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Video surveillance plays a vital role in maintaining the social security although, until now, large uncertainty still exists in danger
understanding and recognition, which can be partly attributed to intractable environment changes in the backgrounds.This article
presents a brain-inspired computing of attention value of surrounding environment changes (EC) with a processes-based cognition
model by introducing a ratio value 𝜆 of EC-implications within considered periods.Theoretical models for computation of warning
level of EC-implications to the universal video recognition efficiency (quantified as time cost of implication-ratio variations from
𝜆𝑘 to 𝜆𝑘+1, 𝑘 = 1, 2, . . .) are further established. Imbedding proposed models into the online algorithms is suggested as a future
research priority towards precision security for critical applications and, furthermore, schemes for a practical implementation of
such integration are also preliminarily discussed.

1. Introduction

Surveillance plays a vital role in maintaining social security
and protecting infrastructure facilities of a country [1, 2]. But
until now, there are still considerable uncertainties associated
with danger understanding and recognition, especially for
engineering-critical applications [3–5], which can be partly
attributed to implications of environment conditions to video
recognition efficiency of the surveillance system. It has
been demonstrated that suitable model parameters in online
algorithms and difficulty level of object detection tasks in
different environments can be much different [6].

Surrounding environment changes as particular changes
in backgrounds are also responsible for some significant but
still unresolved issues in objects recognition and tracking
[7]. Because the backgrounds cannot be well-characterized
in uncontrolled environments changes, the surveillance video

recognition becomes more intractable [8]. Recognition of
objects, accidents, and behaviors in dynamic environments is
still a great challenge in video surveillance [9], which should
be carried out through objects detection, motion tracking
and analyses, and understanding and recognition of other
details with robust and efficient algorithms. Environments
changes are so rich and varied that an online algorithm
with universal significance is demanded towards the effective
dangers detection and warning in dynamic environment
changes [10–17].

Numerous algorithms have been developed to tackle
video recognition challenges in various environments; how-
ever, a full understanding of environmental implications to
video recognition efficiency demands learning models with
universal significance (ignoring uncontrolled differences in
real scenarios) [18–27]. That is the essential reason why the
current online algorithms, even for latest algorithms, for
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Figure 1: A conceptual framework of precision security with four real scenarios as examples, (a) smog (captured by an android camera), (b)
sandstorm (captured by a mobile phone), (c) blizzard (with videos collected from a drone), and (d) truck exhaust (with videos collected by a
driving recorder).

example, the latest models for tackling crowd segmentation
for the high-dimensional, large-scale anomaly detection,
still encounter considerable uncertainties [23, 24]. How to
evaluate and compute the regulated attention in implications
of the surrounding environment changes and, furthermore,
how to define the warning level of EC-implications to video
recognition efficiency should be research priorities towards
precision security in intelligent surveillance [21–27].

It has been widely recognized that video surveillance
should consider the implications of surrounding environ-
ments changes to video surveillance, but until now, there are
still no models for a universal evaluation of EC-implications
to video recognition efficiency [4, 12–27]. To solve the unre-
solved issues associated with uncontrolled EC-implications,
various novel optimization models were proposed and fur-
ther applied in current learning systems [13–15]. Robustness
and efficiency of some online algorithms in tackling special
EC-implications in special scenario were validated in a series
of previous studies although, until now, universal models
for computation of the attention value and warning level
of EC-implications to video recognition efficiency remain
unaddressed and, hence, an emergent issue is improving the
current surveillance systems [16, 17].

Objectives in this study are (1) to present a brain-inspired
computing of warning level of the implications of surround-
ing environment changes to video recognition efficiency, (2)

to model brain cognition processes and establish theoretical
models for precision computation of attention value of EC,
and (3) to highlight necessity of introducing proposedmodels
in critical applications.

2. Preliminary Formulation

A conceptual framework of precision security to integrate
video surveillance with EC is shown in Figure 1. Danger
detection in EC-implications is of great complexity because
of features diversity. Precision security aims to present a
better understanding of EC-implications to danger detection
efficiency in sensitive areas and allows us to consider not
only “who are dangerous” but also “who are in danger” and
to reduce uncertainties in uncontrolled and complicated real
scenarios [28–31].

