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It has been shown by Hadley that the logic of quantum 
mechanics is consistent with general relativity when closed 
time-like curves are permitted. This is done by hypothesising 
particles as 4-geons: particle-like solutions to Einstein’s field 
equations with closed time-like curves. Hadley provides 
axioms that need to be satisfied for quantum logic to be 
possible. Here, a candidate 4-geon and an interpretation of 
quantum measurement is provided that satisfy all of Hadley’s 
axioms. The candidate solution is based on the extended ‘fast’ 
Kerr-Newman singularity and a new interpretation of 
measurement. 

Introduction 
This paper is dependent on “The Logic of Quantum Mechanics 
Derived From Classical General Relativity,” Foundations of Physics 
Letters, 1997 by Mark J. Hadley, also available online at the time of 
writing. [Hadley 15] 
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It has been shown by Hadley [Hadley 15][Hadley 16] that the 
logic of quantum mechanics [Ballentine 2][Jauch 24] is consistent 
with General Relativity [Thorne et al. 35][Hawking et al. 19] when 
closed time-like curves are permitted. This is done by hypothesising 
particles as 4-geons: particle-like solutions to Einstein’s field 
equations with closed time-like curves inherent in their structure. 
Hadley provides axioms that need to be satisfied for such quantum 
logic to be possible. Here, a candidate 4-geon and an interpretation of 
quantum measurement is provided that satisfy Hadley’s axioms.  

‘Geons’ as particle-like solutions to Einstein’s field equations were 
first suggested by Einstein [Einstein, Rosen 11][Schilpp 32]. Wheeler 
took-up the idea and developed it further [Wheeler, Misner 
28][Wheeler 36]. Neither of the above based the idea on non-time-
orientability (or closed time-like curves). Not until Hadley has a way 
forward been found that could potentially be compatible with 
quantum logic. 

Note: Strictly the existence of closed time-like curves [Friedman et 
al. 12][Thorne 34] does not require space-time to be non-time-
orientable (as evidenced by the Gödel solution to Einstein’s field 
equations that is both time-orientable and admits closed time-like 
curves [Gödel 14]). However, herein, the distinction will not be 
needed; no constraint on time-orientability is imposed beyond that 
required by Hadley: that closed time-like curves are permitted, and 
that (in general) this implies non-time-orientability. This assumption 
is reasonable as the Gödel solution and similar impose very restrictive 
mathematical constraints almost certainly incompatible with 
observation. 

The 4-geon example provided here is based on the ‘fast’ Kerr-
Newman singularity [Hawking et al. 19][Kerr 25][Newman, Janis 
29][Newman et al 30] which has a history of suspected particle-like 
behaviour (usually in comparison with the electron) [Carter 
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7][Newman, Janis, 29][Lopez 26][Lopez 27][Israelit, Rosen 
23][Israel 22]. The concept is Wheeler’s “charge without charge” and 
“mass without mass” [Wheeler 36]. Spin ½ and other properties of the 
electron have also been found to have possible explanation in 
geometry and topology consistent with general relativity [Barut, 
Bracken 4][Barut, Thacker 5][Friedman, Sorkin 13][Hendriks 
21][Diemer, Hadley 10][Hadley 17] [Arcos, Pereira 1], although it 
should be added that alternatives outside of general relativity have 
also been suggested [Sciama 33] and [Bell et al 6].  

Hadley’s axioms consist of 1 conjecture and 5 axioms. If these 
axioms are satisfied quantum logic is shown to be consistent with 
general relativity. This does not however guarantee quantum logic. In 
order to guarantee quantum logic it is further required that, as in a 
game of dice in Newtonian mechanics, that a probability measure is 
assumed to exist over the outcomes in question. Hadley [Hadley 15] 
justifies this by referring to the example of a Newtonian die, that is; 
probability measures are common place in Newtonian physics via 
statistical mechanics, likewise the probability measures of quantum 
mechanics result from similar considerations using the 4-geons of 
general relativity with closed time-like curves.  

Hadley’s 4-Geons [Hadley 15][Hadley 16] are hypothetical 
solutions to Einstein’s field equations in a space-time with closed 
time-like curves (or non-trivial causal structure) that satisfy the 
following conjecture and axioms: 

 
Hadley’s Conjecture 1: (4-Geon) A particle is a semi-

Riemannian space-time manifold, M, which is a solution of Einstein’s 
equations of general relativity. The manifold is topologically non-
trivial, with a non-trivial causal structure, and is asymptotically flat 
(see axiom 1) and particle-like (see axiom 2). 
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Hadley’s Axiom 1: (Asymptotic Flatness) Far away from the 
particle space-time is topologically trivial and asymptotically flat with 
an approximately Lorentzian metric. 

