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In order to improve the environmental perception ability of mobile robots during semantic navigation, a three-layer perception
framework based on transfer learning is proposed, including a place recognition model, a rotation region recognition model,
and a “side” recognition model. The first model is used to recognize different regions in rooms and corridors, the second one
is used to determine where the robot should be rotated, and the third one is used to decide the walking side of corridors or aisles
in the room. Furthermore, the “side” recognition model can also correct the motion of robots in real time, according to which
accurate arrival to the specific target is guaranteed.Moreover, semantic navigation is accomplished using only one sensor (a camera).
Several experiments are conducted in a real indoor environment, demonstrating the effectiveness and robustness of the proposed
perception framework.

1. Introduction

Enabling robots to navigate autonomously in a real world
environment is a very challenging topic in the field of robotics
associated closely with signal processing, machine vision,
and so forth. A robot should have adaptive capacities of
planning optimal paths in maps when implementing tasks
[1]. Traditional navigation approaches strongly rely onmetric
or topological maps and constraints which are described in
terms of geometry, assuming the shortest path to be the best
[2–4]. However, human navigation does not depend on the
“best,” but on what to be seen [5]. Semantic information
can be further abstracted from images to decide where
we go based on it. Normally, we can recognize rooms,
corridors, doors, aisles, and so on for reference to plan the
motion from one place of a room to another in a building.
Moreover, we should also know the exact side within the
scenario in order to keep moving on the right path. In
other words, we can adjust back if we realize that we are
walking in a skew direction. Therefore, mobile robots should

have the abilities mentioned above to perform human-like
navigation.

Semantic navigation is regarded as a system considering
semantic information to express the environment and then
to implement the robot’s localization and navigation. In
recent decades, a great deal of attempts have been made
focusing on finding applicable solutions for robot semantic
navigation. Semantic navigation approaches usually adopt
topological structures [6–8], in which semantic places and
objects are abstracted to different nodes. It is expected
that each node is observed accurately during the motion.
However, those nodesmay not be observed straightforwardly
via the motion offset of mobile robots. Moreover, humans’
navigation depends on their two eyes, which is themotivation
behind equipping multiple sensors on mobile robots when
dealing with the navigation task.

Themain contribution of this paper is to propose a three-
layer perception framework based on transfer learning using
only visual information, including place recognition model,
rotation region recognition model, and “side” recognition
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model. Using this framework, semantic navigation can be
achieved via only one camera and themotion offset of mobile
robots can be solved. Different from traditional semantic
navigation methods, the proposed algorithm uses transfer
learning to train and recognize the semantic information in
the environment and only uses one RGB camera to realize
the whole semantic mapping and navigation. Through the
recognition of input images, it can provide the robot with key
semantic information for navigation, such as navigation in
corridors and recognition of turning areas.

The rest of this work is organized as follows. After
discussing some related work in Section 2.1, Section 2.2
discusses the details of the proposed three-layer percep-
tion framework. Section 3 shows some experimental results
obtained by our approach. Finally, Section 4 concludes the
paper.

2. Materials and Methods

2.1. Related Work. Semantic information has been used to
infer the indoor environment information and to improve
the planning efficiency [5, 9–11]. Also, it has drawn a deal
of attention in the area of large-scale navigation, seeking
to deal with problems in a higher dimension [12]. This
type of navigation is inspired by humans, where places are
not described in terms of a global map but by semantic
information. Semantics in mobile robot navigation has been
mainly used for place recognition, allowing mobile robots
to build relationships based on places [13]. The topological
structure is usually adopted for the semantic navigation,
which allows robots to plan their paths at a high dimension
[14, 15]. In topological structure, places are often abstracted
to nodes, and visiting orders are abstracted to edges.