Brain cognition of EC-implications can be approached in
four processes, data acquirement, classification, computation,
and inference. Throughout the paper, the original, classified,
computed, and inferred data, respectively, are denoted by
EC1, EC2, EC3, and EC4. Obviously, EC𝑖 generates EC𝑖+1 (𝑖 =1, 2, 3). To reduce uncertainty, assume that only EC3 and EC4
contribute to dispelling the EC-implications and generate
regulated attention-effective data (denoted by 𝑆), which is
generated from determination by EC4 (with a contribution
𝜃3) and a part of EC3 (with a contribution 𝜃4).
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Figure 2: Unneglectable surrounding environment changes (EC) with various EC-implications in video recognition, objects vague (a1 and
b1), occlusion (a2 and b2), or dummy (c1 and c2).

Denote by 𝐼(𝑘) amounts of newly generated effective data
in the 𝑘-th brain learning period, 𝑘 = 1, 2, 3, . . .. Denote𝐴 𝑖(𝑡)
as the amounts of EC𝑖 at the 𝑡-th frame and let 𝐴(𝑘)𝑖0 , 𝐴(𝑘)𝑖1 be
EC𝑖 at the beginning and end of the 𝑘-th period, respectively, 𝑖
= 1, 2, 3, 4, 𝑘 = 1, 2, 3, . . .. Assume that the average efficiency of
data exploitation is 𝑟 and employ a function 𝛿(𝑥) = 1/(1 + 𝑥)
to estimate EC1 loss. Let 𝑠𝑖 be degree of EC𝑖 importance and𝛽𝑖
be the EC𝑖 contributions to 𝑆, 𝑖 = 1, 2, 3, 4; it is clear that 𝑠1 =𝑠2 = 0, 𝛽1 = 𝛽2 = 0, 𝛽3 < 𝛽4 = 1. During the 𝑘-th learning
period (with length 𝑇𝑘), define the theoretical quantification
of attention value of EC-implications as the amounts of 𝑆 and
define

𝑓𝑘 (𝑡) = {
{
{

0, 𝜆𝑘 ≤ 𝑡 ≤ 𝑇,
1, 0 < 𝑡 < 𝜆𝑘,

(1)

where 𝜆𝑘 can be interpreted as EC attention-time ratio in the
𝑘-th learning period, 𝑘 = 1, 2, . . ..

Based on the performance of a rapid DL (deep learning)
method, YOLO, which is one of the most efficient algorithms
for objects detection, classification, and tracking [32–36],
such implications of EC to video surveillance and the atten-
tion value and warning level are displayed in Figure 2.

Obviously, attention-time ratio of EC is reduced in
regulated attention and EC-warning level (denoted by 𝛼) is
measured by corresponding time cost.Throughout the paper,
computation of 𝛼 is formulated as evaluation of time cost in
implication-ratio changes from 𝜆𝑘 to 𝜆𝑘+1, 𝑘 = 1, 2, . . ..
3. Theoretical Analyses

Nonlinear functional analyses were confirmed suitable for
solving the real scenario analyses and, exactly, multistage

approach has been widely employed in simulating disaster
responses [37–42]. But dangers of understanding and recog-
nition in precision security are worthy of reconsideration
to dispel EC-implications, utilizing determined EC-attention
value and warning level for such implications. Recall that
brain cognition of EC-implications can be theoretically
approached in four processes and hence, correspondingly,
the formulated problem should be resolved in a four-stage
approach [40–46].

3.1. Attention Value of EC. Brain-inspired approach to atten-
tion value and warning level of EC are shown in Figure 3,
where the EC-implications are manifested as an evolution
of attention value and warning level. Such approach is inde-
pendent of EC-types and hence it has universal significance.
Regulated attention in brain-inspired data mining approach
for behavior, accidents, and emotion understanding can be
carried out through the whole video sampling, training, and
recognition processes [47, 48].

