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The proposed hesitant fuzzy linguistic set (HFLS) is a powerful tool for expressing fuzziness and uncertainty in multiattribute group
decision-making (MAGDM). This paper aims to propose novel aggregation operators to fuse hesitant fuzzy linguistic information.
First, we briefly recall the notion of HFLS and propose new operations for hesitant fuzzy linguistic elements (HFLEs). Second,
considering the Muirhead mean (MM) is a useful aggregation technology that can consider the interrelationship among all
aggregated arguments, we extend it to hesitant fuzzy linguistic environment and propose new hesitant fuzzy linguistic
aggregation operators, such as the hesitant fuzzy linguistic Muirhead mean (HFLMM) operator, the hesitant fuzzy linguistic
dual Muirhead mean (HFLDMM) operator, the hesitant fuzzy linguistic weighted Muirhead mean (HFLMM) operator, and the
hesitant fuzzy linguistic weighted dual Muirhead mean (HFLWDMM) operator. These operators can reflect the correlations
among all HFLEs. Several desirable properties and special cases of the proposed operators are also studied. Furthermore, we
propose a novel approach to MAGDM in a hesitant fuzzy linguistic context based on the proposed operators. Finally, we
conduct a numerical experiment to demonstrate the validity of our method. Additionally, we compare our method with others
to illustrate its merits and superiorities.

1. Introduction

MAGDM is an activity that selects the optimal alternative
under a set of attributes assessed by a group of decision-
makers. Owing to the increased complexity in decision-
making, one of the difficulties in practicalMAGDMproblems
is representing attribute values in fuzzy and vague decision-
making environments. In 1965, Zadeh [1] originally pro-
posed an effective tool, called fuzzy set (FS), for depicting
and expressing impreciseness and uncertainty. Since its
introduction, FS has received substantial attention and has
been studied by thousands of scientists worldwide in theoret-
ical and practical aspects [2]. Thereafter, several extensions of
FS have been proposed, such as interval-valued fuzzy set [3],
intuitionistic fuzzy set (IFS) [4], interval-valued intuitionistic
fuzzy set [5], type 2 fuzzy set [6], and neutrosophic set [7]. In
the past decades, these fuzzy sets have been successfully
applied to decision-making [8–26]. However, these tools

are unsuitable to cope with circumstances in which
decision-makers are hesitant between a few different values
when determining membership degree. Therefore, Torra
[27] proposed the concept of hesitant fuzzy set (HFS), which
permits the membership degree of an element to a set to be
represented by a set of possible values between 0 and 1, in
order to address such cases.

Additionally, decision-makers cannot make quantitative
decisions with limited priori knowledge and insufficient time
due to the high complicacy of actual decision-making prob-
lems. Thus, qualitative methods are used to express the
decision-makers’ preference information. The linguistic term
set (LTS) can be used for the convenient assessment of lin-
guistic variables rather than numerical values. Motivated by
the HFS, Rodríguez et al. [28] proposed the hesitant fuzzy
linguistic term set (HFLTS), in which several linguistic terms
are used to evaluate a linguistic variable. However, the
HFLTS cannot reflect possible membership degrees of a
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linguistic term to a given concept [29]. For example, in an
intuitionistic linguistic set [30], a linguistic variable and an
intuitionistic fuzzy number are used to describe the fuzzy
attributes of an alternative. To overcome the drawback of
HFLTSs, Lin et al. [31] introduced HFLSs, in which HFSs
are utilized to express the hesitancy of decision-makers in
selecting the membership degrees for a linguistic term. The
basic elements of the HFLSs are called HFLEs. For example,
a possible HFLE can be denoted as a = s2, 0 1, 0 3, 0 7 ,
where s2 is a linguistic term, and 0 1, 0 3, 0 7 is a collection
of membership degrees that describe fuzziness, uncertainty,
and hesitancy of decision-makers when providing a linguistic
term. Evidently, 0 1, 0 3, 0 7 is a hesitant fuzzy element
(HFE). HFLS can be employed to evaluate an object from
two aspects, namely, a linguistic term and an HFE. The for-
mer can evaluate the object as “medium,” “poor,” or “too
poor,” and the latter can express the hesitancy of decision-
makers in giving a linguistic term.

In the MAGDM process, one of the most significant steps
is aggregating the decision-makers’ preference information.
In the past years, aggregation operators have gained increas-
ing research attention. One of the most classical and popular
aggregation operators is the ordered weighted averaging
(OWA) operator, which was introduced by Yager [32] for
crisp numbers. The OWA operator was extended to IFSs
[33], HFSs [34], and dual HFSs [35]. Moreover, researchers
have proposed extensions of the OWA operators, such as
induced OWA [36] and generalized OWA operator [37].
However, the OWA operator and its extensions do not con-
sider the interrelationship among the arguments. Thus, these
operators assume that attributes are independent, which is
inconsistent with reality. Therefore, scholars have focused
on operators which can capture the interrelationship among
arguments. The Bonferroni mean (BM) [38] and Heronian
mean (HM) [39] are two crucial aggregation technologies
that consider the interrelationship between any two argu-
ments. Recently, these operators have been extended to
aggregate hesitant fuzzy linguistic information, and a num-
ber of hesitant fuzzy linguistic aggregation operators have
been proposed [31, 40–43]. However, the correlations among
arguments are ubiquitous, which means that the interrela-
tionship among all arguments should be considered, as such,
the BM and HM are inadequate and insufficient. The MM
[44] is a well-known aggregation operator that considers
the interrelationship among all arguments and possesses a
parameter vector that leads to a flexible aggregation process.
In addition, some existing operators are special cases of MM.
Recently, MM has been investigated in intuitionistic fuzzy
[45] and 2-tuple linguistic environments [46]. To the best
of our knowledge, no research has been performed on MM
under HFLSs. Hence, the MM operator should be extended
to HFLSs. The present study investigates the MM under hes-
itant fuzzy linguistic environment and proposes new aggre-
gation operators for HFLEs. The contribution of this paper
is that we propose new operators for aggregating hesitant
fuzzy linguistic information that can capture the interrela-
tionship among all HFLEs. Furthermore, we apply the devel-
oped operators to MAGDM in which attribute values take
the form of HFLEs.

The aims and motivations of this paper are (1) to propose
some new aggregation operators to aggregate HFLEs and (2)
to propose a novel approach to MAGDM problems. The rest
of the paper is organized as follows. Section 2 briefly recalls
basic concepts, such as HFLS and MM. Section 3 proposes
several hesitant fuzzy linguistic Muirhead mean operators.
Section 4 describes the developed weighted aggregation oper-
ators. Section 5 proposes a novel approach to MAGDM
within the hesitant fuzzy linguistic context. Section 6 vali-
dates the proposed method by providing a numerical exam-
ple. The final section summarizes the paper.

2. Preliminaries

In this section, we briefly review concepts about HFLSs and
their operations. The concepts of MM and dual Muirhead
mean (DMM) are also introduced.