A variety of approaches are attempted to solve the
semantic navigation problem in different perspectives; for
instance, Joseph et al. [16] used a human motion mode
to predict a path based on how real humans ambulated
towards a goal while avoiding obstacles. Posada et al. [17]
presented a semantic navigation approach which could be
parsed directly from natural language (e.g., “enter or get out
of the room, follow the corridor until the next door, etc.”).
Zhao and Chen [18] encoded scene information, semantic
context, and geometric context into a condition random field
(CRF) model, which computed a simultaneous labeling of
image regions into semantic classes and structural object
classes. Horne et al. [19] used semantic labeling techniques to
achieve path planning. In these systems, each pixel in images
was classified automatically into a semantic class, and then
an image was produced from the induced visual percepts
that highlighted certain classes. Recently, neural networks
based on learning have been widely used in robots [20].
The deep learning method has become a significant way to
solve semantic navigation problems showing the powerful
ability to obtain semantic information [21–23]. Zhu et al. [24]
proposed a target-driven visual navigation method using a
reinforcement learning model that generalizes across targets
and scenes. Furuta et al. [25] proposed semantic map based
navigation which consisted of generating a deep learning
enabled semantic map from annotated world and object
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Figure 1: The diagram for mobile robot working in an indoor
environment.There are several rooms and a corridor in the diagram.
A trajectory with a dashed line shows a path for the navigation from
a room to another.

based navigation using learned semantic map representa-
tion.

Most approaches mentioned above have two main prob-
lems:

(1) Each node in its topological structure is a specific
target, which may not be observed through the
motion offset of mobile robots on the edge.

(2) More than one sensor is used, such as a camera for
image collection and a laser formobile robotmapping
and motion.

The two problems have motivated our current work,
aiming at achieving visual semantic navigation in a human-
like way using only one camera.

2.2. Visual Semantic Navigation Based on Deep Learning.
People achieve the perception of the environment through
images seen by eyes and then guide the behavior. Therefore,
we can learn from the “perception-guidance” model to
control the robot. In this paper, a three-layer perception
framework based on transfer learning is conducted with a
common scene (composed of multiple rooms and corridors,
as shown in Figure 1).This framework can only rely on image
information of a single camera to perceive the surroundings
and identify the regionwhere the robot stands and the current
pose, which provides decision information for semantic
navigation.

2.2.1. Three-Layer Perception Framework. Mobile robots usu-
ally work in the environment shown in Figure 1. It can be
supposed that the number of rooms is 𝑛 (𝑛 ∈ 𝑁+) and
the semantic task is to move the robot from a room named𝑅𝑖 (𝑖 < 𝑛, 𝑖 ∈ 𝑁+) to 𝑅𝑗 (𝑗 < 𝑛, 𝑗 ∈ 𝑁+). To achieve
this semantic task, the robot is required to determine the
initial semantic region firstly and then plan the path to reach
the target region (the dashed line for the navigation path as
shown in Figure 1). As the input information of the robot is
merely images acquired by a camera, the learning algorithm
can be used to train the robot’s perception model of the
environment to realize the semantic navigation purpose.
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Figure 2: Three-layer perception framework.

Each room and each corridor is usually classified as a
category, but only the region where the robot is located can
be identified. Additional sensors are needed to implement
automatic navigation for the robot, although we have already
obtained a semantic map. It is difficult to complete the
whole semantic navigation in a single neural network model
because it cannot provide the robot with all the navigation
information simultaneously. Therefore, we design a three-
layer perception framework consisting of three perceptual
models, which are place recognition model (PRM), rotation
region recognition model (3RM), and “side” recognition
model (SRM), as shown in Figure 2.

The PRM is used to identify the semantic region where
the robot is currently located. And then it gets the navigation
topological map according to the semantic task. The 3RM
is to identify the key regions when transferring between
regions, such as the rotation position at a door when a
robot moves from a room to the corridor. The SRM is to
provide the relative pose information between a robot and
the environment to control the movement. The “side” means
that a robot is located at a side. A robot perhaps locates in the
left side, center, or right side, when it moves in a corridor or
aisle.