 
Hadley’s Axiom 2: (Particle-Like) In any volume of 3-space an 

experiment to determine the presence of the particle will yield a true 
or false value only. 

 
Hadley’s Axiom 3: (State Preparation) The state preparation sets 

boundary conditions for the solutions to the field equations. 
 
Hadley’s Axiom 4: (Measurement Process) The measurement 

process sets boundary conditions for the 4-geon which are not 
necessarily redundant, in the sense that they contribute to the 
definition of the 4-manifold. 

 
Hadley’s Axiom 5: (Exclusive Experiments) Some pairs of 

experiments are mutually exclusive in the sense that they cannot be 
made simultaneously. 

 
None of Hadley’s axioms add anything new to general relativity 

(beyond allowing closed time-like curves/ non-time-orientability). 
These axioms are constraints that if satisfied enable general relativity 
to be capable of performing quantum logic in the sense of an 
orthomodular lattice of propositions, as opposed to a Boolean logic 
[Hadley 15]. Strictly, Conjecture 1 is not required, only the 5 axioms. 
In addition other field equations could be substituted for Einstein’s 
field equations with similar results, but as Hadley notes, it is 
compelling if 4-geons were solutions to Einstein’s field equations, 
hence Conjecture 1.  
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The 4-geon presented in this paper is shown to satisfy Hadley’s 
Conjecture 1 and Axioms 1 and 2. An interpretation of quantum 
measurement (called ‘open-endedness’) is developed that satisfies 
Hadley’s axioms 3, 4 and 5. Compatibility of the 4-geon solution with 
this interpretation of measurement means that Hadley’s 4-geon 
conjecture is furnished with an example.  

A Candidate 4-Geon 
One of the problems identified by Hadley with respect to 4-geons is 
that no possible 4-Geon has yet been identified. In order to clear up 
this problem, a candidate 4-Geon is presented that satisfies Conjecture 
1 and Axioms 1 and 2. It is based on the ‘fast’ Kerr-Newman 
singularity [Arcos, Pereira 1] and the extended ‘fast’ Kerr-Newman 
interpretation of Hawking and Ellis [Hawking et al 19] [Arcos, 
Pereira 1]. Arcos and Pereira derive some very interesting properties 
for their variant of the extended ‘fast’ Kerr-Newman solution. 

From their abstract [Arcos, Pereira 1]: “For m2 < a2 + q2, with m, 
a, and q respectively the source mass, angular momentum per unit 
mass, and electric charge, the Kerr-Newman (KN) solution of 
Einstein’s equation reduce to a naked singularity of circular shape, 
enclosing a disk across which the metric components fail to be 
smooth. By considering the Hawking and Ellis extended 
interpretation of the KN spacetime, it is shown that, similarly to the 
electron-positron system, this solution presents four inequivalent 
classical states. Making use of Wheeler’s charge without charge, the 
topological structure of the extended KN spatial section is found to be 
highly non-trivial, leading thus to the existence of gravitational states 
with half integral spin...” 

As explained in their introduction [Arcos, Pereira 1]: “Due to the 
absence of an horizon, it does not represent a black hole, but a naked 
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singularity in spacetime. This solution is of particular interest because 
it describes a massive charged object with spin…” 

The KN solution in the Boyer Lindquist coordinates r, θ, φ is given 
by [Hawking et al 19]: 
 ds2 = dt2  – (ρ2/Δ)dr2  – (r2+a2) sin2θdφ2  
 –ρ2dθ2 – (Rr/ρ2)(dt – asin2θdφ)2 
where, 
 ρ2 = r2 + a2cos2θ,  Δ = r2 –Rr + a2 and R = 2m – q2/r 

For m2 > a2 + q2 this represents the Kerr-Newman blackhole. This 
metric is invariant under the simultaneous changes (t, a)  (–t, –a), 
(m, r)  (–m, –r) and separately under q  –q. However, the fast 
Kerr-Newman singularity is given by m2 < a2 + q2 and is a true 
circular singularity of radius a, enclosing a disk across which the 
metric components fail to be smooth. 

