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University of Missouri

Edgar C. Merkle
University of Missouri

Achim Zeileis
Universität Innsbruck

Abstract

In this paper, we consider a family of recently-proposed measurement invariance tests
that are based on the scores of a fitted model. This family can be used to test for mea-
surement invariance w.r.t. a continuous auxiliary variable, without pre-specification of
subgroups. Moreover, the family can be used when one wishes to test for measurement
invariance w.r.t. an ordinal auxiliary variable, yielding test statistics that are sensitive
to violations that are monotonically related to the ordinal variable (and less sensitive to
non-monotonic violations). The paper is specifically aimed at potential users of the tests
who may wish to know (i) how the tests can be employed for their data, and (ii) whether
the tests can accurately identify specific models parameters that violate measurement in-
variance (possibly in the presence of model misspecification). After providing an overview
of the tests, we illustrate their general use via the R packages lavaan and strucchange. We
then describe two novel simulations that provide evidence of the tests’ practical abilities.
As a whole, the paper provides researchers with the tools and knowledge needed to apply
these tests to general measurement invariance scenarios.

Keywords: measurement invariance, parameter stability, ordinal variable, factor analysis,
structural equation models.

1. Introduction

Recently, there has been increasing interest in the topic of approximate measurement invari-
ance: we know that strict hypotheses of measurement invariance do not hold exactly across
different groups, and this should be reflected in corresponding tests of measurement invari-
ance. Under a Bayesian approach, we may utilize the idea of approximate invariance (e.g.,
Muthén and Asparouhov 2013), whereby across-group equality constraints on parameters are
replaced with informative prior distributions. In this paper, we describe an alternative ap-
proach: the development of test statistics that are sensitive to invariance violations of interest
and insensitive to “anomalous” invariance violations. The test statistics are specifically appli-
cable to situations where one wishes to test for measurement invariance with respect to an
ordinal variable, and they are special cases of a family of tests that may be used to study
measurement invariance w.r.t. continuous, categorical, and ordinal variables.

The family of tests described in this paper have recently been applied to the study of mea-
surement invariance (Merkle and Zeileis 2013; Merkle, Fan, and Zeileis 2013), though their
practical application has been limited to a small set of simulations and datasets. In this paper,
we provide a detailed illustration of the tests’ use and performance under scenarios likely to
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be encountered in practice. In the following sections, we first briefly review the theoretical
framework of the proposed tests and provide a short tutorial illustrating the use of the tests
in R (R Core Team 2013). Next, we study the tests’ performance in simulations that mimic
practical research scenarios. Finally, we provide some further discussion on the tests’ use in
practice.

2. Background

This section contains background and discussion of the proposed statistics as applied to
structural equation models (SEMs); for a more detailed account, see Merkle and Zeileis (2013)
and Merkle et al. (2013). For details on the statistics’ application to general statistical models,
see Zeileis and Hornik (2007).

As currently implemented for SEM, the statistical tests described in this paper can be applied
to models that are estimated via a multivariate normal or Wishart likelihood (or discrepancy)
function, with extension to other discrepancy functions being conceptually straightforward.
The tests are carried out following model estimation, making use of output associated with
the fitted model. In general, we fit a model that restricts parameters to be equal across
observations, then carry out a posthoc test to examine whether specific parameters vary
across observations. This procedure is similar in spirit to the calculation of modification
indices (Bentler 1990) and to Lagrange multiplier tests (Satorra 1989), and, in fact, those
statistics can be viewed as special cases of the family described here.

Following model estimation, the tests primarily work on the scores of the fitted model; these
are defined as

s(θ;xi) =

(
∂`(θ;xi)

∂θ1
, . . . ,

∂`(θ;xi)

∂θk

)>
, i = 1, . . . , n, (1)

where `(θ;xi) is the likelihood associated with individual i and θ is a k-dimensional parameter
vector. The corresponding maximum likelihood estimate θ̂ solves the first order condition:∑n

i=1 s(θ̂;xi) = 0. The cross-product of these scores forms the “meat” for the calculation of
robust (Huber-White) standard errors (e.g., Zeileis 2006b).

