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Single-microphone speech enhancement algorithms by using nonnegative matrix factorization can only utilize the temporal and
spectral diversity of the received signal, making the performance of the noise suppression degrade rapidly in a complex
environment. Microphone arrays have spatial selection and high signal gain, so it applies to the adverse noise conditions. In this
paper, we present a new algorithm for speech enhancement based on two microphones with nonnegative matrix factorization.
The interchannel characteristic of each nonnegative matrix factorization basis can be modeled by the adopted method, such as
the amplitude ratios and the phase differences between channels. The results of the experiment confirm that the proposed
algorithm is superior to other dual-microphone speech enhancement algorithms.

1. Introduction

For the sake of improving the quality and intelligibility of
noisy signals, speech enhancement is widely applied in many
fields including speech communication, speech coding, and
speech recognition. In terms of the number of microphones,
speech enhancement methods can be split into two classes:
single microphone and microphone array.

In the past, there have been many single-microphone
speech enhancement algorithms presented including statisti-
cal model method, spectral subtraction, subspace decomposi-
tion, and other typical algorithms. These algorithms have a
good noise suppression performance under stationary condi-
tions, but at the cost of a priori information loss of clean
speech and noise, in which it provides limited performance
under a complex environment.

Recently, a new matrix decomposition algorithm called
nonnegative matrix factorization (NMF) [1] method has
been successfully used to solve a variety of problems in many
fields. NMF is a powerful method for machine learning and
hidden data discovery; the basic idea of the method is that
one nonnegative matrix is decomposed into the product of
two nonnegative matrices without making any statistical

hypothesis of data. Compared with the traditional matrix
decomposition algorithm, it has a strong physical signifi-
cance, it has small storage, and it is simple and easy to
implement. The results show that it has been widely used
to effectively solve various problems including pattern clus-
tering and classification tasks [2–5], source separation [6],
and speech enhancement [7]. In voice applications, we can
obtain a priori information by using train data with NMF
instead of the clean signal.

Currently, according to the different methods in machine
learning, a single speech enhancement method based on
NMF can be categorized into unsupervised learning and
supervised learning algorithms [7]. Unsupervised methods
are simple and easy to implicate without any prior informa-
tion on the speech or noise, whose main difficulty is estimat-
ing the noise power spectral density (PSD) [8], especially in a
complex environment.

For the supervised methods, selecting a proper model
needs to consider not only the aspect of the speech and
noise signals but also the model parameter estimation using
the training samples of those signals. One advantage of these
methods is estimating the noise PSD without the need to use
other algorithms. Compared with the unsupervised methods
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under a complex environment, the studies have been proved
that the supervised method is an effective way of obtaining
better performance of the enhanced speech signals.

In order to solve the problem of the characteristic of mis-
match between training data and testing data, a supervised
NMF-based algorithm is proposed in speech enhancement
to incorporate with some prior information, including tem-
poral continuity [9] and statistical distribution of the data
[10]. More recently, aiming at improving the general sub-
space constraints, an improved NMF algorithm is proposed
by introducing additional terms into the objective function
[11]. A framework for decreasing the computational com-
plexity in NMF by using the extreme learning machine
(ELM) is designed in [12]. ELM and its variants have been
widely applied in different kinds of fields, because of its good
scalability and strong generalization performance [13]. With
the unceasing development of human-computer interaction
recently, higher requirements for speech recognition and
computer vision are put forward in a complex environment.
In [14–16]; the control scheme for improving the conver-
gence speed is developed to optimize system performance.

In [17], a speech enhancement method for solving the
difficult problem of manual selection modes by applying a
regularized nonnegative matrix factorization algorithm is
presented. In practical application, however, the speech sig-
nals have spatial characteristics (spatial diversity of reverber-
ation guidance), which is not present in the single-
microphone system. One microphone has good performance
in speech enhancement system, however, it only uses both
temporal and spectral information of signal and lacks spatial
information.

The two-microphone system has attracted much atten-
tion for its small size and small amount of calculation, which
is in line with the trend of miniaturization of devices. An
algorithm for achieving a dual-microphone speech enhance-
ment by using the coherence function is proposed [18]. In
[19], the improved method, which incorporates the coher-
ence function and the Kalman filter, is used to obtain
enhanced speech signal. These algorithms belong to the
unsupervised methods in a sense. Therefore, we propose a
novel β-NMF for a dual-microphone speech enhancement.
The interchannel characteristic of each NMF basis can be
modeled for the method by applying the spatial diversity of
speech signals.