The Hawking and Ellis extended spacetime [Hawking et al. 19] is 
such that the solution is extended (to overcome lack of smoothness of 
the metric components, but not to eliminate the singularity itself) so as 
to form a join (not disimilar to a ‘wormhole’) with a corresponding 
singularity in another spacetime, in other words (those of Arcos and 
Pereira): “the disk surface (with the upper points, considered different 
from the lower ones) is interpreted as a shared border between our 
spacetime denoted M, and another similar one denoted M’…this 
linking can be seen as solid cylinders going from one 3-manifold to 
the other.”  

 
Observation 1: Such an extended ‘fast’ Kerr-Newman solution 

can be used to join two suitably distant locations on a single space-
time manifold, rather than two different spacetimes. Far from both 
singularities such a spacetime can also be topologically trivial, 
asymptotically flat and approximately Lorentzian without loss of 
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generality. The two singularities can be placed on the manifold so that 
a time-like curve connects them. Continuation of the time-like curve 
through the singularities leads to closed time-like curves; this is 
possible as a time-like curve entering a singularity does so in finite 
proper time.  

 
This leaves only Axiom 2 to be demonstrated in order to 

demonstrate Axiom 1, 2 and conjecture 1: 
 
Observation 2: Any one of the two singularities is particle-like 

(satisfying Hadley’s Axiom 2) since the singularity has well-defined 
radius a. Further they are defined so as to be ‘suitably distant’ from 
each other so that any coupling between the solutions may be 
modelled as asymptotically particle-like (this is possible due to 
asymptotic flatness).   

 
Having observed that the extended ‘fast’ Kerr-Newman singularity 

can satisfy axioms 1 and 2 and conjecture 1, the feasibility of 4-Geons 
as solutions to Einstein’s field equations has been demonstrated.  

Independently of this solution, an interpretation of Hadley’s 
concept of measurement (demonstrating only the last 3 axioms) will 
now be given. It will be shown in the next section that the 4-geon is 
compatible with this interpretation of measurement and therefore a 
complete example of Hadley’s 4-Geon is provided by this extended 
‘fast’ Kerr-Newman solution. 

As a candidate 4-geon it is interesting to note that Arcos and 
Pereira [Arcos, Pereira 1] go on to make some assumptions about 
quantum gravity, which may or may not be warranted, from which 
they derive the Dirac Equation for their ‘electron’.  
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Open-Ended Space-Times  
To provide an interpretation for Hadley’s concept of measurement in 
his hypothetical 4-Geon world, an inherently non-deterministic and 
unusual definition of space-time will be given by adapting the concept 
of boundary conditions. The starting point, as with Hadley, is to 
define space-time manifolds such that they allow closed time-like 
curves: 

 
Definition 1: A space-time manifold is a four-dimensional (+,-,-,-) 

Lorentz manifold together with its metric (no mention of time-
orientability).  

 
Definition 2: An E.F.E. space-time manifold is a space-time 

manifold that additionally satisfies Einstein’s field equations.     
 
Definition (Provisional): A boundary condition on a manifold is a 

constraint on a manifold that restricts the metric and/or the topology 
of the manifold. That is, simply a constraint on the manifold 
definition.  

 
Definitions (Provisional): A redundant boundary condition is a 

boundary condition that makes no restriction in the situation in 
question (perhaps because other boundary conditions have already 
been applied). An impossible boundary condition is one that can lead 
to no possible solution given the other boundary conditions in place. 
And a deterministic boundary condition is one that imposes a single 
definition on the manifold given the other boundary conditions 
already in place.  
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Since these definitions are dependent on other boundary 
conditions, these definitions fail to have consistent universal meaning. 
In order to overcome this the following (unusual) definition of 
boundary condition and space-time is made:   

 
Definition 3 (Final): A boundary condition is defined to be an 

equivalence class of constraints Λ on a manifold entirely equivalent to 
stating that the solution must be one of (or none of) a set M of well-
defined manifolds.  

 
The constraints Λ are no more than a list of included or 

equivalently excluded solutions, entirely logically equivalent to the 
set M.  

 
Definition 4: A space-time S(M; Λ) (or S or S(M) or S(Λ))  is the 

set M of four-dimensional Lorentz manifolds together with metric that 
are satisfied by a set Λ of boundary conditions upon that manifold.  