First, we have

𝐴(𝑘)𝑖 (𝑡) = 𝐴(𝑘)𝑖0 𝑒−𝑟𝑡, 𝑖 = 1, 2,
𝐴(𝑘)𝑗 (𝑡) = 𝐴(𝑘)𝑗0 𝑒−[𝑟+𝑓𝑘(𝑡)𝛽𝑗]𝑡, 𝑗 = 3, 4,

(2)

which imply

𝐴(𝑘)11 = 𝐴(𝑘)10 𝑒−𝑟,
𝐴(𝑘)21 = 𝐴(𝑘)20 𝑒−𝑟,
𝐴(𝑘)31 = 𝐴(𝑘)30 𝑒−𝑟−𝜆𝑘𝛽3 ,
𝐴(𝑘)41 = 𝐴(𝑘)40 𝑒−𝑟−𝜆𝑘𝛽4 .

(3)
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Figure 3: Brain-inspired evolution of attention value and warning level of environment changes, the attention values of EC-implications and
behaviors/accidents are represented by the circles size and text color, respectively, while the warning level of EC-implications is represented
by the arrows color.

Suppose that EC3 can fully convert to EC4; we obtain

𝐴(𝑘)20 = 𝐴(𝑘−1)11 ,
𝐴(𝑘)30 = 𝐴(𝑘−1)21 ,
𝐴(𝑘)40 = 𝐴(𝑘−1)31 + 𝐴(𝑘−1)41 ,
𝐴(𝑘)10 = 𝛿 (𝐼(𝑘−1)) 𝐼(𝑘−1).

(4)

Let 𝜆𝑘 = 𝜆, 𝑘 = 1, 2, . . .. From (2)–(4) and preliminary
formulation, we have

𝐼(𝑘−1) = ∫
𝜆

0

𝐴3 (𝑡) + 𝐴4 (𝑡)
1 − 𝜆 𝑑𝑡

= 1 − 𝑒−𝜆3(𝑟+𝛽3)
(1 − 𝜆) (1 − 𝑟 + 𝛽3)𝐴

(𝑘)
30

+ 1 − 𝑒−𝜆4(𝑟+𝛽4)
(1 − 𝜆) (1 − 𝑟 + 𝛽4)𝐴

(𝑘)
40 .

(5)

Therefore, theoretical quantification of 𝑆 (i.e., the attention
value of EC-implications) is

𝑆 = ∫
𝜆

0
[𝑠3𝛽3𝐴3 (𝑡) + 𝑠4𝛽4𝐴4 (𝑡)] 𝑑𝑡

= 𝑠3𝛽3
1 − 𝑟 + 𝛽3 [1 − 𝑒−𝜆3(𝑟+𝛽3)] 𝐴(𝑘)30

+ 𝑠4𝛽4
1 − 𝑟 + 𝛽4 [1 − 𝑒−𝜆4(𝑟+𝛽4)] 𝐴(𝑘)40 = 𝑠3𝜃3 + 𝑠4𝜃4.

(6)

3.2. Determined Warning Level. It remains to determine
warning level of EC-implications. To reduce time complexity
of learning periods for the EC-universal significance, analyses
can be divided into two cases: (1) time cost in different
learning periods is independent or (2) considering periods
are mutually dependent.

Within a single learning period, if EC evolution rate is
fixed (denoted by 𝑥𝑟), then we have

𝑑𝜆 (𝑡)
𝑑𝑡 = 𝜆 (𝑡) ∙ 𝑥𝑟. (7)



Complexity 5

Let 𝜆(0) = 𝜆0; we have
𝜆 (𝑡) = 𝜆0 ∙ 𝑒𝑥𝑟𝑡. (8)

Taking into account the variation of 𝑥𝑟 within this period,
for example, let 𝑥𝑟 = 𝑘(𝐾 − 𝜆(𝑡)); we have

𝑑𝜆 (𝑡)
𝑑𝑡 = 𝜆 (𝑡) ∙ 𝑘 ∙ (𝐾 − 𝜆 (𝑡)) , (9)

and hence

𝜆 (𝑡) = 𝜆0 ∙ 𝐾
𝜆0 + (𝐾 − 𝜆0) ∙ 𝑒−𝑘𝐾𝑡 . (10)