To verbally describe the above equation, each individual has k scores describing the extent
to which the fitted model describes that particular individual. Scores close to zero indicate a
“good” description, and scores far from zero indicate a “bad” description. Each of an individ-
ual’s k scores represent one model parameter, so that the scores provide specific information
about each parameter’s fit to each individual.

To use these scores for testing, we order individuals according to an auxiliary variable V (the
variable against which we are testing measurement invariance) and look for “trends” in the
scores. For example, imagine that we are testing for measurement invariance w.r.t. age. If
the manifest variables violate measurement invariance here, then some parameter estimates
may be too large for young individuals and too small for old individuals (say). This result
would be reflected in the scores, where young individuals’ scores may be greater than zero and
old individuals’ scores less than zero (though the sign of the scores will depend on whether
a function is being minimized or maximized). Conversely, if measurement invariance holds,
then all individuals’ scores will fluctuate randomly around zero.

To formalize these ideas, we define a suitably scaled cumulative sum of the ordered scores.
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This may be written as

B(t; θ̂) = Î−1/2n−1/2
bn·tc∑
i=1

s(θ̂;x(i)) (0 ≤ t ≤ 1) (2)

where Î is an estimate of the information matrix, bntc is the integer part of nt (i.e., a floor
operator), and x(i) reflects the individual with the i-th smallest value of the auxiliary variable
V . We specifically focus on how the cumulative sum fluctuates as more individuals’ scores
are added to it, e.g., starting with the youngest and ending with the oldest individual if age
is the auxiliary variable of interest. The summation is premultiplied by an estimate of the
inverse square root of the information matrix, which serves to decorrelate the fluctuation
processes associated with individual model parameters. Thus, the process associated with
one parameter is not correlated with the processes associated with other parameters.

Under the hypothesis of measurement invariance, a central limit theorem can be used to show
that the fluctuation of the above cumulative sum follows a Brownian bridge. This result
allows us to calculate p-values and critical values for test statistics under the hypothesis of
measurement invariance. We can obtain test statistics associated with all model parameters
and with subsets of model parameters.

Multiple test statistics are available, depending on how one summarizes the behavior of the
cumulative sum of scores. For example, one could take the absolute maximum that the
cumulative sum attains for any parameter of interest, resulting in a double max statistic
(the maximum is taken across parameters and individuals). Alternatively, one could sum
the (squared) cumulative sum across parameters of interest and take the maximum or the
average across individuals, resulting in a maximum Lagrange multiplier statistic and Cramér-
von Mises statistic, respectively (see Merkle and Zeileis 2013, for further discussion). These
statistics are given by

DM = max
i=1,...,n

max
j=1,...,k

|B(θ̂)ij | (3)

CvM = n−1
∑

i=1,...,n

∑
j=1,...,k

B(θ̂)2ij , (4)

max LM = max
i=i,...,ı

{
i

n

(
1− i

n

)}−1 ∑
j=1,...,k

B(θ̂)2ij . (5)

Critical values associated with DM can be obtained analytically, while critical values associ-
ated with the other statistics can be obtained from direct simulation (Zeileis 2006a) or from
more refined techniques (Hansen 1997). This issue should not be important to the user, as
critical values are obtained directly from the R implementation described later.

Importantly, the above statistics were derived for situations where individuals are uniquely
ordered according to the auxiliary variable. This is not always the case for measurement
invariance applications, where the auxiliary variable is often ordinal. To remedy this situation,
Merkle et al. (2013) extended the framework to situations where one has an ordinal auxiliary
variable of interest. Essentially, one allows all individuals with the same value of the auxiliary
variable to enter into the cumulative sum at the same time. Analogous test statistics are then
computed, with modified critical values being adopted to reflect the change in the statistics’
computation.
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For an ordinal auxiliary variable with m levels, these modifications are based on t` (` =
1, . . . ,m− 1), which are the empirical, cumulative proportions of individuals observed at the
first m− 1 levels. The modified statistics are then given by