(1) Place Recognition Model (PRM). When the robot imple-
ments semantic tasks, it is necessary to determine the seman-
tic region where it stands and the target places and then to
carry out semantic navigation planning. In an environment
similar to Figure 1, the semantic task may be moving from a
position of one room to a target region of another room, or
from a corridor to a specific region of one room. It is hard
to perform navigation planning because the initial position
and orientation are both uncertain. There are several main
aisles for walking in a room; therefore, several regions can be
divided according to these aisles, and each one is regarded as
a semantic region.The recognitionmodel of semantic regions
can be trained using the method of image classification in
machine learning. It needs to collect images of different
positions and perspectives in each semantic region as training
samples.

Set the number of semantic regions divided in the 𝑖th
roomas 𝑛𝑖 and the number of semantic regions in the corridor

as 𝑛Corr; then, the total number of semantic regions can be
calculated by

𝑁Sem = 𝑛∑
𝑖=1

𝑛𝑖 + 𝑛Corr. (1)

Deep learning is widely used in image classification
and has obtained excellent achievements in the ImageNet
Challenge; for instance, the top-5 network model accuracy
rate of Google’s Inception-V3 reaches up to 96.5% [26, 27]. In
addition, transfer learning can use the complex trained neural
network model to train the new classification to reduce the
amount of training samples and save training time [28, 29].
Therefore, the neural network model for recognizing seman-
tic regions is designed using transfer learning.The Inception-
V3model consists of 11 layers of inceptionmodule, which uses
multiple branches to extract high-level features of different
abstraction levels to enrich the expressive ability. The neural
network model framework of semantic region perception
based on transfer learning is shown in Figure 3. The model’s
input is RGB images. The parameters of Inception-V3 model
trained on the ImageNet dataset are used to calculate the
network forward transmission, and 2048 nodes are obtained
in the bottleneck layer. Then, the last fully connected layer
FC is replaced. The number of output categories is the total
number of semantic regions𝑁Sem. Then, the Softmax layer is
calculated, and the output is the probability of each semantic
region category.Weuse Inception-V3model for image feature
extraction directly and then take the extracted bottleneck
feature vector to train a single-layer fully connected neural
network.

Suppose that the input RGB image is 𝐼, the bottleneck
output is 𝑦𝑏𝑝 (𝑝 ∈ [1,𝑁𝑏]) (the subscript “𝑏” means
bottleneck;𝑁𝑏 is the number of bottleneck layer nodes) after
calculating function 𝑓V3 of Inception-V3 module, and the
output of FC layer is 𝑦𝑐𝑞 (𝑞 ∈ [1,𝑁Sem]) (the subscript “𝑐”
means fully connected layer).

The bottleneck output can be calculated by

𝑦𝑏𝑝 = 𝑓V3 (𝐼) . (2)
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Figure 3: The diagram of PRM based on transfer learning.

And the ReLU is selected as an activation function in the
FC layer, and then the output of the FC layer can be given by

𝑦𝑐𝑞 = 𝑓ReLU(
𝑁𝑏∑
𝑝=1

𝑤𝑝𝑞𝑦𝑏𝑝 + 𝑏𝑞) , (3)

where parameters 𝑤 and 𝑏 are the weight and bias of the FC
layer, respectively.

Model parameters of the FC layer are needed to be trained
in the network, and the number of parameters can be given
by

Num = 𝑁𝑏 ⋅ 𝑁Sem + 𝑁Sem, (4)

where Num is the amount of parameters.
Finally, the Softmax function is used to obtain the

probability of each output. The output 𝑦𝑠𝑞 (𝑞 ∈ [1,𝑁Sem])
(the subscript “𝑠” means Softmax layer) can be obtained by

𝑦𝑠𝑞 = 𝑓Soft max (𝑦𝑐𝑞) = 𝑒𝑦𝑐𝑞∑𝑁Sem𝑞=1 𝑒𝑦𝑐𝑞 . (5)

For every input image, the probability value belonging to
each category can be calculated by the model PRM. And the
category with a maximum probability is the final recognition
result.