 
Λ can be viewed as a set of sub-boundary conditions or as a single 

boundary condition as required. These boundary conditions can be 
‘added’ Λ + Λ’ or set-unioned equally. There is a 1-to-1 
correspondence between S, M and Λ.  

 
Definition 5: An E.F.E. space-time S(M; Λ) (or S or S(M) or 

S(Λ)) can now be defined similarly: as a space-time where each 
member of M satisifies Einstein’s field equations, and such that this 
constraint is implied and not specified in Λ.  

 
We do not need to worry about the exact formulation of Einstein’s 

field equations, or whether there are other factors such as 
electromagnetism, for the purposes of this definition. But the non-
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inclusion of Einstein’s field equations as a boundary condition in Λ 
makes for simpler definitions later on. 

Clearer definitions relating to boundary conditions are now 
possible: 

 
Definitions 6 (Final): A redundant boundary condition on space-

time S(M; Λ) is a boundary condition on the space-time manifolds M 
of S such that when added to Λ it makes no reduction to the possible 
solutions (because equivalent boundary conditions are already 
contained in Λ). An impossible boundary condition is a boundary 
condition that when added to Λ can lead to no possible solution, that 
is, M becomes empty. And a deterministic boundary condition is one 
that imposes a singular definition on the space-time, that is, M has one 
member. A non-deterministic boundary condition is one that is 
neither deterministic nor impossible. We refer to S(M; Λ) before a 
boundary condition s has been applied, and S’(M’; Λ + s) or S’(M’; 
Λ’) afterwards. Depending on context S’(M’; Λ’) could also just refer 
to an alternative ‘space-time’ from S(M; Λ). 

 
These definitions are motivated by non-determinism in Hadley’s 

hypothetical 4-Geon world, and we can now define a non-
deterministic space-time as follows: 

 
Definitions 7: A non-deterministic space-time is a space-time 

whose boundary conditions are non-deterministic. (We can similarly 
refer to impossible space-times and deterministic space-times.) 

 
We can now define state preparations (more precisely than 

[Hadley 15]): 
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Definition 8: A state preparation on a space-time is a non-
redundant, non-impossible boundary condition.  

 
Observation 3: State preparations on E.F.E space-times 

necessarily satisfy Hadley’s Axiom 3 via non-redundancy.  
 
Definitions 9: A set of state preparations with respect to space-

time S(M; Λ) is called a state preparation set. A non-deterministic 
state preparation set consists of non-deterministic state preparations. 
The complete state preparation set C of S(M; Λ) consists of all 
possible state preparations, and the empty state preparation set E 
contains no state preparations.  

 
Note that E is not a state preparation but an empty set of state 

preparations. The Λ of S(M; Λ) can also be treated as a state-
preparation set with 1 member. In this way we can define S(T; E) 
where T is the set of all possible manifolds. 

 
Observation 4: Since members of a state preparation set may be 

mutually impossible with respect to S(M; Λ), a state preparation set 
may not be considered a state preparation itself. This is an important 
observation as it leads to the logic of mutually exclusive experiments 
(i.e. axiom 5).  

 
Definition 10: A state preparation set of S(M; Λ) is pair-wise non-

redundant if it does not contain two state preparations such that one is 
redundant with respect to the other with respect to Λ. Similarly, state 
preparation s1 in a state preparation set S of S(M; Λ) is said to be 
redundant to another state preparation s of S, if s1 is redundant in  
S(M’; Λ’) where Λ’ = Λ + s. Note that this property is not 
commutative.  
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Definition 11: A state preparation set of S(M; Λ) is pair-wise 

exclusive if any two state preparations are mutually impossible with 
respect to Λ. Any two state preparations can be pair-wise exclusive. 

  
Definition 12: A state preparation set of S(M; Λ) is non-trivial if it 

has at least 2 members that are pair-wise non-redundant and pair-wise 
exclusive.  

 
We can equally give these definitions set notation using M instead 

of Λ, for example: Let M(Λ) be the set of manifolds associated with 
state preparation Λ. Non-triviality is such that there are two state 
preparations s1 and s2 in the state preparation set in question such that 
M(Λ+s1) is disjoint (exclusive) from M(Λ+s2) and both are non-
empty (non-redundant). 

 
Definitions 13: With respect to space-time S(M; Λ). Each member 

m of M can be associated with an element s of the complete state 
preparation set C of S such that s is equivalent to specifying that the 
only member of M’ is m. Call s a determiner of m.  