2.1. Linguistic Term Sets and Hesitant Fuzzy Linguistic Sets

Definition 1. Let S = si ∣ i = 12… t be an LTS with odd
cardinality, where si represents the possible value for linguis-
tic variable and should satisfy the following [47]: (1) the set
is ordered: si > sj if i > j; (2) the negation operator neg si = sj
is set, such that i + j = t + 1; (3) the max operator is max
si, sj = si if si ≤ sj; and (4) the min operator is min si, sj =
si if si ≤ sj. For example, when t = 7, a possible LTS S can be
defined as

S = s1, s2, s3, s4, s5, s6, s7
= very poor, poor, slightly poor, fair,

slightly good, good, very good
1

Lin et al. [31] then introducedHFLSs basedonHFSs andLTSs.

Definition 2 [31]. Let X be an ordinary fixed set, then a hes-
itant fuzzy linguistic set (HFLS) A on X can be defined as

A = x, sθ x , hA x   x ∈ X , 2

where sθ x is the linguistic term, and hA x is the HFE that
denotes the possible membership degrees of the element x
∈ X to sθ x . For convenience, a = sθ x , hA x is called an
HFLE by Lin et al. [31].

Example 1. Let X = x1, x2, x3 be an ordinary fixed set. A
possible HFLS A defined on X can be A = x, sθ x , hA x ∣
x ∈ X = x1, s5, 0 3 , x2, s4, 0 1, 0 6 , x3, s4, 0 2, 0 4,
0 5 . If we divide A into three subsets that contain only one
object, then the three HFLEs are s5, 0 3 , s4, 0 1, 0 6 ,
and s6, 0 2, 0 4, 0 5 . In s5, 0 3 , 0.3 denotes the
membership degree that x1 belongs to s5. In s4, 0 1, 0 6 ,
0.1 and 0.6 denote the possible membership degrees that
x2 belongs to s4. In s6, 0 2, 0 4, 0 5 , 0.2, 0.4, and 0.5 rep-
resent the possible membership degrees that x3 belongs to
s6. Notably, s5, 0 3 is a special case of HFLE in which
only one membership degree is assigned in the correspond-
ing HFE.
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Evidently, an HFLE is a combination of linguistic terms
with HFE, which takes the advantages of the two. Compared
with linguistic terms, HFLE contains an HFE that permits
several possible membership degrees and denotes the degrees
to which an alternative belongs to in a corresponding linguis-
tic term. Therefore, HFLE can more accurately and appropri-
ately express the fuzziness, uncertainty, and hesitancy of
decision-makers than crisp linguistic variables. Compared
with HFE, HFLE has a linguistic term that evaluates an object
as “poor,” “middle,” or “good.” Hence, linguistic terms and
HFEs can only evaluate objects from one aspect, whereas
HFLSs can evaluate objects from two aspects, namely, quali-
tative (linguistic terms) and quantitative evaluations (HFEs).
Therefore, HFLSs are more powerful than HFSs and LTSs.

HFLEs can be used in real decision-making problems.
For example, the linguistic term (s2) “poor” is acceptable
for evaluating the functionality and technology of an ERP
system by four decision-makers. Three decision-makers are
required to provide their preference information under the
value “poor” (s2). If the first decision-maker provides 0.1,
the second decision-maker provides 0.3, the third decision-
maker provides 0.6, and the fourth decision-maker provides
0.8, then the combination evaluation can be denoted by
s2, 0 1, 0 3, 0 6, 0 8 . Based on this analysis, HFLS is a
powerful and effective decision-making tool.

Lin et al. [31] introduced a law to compare any twoHFLEs.

Definition 3 [31]. For an HFLE a = sθ a , h a , the score
function of a is S a = 1/#h ∑γ∈hγ sθ a , where #h is the
number of values in h; for convenience, #h is also called the
length of h. For any two HFLEs a1 and a2, if s a1 > s a2 ,
then a1 > a2; if s a1 = s a2 , then a1 = a2.

Additionally, Lin et al. [31] introduced several operations
for HFLEs.

Definition 4 [31]. Let a = sθ a , h a , a1 = sθ a1
, h a1 , and

a2 = sθ a2
, h a2 be any three HFLEs, and λ be a positive

crisp number, then

(1) a1 ⊕ a2 = sθ a1
+ sθ a2

,  ∪γ a1 ∈h a1 ,γ a2 ∈h a2
γ a1

+ γ a2 − γ a1 γ a2 ,

(2) a1 ⊗ a2 = sθ a1
× sθ a2

,  ∪γ a1 ∈h a1 ,γ a2 ∈h a2
γ a1 γ

a2 ,

(3) aλ = sλθ a , ∪γ a ∈h a γ a λ ,

(4) λa = λsθ a ,  ∪γ a ∈h a 1 − 1 − γ a λ .

However, these operations for HFLEs are complicated to
use. For example, let a = a1 ⊗ a2, by Definition 4, we obtain
#h a = #h a1 × #h a2 . When aggregating a set of
HFLEs, the aggregated values are very complicated. Hence,
we should simplify the operations for HFLEs. Motivated by
the simplified operations for HFEs introduced by Liao et al.
[48], we introduce new operations for HFLEs.

Definition 5. Let a = sθ a , h a , a1 = sθ a1
, h a1 , and

a2 = sθ a2
, h a2 be any of the three HFLEs satisfying

#h a = #h a1 = #h a2 and λ be a positive crisp num-
ber, then

(1) a1 ⊕ a2 = sθ 1 + sθ 2 , hσ t
1 + hσ t

2 − hσ t
1 hσ t

2 ,

(2) a1 ⊗ a2 = sθ a1
× sθ a2

, hσ t
1 hσ t

2 ,

(3) aλ = sλθ a , hσ t λ ,

(4) λa = λsθ a , 1 − 1 − hσ t λ
,where t = 1, 2,… , #h

a , hσ t , hσ t
1 , and hσ t

2 represent the tth smallest
values of h a ,h a1 , and h a2 , respectively.

Remark 1. In Definition 5, we assume that all HFEs have the
same number of values that cannot be always satisfied. To
solve the problem, Xu and Xia [49] introduced a transforma-
tion regulation for HFEs by assuming that all decision-
makers are pessimistic (or optimistic). The transformation
regulation can be described as follows. For two HFEs h1
and h2, let h =max #h1, #h2 . If #h1 < #h2, then h1 should
be extended by adding the minimum (or maximum) value
until it has the number of values as h2. If #h1 < #h2, then
h2 should be extended by adding the minimum (or maxi-
mum) value until it has the same number of values as h1.

2.2. MuirheadMean.MM is an aggregation operator for crisp
numbers introducedbyMuirhead [44]. This operator can cap-
ture the interrelationship among all aggregated arguments.