(2) Rotation Region Recognition Model (3RM). Through the
place recognition model, the robot can recognize the region
location where it stays, but it also needs the recognition
information of region transfer to reach the target one, such
as how to reach the door from a region of the room. The
robot usually performs rotation during the transfer among
semantic regions, and it needs to recognize where to rotate.
In order to realize the recognition of the rotation region for
the robot by the image information, a rotation recognition
perceptionmodel is proposed based on transfer learning.The
rotation position of the robot is identified by sensing room
regions and door regions connected with the corridor.

Usually, the movement of the robot between room and
corridor is divided into four cases: (a) from room to the left
side of corridor, (b) from room to the right side of corridor,
(c) from the left side of corridor to room, and (d) from the
right side of corridor to room.We can obtain the best rotation
region by analyzing the volume of the robot and the turning

radius, which means reaching nearly the center line of the
doorway or corridor after rotating. Therefore, the navigation
recognition region can be divided at the door as shown in
Figure 4.

The navigation recognition regions are drawn as three
blue dashed boxes in Figure 4. And RR𝑖1 is the recognition
region entering the room from the left side of the corridor
(Path 1). RR𝑖2 is the recognition region entering the room
from the right side of the corridor (Path 4). RR𝑖3 is the
recognition region entering the left or right corridor from the
room (Path 2 and Path 3). In brief, RR𝑖1 and RR𝑖2 are referred
to as the entrance recognition regions, and RR𝑖3 is called the
exit recognition region.The symbol “𝑖” in the subscriptmeans
the 𝑖th room.

The navigation in the room among semantic regions also
needs to identify the rotation recognition region, shown in
Figure 5. Semantic regions are divided in the room according
to the method described in the previous section.The number
of semantic regions divided in the 𝑖th room is 𝑛𝑖. The
robot should recognize the rotating positions between the
two adjacent semantic regions. Therefore, it is necessary
to determine the location of the recognition region and
to collect the images. Recognition regions are described as
dashed boxes in Figure 5, and arrows indicate the movement
direction of the robot.

In order to determine the number of rotation recognition
regions, it is necessary to analyze the distribution of the
recognition region in the room. The center line of the region
can be connected (such as the red dashed line in Figure 5),
and then the required recognition regions can be obtained
according to the connection. For connections like the “𝑇”
type, three regions are required, while the “𝐿” type requires
two regions.

We can suppose that the number of “𝑇” type connections
in the 𝑖th room is 𝑛𝑖𝑇, and the number of “𝐿” type connections
is 𝑛𝑖𝐿; then, the number 𝑛𝑖Rot of regions in the 𝑖th room can be
calculated by

𝑛𝑖Rot = 3𝑛𝑖𝑇 + 2𝑛𝑖𝐿. (6)

In addition, there are three rotation recognition regions
at the door of each room; the total number𝑁Rot of regions is
given by

𝑁Rot = 𝑛∑
𝑖=1

𝑛𝑖Rot + 3𝑛. (7)
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Figure 4:The diagram of rotation recognition region at the door.The green dashed box means room area.The three blue dashed boxes mean
recognition regions. The four dashed lines show the different movement directions of the robot.
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Figure 5: Diagram of semantic regions and rotation recognition regions divided in the room.The circled numbers indicate semantic regions.
The green blocks describe objects in the room. The robot’s accessible area is indicated by the red dashed line. The blue dashed boxes are
recognition regions and arrows mean the movement direction of the robot.