WDM o = max
i∈{i1,...,im−1}

{
i

n

(
1− i

n

)}−1/2
max
j=1,...,k

|B(θ̂)ij |, (6)

max LM o = max
i∈{i1,...,im−1}

{
i

n

(
1− i

n

)}−1 ∑
j=1,...,k

B(θ̂)2ij , (7)

where i` = bn · t`c (` = 1, . . . ,m − 1). Critical values associated with the WDM o statistic
can be obtained directly from a multivariate normal distribution (see Hothorn and Zeileis
2008), while critical values associated with max LM o can be obtained via simulation. This
simulation is somewhat computationally intensive and, in practice, takes about 10 minutes on
the authors’ computers when 50,000 replications are sampled from the approximate asymp-
totic distribution. However, the wait is often worth it, as Merkle et al. (2013) found the
performance of the max LM o statistic to have more power than the WDM o statistic and
the traditional likelihood ratio test statistic when the measurement invariance violation is
monotonic with the ordinal variable.

Finally, if the auxiliary variable V is only nominal/categorical, the cumulative sums of scores
can be used to obtain a Lagrange multiplier statistic. This test statistic can be formally
written as

LM uo =
∑

`=1,...,m

∑
j=1,...,k

(
B(θ̂)i`j −B(θ̂)i`−1j

)2
, (8)

where B(θ̂)i0j = 0 for all j. This statistic is asymptotically equivalent to the usual, likelihood
ratio test statistic, and it is advantageous over the likelihood ratio test because it requires
estimation of only one model (the restricted model). We make use of this advantage in the
simulations, described later.

3. Tutorial

In this section, we demonstrate how the above tests can be carried out in R, using the package
lavaan (Rosseel 2012) for model estimation and strucchange (Zeileis, Leisch, Hornik, and
Kleiber 2002; Zeileis 2006a) for testing. We use data from Froh, Fan, Emmons, Bono, Huebner,
and Watkins (2011) concerning the applicability of adult gratitude scales to youth, available
in the R package psychotools (Zeileis, Strobl, and Wickelmaier 2013). The data consist of
responses to three adult gratitude scales from n = 1401 youth aged 10–19 years. The original
authors were specifically interested in whether the scales were measurement invariant across
age. Because the sample size at each age was unbalanced, the authors created age groups of
approximately equal sample size. In the examples below, we test for measurement invariance
across these age groups.

We focus on measurement invariance of the factor loadings associated with the GQ-6 scale,
using a one-factor model. While the “age group” variable against which we are testing mea-
surement invariance is best considered ordinal, for demonstration we consider its treatment
as categorical, continuous, and ordinal. Each of these treatments is described below in a
separate section.
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3.1. Categorical treatment

Measurement invariance is most often tested using multiple groups models (see, e.g., van de
Schoot, Lugtig, and Hox 2012). This amounts to assuming that our auxiliary variable is
categorical (i.e., unordered), which is not true for the age groups in the data. However, we
demonstrate the procedure for completeness.

To conduct the analysis, we first load the data and keep only complete cases for simplicity
(though the tests can be applied to incomplete data).

R> data("YouthGratitude", package = "psychotools")

R> compcases <- apply(YouthGratitude[, 4:28], 1, function(x) all(x %in% 1:9))

R> yg <- YouthGratitude[compcases, ]

Next, we fit two models in lavaan: a one-factor model where loadings are restricted to be
equal across age groups, and a one-factor model where loadings are free across age groups.

R> restr <- cfa("f1 = ~gq6_1 + gq6_2 + gq6_3 + gq6_4 + gq6_5",

+ data = yg, group = "agegroup", meanstructure = TRUE,

+ group.equal = "loadings")

R> full <- cfa("f1= ~gq6_1 + gq6_2 + gq6_3 + gq6_4 + gq6_5",

+ data = yg, group = "agegroup", meanstructure = TRUE)

Finally, we can get the results of a likelihood ratio test via the anova() function, which implies
that the GQ-6 violates measurement invariance.