For a videowith 𝑛 learning periods, let𝑥𝑟𝑖 = 𝑘𝑖(𝐾𝑖−𝜆𝑖(𝑡));
we have

𝑑𝜆𝑖 (𝑡)
𝑑𝑡 = 𝜆𝑖 (𝑡) ∙ 𝑘𝑖 ∙ (𝐾𝑖 − 𝜆𝑖 (𝑡)) ,
𝜆𝑖 (0) = 𝜆𝑖0,

𝑖 = 1, 2, . . . , 𝑛.
(11)

The solution of (11) is

𝜆𝑖 (𝑡) = 𝜆𝑖0 ∙ 𝐾𝑖
𝜆𝑖0 + (𝐾𝑖 − 𝜆𝑖0) ∙ 𝑒−𝑘𝑖𝐾𝑖𝑡 , 𝑖 = 1, 2, . . . , 𝑛. (12)

Equivalently, we have

(𝐾𝑖 − 𝜆𝑖0) 𝜆𝑖 (𝑡) 𝑒−𝑘𝑖𝐾𝑖𝑡 = (𝐾𝑖 − 𝜆𝑖 (𝑡)) 𝜆𝑖0,
𝑖 = 1, 2, . . . , 𝑛.

(13)

To simplify the representation of (13), define the follow-
ing:

The Time-Parameters Matrices

𝑘 = diag [𝑘1, 𝑘2, . . . , 𝑘𝑛] ,
𝐾 = diag [𝐾1, 𝐾2, . . . , 𝐾𝑛] .

(14)

The Original Status Matrix

𝜆0 = diag [𝜆10, 𝜆20, . . . , 𝜆𝑛0] . (15)

The Dynamic Functions Matrix

𝜆 (𝑡) = diag [𝜆1 (𝑡) , 𝜆2 (𝑡) , . . . , 𝜆𝑛 (𝑡)] . (16)

We obtain the matrix form of (13):

(𝐾 − 𝜆0) 𝜆 (𝑡) 𝑒−𝑘𝐾𝑡 = (𝐾 − 𝜆 (𝑡)) 𝜆0. (17)

Further considering relationship between surveillance
videos, let (𝑘𝑖, 𝐾𝑖) = (𝑢𝑖(𝑘1), 𝑢𝑖(𝐾1)); then

𝜆𝑖 (𝑡) = 𝜆𝑖0 ∙ 𝑢𝑖 (𝐾1)
𝜆𝑖0 + (𝑢𝑖 (𝐾1) − 𝜆𝑖0) ∙ 𝑒−𝑢𝑖(𝑘1)𝑢𝑖(𝐾1)𝑡 ,

𝑢1 = 1, 𝑖 = 1, 2, . . . , 𝑛.
(18)

The symmetric form of (17) is

(𝑢𝑖 (𝐾1) − 𝜆𝑖0) 𝜆𝑖 (𝑡) 𝑒−𝑢𝑖(𝑘1)𝑢𝑖(𝐾1)𝑡
= (𝑢𝑖 (𝐾1) − 𝜆𝑖 (𝑡)) 𝜆𝑖0, 𝑖 = 1, 2, . . . , 𝑛.

(19)

Defining 𝑢 = diag[𝑢1, 𝑢2, . . . , 𝑢𝑛], 𝜆0 = diag[𝜆10, 𝜆20, . . . ,𝜆𝑛0], 𝜆(𝑡) = diag[𝜆1(𝑡), 𝜆2(𝑡), . . . , 𝜆𝑛(𝑡)], we obtain
(𝑢 (𝐾1) − 𝜆0) 𝜆 (𝑡) 𝑒−𝑢(𝑘1)𝑢(𝐾1)𝑡 = (𝑢 (𝐾1) − 𝜆 (𝑡)) 𝜆0, (20)

where 𝑢𝑖 is the correlative function of the 𝑖-th video in the
consider security system, 𝑖 = 1, 2, . . . , 𝑛.

