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Abstract 

Recent work by Robert Batterman and Alexander Rueger has brought attention to cases 

in physics in which governing laws at the base level “break down” and singular limit 

relations obtain between base- and upper-level theories. As a result, they claim, these are 

cases with emergent upper-level properties. This paper contends that this inference—

from singular limits to explanatory failure, novelty or irreducibility, and then to 

emergence—is mistaken. The van der Pol nonlinear oscillator is used to show that there 

can be a full explanation of upper-level properties entirely in base-level terms even when 

singular limits are present. Whether upper-level properties are emergent depends not on 

the presence of a singular limit but rather on details of the ampliative approximation 

methods used. The paper suggests that focusing on explanatory deficiency at the base 

level is key to understanding emergence in physics. 

1. Introduction  

Relations between phenomena at different levels in physics have been much discussed 

recently by philosophers of science. Particular attention has been paid to the question of 

under what conditions properties or behaviours described by upper-level (e.g., 

macroscopic) theory may be said to be emergent relative to a base-level (e.g., 

microscopic) account. Robert Batterman and Alexander Rueger have taken what seems 
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the most sensible approach to this problem. They engage in detail with the physical 

theories about which physicists and philosophers of science make emergence claims. 

They then bring results of this engagement directly to bear on the issue of intertheoretic 

relations in philosophy of science. One of their most important results is the recognition 

that emergence claims are often made where governing laws at the base level, which 

work well in other physical systems, “break down,” indicated by the presence of a 

singular limit relation. Another result is that emergence is best understood as an epistemic 

failure, and more specifically a failure of reductive or explanatory practices that, again, 

work so well elsewhere. This contrasts with approaches that take emergence to be a 

matter of conceptual or ontological novelty, a contrast we shall return to below.  

 Batterman and Rueger aim to give precise meaning to the concept of emergence in 

physics and to show that emergent properties are far more widespread than is usually 

assumed. Crucial to their argument is the association of emergence with the presence of a 

singular limit relation between basal and upper-level theories (Rueger 2000a; 2000b; 

2001; 2004; 2006; Batterman 1997; 2002a; 2002b; 2005a; 2005b; 2009). As Batterman 

puts it, "what is essential is the singular nature of the limiting relations between the 'base' 

theory and the theory describing the emergents" (Batterman 2002b, 6). His central claim 

about emergence is that “the epistemic aspects of emergence—tenets 3 and 4 [i.e., “the 

unpredictability of emergent properties” and “the unexplainability/irreducibility of 

emergent properties”]—result from a failure of the reductive schema (6.1) [i.e., the 

presence of a singular limit relation between theories]” (Batterman 2002b, 126). 

Similarly, Rueger claims that "every singular perturbation problem implies a… transition 

to ‘novel’ [emergent] behaviour," (Rueger 2000a, 308). The idea is that emergence—a 

methodological concept related to the novelty, irreducibility and/or unexplainability of 
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upper-level properties in basal terms—is due to the occurrence of a singular limit. 

Batterman and Rueger emphasize that it is not that emergent properties are unexplained; 

it is just that they cannot be explained exclusively in terms of the base-level theory. An 

adequate explanation of an emergent phenomenon necessarily invokes the terms and 

structures of upper-level theory. 

 This paper contends that the connection between singular limits and emergent 

phenomena is not as close as it has been taken to be. As we shall see, the 

Batterman/Rueger type inference—from singular limits to explanatory failure, novelty or 

irreducibility, and then to emergence—is mistaken. The breakdown of base-level 

approximations, and the consequent presence of a singular limit, is not sufficient for 

emergence, as follows. The paper describes a simple case, that of the van der Pol 

nonlinear oscillator, in which regular approximation schemes break down and singular 

limits are used (Section 3). Rueger claims that this system exhibits emergent properties. 