We can equally define the anti-determiner of m as a state 
preparation that is equivalent to prohibiting m (that is allowing all 
others). A determiner and an anti-determiner of m are pair-wise 
exclusive. Anti-determiners only exist for non-deterministic space-
times. 

 
Definition 14: Each member of the complete state preparation set 

C of S(M; Λ) that is pair-wise redundant to state preparation s of S(M; 
Λ) is called the redundancy set of s, or of M(s). For example, the anti-
determiner of m is trivially in the redundancy sets of the determiners 
of all other members of M.  
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Lemma 1: For any non-deterministic space-time there exists a 

non-trivial state preparation set. 
 
Proof: Since the space-time is not uniquely specified (it is non-

deterministic) at least two possible solutions will satisfy the boundary 
conditions, call these A and B. At least two state preparations exist: A 
state preparation A can be applied to the manifold in order to specify 
A or alternatively a state preparation B can be applied to specify the 
manifold B. These two state preparations are pair-wise non-redundant 
and pair-wise exclusive by construction. 

 
Lemma 2: Not every non-deterministic space-time has a non-

deterministic non-trivial state preparation set. 
 
Proof: By adding to the boundary conditions of the non-

deterministic space-time in lemma 1 the constraint ‘that only 
manifolds A or B satisfy the boundary conditions’, we have at least 
two state preparations A and B that form a non-trivial state preparation 
set (lemma 1). However, both A and B are deterministic. Since there 
are only two possible solutions, all other possible non-redundant state 
preparations must be equivalent to A or B – but all state preparations 
are non-redundant by definition. Therefore all such state preparations 
are deterministic. 

 
Because of Lemma 2 attempting to equate non-deterministic non-

trivial state preparations with quantum measurements/experiments is 
not sufficient, even though by so doing Hadley’s Axioms 3, 4 and 5 
could be satisfied. We need to overcome the fact that finite solutions 
(as above with a choice of A or B) can lead quickly to determinism.  

Therefore define open-ended space-times: 
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Definition 15 (Open-Ended Space-Time): Any non-

deterministic space-time that has an infinitely large set M of different 
possible manifolds is called an open-ended space-time. 

 
The existence of such a manifold is trivial to the extent that when 

no boundary conditions are placed on a space-time (or E.F.E. space-
time) an infinite number of solutions are possible.  

 
Observation 5: Similarly the 4-geon example given previously 

can be part of an open-ended space-time since being particle-like 
(asymptotically flat) an infinite number of variant solutions are 
available far from the particle (trivially an infinite number of such 
particles could be separated by suitably large time-distances in an 
otherwise flat space-time). Therefore there is an open-ended space-
time that satisfies Hadley’s conjecture 1 and Axioms 1 and 2. 

 
By considering the determiners of an open-ended space-time M it 

is clear that there is an infinite set of pair-wise non-redundant and 
exclusive state preparations. However, determiners are by definition 
deterministic. An infinite set of non-deterministic, pair-wise non-
redundant state preparations exist in the form of the set of anti-
determiners, but no two of these are pair-wise exclusive. However, a 
solution exists. 

 
Lemma 3: Every open-ended space-time S(M; Λ) has a non-

deterministic non-trivial state preparation set.  
 
Proof: First divide M into two separate infinite sets M1 and M2. 

Now take the anti-determiners for M1 and M2 and combine them into 
a single ‘anti-determiner’ for M1 and M2 respectively: call these –m1 
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and –m2. –m1 and –m2 are state preparations. These are pair-wise 
non-redundant and pair-wise exclusive, but are non-deterministic.  

 
The following extension of Lemma 3 now follows as a matter of 

course: 
 
An Open-Endedness Theorem: Further to Lemma 3, Every 

open-ended space-time S(M; Λ) has a non-deterministic, non-trivial 
state preparation set Ψ such that for each member open-endedness of 
the space-time is invariant.  

 
Proof: Take the redundancy set for M1 and the redundancy set for 

M2: call these +M1 and +M2, both still infinite sets by construction. –
m1 is necessarily in +M2, and –m2 is necessarily in +M1. Assume Ψ 
to be the same as in Lemma 3. And without loss of generality choose 
–m1. The resulting space-time is S’(M2; Λ + -m1) which on account 
of M2 being infinite by definition is necessarily open-ended. 