Finally, EC-warning level can be computed as time cost
from 𝜆𝑗 to 𝜆𝑗+1, 𝑗 = 1, 2, . . .. Regulated attention can be
theoretically implemented in multidata fusion, learning, and
modelling. Region of interest (ROI) or pedestrians of interest
(POI) corresponds to GIS-data, including time, place, and
EC through Internet of things applicable for real scenarios,
as seen in Figure 4. It is worth noting that the 3D stereo
generated from a 2D video sequence is advantageous to
highlight EC evolution and therefore is also advantageous to
determine length of learning periods.

4. Simulation and Discussion

Our proposed models in the present study are learning
models with universal significance (ignoring uncontrolled
differences in real scenarios), which aim to establish theo-
retical framework of the environmental implications to video
recognition efficiency. It will serve for a universal evaluation
of EC-implications to video recognition efficiency. Numerous
algorithms have been developed to tackle video recognition
challenges in various environments, but it is still difficult to
describe the time complexity of learning periods. This can
be largely attributed to the complexity of video recognition
issues. Even for a given issue, it is not easy to determine learn-
ing periods for different EC-scenarios. Generally, attention-
time ratio of EC is reduced in regulated attention and EC-
warning level can be measured by corresponding time cost
in reducing the attention-time ratio of EC. So we formulate
the parameter 𝛼 as the time cost in implication-ratio changes
from 𝜆𝑘 to 𝜆𝑘+1, 𝑘 = 1, 2, . . .. For detailed analysis on
the time complexity, some examples of learning periods
for video detection and tracking in different surveillance
scenarios are presented in Figure 5. One possible solution
to treat the time complexity is to imbed proposed models
into online algorithms in critical applications, utilizing these
newly added examples and evidences.

Because of time complexity of learning periods, we give
EC-attention values for simulation, ten videos with given EC-
attention values in Table 1. Equations (17)–(20) are employed
to simulate brain-inspired computing of corresponding EC-
warning level.

Ignoring the association among ten surveillance videos,
from (17) and (18), the EC-warning levels from 𝜆𝑖 to 𝜆𝑖+1
are 𝛼1 = 0.8868, 𝛼2 = 0.1363, 𝛼3 = 1.5691, and 𝛼4 = 0.9220,
respectively, 𝑖 = 1, 2, 3, 4. Taking into account the association
among ten surveillance videos, utilizing (19) and (20) and
letting 𝑘1 = 0.4503, 𝐾2 = −1.6369 and finding a suitable
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warning level, where a simple algorithm [28] is employed to generate a 3D stereo from a 2D video sequence and highlight evolution of
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Table 1: Attention values of ten videos with unneglectable EC.

Period 1 Period 2 Period 3 Period 4 Period 5
30.21 2.68 1.01 0.81 0.33
29.88 1.62 1.43 0.76 0.31
26.66 1.23 1.29 0.71 0.28
25.12 1.28 1.26 0.65 0.27
23.33 1.24 1.11 0.54 0.26
13.33 1.18 1.12 0.48 0.21
0.32 1.02 1.01 0.39 0.22
0.18 0.98 0.96 0.35 0.23
0.17 0.86 0.91 0.31 0.23
0.16 0.79 0.68 0.27 0.25

association function (here 𝑢(𝑥) = 𝑎𝑥 + 𝑏𝑙𝑛𝑥), EC-warning
levels from 𝜆𝑖 to 𝜆𝑖+1 are𝛼1 = 0.4096,𝛼2 = 0.0984,𝛼3 = 0.6314,
and 𝛼4 = 0.9220, respectively, 𝑖 = 1, 2, 3, 4.