Attention to the details of the case shows that there is, in fact, a full explanation of the 

putatively emergent upper-level properties entirely in base-level terms (Section 4). What 

of the other two commonly invoked criteria for emergence, novelty and irreducibility? 

Section 5 shows that these criteria, as elaborated by Batterman and Rueger, do not 

provide an independent basis for claims about emergence. Rather, whether upper-level 

properties in a singular limit system are emergent depends sensitively on details of the 

ampliative approximation methods used to construct upper-level theory. The paper 

suggests that explanatory deficiency at the base level is key to emergence (Section 6). 

First, however, it will be helpful briefly to place the argument of this paper in the context 

of criticisms of the singular limits approach that have received some attention in the 

literature. 
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2. Asymptotic explanation 

A key feature of the models of emergent phenomena of interest to Batterman and Rueger 

is their structural stability, stability under perturbations at the base level, a feature 

physicists call universality. These structural features are revealed through analyses in 

which base-level details are systematically eliminated using asymptotic mathematical 

techniques. What explains the common characteristic shape of droplets at breakup, as 

when water drops fall from a dripping faucet?  

We can explain and understand (for large scales) why a given drop shape at breakup 

occurs and why it is to be expected. The answer depends essentially upon an appeal to 

the existence of a genuine singularity developing in the equations of motion in a finite 

time. It is because of this singularity that there is a decoupling of the breakup 

behaviour (characterized by the scaling solution) from the larger length scales such as 

those of the faucet diameter. Without a singularity, there is no scaling or similarity 

solution. Thus, the virtue of the hydrodynamic singularity is that it allows for the 

explanation of such universal behaviour. The very break-down of the continuum 

equations enables us to provide an explanation of universality (Batterman 2009, 442-

443). 

This is analogous to the way in which renormalization group techniques are used to 

analyze thermodynamic systems at critical points and to derive structural features such as 

the critical exponent β (Batterman 2002b, pp. 37-42; Batterman 2005a). In this way, 

asymptotic analyses enable idealized models to explain underlying structural or universal 

features in cases where these features are not explained at a more fundamental level. 

Batterman has dubbed these “asymptotic explanations” (Batterman 2002b, Ch. 4). 
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 Some have raised concerns about this putatively new type of scientific explanation. 

Gordon Belot has objected that upper-level theories have only heuristic value, and they 

can in principle be eliminated in scientific explanation (Belot 2005). The mathematics of 

the upper-level theories are definable in terms of base-level theories, so in these singular 

limit cases all results can be explained exclusively in base-level terms. Belot and Michael 

Redhead (Redhead 2004) object to the further claim that upper-level theories themselves 

may be explanatorily adequate. Invoking upper-level theory as part of the explanans 

requires us to reify its mathematical structure, they argue, but upper-level theories are 

themselves approximations or idealizations, and so false. Upper-level theories are best 

thought of as superseded and incorrect descriptions of the world with continuing heuristic 

value. They can play no part in the true premises needed in acceptable deductive-

nomological explanation.  

Batterman has responded that in order to derive upper-level theory from base-level 

theory, elements are required that are describable only using upper-level terms and 

concepts (Batterman 2005b). These elements connect concepts between theories, they 

establish a correspondence of base-level and upper-level properties, and they enable us to 

describe the appropriate initial and boundary conditions for the base-level problem. 

Elements of the derivation from base-level theory are themselves theory-laden, and the 

theory they are laden with is upper-level theory. The explanatory adequacy of base-level 

theory in these cases is, according to Batterman, simply illusory; its explanations break 

down without contributions from upper-level theory. This is particularly true for 

explanations of patterns or regularities at the upper level. Batterman agrees that upper-

level theories are idealizations and that idealizations can play no part in D-N explanation, 

but argues that this is indicative of a problem with the D-N account of explanation and 
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not with the explanations themselves. Upper-level theory functions in novel asymptotic 

explanations that forgo traditional D-N requirements about the truth of the premises in 

the explanans or deductive derivation of the explanandum from the explanans. Thus we 

can have explanation in terms of an idealized upper-level theory without reifying the 

theory by demanding that it be a true description of the world.  