Definition 6 [44]. Let ai i = 1, 2,… , n be a collection of crisp
numbers and P = p1, p2,… , pn ∈ Rn be a vector of parame-
ters, then MM is defined as

MMP a1, a2,… , an = 1
n

〠
n

ϑ∈Sn

∏
n

j=1
a
pj
ϑ j

1
〠n

j=1
Pj, 3

Where ϑ j j = 1, 2,… , n is any permutation of (1, 2,… , n),
and Sn is the collection of all permutations of (1, 2,… , n).

Furthermore, Liu and Li [45] proposed the DMM
operator.

Definition 7 [45]. Let ai i = 1, 2,… , n be a collection of crisp
numbers and P = p1, p2,… , pn ∈ Rn be a vector of parame-
ters, then the DMM operator is defined as

DMMP a1, a2,… , an = 1
〠n

j=1pj
∏
n

ϑ∈Sn
〠
n

j=1
pjaϑ j

1/n

, 4

where ϑ j j = 1, 2,… , n is any permutation of (1, 2,… , n),
and Sn is the collection of all permutations of (1, 2,… , n).
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3. Hesitant Fuzzy Linguistic Muirhead
Mean Operators

In this section, we extend MM and DMM to the hesitant
fuzzy linguistic environment and develop new aggregation
operators for aggregating HFLEs.

3.1. Hesitant Fuzzy Linguistic Muirhead Mean Operator

Definition 8. Let ai = sθ ai
, h ai i = 1, 2,… , n be a collec-

tion of HFLEs where #h ai = h holds for all i, and P = p1,
p2,… , pn ∈ Rn be a vector of parameters, then the hesitant
fuzzy linguistic Muirhead mean (HFLMM) can be defined as

HFLMMP a1, a2,… , an = 1
n

⊕
n

ϑ∈Sn
⊗
n

j=1
a
pj
ϑ j 1/〠n

j=1Pj,

5
where ϑ j j = 1, 2,… , n is any permutation of 1, 2,… , n ,
and Sn is the collection of all permutations of 1, 2,… , n .

According to the operations for HFLEs, the following
theorem can be obtained.

Theorem 1. Let ai = sθ ai
, h ai i = 1, 2,… , n be a col-

lection of HFLEs with #h ai = h holding for all i and P =
p1, p2,… , pn ∈ Rn be a vector of parameters, then the
aggregated value of HFLMM is also an HFLE and

Proof 1. According to Definition 5, we have

Thus,

Furthermore,

Therefore

HFLMMP a1, a2,… , an = 1
n

〠
n

ϑ∈Sn

∏
n

j=1
sθϑ j

pj
1/〠n

j=1Pj

, 1 − ∏
n

ϑ∈Sn
1 − ∏

n

j=1
hσ t
ϑ j

pj
1/n 1/〠n

j=1Pj

t = 1, 2,… , h 6

a
pj
ϑ j = sθϑ j

pj , hσ t
ϑ j

pj   t = 1, 2,… , h , ⊗
n

j=1
a
pj
ϑ j = ∏

n

j=1
sθϑ j

pj , ∏
n

j=1
hσ t
ϑ j

pj
t = 1, 2,… , h 7

⊕
n

ϑ∈Sn
⊗
n

j=1
a
pj
ϑ j = 〠

n

ϑ∈Sn

∏
n

j=1
sθϑ j

pj , 1 − ∏
n

ϑ∈Sn
1 − ∏

n

j=1
hσ t
ϑ j

pj  t = 1, 2,… , h 8

1
n

⊕
n

ϑ∈Sn
⊗
n

j=1
a
pj
ϑ j = 1

n
〠
n

ϑ∈Sn

∏
n

j=1
sθϑ j

pj , 1 − ∏
n

ϑ∈Sn
1 − ∏

n

j=1
hσ t
ϑ j

pj
1/n

t = 1, 2,… , h 9

1
n

⊕
n

ϑ∈Sn
⊗
n

j=1
a
pj
ϑ j

1/〠n

j=1Pj

= 1
n

〠
n

ϑ∈Sn

∏
n

j=1
sθϑ j

pj
1/〠n

j=1

Pj, , 1 − ∏
n

ϑ∈Sn
1 − ∏

n

j=1
hσ t
ϑ j

pj
1/n 1/〠n

j=1Pj

t = 1, 2,… , h 10

4 Complexity



Hence, (6) is maintained.

Considering that hσ t
ϑ j ∈ 0, 1 , we can obtain

hσ t
ϑ j

pj ∈ 0, 1 , ∏
n

j=1
hσ t
ϑ j

pj

∈ 0, 1 , 1 − ∏
n

j=1
hσ t
aij

pj ∈ 0, 1
11

Therefore,

∏
n

ϑ∈Sn
1 − ∏

n

j=1
hσ t
ϑ j

pj

∈ 0, 1 , ∏
n

ϑ∈Sn
1 − ∏

n

j=1
hσ t
ϑ j

pj
1/n

∈ 0, 1
12

Thus,

1 − ∏
n

ϑ∈Sn
1 − ∏

n

j=1
hσ t
ϑ j

pj
1/n

∈ 0, 1 ,

· 1 − ∏
n

ϑ∈Sn
1 − ∏

n

j=1
hσ t
ϑ j

pj
1/n 1/〠n

j=1Pj

∈ 0, 1 ,

13
where t = 1, 2,… , h. Therefore, (6) is an HFLE that com-
pletes the proof.

The HFLMM operator has the following properties.

Theorem 2 (monotonicity). Let ai = sθ ai
, h ai i = 1, 2,

… , n and bi = sθ bi
, h bi i = 1, 2,… , n be two collec-

tions of HFLEs; if these conditions are satisfied for all i:

(1) #h ai = #h bi = h; (2) sθ ai
≤ sθ bi

; (3) hσ t
ai

≤ hσ t
bi

,
where t = 1, 2,… , h, then

HFLMMP a1, a2,… , an ≤HFLMMP b1, b2,… , b2 14

Proof 2. Let HFLMMP a1, a2,… , an = a = sθ a , h a and

HFLMMP b1, b2,… , b2 = b = sθ b , h b .
From Theorem 1, we can know that a = sθ a , h a and

