SVR method outperforms all the others, and SVR with
Gaussian kernel also performsmuchbetter than the oneswith
quasi-linear and linear kernel.

On the other hand, from the perspective of the per-
formance variation caused by different training sequences,
histograms of simulated error for SVR-based methods are
given in Figure 7, where performance of simulations is illus-
trated using, respectively, the short training sequence and the
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Figure 7: Histograms of the simulated errors. The horizontal coordinate in each subfigure denotes the simulated error of the model, whose
elements are binned into 10 equally spaced containers. Four models are trained by using both short (a) and long (b) training sequences, then
the simulated performance variation can be investigated by comparison.

long training sequence. It indicates that the SVR with linear
kernel has themost robust performance to amount of training
data, and the robust performance is also found in the quasi-
linear kernel compared with the Gaussian kernel and Q-
ARX SVR method, where significant deterioration is found
in the simulations when a limited amount of training samples
are used. This result implies that Gaussian kernel and Q-
ARX SVR may be overfitted since the implicit nonlinear
mapping is carried out, which has strong nonlinear learning
ability but with no idea about how “strong” the nonlinearity
need is. In contrast, the truth behind the impressive and
robust performance of the quasi-linear kernel is that prior
knowledge is utilized in the kernel learning (nonlinear
parameter estimation), and a number of parameters are
determined in terms of data distribution, where complexity
of the model (nonlinearity) is tunable according to the
number of local linear subspaces clustered. In other words,
the quasi-ARX RBFN model performs in a local linear way;
hence it can be trained in a multilinear way, better than
some unknown nonlinear approaches for the situation with
insufficient training samples.

Moreover, the RBF-AR model is utilized with SNPOM
estimation method for this identification problem, where
the number of RBF neurons are determined by trail-and-
error, whose initial values are given randomly. Considering
randomness of the algorithm, ten runs are implemented
except that the results fail to be simulated, and the maximum

iterations value in SNPOM is set to 50. Consequently, four
RBFs are selected for RBF-AR model, which gives a mean
RMSE of 0.0696 using short training sequence, compared
with the result of 0.0336 when the long training one is
utilized. Although the parameter setting for this methodmay
not be optimal, we can generate the same conclusion for
the Q-ARX SVR method, which is overfitted in the case of
training by short sequence.

4.3. Modeling a Real System. This is an example modeling a
hydraulic robot actuator, where the position of the robot arm
is controlled by a hydraulic actuator. The oil pressure in the
actuator is controlled by the size of the valve opening through
which the oil flows into the actuator. What we want to model
is the dynamic relationship between the position of the valve𝑢(𝑡) and the oil pressure 𝑦(𝑡).

A sample of 1024 pairs of {𝑦(𝑡), 𝑢(𝑡)} has been observed
as shown in Figure 8. The data is divided into two equal
parts, the first 512 samples are used as training data, and the
rest are used to test the simulated model. For the purpose
of comparison, the regression vector is set as 𝜑(𝑡) = [𝑦(𝑡 −1), 𝑦(𝑡−2), 𝑦(𝑡−3), 𝑢(𝑡−1), 𝑢(𝑡−2)]𝑇. We simulate the quasi-
ARX RBFN model on the testing data by

𝑦 (𝑡) = 𝜑𝑇 (𝑡) Ω0 + 𝑀̂∑
𝑗=1

𝜑𝑇 (𝑡) Ω𝑗N (𝜇𝑗, 𝜎̂𝑗, 𝜑 (𝑡)) (29)
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Figure 8: Measurements of 𝑢(𝑡) and 𝑦(𝑡).
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Figure 9: Simulated result with quasi-ARXRBFNmodel for the real
system.

with

N (𝜇𝑗, 𝜎̂𝑗, 𝜑 (𝑡)) = exp(−󵄩󵄩󵄩󵄩󵄩𝜑 (𝑡) − 𝜇𝑗󵄩󵄩󵄩󵄩󵄩2𝜆𝜎̂2𝑗 ) , (30)

where 𝜑(𝑡) = [𝑦(𝑡 − 1), 𝑦(𝑡 − 2), 𝑦(𝑡 − 3), 𝑢(𝑡 − 1), 𝑢(𝑡 − 2)]𝑇
and 𝜆 is set as 50 heuristically due to the complex dynamics
and data distribution in this case, which insures that the RBFs
are wide enough to cover the whole space well. Similar setting
of 𝜆 can also be found in the literature for the same purpose
[34, 35].

To determine the nonlinear parameters of the quasi-ARX
RBFN model, AP clustering algorithm is implemented, and11 clusters are generated automatically. Then, SVR is utilized
for the linear parameter estimation. Finally, the model is
identified and simulated in Figure 9 by the testing data, which
gives a RMSE of 0.462. This simulation result is compared
with the ones of linear ARXmodel, NN,WN, and SVR-based
methods shown in Table 3. From Table 3, it is known that the
proposed method outperforms the others for the real system.
In addition, RBF-ARmodel with SNPOMestimationmethod

Table 3: Comparison results for the real system.