 
Definition 16: Call a non-deterministic, non-trivial state 

preparation set on an open-ended space-time, where every state 
preparation leaves open-endedness invariant, an open-ended state 
preparation set. It consists of open-ended state preparations. 
Similarly define the complete open-ended state preparation set as the 
set of all possible open-ended state preparations on a space-time. 

 
We can now capitalize on this idea by defining ‘experiments’ in 

terms of open-endedness. 
 
Definition 17 (Outcome): An outcome of an experiment is an 

open-ended state preparation.  
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Hadley’s Axiom 3 and Axiom 5 are now guaranteed, Axiom 3 by 
non-redundancy of state preparations and Axiom 5 by non-triviality 
of open-ended state preparation sets. Axiom 4 also follows to the 
extent that non-redundant state preparation is defined to be part of 
‘measurement’:  

 
Definition 18: An experimental state preparation e is an open-

ended state preparation imposed by the experimental machinery. This 
can be subsumed without loss of generality into the definition of  
S(M; Λ) as just a re-labelling of S’(M’; Λ + e).  

 
The requirement for a definition of experimental state preparations 

comes from the fact that they are used by Hadley [Hadley 15] in his 
description of measurement. 

 
Quantum Measurement: is therefore just a space-time, with 

suitable experimental state preparation, a state preparation set of 
possible outcomes, and the actual outcome. 

 
Determination of a probability function over the outcomes is 

conspicuously missing (see Classical and Quantum Measurement 
below), but axioms 3, 4 and 5 are satisfied as required. 

 
Classical Measurement: becomes the extraction of information 

about Λ when the underlying manifold is locally causal (see Classical 
and Quantum Measurement). 

 
Observation 5  plus the interpretation of quantum measurement 

given here now leads to the main  result of this paper: 
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An Example 4-Geon: A 4-Geon exists that satisfies Hadley’s 
Conjecture 1 and Axioms 1 to 5. Demonstrating the feasibility of 
Hadley’s 4-geons. 

Classical and Quantum Measurement 
A candidate 4-geon has been presented that satisfies Hadley’s 
Conjecture and Axioms 1 and 2. The candidate 4-geon, a variant of 
the fast Kerr-Newman singularity, has also been shown to be 
compatible with the open-ended interpretation of measurement, 
within the constraints of general relativity (with closed time-like 
curves); therefore an example 4-geon satisfying all of Hadley’s 
axioms has been provided. 

The connection between initial boundary condition Λ (or Λ 
following experimental state preparation) and ‘outcome’ is what is 
here hypothesised to be quantum measurement. As such ‘open-ended 
quantum measurement’ already satisfies the last 3 of Hadley’s 
Axioms and has been shown to have other necessary properties, such 
as always allowing for further quantum measurement (and not 
degenerating into determinism): any measurement under this 
interpretation leaves the open-endedness of the space time invariant.  

That probability functions are missing so far is conspicuous, but all 
of Hadley’s axioms are satisfied, so any probabilistic measure over 
suitable ‘outcomes’ must necessarily manifest quantum logic.  

Even though open-endedness may be only one possible definition 
of measurement out of many, whether this definition in fact 
constitutes ‘quantum measurement’ (physically) or not in no way 
diminishes the importance of the interpretation as an example 4-geon. 
The example remains, mathematically, an example. This is the case 
because an open-ended interpretation is consistent with classical 
measurement as follows: all classical measurement assumes a 
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deterministic general relativistic physics (or classical physics), and 
therefore the causality defined by the existence of a Cauchy surface. 
Information about such a Cauchy surface or region constitutes 
classical measurement. But if we remove the causality constraint 
imposed by the existence of a Cauchy surface we are left with 
classical measurement as information about a space-like submanifold 
of co-dimension 1 or a comparable space-like region. A Cauchy 
surface is just what a space-like submanifold of co-dimension 1 
becomes under the usual causal constraints where time-orientability is 
required. With this in mind, information about such a space-like 
region of a manifold where closed time-like curves are allowed is the 
classical limit of measurement. Since such a region imposes little 
constraint on the 4-manifold of space-time dominated by closed time-
like curves far from the region in question, we can conclude that 
classical measurement is open-ended!  

 
Observation 6: asymptotic flatness of 4-geons allows them to be 

placed far from a known region of space-time in an infinite number of 
different locations, hence classical measurement is open-ended. 