The paper is arranged as follows: Section 2 reviews the
objective function of standard NMF with β divergence.
Section 3 extends it to the dual-microphones system for
the NMF basis. Section 4 presents a two-channel speech
signal model and details the proposed speech enhance-
ment framework. Section 5 presents simulation results
and Section 6 the conclusion.

2. Nonnegative Matrix Factorization with
β Divergence

In a single-microphone system, let y t , t ∈ R be the
observed value of one microphone for a specific time dura-
tion. By applying the short-time Fourier transform (STFT)

to y t , we can obtain a complex matrix Y = yij ∈ CI×J

(i ∈ 1, 2,… , I denotes the number of frequency bins and
j ∈ 1, 2,… , J the number of time frames). Using the stan-
dard NMF, the amplitude Z = ∣Y∣ or equivalently zij = ∣yij∣
is analyzed in [1]. Finally, the NMF-based algorithm is to find
a local optimal decomposition, which is defined as

Z ≈ Ẑ = TV, 1

where T = tik ∈ RI×K
+ is a basis matrix, V = vkj ∈ RK×J

+ is a
coefficient matrix, and K is the number of basis vectors.

For the sake of seeking for two nonnegative matrices such
that the difference between Z and the product TV is mini-
mized, define a measure function D to obtain the optimal
decomposition

arg min
T,V

D Z Ẑ , s t T ≥ 0,V ≥ 0, 2

where D Z Ẑ denotes the error divergence function
between the observed data Z and the reconstructed data Ẑ.
The different probability models can be derived by (2), and
then different types of cost functions are obtained by the
maximum likelihood. Selecting an appropriate objective
function is the key in formulating the NMF algorithm. Here,
the objective function is derived by using a parametric diver-
gence measure, namely, the β divergence [20]

Dβ Z T,V =〠
ij

zij
zβ−1ij − TV β−1

ij

β β − 1
+ TV β−1

ij

TV ij − zij
β

β ∈ \ 0, 1 ,
3

where β reflects the reconstruction penalty. The selection
of parameter β depends on the statistical distribution
characters and requires prior knowledge. When β = 2, the
result is shown as the squared Euclidean distance (ED);
when β→ 1, the result is approximately equal to the
Kullback-Leibler (KL) divergence; and when β→ 0, the
result is nearly equal to Itakura-Saito divergence.

T andV are expressed by applying multiplicative iterative
updating rules as described in [21]; the update rules are given
as

T← T ⊗
Z/ TV 2−β V⊤

TV β−1V⊤
, 4

V←V ⊗
T⊤ Z/ TV 2−β

T⊤ TV β−1 , 5

where the operation ⊗ represents an element-wise multipli-
cation, / and the quotient line are performed element-wise
division, and the superscript ⊤ is the matrix transpose. As
for the initializations of T and V, positive random numbers
are often used.
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3. The Dual-Microphone Model for NMF
Basis with β Divergence

This section proposes an extension of the standard NMF.
Compared with multichannel speech enhancement, dual-
channel speech enhancement has advantages in many
aspects. Assume that X 1 and X 2 explain the observations
of the 1st and 2nd microphones in the time-frequency
domain, respectively. In [22], a new interchannel matrix H
is defined, which represents the spatial characteristics
between two channels, and they have both common nonneg-
ative matrices T and V to model multichannel observations.

3.1. Preprocessing and Modeling. The first is only considering
the amplitude observations in the time-frequency domain
when we use the standard NMF algorithm for speech
enhancement. The observation of the 1st channel is obtained
and acted as a reference

X 1 =X 1 ⊗
X 1

X 1

∗

, 6

where ∗ is the complex conjugate, in order to fully reflect the
interchannel characteristic, and then the same is done for the
2nd channel with the expression of

X 2 =X 2 ⊗
X 1

X 1

∗

7

According to the above preprocessing principle, we can
find that X 1 is not only a nonnegative matrix but also a
complex matrix. Hence, an accurate modeling for the first
channel is designed by using (3), and then an accurate
modeling for the second channel is designed by introducing
an interchannel matrix H = hik ∈ CI×K , where ∑ihi = 1 uses
random initialization. The interchannel characteristic hik
contains spatial information of the 2nd channel.