b = sθ b , h b are two HFLEs and

Given that sθ ai
≤ sθ bi

, we have

s
θ aij

pj

≤ s
θ bij

pj

, ∏
n

j=1
s
θ aij

pj

≤ ∏
n

j=1
s
θ bij

pj

16

Therefore,

〠
n

i1,i2,…,in=1
i1≠i2≠⋯≠in

∏
n

j=1
s
θ aij

pj

≤ 〠
n

i1,i2,…,in=1
i1≠i2≠⋯≠in

∏
n

j=1
s
θ bij

pj

,

1
n

〠
n

i1,i2,…,in=1
i1≠i2≠⋯≠in

∏
n

j=1
s
θ aij

pj

≤
1
n

〠
n

i1,i2,…,in=1
i1≠i2≠⋯≠in

∏
n

j=1
s
θ bij

pj

17

sθ a = 1
n

〠
n

i1,i2,…,in=1
 i1≠i2≠⋯≠in

∏
n

j=1
s
θ aij

pj

1/〠n

j=1Pj

, h a = 1 − ∏
n

i1,i2,…,in=1
 i1≠i2≠⋯≠in

1 − ∏
n

j=1
hσ t
ai j

pj

1/n 1/〠n

j=1Pj

t = 1, 2,… , h ,

sθ b = 1
n

〠
n

i1,i2,…,in=1
 i1≠i2≠⋯≠in

∏
n

j=1
s
θ bij

pj

1/〠n

j=1Pj

, h b = 1 − ∏
n

i1,i2,…,in=1
 i1≠i2≠⋯≠in

1 − ∏
n

j=1
hσ t
bij

pj

1/n 1/〠n

j=1Pj

t = 1, 2,… , h

15
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Thus,

1
n

〠
n

i1,i2,…,in=1
i1≠i2≠⋯≠in

∏
n

j=1
s
θ aij

pj

1/〠n

j=1Pj

≤
1
n

〠
n

i1,i2,…,in=1
i1≠i2≠⋯≠in

∏
n

j=1
s
θ bij

pj

1/〠n

j=1Pj

,

18

that is, sθ a ≤ sθ b .

Given that hσ t
ai

≤ hσ t
bi

, we can obtain

hσ t
ai j

pj ≤ hσ t
bij

pj , ∏
n

j=1
hσ t
ai j

pj ≤ ∏
n

j=1
hσ t
bi j

pj 19

Therefore,

1 − ∏
n

j=1
hσ t
ai j

pj ≥ 1 − ∏
n

j=1
hσ t
bi j

pj , ∏
n

i1,i2,…,in=1
i1≠i2≠⋯≠in

1 − ∏
n

j=1
hσ t
aij

pj

≥ ∏
n

i1,i2,…,in=1
i1≠i2≠⋯≠in

1 − ∏
n

j=1
hσ t
ai j

pj

20

Thus,

∏
n

i1,i2,…,in=1
i1≠i2≠⋯≠in

1 − ∏
n

j=1
hσ t
ai j

pj

1/n

≥ ∏
n

i1,i2,…,in=1
i1≠i2≠⋯≠in

1 − ∏
n

j=1
hσ t
ai j

pj

1/n

21

Furthermore,

1 − ∏
n

i1,i2,…,in=1
i1≠i2≠⋯≠in

1 − ∏
n

j=1
hσ t
aij

pj

1/n

≤ 1 − ∏
n

i1,i2,…,in=1
i1≠i2≠⋯≠in

1 − ∏
n

j=1
hσ t
bi j

pj

1/n

22

Thus,

1 − ∏
n

i1,i2,…,in=1
i1≠i2≠⋯≠in

1 − ∏
n

j=1
hσ t
ai j

pj

1/n 1/〠n

j=1Pj

≤ 1 − ∏
n

i1,i2,…,in=1
i1≠i2≠⋯≠in

1 − ∏
n

j=1
hσ t
bi j

pj

1/n 1/〠n

j=1Pj

,

23

1 − ∏
n

i1,i2,…,in=1
i1≠i2≠⋯≠in

1 − ∏
n

j=1
hσ t
ai j

pj

1/n 1/〠n

j=1Pj

≤ 1 − ∏
n

i1,i2,…,in=1
i1≠i2≠⋯≠in

1 − ∏
n

j=1
hσ t
bi j

pj

1/n 1/〠n

j=1Pj

,

24
that is, h a ≤ h b .

As s a = 1/#h∑h
t=1h

σ t
a sθ a and s b = 1/#h∑h

t=1h
σ t
b

sθ b , then by (18) and (23), we have s a ≤ s b , which com-
pletes the proof.

Theorem 3 (idempotency). If ai i = 1, 2,… , n are equal,
that is, ai = a = sθ a , h a , then

HFLMMP a1, a2,… , an = a 25

Proof 3. According to Theorem 1, we can obtain
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Theorem 4 (boundedness). Let ai = sθ ai
, h ai i = 1, 2,… ,

n be a collection of HFLEs as #h ai = h holds for all i.
If a− = mini sθ ai

, mini hσ t
ai

∣ t = 12… h and a+ =
maxi sθ ai

, maxi hσ t
ai

∣ t = 12… h , then

a− ≤HFLMMP a1, a2,… , an ≤ a+ 27

Proof 4. According to Theorems 2 and 3, we can obtain

HFLMMP a1, a2,… , an ≤HFLMMP a+, a+,… , a+ = a+,
28

and

HFLMMP a1, a2,… , an ≥HFLMMP a−, a−,… , a− = a−

29

Hence, we can obtain a− ≤HFLMMP a1, a2,… , an ≤ a+.
In the following, we will explore special cases of HFLMM

operators with respect to parameter vector P.

Case 1. If P = 1, 0, 0,… , 0 , then HFLMM is reduced to the
hesitant fuzzy linguistic averaging (HFLA) operator.

HFLMMP a1, a2,… , an
= 1
n

⊕
n

i=1
ai

= 1
n
〠
n

i=1
sθ ai

, 1 − ∏
n

i=1
1 − hσ t

a i

1/n
t = 1, 2,… , h

30

Case 2. If P = λ, 0, 0,… , 0 , then HFLMM is reduced to the
generalized hesitant fuzzy linguistic averaging (GHFLA)
operator.

HFLMMP a1, a2,… , an

= 1
n

⊕
n

i=1
ai

λ
1/λ

= 1
n
〠
n

i=1
sλθ ai

1/λ

,

· 1 − 1 − ∏
n

i=1
1 − hσ t

ai

λ 1/n 1/λ

· t = 1, 2,… , h

31

Case 3. If P = 1, 1, 0, 0,… , 0 , then HFLMM is reduced to
the hesitant fuzzy linguistic Bonferroni mean (HFLBM)
operator.

HFLMMP a, a,… , a = 1
n

〠
n

ϑ∈Sn

∏
n

j=1
sθϑ j

pj
1/〠n

j=1Pj

, 1 − ∏
n

ϑ∈Sn
1 − ∏

n

j=1
hσ t
ϑ j

pj
1/n 1/〠n

j=1Pj

t = 1, 2,… , h

= 1
n

〠
n

ϑ∈Sn

sθ a

〠
n

j=1
pj

1/〠n

j=1Pj

, 1 − ∏
n

ϑ∈Sn
1 − hσ t

a

〠
n

j=1
pj

1/n 1/〠n

j=1Pj

t = 1, 2,… , h

= 1
n

n × sθ a

〠
n

j=1
pj

1/〠n

j=1Pj

, 1 − 1 − hσ t
a

〠
n

j=1
pj

n 1/n 1/〠n

j=1Pj

t = 1, 2,… , h

= sθ a

〠
n

j=1
pj

1/〠n

j=1Pj

, 1 − 1 − hσ t
a

〠
n

j=1
pj

1/〠n

j=1Pj

t = 1, 2,… , h

= sθ a , hσ t
a    t = 1, 2,… , h = sθ a , h a = a

26
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HFLMMP a1, a2,… , an

= 1
n n − 1 ⊕

n

i,j=1
i≠j

ai ⊗ aj

1/2

· 1
n n − 1 〠

n

i,j=1
i≠j

sθ ai
sθ aj

1/2

,

· 1 − ∏
n

i,j=1
i≠j

1 − hσ t
ai

hσ t
aj

1/n n−1

1/2

· t = 1, 2,… , h

32

Case 4. If P = 1, 1,… 1,
k

0, 0,… , 0
n−k

, then HFLMM is
reduced to the hesitant fuzzy linguistic Maclaurin symmet-
ric mean operator.