 
Therefore open-endedness is a superset of classical measurement 

that is definable when causality is weakened and that along with the 
example 4-geon given obeys Hadley’s axioms for quantum logic. 

 
Observation 7: This completes the description of the example 4-

geon, and the main purpose of this paper. In summary: An example 4-
geon has been given with an interpretation of measurement for 
general relativity where closed time-like curves are allowed. The 
interpretation of measurement is a superset of classical measurement, 
where classical measurement is the causal limit.  
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The Open-Endedness Conjecture: Further questions have 
perhaps arisen, for example assuming the model for measurement 
envisaged here to have a physical reality, where are the probability 
functions of quantum mechanics predicted by Hadley, how can we 
actually generate them, or impose them? Another question would be, 
why does causality appear to dominate on the classical scale if space-
time is in fact not causal as Hadley’s program suggests? Further, there 
is no reason that open-endedness is the only way to produce example 
4-geons, so, what other possible definitions of measurement could 
produce similar results? Whatever the case, to the extent that these 
questions go beyond providing a mathematical example to Hadley’s 
axioms they inevitably involve speculation; this is not the purpose of 
this paper, although some speculation has inevitably happened in 
passing. The speculation that has occurred in passing is that the model 
for measurement used here (or one similar) is more than just a 
mathematical example but actually constitutes physical reality. This 
can be called the open-endedness conjecture.   

Conclusion 
Hadley [Hadley 15][Hadley 16] has shown that quantum logic is 
compatible with general relativity when certain axioms are satisfied 
by non-time-orientable solutions. A candidate 4-geon has been 
presented here that satisfies Hadley’s Conjecture and Axioms 1 and 2. 
The candidate 4-geon, a variant of the fast Kerr-Newman singularity, 
has also been shown to be compatible with a new interpretation of 
measurement called the open-ended interpretation, within the 
constraints of general relativity, satisfying the rest of Hadley’s 
axioms; therefore an example 4-geon satisfying all of Hadley’s 
axioms and his conjecture has been provided. 
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The reasonableness of open-endedness as a model for 
measurement follows from classical measurement being a subset of 
open-endedness measurements, or their causal limit. Other definitions 
of measurement producing similar results could no doubt be 
constructed, whether open-endedness actually corresponds to physical 
measurement is a conjecture: the open-endedness conjecture.  

Open-ended space-time is really a collection of possible space-
times, defined so as to be consistent with boundary conditions Λ. This 
is entirely consistent with partial information about a general 
relativistic manifold. The hypothetical manifold where all information 
is known could be called the underlying manifold. But whether this is 
meaningful given that probability measures need to be present is not 
clear. Actual probability measures over ‘outcomes’ are conspicuously 
missing in this construction and are needed for any further description 
of quantum behaviour. But any probabilistic measure over suitable 
outcomes necessarily manifests quantum logic as Hadley’s axioms 
have been satisfied.  

The underlying premise of open-ended space-times and 
measurement is that experimentation or observations constitute state 
preparation, that is, a selection of a subset of the possible underlying 
manifolds. Any deeper interpretation as to why certain interpretations 
of measurement in general relativity with weakened causality should 
lead to an example 4-geon and many other questions raised by their 
construction are not answered in this paper. Stability issues of the 
solution were also not discussed: 

The aim has been to provide an example 4-geon that satisfies 
Hadley’s axioms, and that has been done. 
References  
[1] H.I. Arcos, and J.G. Pereira “Kerr-Newman Solution as a Dirac Particle,” Gen. 

Rel. Grav. 56, (2004) p.2441-2464  



 Apeiron, Vol. 14, No. 2, April 2007 146 

© 2007 C. Roy Keys Inc. — http://redshift.vif.com 

[2] Leslie E Ballentine. Quantum Mechanics. Prentice Hall, (1989). 
[3] Julian Barbour, The End of Time: The next revolution in Physics. Oxford 

University Press, (2001) 
[4] A.O. Barut, and A.J. Bracken, Phys. Rev. D, 23, (1981), p.2454 
[5] A.O. Barut, and W. Thacker, Phys. Rev. D, 31, (1985), p.1386 
[6] S.B.M. Bell, J.P. Cullerne, and B.M. Diaz, “Classical behaviour of the Dirac 

bispinor” Foundations of Physics Vol 30 No 1 (January 2000a) 
[7] B. Carter, Phys. Rev. 174, (1968), p.1559 
[8] Jens Christensen. Topology and Borel Structures: Descriptive topology and set 

theory with applications to functional analysis and measure theory. Elsevier, 
1974. 