Characterizing EC-warning level and the implied dangers
is helpful for learning how well can potential dangers be
detected by video surveillance in changing environments,
especially in unmanned driving, where one major bottleneck
is finding effective and efficient algorithms for the danger
detection and caution, majorly due to lack of adaptive
attention in utilized learning systems [49–51]. Numerous
issues remain unresolved, a part of which are resulted from
poorly understood EC-implications [52–58]. Brain-inspired

modelling approach to such implications in the present study
majorly depends on amounts of attention data and length
of attention time, ignoring the differences in real scenarios.
Therefore, the proposed models have universal significance
for its critical applications. It is therefore necessary to
consider integration of proposed models with the online
surveillance algorithms towards precision security [59–61].
Such precision security can be a great challenge because
that performance degradation of video recognition efficiency
in critical environments has been demonstrated in some
previous studies [6, 17, 21, 35].

For special scenarios when EC-implications are not sig-
nificant, integration of our models with online algorithms
is not necessary. Computation can be largely simplified in
special applications. Taking the lane detection as an example,
the biological principles are to detect and recognize a line,
which can work well even if the lanes are partly missing [62–
64], as seen in Figure 6.

For complex applications, however, imbedding proposed
models in current security systems becomes necessary, such
as compressive sensing for sparse tracking [18] (it can be
improved as locally compressive sensing within ROI), VIBE
algorithm for real-time object detection from a moving
camera [19], Adaboost algorithm for noise-detection in ROI
[20], optical flow for robots’ recognition of environments [21],
SVMclustering for accidents classification [22], deep learning
algorithms for anomaly detection, crow analysis, and hierar-
chical tracking within ROI [23–27]. Objects understanding
and detection in dynamic environment changes are usually
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Figure 5: Examples of learning periods for video recognition in different surveillance scenarios for detailed analysis on the time complexity,
under implications of smog (in the blue-rectangles, captured by an android camera), sandstorm (in the green rectangles, captured by a
webcam on mobile), blizzard (in those yellow rectangles with videos collected from a drone), and truck exhaust (in the red rectangles with
videos collected by a driving recorder).

based on the adaptive background subtraction and other
objects recognitionmethods [17, 21, 35, 65–68]. Apreliminary
scheme for the practical integration of proposed models with
these algorithms is presented in Figure 7, where smog as a
global environmental change has significant implications to
video behaviors recognition and loitering detection within
a hovering period of two persons; only half of hovering
behaviors is detected; only one person is red-highlighted and
the other person is always in a green rectangle, indicating
the degradation of video surveillance efficiency within the
considered periods under any real challenging scenarios. It
is worth noting that the proposed models have analytic solu-
tions and the time cost in each iteration is much shorter than
the time cost of any video recognition algorithms. Therefore,
imbedding the proposed models in current security systems
for critical applications is not only necessary but also feasible;
proposed models can work well with any online algorithms
without a great loss in surveillance efficiency.

5. Conclusion

Despite previous studies on algorithms for video surveil-
lance in various environments, there are still considerable

uncertainties in objects detection, classification, and tracking.
Understanding and recognition of implications of surround-
ing environment changes to surveillance efficiency are still
very limited. Brain-inspired modelling approach to such
implications in the present study majorly depends on the
amounts of attention data and attention time, ignoring
difference in real scenarios. Therefore, proposed models
represent biological principles of computational intelligence
and have universal significance for its practical integration
with online algorithms. Nevertheless, a full understanding of
complexity of learning periods for different EC-scenarios is
still necessary. This is also a next research priority towards
a universal evaluation of implications of the surrounding
environments changes to video recognition efficiency.
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part of detected lane is temporally missing (highlighted by the red caution-texts “Right Departure”) within the period of right departures and
a robust and efficient warning of conflict danger (highlighted by the red caution-texts “Conflict Alert”) works well simultaneously during the
period (Frame #156 to #164).

ℎt

xt

A

ℎt

xt

A

ℎt

xt

A

Optical flow

Behaviors/accidents

Input Abstracted features

Label

Adaboost

VIBE

Attention value

Regulated
attention

DL

Locally
compressive

sensing
Our models

Warning level SVM

Figure 7: An example demands integration of proposed models with other online algorithms; smog as a global environmental change has
significant implications to loitering detection within a hovering period of two persons, where only half warning of hovering behaviors is
detected (highlighted by the red rectangles). A preliminary scheme for practical integration is subsequently presented.
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