HFLMMP a1, a2,… , an

=
⊕

1≤i1≺⋯≺ik≤n
  ⊗

k

j=1
aij

Ck
n

1/k

= 1
Ck
n

〠
1≤i1≺⋯≺ik≤n

∏
k

j=1
s
θ aij

1/k

,

· 1 − ∏
1≤i1≺⋯≺ik≤n

1 − ∏
k

j=1
hσ t
ai j

1/Ck
n

1/k

· t = 1, 2,… , h

33

Case 5. If P = 1/n, 1/n,… , 1/n , then HFLMM is reduced to
the hesitant fuzzy linguistic geometric averaging (HFLGA)
operator.

HFLMMP a1, a2,… , an

= ⊗
n

i=1
ai

1/n = ∏
n

i=1
sθ ai

1/n
, ∏

n

i=1
hσ t
ai

1/n
t = 1, 2,… , h

34

3.2. Hesitant Fuzzy Linguistic Dual Muirhead Mean

Definition 9. Let ai = sθ ai
, h ai i = 1, 2,… , n be a col-

lection of HFLEs with #h ai = h holding for all i, and P =
p1, p2,… , pn ∈ Rn be a vector of parameters, then the
hesitant fuzzy linguistic dual Muirhead mean (HFLDMM)
can be defined as

HFLDMMP a1, a2,… , an = 1
〠n

j=1pj
⊗
n

ϑ∈Sn
⊕
n

j=1
pjaϑ j

1/n
,

35

where ϑ j j = 1, 2,… , n is any permutation of 1, 2,… , n ,
and Sn is the collection of all permutations of 1, 2,… , n .

Similar to HFLMM operator, we can obtain the following
theorem according to Definition 5.

Theorem 5. Let ai = sθ ai
, h ai i = 1, 2,… , n be a collec-

tion of HFLEs as #h ai = h holding for all i and P = p1, p2,
… , pn ∈ Rn be a vector of parameters, then the aggregated
value of HFLDMM is also an HFLE and

HFLDMMP a1, a2,… , an

= 1
〠n

j=1pj
∏
n

ϑ∈Sn
〠
n

j=1
pjsθϑ j

1/n

,

· 1 − 1 − ∏
n

ϑ∈Sn
1 − ∏

n

j=1
1 − hσ t

ϑ j

pj
1/n 1/〠n

j=1Pj

· t = 1, 2,… , h

36

Proof 5. According to Definition 5, we have

pjaij = pjsθϑ j
, 1 − 1 − hσ t

ϑ j

pj
t = 1, 2,… , h , 37

and

⊕
n

j=1
pjaϑ j = 〠

n

j=1
pjsθϑ j

, 1 − ∏
n

j=1
1 − hσ t

ϑ j

pj
t = 1, 2,… , h

38

Therefore,
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⊗
n

ϑ∈Sn
⊕
n

j=1
pjaϑ j

= ∏
n

ϑ∈Sn
〠
n

j=1
pjsθϑ j

, ∏
n

ϑ∈Sn
1 − ∏

n

j=1
1 − hσ t

ϑ j

pj

· t = 1, 2,… , h

39

Furthermore,

⊗
n

ϑ∈Sn
⊕
n

j=1
pjaϑ j

1/n

= ∏
n

ϑ∈Sn
〠
n

j=1
pjsθϑ j

1/n

,

· ∏
n

ϑ∈Sn
1 − ∏

n

j=1
1 − hσ t

ϑ j

pj
1/n

t = 1, 2,… , h

40

Thus,

1
〠n

j=1pj
⊗
n

ϑ∈Sn
⊕
n

j=1
pjaϑ j

1/n

= 1
〠n

j=1pj
∏
n

ϑ∈Sn
〠
n

j=1
pjsθϑ j

1/n

,

· 1 − 1 − ∏
n

ϑ∈Sn
1 − ∏

n

j=1
1 − hσ t

ϑ j

pj
1/n 1/〠n

j=1Pj

· t = 1, 2,… , h

41

Hence, (36) is maintained.

Given that hσ t
ϑ j ∈ 0, 1 , then we can obtain

1 − hσ t
ϑ j ∈ 0, 1 , 1 − hσ t

ϑ j

pj ∈ 0, 1 , ∏
n

j=1
1 − hσ t

ϑ j

pj ∈ 0, 1 ,

42

and then

1 − ∏
n

j=1
1 − hσ t

ϑ j

pj ∈ 0, 1 , ∏
n

ϑ∈Sn
1 − ∏

n

j=1
1 − hσ t

ϑ j

pj ∈ 0, 1

43

Therefore,

∏
n

ϑ∈Sn
1 − ∏

n

j=1
1 − hσ t

ϑ j

pj
1/n

∈ 0, 1 , 1 − ∏
n

ϑ∈Sn
1 − ∏

n

j=1
1 − hσ t

ϑ j

pj
1/n

∈ 0, 1

44

Thus,

1 − ∏
n

ϑ∈Sn
1 − ∏

n

j=1
1 − hσ t

ϑ j

pj
1/n 1/〠n

j=1Pj

∈ 0, 1

45

Hence,

1 − 1 − ∏
n

ϑ∈Sn
1 − ∏

n

j=1
1 − hσ t

ϑ j

pj
1/n 1/〠n

j=1Pj

∈ 0, 1

46

Therefore, (35) is an HFLE, which completes the proof.

Similar to HFLMM, HFLDMM has the following theo-
rems that can be easily proven.

Theorem 6. Let ai = sθ ai
, h ai i = 1, 2,… , n be a collec-

tion of HFLEs.

(1) Monotonicity: let bi = sθ bi
, h bi i = 1, 2,… , n be

a collection of HFLEs; if these conditions are satisfied

for all i: #h ai = #h bi = h; sθ ai
≤ sθ bi

; hσ t
ai

≤

hσ t
bi

, where t = 1, 2,… , h, then

HFLDMMP a1, a2,… , an
≤HFLDMMP b1, b2,… , b2

47

(2) Idempotency: if ai i = 1, 2,… , n are equal, that is,
ai = a = sθ a , h a , then

HFLDMMP a1, a2,… , an
≤HFLDMMP b1, b2,… , b2

48

(3) Boundedness: if a− = min
i

sθ ai
, min

i
hσ t
ai

∣ t = 12
… h and a+ = max

i
sθ ai

, max
i

hσ t
ai

∣ t = 12…
h , then

a− ≤HFLDMMP a1, a2,… , an ≤ a+ 49

In the following section, we will explore special cases of
the HFLDMM operator with respect to parameter vector P.
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Case 1. If P = 1, 0, 0,… , 0 , then HFLDMM is reduced to
the HFLGA operator.