3.2. Maximum Likelihood Estimation and Its Cost Function.
Using the dual-channel probabilistic model, the likelihood
is written as

p X 1 ,X 2 T,V,H ∝ p X 1 T,V p X 2 T,V,H ,

8

where we assume that the data follows the probability distri-
bution. Thus, the maximum negative log-likelihood solution
of (8) is represented as

arg max log
H≥0,T≥0,V≥0

p X 1 ,X 2 T,V,H

= −log p X 1 T,V − log p X 2 T,V,H

= −〠
ij

X 1
ij

X 1 β−1
ij

− TV β−1
ij

β β − 1

+ TV β−1
ij

TV ij − X 1
ij

β

−〠
ij

X 2
ij

X 2 β−1
ij

− H ⊗ TV β−1
ij

β β − 1

+ H ⊗ TV β−1
ij

H ⊗ TV ij − X 2
ij

β

=c D 1
β X 1 TV +D 2

β X 2 H ⊗ TV ,

9

where = c represents equality up to irrelevant constant terms.
The former term is explained in Section 2, and now the latter
term is given by

D 2
β X 2 H ⊗ TV

=〠
ij

X 2
ij

X 2 β−1
ij

− H ⊗ TV β−1
ij

β β − 1

+ H ⊗ TV β−1
ij

H ⊗ TV ij − X 2
ij

β

10

The gradient is expressed with respect to α of the cost
function ∇αD (The subscript of the cost function of the 2nd
term is omitted for convenience, where α ∈ H, T,V
denotes a variable.) as the difference of two positive terms
∇−
αD and ∇+

αD as

∇αD = ∇+
αD − ∇−

αD 11

The solution can be expressed by applying general heu-
ristic multiplicative update rules as

α← α ⊗
∇−
αD

∇+
αD

12

The derivative of the cost function of the 2nd term in (10)
with respect to H, T, and V are shown as

∂D
∂T

= −
X 2

H ⊗ TV 2−β V
⊤H⊤1I×K + H ⊗ TV β−1V⊤H⊤1I×K ,

∂D
∂V

= −TΤ ⊗HΤ X 2

H ⊗ TV 2−β + T⊤ ⊗H⊤ H ⊗ TV β−1,

∂D
∂H

= −
X 2

H ⊗ TV 2−β V
⊤T⊤1I×K + H ⊗ TV β−1V⊤T⊤1I×K

13
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This leads to the following updating rules by using the
cost function of (9), and then the complex matrices and non-
negative matrices T and V are estimated by using the update
rule of [21]; we can obtain the gradient of the cost function
which is rewritten as

T← T ⊗
X 1 / TV 2−β V⊤ + X 2 / H ⊗ TV 2−β HV ⊤1I×K

TV β−1V⊤ + H ⊗ TV β−1 HV ⊤1I×K
,

14

V←V ⊗
T⊤ X 1 / TV 2−β + H ⊗ T ⊤ X 2 / H ⊗ TV 2−β

T⊤ TV β−1 + H ⊗ T ⊤ H ⊗ TV β−1
,

15

H←H ⊗
X 2 / H ⊗ TV 2−β TV ⊤1I×K

H ⊗ TV β−1 TV ⊤1I×K
, 16

where 1I×K is a I × K matrix of ones. As is shown by Formulas
(14), (15), and (16) derived above, it can reduce to single-
channel counterparts (4) and (5) if only one microphone is
used, and the interchannel matrix H is a unit matrix.

4. Proposed NMF-Based Speech
Enhancement Algorithm

Assuming that dual microphones are set up in a complex
environment, and the noise and target speech signals are spa-
tially separated. Let s t be the target speech, and then the

noisy speech signal of the mth microphone ym t can be
defined with the expression of

ym t = am t ∗ s t + nm t   m = 1, 2 , 17

where ∗ is the operator of conjunction, m is the micro-
phone index, t is the sample index, and am t and nm t
represent room reverberation and noise, corresponding to
the mth microphone, respectively. The block diagram of
the proposed algorithm is described in Figure 1, which
mainly includes two parts: the training stage and the
enhancement stage.

4.1. Training Stage. By applying STFT, (17) can be repre-
sented in the frequency domain

Ym i, j =Am i, j S i, j +Nm i, j 18

At the stage of training, we chose the magnitude spectra
of the clean speech and noise from the database as the data
matrix for the β-NMF processing to produce the basis matri-
ces TS and TN , by using multiplicative iterative updating
rules given in (4) and (5) to the corresponding training data,
separately. The basis matrices are saved as a joint dictionary
matrix, namely, T = TS TN , and as a priori information of
the enhancement stage.

4.2. Enhancement Stage. The proposed enhancement stage
consists of three parts, firstly beamforming, secondly signal
gain estimation, and finally speech signal reconstruction,
which are explained in the next section.