When the robot moves between rooms and corridors,
it needs to recognize the rotation recognition region firstly
and then rotate to the corresponding direction.The locations
of recognition regions are determined in each semantic
region and images should be collected in the corresponding
directions. Then, each region is trained as one category. The
location and orientation of the robot are limited in a fixed
range for each recognition region when collecting images. In
the region RR𝑖1, the robot should be in the center line of the
corridor with the direction towards the right. In the region
RR𝑖2, the robot locates in the center line of the corridor with
the direction towards the left. In the region RR𝑖3, the robot
should be at the center of the doorway with the direction
towards the corridor (perpendicular to the corridor extension

direction). Besides, we need to collect images outside the
rotation recognition region for training in neural networks
as nonrecognition region.

The neural network is trained by the method of transfer
learning, and the output nodes are the rotation recognition
regions and the nonrecognition region; the amount is 𝑁󸀠Rot,
given by

𝑁󸀠Rot = 𝑁Rot + 1. (8)

As the neural network structure is similar to Figure 2, its
structure is not given here.The trained neural networkmodel
is used as a rotation recognition region perception model to
guide the robot through different semantic regions.
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Figure 6: Positions and orientations of the mobile robot in the corridor. The nine states of the robot are shown.

(3) “Side” Recognition Model (SRM). In order to reduce the
collision when the robot moves in the corridor or rooms,
it is necessary to be able to perceive the pose of the robot.
As the input for the robot is images, we can learn from
the process of people walking in the corridor and then
design a “side” recognition model. Firstly, we analyze the
operation state of the robot in the corridor. Secondly, the
neural network model of recognizing robot pose is trained
by transfer learning.

The mobile robot moves in a two-dimensional plane;
its pose includes position and orientation. There are nine
different states according to the position and orientation
when moving in the corridor as shown in Figure 6. Among
them, the positions are separated into corridor center, left
side, and right side, and the orientations are divided into
center direction, left, and right. For convenient description,
the nine states of the robot are abbreviated as shown inTable 1.
When the robot moves in a room, its pose state is similar to
that in the corridor, which has nine states too. As the door
region is relatively small, in order to avoid the collision of
the robot, it needs to sense and adjust its pose when passing
through the door.Thus, themethod of image collection at the
door of each room is similar to that in the corridor, as shown
in Figure 7.

When the robot is in a different state, its camera (fixed
on the robot with the forward direction) observes different
images. Therefore, we can recognize the pose state through
image classification. Similar to the training model above, a
neural network model of robot recognition in the corridor
is designed using transfer learning. The last full connection
layer of Inception-V3 model is modified to output the nine
states of the robot, and then the single-layer fully connected
neural network is trained.

Images that robots observed in different poses need to
be collected when training the model. For facilitating control
and reducing the number of perceptionmodels, images at the
samepose state are put together, as a category to train network
model. To cover possible scenarios, data collection takes two
movements in the corridor and doorway.

Table 1: Nine pose states of mobile robot.

Orientation (O) Position (P)
Right (R) Center (C) Left (L)

Right (R) PROR PCOR PLOR
Center (C) PROC PCOC PLOC
Left (L) PROL PCOL PLOL

Table 2: Robot poses and control strategies.

Robot poses Control strategies
A PLOR Turn left and move to center from left
B PLOC Move to center from left
C PLOL Turn right and move to center from left
D PCOR Turn left
E PCOC Move forward
F PCOL Turn right
G PROR Turn left and move to center from right
H PROC Move to center from right
0 PROL Turn right and move to center from right

The initial position and orientation may be in any cases
above, and the movement may deviate from the center direc-
tion; it is necessary to adjust the control according to each
case.Thepose states with corresponding control strategies are
given in Table 2. The robot’s state can be recognized through
the input image, and corresponding control is conducted,
which makes the robot move along the center.