HFLDMMP a1, a2,… , an

= ⊗
n

i=1
ai

1/n = ∏
n

i=1
sθ ai

1/n
, ∏

n

i=1
hσ t
ai

1/n
t = 1, 2,… , h

50

Case 2. If P = λ, 0, 0,… , 0 , then HFLDMM is reduced to
the generalized hesitant fuzzy linguistic geometric averaging
(GHFLGA) operator.

HFLDMMP a1, a2,… , an
= 1
λ

⊗
n

i=1
λai

1/n

= 1
λ
∏
n

i=1
λsθ ai

1/n
,

· 1 − 1 − ∏
n

i=1
1 − 1 − hσ t

ai

λ 1/n 1/λ

51

Case 3. If P = 1, 1, 0, 0,… , 0 , then HFLDMM is reduced to
the hesitant fuzzy linguistic geometric Bonferroni mean
(HFLGBM) operator.

HFLDMMP a1, a2,… , an

= 1
2 ⊗

n

i,j=1
i≠j

ai ⊕ aj

1/n n−1

· ∏
n

i,j=1
i≠j

sθ ai
+ sθ aj

1/n n−1

,

· 1 − 1 − ∏
n

i,j=1
i≠j

hσ t
i + hσ t

j − hσ t
i hσ t

j

1/n n−1

2

52

Case 4. If P = 1, 1,… 1,
k

0, 0,… , 0
n−k

, then HFLDMM is
reduced to the hesitant fuzzy linguistic geometric Maclaurin
symmetric mean (HFLGMSM) operator.

HFLDMMP a1, a2,… , an

= 1
k

⊗
1≤i1≤⋯≤ik≤n

⊕
k

j=1
aij

1/Ck
n

= 1
k

∏
1≤i1≤⋯≤ik≤n

〠
n

j=1
sθ aii

1/Ck
n

,

· 1 − 1 − ∏
1≤i1≤ …≤ik≤n

1 − ∏
n

j=1
1 − hσ t

aij

1/Ck
n

1/k

53

Case 5. If P = 1/n, 1/n,… , 1/n , then HFDLMM is reduced
to the HFLA operator.

HFLDMMP a1, a2,… , an

= 1
n

⊕
n

i=1
ai = 1

n
〠
n

i=1
sθ ai

, 1 − ∏
n

i=1
1 − hσ t

a i

1/n
t = 1, 2,… , h

54

4. Hesitant Fuzzy Linguistic Weighted
Muirhead Mean Operators

Evidently, HFLMM and the HFLDMM do not consider the
weights of the associated HFLEs. Therefore, we develop
hesitant fuzzy linguistic weighted Muirhead mean operators
that consider the weights of HFLEs.

Definition 10. Let ai = sθ ai
, h ai i = 1, 2,… , n be a collec-

tion of HFLEs with #h ai = h holding for all i, and P = p1,
p2,… , pn ∈ Rn be a vector of parameters. The weight vector
isw = w1,w2,… ,wn

T , satisfying wi ∈ 0, 1 i = 1, 2,… , n
and∑n

i=1wi = 1. If

HFLWMMP a1, a2,… , an

= 1
n

⊕
n

ϑ∈Sn
⊗
n

j=1
nwϑ j aϑ j

pj
1/〠n

j=1Pj

,
55

then HFLWMMP is the hesitant fuzzy linguistic weighted
Muirhead mean (HFLWMM), where ϑ j j = 1, 2,… , n is
any permutation of 1, 2,… , n and Sn is the collection of
all permutations of 1, 2,… , n .

According to Definition 5, we can obtain the following
theorem.

Theorem 7. Let ai = sθ ai
, h ai i = 1, 2,… , n be a collec-

tion of HFLEs with #h ai = h holding for all i and P = p1,
p2,… , pn ∈ Rn be a vector of parameters, then

HFLWMMP a1, a2,… , an

= 1
n

〠
n

ϑ∈Sn

∏
n

j=1
nwϑ j sθϑ j

pj
1/〠n

j=1Pj

,

· 1 − ∏
n

ϑ∈Sn
1 − ∏

n

j=1
1 − 1 − hσ t

ϑ j

nwij
pj

1/n 1/〠n

j=1Pj

· t = 1, 2,… , h

56

The proof of Theorem 7 is similar to that of Theorem 1
and is thus omitted to save space.

Definition 11. Let ai = sθ ai
, h ai i = 1, 2,… , n be a col-

lection of HFLEs with #h ai = h holds for all i and P =
p1, p2,… , pn ∈ Rn be a vector of parameters. The weight
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vector bew = w1,w2,… ,wn
T , satisfying wi ∈ 0, 1 i = 1,

2,… , n and ∑n
i=1wi = 1. If

HFLWDMMP a1, a2,… , an = 1
〠n

j=1pj
∏
n

ϑ∈Sn
〠
n

j=1
pja

nwϑ j

ϑ j

1/n

,

57

then we call HFLWDMMP the hesitant fuzzy linguistic
weighted dual Muirhead mean (HFLWDMM) operator,
where ϑ j j = 1, 2,… , n is any permutation of 1, 2,… , n ,
and Sn is the collection of all permutations of 1, 2,… , n .

According to Definition 5, we can obtain the following
theorem.

Theorem 8. Let ai = sθ ai
, h ai i = 1, 2,… , n be a collec-

tion of HFLEs with #h ai = h holds for all i and P = p1,
p2,… , pn ∈ Rn be a vector of parameters, then the aggre-
gated value of HFLWDMM is also an HFLE and

HFLWDMMP a1, a2,… , an

= 1
〠n

j=1pj
∏
n

ϑ∈Sn
〠
n

j=1
pj sθϑ j

nwϑ j

1/n

,

· 1 − 1 − ∏
n

ϑ∈Sn
1 − ∏

n

j=1
1 − hσ t

ϑ j

nwϑ j pj
1/n 1/〠n

j=1Pj

· t = 1, 2,… , h

58

The proof of Theorem 7 is similar to that of Theorem 1
and is thus omitted.