R> anova(full, restr)

Chi Square Difference Test

Df AIC BIC Chisq Chisq diff Df diff Pr(>Chisq)

full 30 18947 19414 139

restr 50 18945 19308 177 38.1 20 0.0087

To obtain the asymptotically equivalent LM uo (Equation 8), we can use the sctest() function
from strucchange:

R> sctest(restr, order.by = yg$agegroup, parm = 1:4, vcov = "info",

+ functional = "LMuo")

M-fluctuation test

data: restr

f(efp) = 31.4, p-value = 0.05018

This command specifies that we assess the parameter 1–4 of model restr after ordering
the observations according to agegroup. Additionally, the observed information matrix is
used as the variance-covariance matrix. Note that the model parameters 1–4 are the factor
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loadings supplied by lavaan, which can be seen by inspecting coef(restr). This also leads
to somewhat smaller test statistics that are very close to being significant at the 5% level.

Because our sample size is large, the likelihood ratio test is known to be sensitive to small
measurement invariance violations (Bentler and Bonett 1980). That is, the above tests are
sensitive to small measurement invariance violations that are not likely to be of interest to
researchers. For example, imagine that the 15-year-olds’ parameters are slightly different
than the other age groups. The 15-year-olds are in the middle of the age groups, and there
is not likely to be any theoretical justification for 15-year-olds differing from every other age
group. One solution to this problem would be the Bayesian, approximate invariance methods
described in the introduction (Muthén and Asparouhov 2013). Alternatively, we can use the
proposed family of score-based statistics to obtain tests that are sensitive to the ordering of
age.

3.2. Continuous treatment

If we are interested in measurement invariance violations that are monotonic with the age
groups, it is perhaps simplest to treat the age groups as continuous. In doing so, we can use
the statistics from Equations 3, 4, and 5. That is, we can fit a model whose parameters are
restricted to be equal across all individuals and then examine how individuals’ scores s(θ̂;xi)
fluctuate with their age (where age ties are broken arbitrarily, using the original order of the
observations within each age group). This is demonstrated below, with similar code being
useful when one is testing for measurement invariance w.r.t. truly continuous variables.

Again, we employ the sctest() function to assess parameters 1–4 from the restricted model
restr after ordering w.r.t. agegroup:

R> dm <- sctest(restr, order.by = yg$agegroup, parm = 1:4, vcov = "info",

+ functional = "DM")

R> cvm <- sctest(restr, order.by = yg$agegroup, parm = 1:4, vcov = "info",

+ functional = "CvM")

R> maxlm <- sctest(restr, order.by = yg$agegroup, parm = 1:4,

+ vcov = "info", functional = "maxLM")

R> c(dm$p.value, cvm$p.value, maxlm$p.value)

[1] 0.03804 0.11557 0.00414

We see that two of the three p-values output at the end of the code are larger than that
associated with the LRT (with the CvM statistic being non-significant).

The tests carried out here assume a unique ordering of individuals by age, but this is obviously
not the case. To compute the statistics and p-values, the strucchange package implicitly
employed the (arbitrary) ordering of individuals who are tied on age. If we were to change
this ordering, the resulting statistics and p-values would also change, potentially switching
significant results to being non-significant and vice versa. Clearly, this is problematic. To
accurately account for the multiple observations at the same age level, we must use the ordinal
tests from Equations 6 and 7. These are described next.

3.3. Ordinal treatment

The main difference between the ordinal test statistics and their continuous counterparts is
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that the ordinal statistics are unchanged when re-ordering individuals within the same age
group. To compute the test statistics, we allow the scores of all tied individuals to enter the
cumulative sum (Equation 2) simultaneously. This results in modified critical values and test
statistics that are sensitive to measurement invariance violations that are monotonic w.r.t.
age group.

To carry out the tests, we can rely on the same function that we used for the continuous test
statistics. As mentioned previously, calculation of the max LM o statistic (Equation 7) can be
lengthy from the need to simulate critical values (though see the end of this section, which
provides a partial speed-up).

R> wdmo <- sctest(restr, order.by = yg$agegroup, parm = 1:4, vcov = "info",

+ functional = "WDMo")

R> maxlmo <- sctest(restr, order.by = yg$agegroup, parm = 1:4,

+ vcov = "info", functional = "maxLMo")

R> c(wdmo$p.value, maxlmo$p.value)

[1] 0.0588 0.0970

In computing the ordinal test statistics, we obtain p = 0.059 and p = 0.097, respectively.1

Both p-values are clearly larger than that of the likelihood ratio test and neither is significant
at α = 0.05. This provides evidence that there is no measurement invariance violation that is
monotonic with age group. Instead, given the large sample size, the likelihood ratio test may
be overly sensitive to anomalous, non-monotonic violations at one (or a few) age groups.