2.2.2. Semantic Navigation of the Mobile Robot. When the
mobile robot performs semantic navigation betweenmultiple
rooms and corridors, it is necessary to determine the topo-
logical relations between semantic regions according to prior
information. An indoor environment usually contains several
rooms and corridors; the topological relationship (shown
in Figure 8) between any semantic regions can be given
combined with the indoor semantic region division (shown
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Figure 8: Semantic region topology diagram.

in Figure 5). The semantic topological relation diagram is
a directed graph of connected nodes, the node is a set of
semantic regions, and the edge is a set of rotation recognition
regions. The semantic regions are connected by rotation
recognition regions. The topological relations between any
two semantic regions can be calculated by the directed graph,
and the navigation pathwith the smallest number of semantic
regions is selected as the optimal path.

The robot’s semantic navigation path can be generated
automatically through the topology diagram of Figure 8,
which is used to guide the robot motion. Meanwhile, the
three-layer perception framework described in Section 3.1
is used to obtain corresponding perceptual information to
make decisions. Assuming that the robot is currently in the
door region of the room 𝑅𝑖, the semantic task is to reach the
room 𝑅𝑗; then, the robot’s decision process is as follows:

(a) It determines the semantic region using PRM.
(b) It obtains the pose using the pose perception model

and adjusts position and orientation to move towards
the door.

(c) It determines whether the robot is in nonrecognition
region or rotation recognition region using 3RM.The

robot keeps going straight if it is in the nonrecognition
region. And the robot rotates to corridor when the
exit recognition region is detected.

(d) It obtains the robot’s pose relative to the corridor
using SRM, and the robot moves along the corridor
center line through the control strategy in Table 2.

(e) The robot rotates towards the roomwhen the entrance
recognition region of room 𝑅𝑗 is detected using 3RM.

(f) The robot moves along the center line of the doorway
through the control strategies in Table 2.

We achieve the robot semantic navigation from the cur-
rent region to the target through the algorithm above. In the
whole process, the robot only relies on images information
for perception and decisions, without using odometer, laser,
or other sensor information.

3. Results and Discussion

In order to verify the validity of the proposed visual semantic
navigation algorithm, several experiments are carried out on
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Figure 9: Experimental scene and omnidirectional mobile robot.

a mobile robot platform. Firstly, the experimental environ-
ment is introduced, and then the training process of the
three-level environment perception model is given. Finally,
the semantic navigation experiments of the robot from the
corridor to room and from room to room are carried out.

3.1. Introduction to the Experimental Environment. An indoor
environment including one corridor and four rooms is
selected to verify the semantic navigation algorithm, shown
in Figure 9. The experimental mobile robot is an omni-
directional platform using Mecanum wheels. It is able to
implement movements in any direction. A Kinect sensor is
used in the experiment only using RGB color images.

3.2. Training of the Three-Layer Perception Framework. RGB
images are collected using a Kinect sensor to train three
perception models in the environment as shown in Figure 9.

3.2.1. Training of PRM. Themodel is used to classify semantic
regions in four rooms and a corridor. We control the robot to
move and collect images simultaneously. The robot rotates in
a circle when it moves one meter forward. The frame rate of
Kinect is 30 f/s, which can capture sufficient training data. In

Table 3: Training data for three-layer perception framework.

Model Output
nodes

Images
quantity

Test set
quantity

Accuracy
(%)

PRM 9 74600 7460 96.8
3RM 21 83750 8375 94.2
SRM 9 136580 13658 96.5

each room, two main aisles are selected as semantic regions.
The nodes of model’s output are nine when adding up a
corridor region.

3.2.2. Training of 3RM. The model provides rotation posi-
tions for robot navigation among semantic regions. Firstly, it
is vital to determine the recognition region at the doorway
of each room. According to the description in Section 3.1, we
collect images in entrance recognition regions, exit recogni-
tion regions, and nonrecognition region. In addition, images
at recognition regions in each room should be collected. The
trained network model has 21 output nodes according to (7)
and (8).

3.2.3. Training of SRM. Themodel provides position and ori-
entation perception information relative to the environment
for motion control. RGB images are collected in the method
described in Section 3.1 in the corridor. Respectively, nine
categories of images in different positions and orientations
of the corridor and rooms are collected. The position and
orientation are divided into center, left side, and right side
separately.