5. Novel Approach to MAGDM with Hesitant
Fuzzy Linguistic Information

In this section, we propose a novel approach to MAGDM
based on the proposed aggregation operators. A typical
MAGDM problem, wherein the attribute values take the
form of HFLEs, can be described as follows: let X = x1, x2,
… , xm be a set of alternatives and G = G1,G2,… ,Gn

be n attributes with the weight vector being w =
w1,w2,… ,wn

T , satisfying wi ∈ 0, 1 and ∑n
i=1wi = 1. A

set of experts is organized to act as decision-makers and for
attribute Gj j = 1, 2,… , n of alternative xi i = 1, 2,… ,m .
Decision-makers are required to express their assessments
anonymously by using an HFLE that can be denoted by
aij = sθ∈ aij

, h aij . Therefore, the hesitant fuzzy linguistic

decision matrix expressed as A = aij m×n can be obtained.
We propose a new method to MAGDM in the following.

Step 1. Normalize the decision matrix. The original decision
matrix should be normalized from two points of view. First,

if attributes can be divided into benefit and cost types, then
the decision matrix should be normalized by

aij = sθ∈ aij
, h aij =

sθ∈ aij
, h aij Gj ∈ I1

sθ∈ aij
, 1 − h aij Gj ∈ I2

,

59

where I1 and I2 denote the benefit and cost types, respec-
tively. Second, we assume that all the HFEs in HFLEs have
the same number of values to simplify the calculation pro-
cess. Thus, we can extend the short HFEs of the correspond-
ing HFLEs according to the transformation regulation
presented in Definition 5 until all HFEs have the same num-
ber of values.

Step 2. For alternative xi i = 1, 2,… ,m , utilize theHFLWMM
operator

ai = HFLWMMP ai1, ai2,… , ain , 60

or the HFLDWMM operator

ai =HFLWDMMP ai1, ai2,… , ain , 61

to aggregate all the preference information provided by
decision-makers.

Step 3. Calculate the scores of the overall values ai i = 1, 2,
… ,m and rank them according to Definition 3.

Step 4. Rank the alternatives xi i = 1, 2,… ,m according to
the corresponding rank of overall values and select the best
alternative.

6. Numerical Example

In this section, we provide a numerical example adopted
from [31] to validate the proposed approach. A company
decides to implement an enterprise resource planning
(ERP) system. After primary evaluation, five potential ERP
systems xi i = 1, 2, 3, 4, 5 are chosen as candidates. To select
the best ERP system, the company invites several profes-
sional experts to aid in this decision-making. The candidates
are from four aspects (attributes), namely, (1) functionality
and technology G1, (2) strategic fitness G2, (3) vendor’s abil-
ity G3, and (4) vendor’s reputation G4. The weight vector of
the attributes is w = 0 2, 0 15, 0 35, 0 3 T . Decision-makers
are required to evaluate the five possible ERP systems
anonymously. A hesitant fuzzy linguistic decision matrix
D = aij 5×4 = sθ aij

, h aij 5×4
is presented in Table 1,

where sθ aij
, h aij i = 1, 2, 3, 4, 5 ; j = 1, 2, 3, 4 is a series

of HFLEs. In the following section, we utilize the proposed
approach to solve the problem.

6.1. Decision-Making Process

Step 1. Normalize the decision matrix. All the attributes are
benefit attributes and thus, we only need to extend the short
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HFLEs by adding certain values. Here, we assume that
decision-makers are optimistic. Therefore, we can obtain
the normalized hesitant fuzzy linguistic decision matrix, as
shown in Table 2.

Step 2. For each alternative xi i = 1, 2, 3, 4, 5 , (60) is used to
aggregate all the attribute values. Therefore, we can obtain a
set of overall values. Without loss of generality, we assume
P = 1, 1, 1, 1 .

a1 = s3 4117, 0 3383, 0 4758, 0 5620, 0 5856 ,
a2 = s3 2596, 0 3839, 0 5103, 0 5888, 0 6569 ,
a3 = s4 9087, 0 3646, 0 4944, 0 5953, 0 6193 ,
a4 = s2 3212, 0 3591, 0 5281, 0 5812, 0 6447 ,
a5 = s2 6374, 0 3093, 0 4547, 0 5087, 0 5087

62

Step 3. Calculate the scores of ai i = 1, 2, 3, 4, 5 and
rank them. According to Definition 3, we can derive
s a1 = 1 6732 s a2 = 1 7438 s a3 = 2 5446 s a4 = 1 2262 s
a5 = 1 1745. Therefore, the rank order of the overall values
is a3 > a2 > a1 > a4 > a5.

Step 4. Rank alternatives xi i = 1, 2, 3, 4, 5 according to the
rank of ai i = 1, 2, 3, 4, 5 , that is,x3 ≻ x2 ≻ x1 ≻ x4 ≻ x5.
Therefore, x3 is the best ERP system.
In Step 2, if we utilize (61) to aggregate attribute values, then
we can obtain a series of overall values

a1 = s4 8833, 0 4440, 0 5541, 0 6932, 0 7227 ,
a2 = s3 6232, 0 5010, 0 6369, 0 6899, 0 7221 ,
a3 = s6 6983, 0 4526, 0 6183, 0 6808, 0 7124 ,
a4 = s2 3559, 0 5178, 0 6803, 0 7156, 0 7716 ,
a5 = s3 5820, 0 4282, 0 5870, 0 6298, 0 6298

63

The scores of the overall values are as follows:

s a1 = 2 8812 s a2 = 2 3097 s a3 = 4 1263 s a4
= 1 5816 s a5 = 2 0371

64

Therefore, we can obtain x3 ≻ x1 ≻ x2 ≻ x5 ≻ x4, where x3
is the best alternative.

6.2. Further Discussion. To demonstrate the effectiveness of
the proposed approach, we utilize other methods to solve
the above example. These methods include the ones pro-
posed by Lin et al. [31] based on hesitant fuzzy linguistic
weighted averaging (HFLW) operator and HFLW geomet-
ric (HFLWG) operator, by Lin et al. [40] and Wei et al.
[41] based on hesitant fuzzy linguistic hybrid average
operator, by Lin et al. [31] based on hesitant fuzzy linguis-
tic prioritized weighted average (HFLPWA) operator and
hesitant fuzzy linguistic prioritized weighted geometric
(HFLPWG) operator, and by Liu [42] based on hesitant
fuzzy linguistic weighted Bonferroni mean (HFLWBM)
operator and hesitant fuzzy linguistic weighted geometric
Bonferroni mean (HFLWBM) operator. Details are pre-
sented in Table 3.

Table 3: Results by using different aggregation operators.

Aggregation
operators

Values of
parameters

Ranking results

HFLWA [31] No parameters x3 ≻ x2 ≻ x1 ≻ x4 ≻ x5

HFLWG [31] No parameters x3 ≻ x2 ≻ x1 ≻ x5 ≻ x4

HFLWHA [40, 41] No parameters x3 ≻ x1 ≻ x2 ≻ x5 ≻ x4

HFLPWA [43] No parameters x3 ≻ x1 ≻ x2 ≻ x5 ≻ x4

HFLPWG [43] No parameters x3 ≻ x1 ≻ x2 ≻ x5 ≻ x4

HFLWBM [42] p = 2, q = 3 x3 ≻ x2 ≻ x1 ≻ x4 ≻ x5

HFLWGBM [42] p = 2, q = 3 x3 ≻ x1 ≻ x2 ≻ x4 ≻ x5

Table 2: Normalized hesitant fuzzy linguistic decision matrix.