In addition to test statistics, “instability plots” can be generated by setting plot = TRUE in
the sctest() calls above. The resulting plots representing the ordinal statistics’ fluctuations
across levels of age group are displayed in Figure 1. These plots display the loadings’ fluc-
tuation across age groups, with the x-axis reflecting age group and the y-axis reflecting test
statistic values (larger values reflect more instability). The dashed horizontal lines reflect
critical values, so that the hypothesis of measurement invariance is rejected if the sequence
of test statistics crosses the critical value. While the measurement invariance tests are non-
significant, the plots imply some instability in the older age groups (15 and 16).

Finally, if the user anticipates multiple calculations of the max LM o statistic for a specific
dataset, it is possible to save time by simulating critical values once and re-using them for
multiple tests. We can use the ordL2BB() function to generate critical values and store them
in an object mLMo, say. Then, this object can be employed to obtain the test statistic in the
usual manner.

R> mLMo <- ordL2BB(yg$agegroup)

R> maxlmo <- sctest(restr, order.by = yg$agegroup, parm = 1:4,

+ vcov = "info", functional = mLMo)

The ordL2BB() command automatically generates critical values for testing 1 to 20 parameters
at a time. If only a smaller number of parameters (e.g., only up to 6) is to be tested, some
computation time can be saved by setting the nproc argument accordingly (e.g., nproc =

1To replicate both p-values exactly, R’s random seed needs to be set by set.seed(1090) prior to each
sctest() call.
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Figure 1: Fluctuation processes for the WDM o statistic (left panel) and the max LM o statistic
(right panel).

1:6). In the same way, nproc can be employed to simulate higher-dimensional fluctuation
processes suitable for testing more parameters. One can re-use mLMo in this manner for further
tests of the youth gratitude data. Critical values must be resimulated for new data, however,
because they depend on the proportion of individuals observed at each level of the ordinal
variable (denoted t` for Equation 7).

In the above sections, we have illustrated the score-based tests’ computation in R. We suspect
that the ordinal tests will be most popular with users, because measurement invariance tests
are typically carried out across categories (ordered or not), as opposed to continuous variables.
Thus, in the sections below, we conduct novel simulations to study the ordinal statistics’
expected behavior in practice. In particular, we wish to study (i) the extent to which the
ordinal statistics attribute measurement invariance violations to the correct parameter(s),
and (ii) the extent to which the tests are robust to model misspecification. These issues are
especially important to examine because SEMs are typically complex, with many inter-related
parameters that may exhibit measurement invariance. Previous applications of score-based
tests have typically focused on regression-like models with only a small number of parameters
that may exhibit instability (e.g., Zeileis and Hornik 2007). Thus, the simulations here provide
general evidence about the extent to which the tests accurately capture instabilities in complex
models.

4. Simulation 1

In Simulation 1, we examined the extent to which the proposed tests are sensitive to the
specific model parameter that violates measurement invariance. If, say, a factor loading
violates measurement invariance, it is plausible that this violation impacts other parameter
estimates, including factor covariances or the unique variance associated with the manifest
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Figure 2: General model used for the simulations.

variable in question. Thus, the goal of the Simulation 1 is to examine the extent to which
the proposed tests attribute the measurement invariance violation to the parameters that are
truly in violation.

4.1. Methods

To examine these issues, we generated data from a two-factor model with three indicators
each (see Figure 2). The measurement invariance violation occurred in one of three places:
the factor loading associated with Scale 1 (λ11), the unique variance associated with Scale 1
(ψ11), or the factor covariance φ12. We then tested for measurement invariance in five subsets
of parameters: each of the three individual parameters noted above, all six factor loadings,
and all six unique variances.