  The present paper is not concerned with whether Batterman is right with respect to 

the detailed case studies that are his main focus: drop formation in hydrodynamics, 

critical phenomena in thermodynamics, catastrophe optics, and the semi-classical limit of 

quantum mechanics. In each instance Batterman argues that concepts and structures of 

base-level theory are inadequate to produce derivations and explanations of upper-level 

phenomena. In his analysis of the rainbow in catastrophe optics, for instance, wave optics 

becomes singular (wavelength λ  0) and breaks down at the boundary between base-

level wave theory and upper-level ray theory (Batterman 2002b, Ch. 6). Yet this 

singularity at the boundary is also responsible for the rainbow phenomenon. In this 

singular regime, Batterman claims, characterizing boundary conditions and associating 

them with relevant physical details (the shape of the raindrop, its reflective and refractive 

properties) necessarily goes beyond base-level explanatory resources. In this case, as in 

his others, Batterman’s claims are plausible. It seems, however, that further work may 

need to be done on the details of Batterman’s examples to determine whether his key 

premise is correct in each case: does derivation of the upper-level phenomenon 

ineliminably require appeal to upper-level theory?  

 Nor is the present paper concerned with whether, if Batterman is right, we are left 

with any explanation at all of the rainbow or other putatively emergent phenomena. The 

idea that highly idealized models may underwrite bona fide scientific explanations goes 
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against orthodox views of scientific explanation. Physicists seem to appeal to 

idealizations in their explanations, but we lack an account that makes sense of this 

practice—or even a clear view about whether these idealized accounts are intended to be 

part of bona fide explanations. What is needed is a well-developed theory of scientific 

explanation that requires neither truth of the theories being appealed to nor deductive 

derivation in the explanation. If Batterman is right, some highly idealized models in 

physics—even extreme “asymptotic” idealizations—may have genuine explanatory 

power. If he is wrong, “asymptotic explanation” is not bona fide explanation at all and 

emergent phenomena, specifically structural regularities, simply remain unexplained. 

Rather than supplementing base-level theory with upper-level structures, as Batterman 

proposes, perhaps it would be more fruitful to look in the other direction for scientific 

explanation. It may be that any satisfactory explanation can only come from a novel sub-

base-level theory that explains the base-level theory, its “breakdown” in the asymptotic 

regime and the upper-level phenomena previously thought to be emergent. Clearly, 

further work on the role of idealization in scientific explanation is needed.  

 Rather, the present paper is concerned with sharpening our account of emergence and 

intertheoretic relations by focusing on the role of explanation therein. To start, a 

clarification may be helpful. As we have seen, Rueger and Batterman make claims about 

the breakdown of theories, as in Batterman’s recent assertions that “the governing laws 

‘breakdown’” (Batterman 2009, 432) and there is a “break-down of the continuum 

equations” of hydrodynamics in the drop formation (quoted above). Such talk may be 

misleading. It is not the case that the laws of nature stop working in these systems. Nor 

are our theories about these systems shown to be false; neither the continuum equations 

of hydrodynamics nor wave optics are falsified in the singular limit cases. Where such a 
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“breakdown” occurs, it would be more accurate to say that certain procedures to derive 

observational consequences (such as regular approximation techniques), which worked 

effectively in other contexts, cease to work. For example, the procedures may yield 

infinities for what are observed to be finite values, such as the intensity of light in the 

rainbow. These cases are outside the regular domain of applicability of the theories, and 

this necessitates the use of other procedures, typically involving singular limits, 

asymptotic expansions and ampliative inferences. 