Model Super-parameters RMSE𝐶 𝛾 (Gaussian)
ARX model - 1.016
NN [1] - 0.467
WN [6] - 0.529

SVR + quasi-linear kernel
1 - 0.462
5 - 0.487
10 - 0.491

SVR + Gaussian kernel

1

0.05 1.060
0.1 0.828
0.2 0.643
0.5 1.122

5
0.05 0.850
0.1 0.740
0.2 0.562
0.5 0.633

10

0.05 0.775
0.1 0.665
0.2 0.608
0.5 1.024

Q-ARX SVR [13]

1

0.05 0.737
0.1 0.592
0.2 0.801
0.5 0.711

5

0.05 0.609
0.1 0.600
0.2 0.715
0.5 0.890

10

0.05 0.593
0.1 0.632
0.2 1.231
0.5 1.285

fails to be simulated in this case, where the number of RBF
neurons is tested from 3 to 6, and their initial values are given
randomly.

5. Discussions and Conclusions

The proposed method has a twofold role in the quasi-ARX
model identification. For one thing, the clustering method
has been used to uncover the local linear information of
the dataset. Although similar methods have appeared in the
parameter estimation of RBFNs, meaningful interpretation
has been given here to the nonlinear parameters of quasi-
ARX model in the manner of multilocal linear model with
interpolations. In fact, explicit local linearity does not always
exist in many real problems, whereas clustering can provide
at least a rational multidimensional space partition approach.
In the future, a more accurate and general space partition
algorithm is to be investigated for identification of quasi-ARX
models. For another, SVR has been utilized for the model’s
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linear parameter estimation; meanwhile, a quasi-linear ker-
nel is deduced and performed as a composite kernel. The
parameter𝑀 in the kernel function (19) corresponds to the
amount of subspaces partitioned, which is therefore preferred
not to be a big value to cope with the potential overfitting.

In this paper, a two-step learning approach has been pro-
posed for identification of quasi-ARXmodel. Unlike the con-
ventional black-box identification approaches, prior knowl-
edge is introduced and makes sense for the interpretability
of quasi-ARXmodels. By minimizing the training data error,
linear parameters to the model are estimated. In the simula-
tions, the quasi-ARX model is denoted in the form of SVR
with quasi-linear kernel, which shows great approximation
ability as optimization-basedmethods for quasi-ARXmodels
but outperforms them when the training sequence is limited.
Finally, the best performance of the proposed method has
been demonstrated with a real system identification problem.
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[3] J. P. Noël and G. Kerschen, “Nonlinear system identification
in structural dynamics: 10 more years of progress,” Mechanical
Systems and Signal Processing, vol. 83, pp. 2–35, 2017.

[4] G. Nagamani, S. Ramasamy, and P. Balasubramaniam, “Robust
dissipativity and passivity analysis for discrete-time stochastic
neural networks with time-varying delay,” Complexity, vol. 21,
no. 3, pp. 47–58, 2016.

[5] I. Sutrisno, M. A. Jami’in, J. HU, and M. H. Marhaban, “A
self-organizing Quasi-linear ARX RBFN model for nonlinear
dynamical systems identification,” SICE Journal of Control,
Measurement, and System Integration, vol. 9, no. 2, pp. 70–77,
2016.

[6] J. Hu, K. Hirasawa, and K. Kumamaru, “A hybrid quasi-
ARMAX modeling and identification scheme for nonlinear
systems,” Research Reports on Information Science and Electrical
Engineering of Kyushu University, vol. 2, no. 2, pp. 213–218, 1997.

[7] L. Ljung, System Identification: Theory for the User, Prentice-
Hall, Englewood Cliffs, NJ, USA, 2nd edition, 1999.

[8] Y. Chen, B. Yang, J. Dong, and A. Abraham, “Time-series fore-
casting using flexible neural tree model,” Information Sciences,
vol. 174, no. 3-4, pp. 219–235, 2005.

[9] H. Peng, T. Ozaki, V. Haggan-Ozaki, and Y. Toyoda, “A parame-
ter optimization method for radial basis function type models,”
IEEE Transactions on Neural Networks and Learning Systems,
vol. 14, no. 2, pp. 432–438, 2003.

[10] Y. Chen, B. Yang, and J. Dong, “Time-series prediction using a
local linear wavelet neural network,” Neurocomputing, vol. 69,
no. 4–6, pp. 449–465, 2006.

[11] C. Harpham and C. W. Dawson, “The effect of different basis
functions on a radial basis function network for time series
prediction: a comparative study,” Neurocomputing, vol. 69, no.
16-18, pp. 2161–2170, 2006.

[12] H. Du and N. Zhang, “Time series prediction using evolving
radial basis function networks with new encoding scheme,”
Neurocomputing, vol. 71, no. 7-9, pp. 1388–1400, 2008.

[13] H. T. Toivonen, S. Tötterman, and B. Åkesson, “Identification
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