Power and type I error were examined across three sample sizes (n = 120, 480, 960), three
numbers of categories (m = 4, 8, 12), and 17 magnitudes of invariance violations (described in
the following). The measurement invariance violations began at level 1+m/2 of the auxiliary
variable V and were consistent thereafter: individuals below level 1 + m/2 of V deviated
from individuals at or above level 1 + m/2 by d times the parameters’ asymptotic standard
errors (scaled by

√
n), with d = 0, 0.25, 0.5, ..., 4. For each combination of sample size (n) ×

violation magnitude (d) × violating parameter × categories (m), 5000 datasets were generated
and tested. Statistics from Equations 6, 7 and 8 were examined. As mentioned previously,
Equation 8 is asymptotically equivalent to the usual likelihood ratio test. Thus, this statistic
provides information about the relative performance of the ordinal statistics vs. the LRT. In
all conditions, we maintained equal sample sizes in each subgroup of the ordinal variable.
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Figure 3: Simulated power curves for max LM o, WDM o, and LM uo across three levels of
the ordinal variable m and measurement invariance violations of 0–4 standard errors (scaled
by
√
n), Simulation 1. The parameter violating measurement invariance is λ11. Panel labels

denote the parameter(s) being tested and the number of levels of the ordinal variable m.

4.2. Results

Full simulation results are presented in Figures 3 to 5. Figure 3 displays power curves as a
function of violation magnitude in the factor loading λ11, with the parameters being tested
changing across rows, the number of levels m of the ordinal variable V across columns, and
lines reflecting different test statistics. Figures 4 and Figure 5 display similar power curves
when the factor covariance φ12 and error variance ε11 violate measurement invariance, respec-
tively. In these figures, we generally show tests associated with parameters that exhibited
nonzero power curves. For example, in Figure 3, the middle row shows that power for tests
of ψ11 stays near zero for all values of m and d. Similar rows have been omitted from this
figure and other figures.

Within each panel of Figure 3 to Figure 5, the three lines reflect the three test statistics. It
is seen that the two ordinal statistics exhibit similar results, with max LM uo demonstrating
lower power across all situations. This demonstrates the sensitivity of the ordinal statistics
to invariance violations that are monotonic with V . In situations where only one parameter
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Figure 4: Simulated power curves for max LM o, WDM o, and LM uo across three levels of
the ordinal variable m, and measurement invariance violations of 0–4 standard errors (scaled
by
√
n), Simulation 1. The parameter violating measurement invariance is φ12. Panel labels

denote the parameter(s) being tested and the number of levels of the ordinal variable m.

is tested, WDM o and max LM o exhibit equivalent power curves. This is because, when only
one parameter is tested, the statistics are equivalent.

From these figures, one generally observes that the tests isolate the parameter violating mea-
surement invariance. Additionally, the tests have somewhat higher power to detect measure-
ment invariance violations in the factor loading and factor covariance parameters, as opposed
to the error variance parameter. Finally, simultaneous tests of all factor loadings or all er-
ror parameters result in decreased power, as compared to the situation where one tests only
the violating parameter. This occurs because, in testing a subset of parameters (only one of
which violates measurement invariance), we are effectively dampening the signal of a mea-
surement invariance violation. This “dampening” effect is more apparent for the max LM o

statistic, because it involves a sum across all tested parameters (see Equation 7). Conversely,
WDM o takes the maximum over parameters (Equation 6), so that invariant parameters have
no impact on this statistic.

In summary, we found that the proposed tests can attribute measurement invariance violations
to the correct parameter. This provides evidence that, in practice, one can have confidence in
the tests’ abilities to locate the measurement invariance violation. Of course, this statement is
qualified by the fact that, in this simulation, the model was correctly specified. In the following
simulation, we examine the tests’ performance in the likely situation of model misspecification.

5. Simulation 2

In Simulation 2, we examine the extent to which the results of Simulation 1 are robust to
model misspecification. Specifically, we generate data from the factor analysis model used in
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Figure 5: Simulated power curves for max LM o, WDM o, and LM uo across three levels of
the ordinal variable m and measurement invariance violations of 0–4 standard errors (scaled
by
√
n), Simulation 1. The parameter violating measurement invariance is ψ11. Panel labels

denote the parameter(s) being tested and the number of levels of the ordinal variable m.

the previous section, except that the model contains an extra loading from the second factor
to Scale 1. The estimated model matches that displayed in Figure 2, however, resulting in
model misspecification. The goal of this simulation is to examine the proposed statistics’
power to detect measurement invariance violations (and to attribute the violation to the
correct parameter) under this misspecification.