[9] Thomas M. Cover, Joy A. Thomas, Elements of Information Theory. John Wiley 
and Sons, (1991) 

[10] T. Diemer, and M.J. Hadley, “Charge and Topology of Space-Time,” Class. 
Quantum Grav. (1999) p. 3567-3577 

[11] A Einstein and N Rosen. “The Particle Problem In General Relativity.” 
Physical Review, 48, (1935), 73-77 

[12] John Friedman, Michael S Morris, Igor D Novikov, and Ulvi Yurtsever. “The 
Cauchy Problem In Spacetimes With Closed Timelike Curves,” Physical 
Review D, 42(6), (1990) pp1915-1930 

[13] J.L. Friedman, and R. Sorkin, Phys. Rev. Lett. 44, (1980), p.1100 
[14] K. Gödel, “An example of a new type of cosmological solutions of Einsteins’s 

field equations,” Rev. Mod. Phys. 21 (1949)  p. 447-450  
[15] Mark J Hadley. “The Logic Of Quantum Mechanics Derived From Classical 

General Relativity.” Foundations Of Physics Letters 10(1):13-60, (February 
1997). Also available online at the time of writing: quant-ph/9706018v1 (9 
June 1997). 

[16] Mark J Hadley. A Gravitational Theory of Quantum Mechanics. PhD thesis, 
Department of Physics, University of Warwick. (February 1997). 

[17] M.J. Hadley, “Spin Half in Classical General Relativity,” Class. Quantum 
Grav. (2000) p.4187-4194 

[18] Stephen Hawking, A Brief History Of Time, Bantam Press (1988) 



 Apeiron, Vol. 14, No. 2, April 2007 147 

© 2007 C. Roy Keys Inc. — http://redshift.vif.com 

[19] S. Hawking, G. Ellis, P. Landshoff. The Large Scale Structure of Space-Time 
(Cambridge Monographs on Mathematical Physics). Cambridge University 
Press (1973)  

[20] Douglas Hemmick, Hidden Variables And Nonlocality In Quantum Mechanics, 
http://lanl.arxiv.org/abs/quant-ph/0412011 (2004) - PhD thesis, Rutgers 
University (1996) 

[21] H. Hendriks, Bull. Soc. Math. France Memoire 53, (1977) p.81; Sec. 4.3 
[22] W. Israel, Phys. Rev. D, 2, (1970), p.641 
[23] M. Israelit, and N. Rosen, Gen. Rel. Grav. 27, (1995) p. 153 
[24] Joseph M Jauch. Foundations of Quantum Mechanics. Addison-Wesley 

Publishing Company, (1968). 
[25] R.P. Kerr, Phys. Rev. Lett. 11, (1963) p.237. 
[26] C.A. Lopez, Phys. Rev. D, 30, (1984) p.313 
[27] C.A. Lopez, Gen. Rel. Grav. 24, (1992) p. 285 
[28] C W Misner and J A Wheeler. “Classical Physics As Geometry,” Annals of 

Physics, 2, (1957), 525pp 
[29] E.T. Newman, and A.I. Janis, J. Math. Phys. 6, (1965) p.915 
[30] E.T. Newman et al., J. Math. Phys. 6, (1965) p.918 
[31] R. Penrose, The Emperor’s New Mind, Oxford University Press, (1989). 
[32] Paul Schilpp, editor. Albert Einstein: Philosopher-Scientist. Cambridge 

University Press, (1970). 
[33] D.W. Sciama, “On the Analogy Between Charge and Spin in General 

Relativity,” Recent Developments in General Relativity, Pergamon Press, 
Oxford (1962), p.415-439 

[34] Kip S Thorne. “Closed Timelike Curves,” In 13th International Conference on 
General Relativity and Gravitation 1992. Institute of Physics Publishing, 
(1992).  

[35] Kip Thorne, Charles Misner, John Wheeler, Gravitation, W.H. Freeman, 
(1973). 

[36] John Wheeler,  Geons, Black Holes, and Quantum Foam: A Life in Physics. 
W.W. Norton, (2000). 

[37] Wojciech Zurek, editor. Complexity, Entropy and the Physics of Information: 
The Proceedings of the 1988 Workshop on Complexity, Entropy, and the 
Physics of Information. Westview Press, (1990)  