Beamforming system

Speech enhancement system

STFTNMF
V H
, V

T=[TS TN]

Joint dictionary
matrix STFT

y1(t)

y(t)

y2(t)

Y1(i,j)

Y2(i,j)

Y 
(i,
j)

∠
Y 

(i,
j)

S (i,j)

W1

W2

G1

G2

G ISTFT

�휏 1

�휏 2

�훴

⌃
S (t)⌃

Figure 1: The block diagram of the proposed algorithm.
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4.2.1. Beamforming. Beamforming is one of the most popular
algorithms which are the basis of microphone array speech
enhancement. In general, the most common fixed beamfor-
mers are the delay-and-sum and superdirective beamfor-
mers. In the paper, we can use the delay-and-sum as

y t = 〠
m

i=1
wiyi t − τi , 19

where wi represents weight and τi denotes the time delay
compensation obtained by estimation.

4.2.2. Signal Gain Estimation. Firstly, two noisy speeches y1
t and y2 t are used as input signals of this stage after delay
compensation, and then we obtain the magnitude spectra of
noise by applying STFT, namely, Y1 and Y2 . Next, they
are factorized via the extension of NMF with the fixed joint
dictionary matrix T = TS TN , which is just derived from
the training stage via using the update rules given in
(15) and (16). Accordingly, the magnitude spectra can be
approximately decomposed into an interchannel matrix
H = HS HN and a coefficient matrixV = VS VN .

(1) Based on the above results, we can obtain the 1st
channel (as reference channel) gain function G1
which is defined with the expression of

G1 = TSVS ⋅ / TV 20

(2) By using the interchannel matrix H, we can also
obtain the 2nd channel gain function G2 which is
represented as

G2 = HS ⊗ TSVS ⋅ / H ⊗ TV 21

(3) The final gain function G can be obtained for this
work by Formulas (20) and (21). Furthermore, the
gain estimation is achieved by

G =G1 ⊗G2, 22

where / is the element-wise division.

4.2.3. NMF-Based Signal Reconstruction. This stage is similar
to a Wiener filtering process; the gain function G is obtained
by using (22) and acts as a Wiener filter. First, we obtain the
magnitude spectra of y t by using STFT, namely, Y , and
then the magnitude spectra of the enhanced speech Ŝ is
approximately represented by

Ŝ =G ⊗ Y 23

Therein, the enhanced speech waveform ŝ t is estimated
by using the inverse STFT.

5. Experimental Results

In this section, we perform an experiment to evaluate the per-
formance of these methods with respect to quality and intel-
ligibility. We compare the proposed method with the speech
enhancement algorithm coherence based in [18] and the
standard NMF in terms of performance. The performance
of the proposed method is evaluated using a perceptual eval-
uation of speech quality (PESQ) [23], source-to-distortion
(SDR) [24], and segmental SNR (SSNR) which are used as
the objective measures, where a higher value indicates a
better result.

5.1. Experimental Setup. The selection of the clean speech and
the noise is the TIMIT database [25] and the NOISEX
database [26], where using downsampling we can adjust the
sampling rate of all signals to 8 kHz. In this study, the train-
ing for the clean speech contains 20 sentences (60 seconds)
pronounced by 10 males and 10 females. Each of the test
speech signals for the speech enhancement work is one sen-
tence. We select two background noises in the paper: the
Hfchannel and Factory1 noises. Besides, training data and
test data in the experiment are disjoint. For the proposed
framework, the window function, the applied frame size,
and the frame shift are Hamming window, 512 samples and
128 samples, respectively. According to the standard decision
of K ≤ I J/ I + J , assuming the clean speech and noise basis
vectors, K is set to 30, respectively, and let the maximum
iteration number be equal to 50. The two microphones with a
4 cmspacing distance picked up noisy speech signals which
were generated by convolving the target and noise sources
with a set of HRTFs measured inside a mildly reverberant
room (T60 ≈ 220ms) with dimensions 4.3× 3.8× 2.3m3

(length×width×height), by adding the noise to the clean
testing speech to generate the noisy signals at four signal-
to-noise ratios (SNRs): −10, −5, 0, and 5dB. The distance
between the target source and the midpoint of the two micro-
phones is set to 1.2m. The direction of arrival (DOA) was
chosen, respectively, according to θ∝ 0∘, 30∘, 60∘, 90∘, 120∘,
150∘, 180∘ . The squared Euclidean distance β = 2 is used
for simplicity.

Figure 2 shows the results of the PESQ, SDR, and
SSNR metric with the variation of the θ values while
input SNR is set to 0 dB under the Factory1 noise condi-
tion. As can be seen, DOA of the target source has little
influence on the PESQ metric for these methods, but a
great effect on the other metrics. In the following exper-
iments we ultimately chose θ = 60° for consistency and
simplicity. Figure 2 also indicates that the proposed method
can suppress not only the background noise level effec-
tively but also comparability when the angle of the source
is set to 60°.