5.1. Method

A measurement invariance violation could occur in each of the three parameters from Sim-
ulation 1 (factor loading, factor covariance, and unique variance), and a violation could also
occur in the extra, unmodeled loading. In each condition, a single parameter exhibited the
violation. Sample size and magnitude of measurement invariance violation were manipulated
in the same way as they were in Simulation 1. The tested parameters were also the same as
Simulation 1.
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Figure 6: Simulated power curves for max LM o, WDM o, and LM uo across three levels of
the ordinal variable m and measurement invariance violations of 0–4 standard errors (scaled
by
√
n), Simulation 2. The parameter violating measurement invariance is the unmodeled

loading. Panel labels denote the parameter(s) being tested and the number of levels of the
ordinal variable m.

5.2. Results

Results of primary interest are conditions where the unmodeled loading violates measurement
invariance. A subset of results is displayed in Figure 6. One can generally observe that tests
of the first loading and unique variance exhibited high “power,” which is actually a high type
I error rate here. This type I error also demonstrated when testing all loadings and all unique
variances, as shown in the appendix. Tests associated with the factor covariance did not
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demonstrate this error, however. In terms of specific statistic performance, max LM o and
WDM o demonstrated higher type I error than LM uo in each panel, especially with increasing
levels. This is likely because the unmodeled loading’s non-invariance was monotonic with V ;
if it were not monotonic, we would expect LM uo to have higher type I error.

When the parameter violating measurement invariance was modeled, results were generally
the same as Simulation 1. When the modeled factor loading, λ11, violated measurement in-
variance, the statistics were generally able to pick up the violation despite the misspecification.
Similar results were observed when the unique variance and factor covariance parameters vi-
olated measurement invariance; these results are all shown in the Appendix. In particular,
the power of ordered statistics max LM o test and WDM o test showed higher power than
unordered LM uo in each of these panels.

In summary, the proposed test statistics appear robust to unmodeled loading parameters, so
long as the unmodeled loading does not violate measurement invariance. If the unmodeled
loading does violate measurement invariance, the tests can still detect measurement invariance
violations. The violations are assigned to modeled parameters that do not violate measure-
ment invariance, however. The impacted parameters include the error variance and other
loadings associated with the manifest variable that has an unmodeled loading. Thus, as for
other tests of measurement invariance, it is important to study the extent to which the hy-
pothesized model includes all parameters of importance. None of these tests (score-based or
otherwise) inform the researcher of model misspecification.

6. General discussion

In this paper, we first described a novel family of test statistics for measurement invariance
and illustrated their use via the R packages lavaan and strucchange. Next, we examined
these statistics’ abilities to identify the parameter violating measurement invariance under
well-specified and misspecified models. We found that the proposed statistics could gener-
ally isolate the model parameter violating measurement invariance, so long as the violating
parameter is included in the model.

In the remainder of the paper, we first compare these tests to traditional tests of measurement
invariance. We then discuss test extension to other fit functions and to other specialized
models.

6.1. Applications

Many of the applications in this volume, along with many measurement invariance applica-
tions in general, focus on testing across unordered categories such as nations or gender. As
discussed earlier in this paper, the score-based tests for unordered categories are essentially
equivalent to the usual likelihood ratio test. Given a measurement invariance violation across
these unordered categories, however, researchers typically wish to know why the violation
occurred. At this point, researchers may examine education level, socioeconomic status, in-
come levels, and so on across the unordered categories. These variables are often ordinal or
continuous in nature, so that the family of tests described in this paper are applicable. This
is a first step towards describing why measurement invariance violations occur, as opposed to
simply detecting measurement invariance violations. The tests described here are convenient
for this purpose, as they do not require a new model to be estimated for each ordinal variable.
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Instead, each ordinal variable defines an ordering of observations, which in turn yields a test
statistic that is specific to that ordinal variable.