G1 G2 G3 G4

x1 s4, 0 4, 0 5, 0 6, 0 6 s2, 0 6, 0 7, 0 7, 0 7 s3, 0 3, 0 4, 0 7, 0 9 s7, 0 2, 0 4, 0 4, 0 4
x2 s2, 0 2, 0 3, 0 4, 0 6 s7, 0 5, 0 7, 0 7, 0 7 s2, 0 4, 0 5, 0 7, 0 7 s5, 0 7, 0 8, 0 8, 0 8
x3 s5, 0 5, 0 6, 0 7, 0 8 s4, 0 2, 0 3, 0 5, 0 5 s6, 0 6, 0 8, 0 8, 0 8 s6, 0 4, 0 6, 0 6, 0 6
x4 s6, 0 5, 0 6, 0 7, 0 7 s3, 0 2, 0 5, 0 5, 0 5 s1, 0 8, 0 9, 0 9, 0 9 s2, 0 3, 0 4, 0 5, 0 8
x5 s1, 0 3, 0 6, 0 7, 0 7 s5, 0 3, 0 4, 0 4, 0 4 s4, 0 7, 0 8, 0 8, 0 8 s3, 0 2, 0 3, 0 4, 0 4

Table 1: Original hesitant fuzzy linguistic decision matrix.

G1 G2 G3 G4

x1 s4, 0 4, 0 5, 0 6 s2, 0 6, 0 7 s3, 0 3, 0 4, 0 7, 0 9 s7, 0 2, 0 4
x2 s2, 0 2, 0 3, 0 4, 0 6 s7, 0 5, 0 7 s2, 0 4, 0 5, 0 7 s5, 0 7, 0 8
x3 s5, 0 5, 0 6, 0 7, 0 8 s4, 0 2, 0 3, 0 5 s6, 0 6, 0 8 s6, 0 4, 0 6
x4 s6, 0 5, 0 6, 0 7 s3, 0 2, 0 5 s1, 0 8, 0 9 s2, 0 3, 0 4, 0 5, 0 8
x5 s1, 0 3, 0 6, 0 7 s5, 0 3, 0 4 s4, 0 7, 0 8 s3, 0 2, 0 3, 0 4
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As seen from Table 3, if we use the HFLWA and the
HFLWBM operators, we can obtain the same ranking result
as that derived by the HFLWMM operator. If we use the
HFLWHA, HFLPWA, and HFLPWG operators, we can
obtain the same ranking result as that obtained by the
HFLWDMM operator. Therefore, the proposed approach is
effective in handling MAGDM with hesitant fuzzy linguistic
information. To further demonstrate the merits and superi-
orities of the newly developed approach, we compare our
method with those in [31, 41–43]. Table 4 presents several
characteristics of these operators.

Through a comparison with other approaches and
aggregation operators, we draw the following conclusions.
The weaknesses of the approaches based on HFLWA and
HFLWG are that (1) the calculation is based on the opera-
tional laws in Definition 4, and they are too complicated to
use and (2) the methods cannot capture the interrelationship
among arguments. The proposed approach in this paper is
more general and flexible than those based on HFLWA and
HFLWG. First, the new decision-making approach is based
on the new operational laws in Definition 5, resulting in sim-
ple calculation. Second, the new method considers the inter-
relationship among all the arguments. Third, the new
approach is more flexible than those based on the HFLWA
and HFLWG operators, as HFLWA is a special case of
HFLWMM, and HFLWG is a special case of HFLWDMM.

The HFLPWA and HFLPWG operators can consider the
entire interrelationship among the HFLEs being fused but
can only be used to address the problems with unknown
attribute weights. Moreover, the HFLPWA and HFLPWG
operators are not as flexible as the HFLWMM and
HFLWDMM operators, which have parameter weight P.

The HFLWBM and HFLWGBM operators can only con-
sider the interrelationship between any two arguments. How-
ever, in real decision-making problems, all the arguments
provided by decision-makers are correlated, which means
that interrelationships among all the arguments should be
considered. The HFLWMM and HFLWDMM operators
can capture all the correlations and consider parameter
weight, resulting in flexible information aggregation.

In summary, the proposed HFLWMM and HFLWDMM
exhibit the following advantages: (1) these operators are

based on simplified operational laws that streamline the
decision-making process, (2) they consider the interrelation-
ship among all arguments, and (3) they have parameter vec-
tor P, which leads to flexible information aggregation.

Parameter vector P plays an important role in the rank-
ing results. To demonstrate this, we investigate different cases
by assigning different values to P. Additional details can be
found in Tables 5 and 6.

As shown in Tables 5 and 6, different ranking results can
be obtained by assigning different values to parameter vector
P. The HFLWMM and HFLWDMM operators are two flex-
ible aggregation operators. As shown in Table 5, the more
interrelationships between attribute values are considered
in the HFLWMM operator, the smaller the scores of the
overall values are. As seen in Table 6, the more interrelation-
ships between attribute values are considered in the
HFLWDMM operator, the higher the scores of the overall
values are. Another interesting property is observed when
all the values in parameter P are equal, that is, the scores of
overall values and the ranking results are the same regardless
of the values.

7. Conclusions

The HFLS is a powerful and efficient tool for describing the
fuzziness, uncertainty, and hesitancy of decision-makers in
MAGDM. In this paper, we introduced a new approach to
MAGDM with hesitant fuzzy linguistic information. First,
we investigated the MM under hesitant fuzzy linguistic
environment and introduced the HFLMM, HFLDMM,
HFLWMM, and HFLWDMM operators. These operators
considered the interrelationship among all HFLEs. More-
over, the presence of the parameter vector leads to flexible
information aggregation process. Second, we proposed a
novel approach to MAGDM by using these operators. Third,
we provided a numerical example and performed compara-
tive analysis to illustrate the validity and advantages of the
new approach. The proposed approach can be used to
effectively solve MAGDM problems with hesitant fuzzy lin-
guistic information. In the future, we will apply the proposed
method to real decision problems. In addition, we will

Table 4: Comparison of different approaches and aggregation operators.

Approaches
Whether the

interrelationship of two
attributes is captured

Whether the
interrelationship of three
attributes is captured

Whether the
interrelationship of multiple

attributes is captured

Whether it makes the
method flexible by the

parameter vector

HFLWA [31] No No No No

HFLWG [31] No No No No

HFLWHA [40, 41] No No No No

HFLPWA [43] Yes Yes Yes No

HFPLWG [43] Yes Yes Yes No

HFLWBM [42] Yes No No No

HFLWGBM [42] Yes No No No

HFLWMM Yes Yes Yes Yes

HFLWDMM Yes Yes Yes Yes
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investigate more aggregation operators for fusing hesitant
fuzzy linguistic information.
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