5.2. Speech Quality and Intelligibility Evaluation. To investi-
gate the achievable gain estimation performance, we chose
two background noises in a complex environment: the
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Figure 2: PESQ, SDR, and SSNR values of the enhanced speech from Factory1 noise at 0 dB input SNR.
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Figure 3: PESQ, SDR, and SSNR scores in Factory1 noise scenarios.
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Figure 4: PESQ, SDR, and SSNR scores in Hfchannel noise scenarios.
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Figure 6: PESQ, SDR, and SSNR scores for the different divergence values from Factory1 noise at different SNR levels.
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Hfchannel and Factory1 noises. Figures 3 and 4 give some
results between the noisy signal and the enhanced signal with
the different methods where parameter β is set to 2.

From Figures 3 and 4, we can find that the proposed
method leads to higher PESQ, SDR, and SSNR scores than
the coherence-based method [18] and the standard NMF
algorithm [7] in almost all cases, which reveals that this algo-
rithm could also prominently improve both the quality and
intelligibility of speech signals. The analysis of PESQ scores
shows that the method in [18] has good stability and scarcely
affected by SNR, but with lower performance corresponding
with other metrics. The latter tends to much distortion. It can
be also seen that the advantage of these algorithms becomes
less evident with SNR increased. Compared with the

coherence-based method, the proposed methods based on
NMF still attain improvement in objective measures.

Figure 5 shows the results of the PESQ, SDR, and SSNR
metric for the change in the incidence of angle under differ-
ent β parameter conditions. From Figure 5, we can see that
the change in the incidence angle has a significant influence
on the performance of the proposed method. Based on the
observation of SSNR values, for θ = 90°, the proposed method
has better scores, but at the expense of speech quality and
intelligibility. For θ = 120°, we can get an optimum solution
of the angle of incidence. Besides, by comparing analysis of
the PESQ and SDR values with different β parameters, it is
found from simulating results that parameter β has great
influence on speech quality more than speech intelligibility
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Figure 7: The spectrogram of (a) the clean speech signal, (b) the noisy signal obtained via the delay-and-sum, (c) the noisy speech enhanced
by the coherence-based method, (d) the noisy speech enhanced by the standard NMF, (e) the noisy speech enhanced by the proposed method
(β = 2), and (f) the noisy speech enhanced by the proposed method (β = 1).
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under the same angle conditions. For β = 1, it not only can
guarantee the accuracy of the proposed method but also
can suppress the background noise level effectively without
introducing much distortion.

The simulation experiment shows the performance of the
proposed algorithm with the different divergence and noises
in Figure 6. We can find that PESQ, SDR, and SSNR scores
become better and better when the SNR increases under the
same conditions. For the same SNR conditions, an optimum
solution with β→ 1 can be obtained where divergence tends
to the KL divergence. In fact, this observation can be inter-
preted that the proposed method based on the KL divergence
can improve speech quality and intelligibility better than
other parameter properties. Besides, this result indicates that
under the same conditions the proposed method has obvious
improvement of PESQ, SDR, and SSNR scores, especially at
low SNR. Hence, the proposed method can provide aural
quality and noisy speech intelligibility.

5.3. Signal Spectrogram. By comparing the color depth of
speech spectrograms, we can obtain the structural character-
istics of residual noise and speech distortion. The spectro-
grams of the different signals are presented in Figure 7. It
reflects that the performance of this method is better than
that of those methods. Comparing to them for Factory1 noise
while input SNR is set to 0 dB, it is easy to see that the
proposed method based on NMF exhibits lower speech dis-
tortion and residues than the traditional coherence-based
method and the standard NMF method do in the restored
spectrogram.

Besides, the β parameter influences the SDR scores. In
the paper, the method based on the KL divergence is shown
to be superior to the squared Euclidean distance in speech
enhancement capability. Finally, the proposed speech
enhancement framework based on KL-NMF provides the
significant improvement in both quality and intelligibility
justified by the higher evaluation scores.

6. Conclusions

We propose a dual-microphone speech enhancement frame-
work based on β-NMF in the paper. This method extends
single-microphone speech enhancement based on NMF by
introducing the interchannel matrix to the cost function. It
can express the interchannel characteristic of each NMF basis
very well by applying a priori information. The results of the
experiment express that the presented method is effective in
nonstationary and low SNR conditions.
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