6.2. Extension

In this paper, we focused on testing for measurement invariance in factor analysis models that
assume multivariate normality and that are estimated via maximum likelihood (ML). The
family of tests described here generally apply to estimation methods that maximize/minimize
a fit function, however (see Zeileis and Hornik 2007), so they are potentially applicable to
alternative SEM discrepancy functions such as generalized least squares (e.g., Browne and
Arminger 1995). Score calculation for these alternative discrepancy functions has not been
implemented (to our knowledge), though the calculation could be implemented. Test statistic
calculation and inference would then proceed in exactly the same manner as the calculation
and inference illustrated in this paper.

In addition to alternative fit functions, the tests can be extended to other models estimated
via ML. Of primary interest to the topic of measurement invariance, the tests can be extended
to item response models to examine differential item functioning. In particular, Strobl, Kopf,
and Zeileis (2013) studied application of these tests to the Rasch model, using them as the
basis of a recursive partioning procedure that segments subgroups of individuals who exhibit
DIF. Further study and extension of these tests for IRT seem warranted.

Computational details

All results were obtained using the R system for statistical computing (R Core Team 2013),
version 3.0.1, employing the add-on package lavaan 0.5-14 (Rosseel 2012) for fitting of the fac-
tor analysis models and strucchange 1.5-0 (Zeileis et al. 2002; Zeileis 2006a) for evaluating the
parameter instability tests. R and both packages are freely available under the General Pub-
lic License 2 from the Comprehensive R Archive Network at http://CRAN.R-project.org/.
Replication R code for all results is available at http://semtools.R-Forge.R-project.org/.
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A. Additional simulation results

This appendix contains additional results from Simulation 2, where there existed model mis-
specification (lacking one loading from Scale 1 to Math). Figure 7 to Figure 10 display results
when the unmodeled loading, the loading λ11, the covariance φ12, and the error term ψ11

violate invariance, respectively. Results are only shown for simulation conditions exhibit-
ing power curves that increased from zero. These results were generally the same as the
Simulation 1 results.
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Figure 7: Simulated power curves for max LM o, WDM o, and LM uo across three levels of
the ordinal variable m and measurement invariance violations of 0–4 standard errors (scaled
by
√
n), Simulation 2. The parameter violating measurement invariance is the unmodeled

loading. Panel labels denote the parameter(s) being tested and the number of levels of the
ordinal variable m.
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Figure 8: Simulated power curves for max LM o, WDM o, and LM uo across three levels of
the ordinal variable m and measurement invariance violations of 0–4 standard errors (scaled
by
√
n), Simulation 2. The parameter violating measurement invariance is λ11. Panel labels

denote the parameter(s) being tested and the number of levels of the ordinal variable m.
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Figure 9: Simulated power curves for max LM o, WDM o, and LM uo across three levels of
the ordinal variable m and measurement invariance violations of 0–4 standard errors (scaled
by
√
n), Simulation 2. The parameter violating measurement invariance is φ12. Panel labels

denote the parameter being tested and the number of levels of the ordinal variable m.
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Figure 10: Simulated power curves for max LM o, WDM o, and LM uo across three levels of
the ordinal variable m and measurement invariance violations of 0–4 standard errors (scaled
by
√
n), Simulation 2. The parameter violating measurement invariance is ψ11. Panel labels

denote the parameter(s) being tested and the number of levels of the ordinal variable m.
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Abstract
In this paper, we consider a family of recently-proposed measurement invariance
tests that are based on the scores of a fitted model. This family can be used to
test for measurement invariance w.r.t. a continuous auxiliary variable, without pre-
specification of subgroups. Moreover, the family can be used when one wishes to test
for measurement invariance w.r.t. an ordinal auxiliary variable, yielding test stati-
stics that are sensitive to violations that are monotonically related to the ordinal
variable (and less sensitive to non-monotonic violations). The paper is specifically
aimed at potential users of the tests who may wish to know (i) how the tests can be
employed for their data, and (ii) whether the tests can accurately identify specific
models parameters that violate measurement invariance (possibly in the presence of
model misspecification). After providing an overview of the tests, we illustrate their
general use via the R packages lavaan and strucchange. We then describe two novel
simulations that provide evidence of the tests’ practical abilities. As a whole, the
paper provides researchers with the tools and knowledge needed to apply these tests
to general measurement invariance scenarios.
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