In addition, we need to collect the corridor images in
two directions. The correction strategies for the nine poses
are consistent whether the robot is in the corridor or rooms.
Therefore, images in the same state are trained as one category
and the number of output nodes is nine.

The neural network training is carried out using the
transfer learning algorithm with Leadtek Quadro K4200
graphics card. 10% of the sample data is randomly selected
as validation set and 10% is selected as test set. The training
data and results of the three models are shown in Table 3.The
accuracy of test results in the test set is quite high, indicating
that the trained neural network models have quiet good
recognition effects on semantic regions, recognition regions,
and robot poses.

3.3. Visual Semantic Navigation Experiments. In order to
verify the validity of the proposed three-layer perception
framework for the robot semantic navigation task, experi-
ments of the robot from corridor to room and room to room
are carried out.

3.3.1. Semantic Navigation Experiments from Corridor to
Room. In order to verify the effectiveness and robustness
of the model, semantic navigation experiments of all nine
initial poses are carried out. The experimental results are
shown in Table 4, which shows the initial position images
of the robot in corridor, the corridor images observed by
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Figure 10: Semantic navigation experiment from room to room.

camera, and the trajectories of semantic navigation. It is
obvious that the corridor images in different positions are
different, which is beneficial to classify. In order to describe
the process of semantic navigation, the environment map is
established using a two-dimensional laser, and the trajectory
of the robot is displayed on the map. From the trajectory
diagrams, it can be observed that when there is a deviation
between the current pose state and the corridor center, pose
adjustment is implemented autonomously. In the doorway,
rotation operation is implemented when the robot recognizes
the entrance recognition region, and multiple pose adjust-
ments are conducted according to the observed state. The
robot can move along the center of the doorway in this
method.

The validity and stability of the SRM are verified by the
experiments above. The robot can correct the position and
orientation by recognizing the current state in different initial
poses and correct its own pose in real time to ensure stable
movement.

3.3.2. Semantic Navigation Experiments from Room to Room.
Semantic navigation experiments from room to room are
carried out to verify the validity of the proposed framework.
A series of semantic tasks which are “Room 1 → Room 2 →
Room 3 → Room 4” are conducted. The robot is initially
located at the semantic region of the doorway in Room
1, but the initial information is not given. The semantic
tasks are to arrive at regions in the other three rooms,
respectively.

The movement trajectory is shown in Figure 10. Firstly,
the robot recognizes its semantic region by PRM and gener-
ates a semantic navigation topology. Then, the robot rotates
to the left into the corridor when the exit recognition region
is detected. The robot goes straight until recognizing the
entrance recognition region of Room2 and rotates to the right
to enter the room.The same process is implemented to arrive
at Rooms 3 and 4. Through the trajectory, it can be seen that
the robot can adjust itself to realize the semantic tasks and
keep moving along the center line until the target region is
recognized.

Experiments show that the three-level perception frame-
work can perform well in the semantic task only using a
camera. It provides vital information to guide the navigation.
In addition, it can correct the attitude of movement continu-
ously which yields higher reliability and stability.

4. Conclusion

In this paper, a novel visual semantic navigation approach
is presented using a three-layer perception framework based
on transfer learning. The model comprises place recogni-
tion model, rotation region recognition model, and “side”
recognitionmodel, which are used to determine the semantic
region and recognize the position of the rotating region and
the pose information relative to the environment. Only a
single camera sensor is employed in our system. Additionally,
the “side” recognition model is able to correct the robot’s
pose automatically and improve the operational reliability.
Semantic navigation experiments are carried out in corridors
and rooms, and the results verify the applicability and
robustness of our method. We would like to explore the
adaptability of changing environment and semantic planning
algorithm considering dynamic pedestrians in the future
work.
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