3. The van der Pol oscillator 

The one-dimensional van der Pol oscillator was originally investigated as a model of the 

human heart (van der Pol and van der Mark 1928), and it has been used subsequently to 

describe some oscillatory vacuum tube and electronic circuits. The oscillator is a classic 

example of singular limit problem. Rueger uses this example to show the connection 

between singular limits and emergent properties. Rueger shows that the van der Pol 

oscillator exhibits properties at distinct levels, that there is a singular limit relation 

between the levels, and that some upper-level properties are qualitatively different from 

base-level properties. He concludes that these upper-level properties are emergent 

(Rueger 2000a, Rueger 2001). We shall see that this last claim is mistaken, and more 

generally that the breakdown of base-level approximations and presence of singular 

limits are not sufficient for emergence. What the van der Pol example shows is that there 

may be full explanation of upper-level properties in basal terms even with the presence of 

a singular limit. And as I shall argue, a full basal explanation of upper-level properties 

precludes counting such properties as emergent. This section describes the relevant 

phenomena before moving on to a brief theoretical treatment.  
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The upper diagram of Figure 1 shows a typical phase space diagram of an undamped 

or simple harmonic oscillator. The horizontal axis is the oscillation variable and the 

vertical axis is its time derivative. The lower diagram of Figure 1 illustrates a phase space 

trajectory of a weakly-damped van der Pol oscillator, a typical trajectory for a self-

excited nonlinear oscillator. The trajectory begins where the line begins closest to the 

centre of the diagram, and it converges by spiralling outward to the heavy line. Unlike in 

the simple harmonic oscillator, the oscillation amplitude is not constant but varies slowly 

relative to the period of oscillation. Experimenting with this system one finds that 

whatever initial non-zero value of the amplitude, over time it converges to the stationary 

amplitude indicated by the heavy line. Notice that the phase-space portrait of the short-

timescale behaviour of the van der Pol oscillator looks like the ellipse in the upper 

diagram. Indeed, for any short-timescale observation of the van der Pol oscillator, of the 

order of a small number of oscillations, the dominant behaviour will be near-harmonic 

oscillation. By contrast, over the long timescale, of the order of convergence to the limit 

cycle, the behaviour is dominated by the rate of change of amplitude. These are two very 

different sorts of behaviour, suggesting two different models will be appropriate to 

represent the behaviours of interest in this nonlinear system. 
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Figure 1. Typical phase space diagrams. Upper: a simple harmonic oscillator traces 

an ellipse through its initial point. Lower: from any initial point in phase space except the 

origin, a van der Pol oscillator converges to the unique ellipse indicated by the outer 

edge of the heavy line (for diagrammatic clarity the rate of convergence has been 

exaggerated). 

Figure 2 presents a schematic view of these two sorts of models. At the base or 

microscopic level, short-timescale behaviour is simplified by treating it linearly as a 

simple harmonic oscillator. Long-timescale models are obtained by reducing the temporal 

resolution or coarse graining, resulting in a linear model of the change in amplitude over 

time and ignoring the harmonic motion entirely.  The two families of models describe 

distinct aspects of the same physical system. Indeed, this process of modelling simple, 

linear behaviours of interest in complex nonlinear systems is typical, and physics is full 
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of families of models at different levels such as these.  Models of statistical mechanics 

treat fluids as composed of interacting point particles, while, at a larger spatial scale, 

hydrodynamics treats the same system as composed of a continuous fluid. It must be 

emphasized that not all divisions between models occur along spatial scales.  The 

modelling technique in the effective field theory program in quantum field theory uses 

distinct models for distinct energy scales.  And in the kind of models of interest here, 

base-level models describe short timescale behaviours while upper-level models describe 

long timescale behaviours. The short-timescale and long-timescale models are related, of 

course. But how? One might be inclined to think that a theory of the long-timescale 

behaviour reduces to a theory of the short-timescale behaviour.  This is a question about 

intertheoretic relations, and answering it requires a theoretical account, to which we now 

turn. 

Van derPol small
oscillator systems

a
t

da
dt

t

Short-timescale
models

Long-timescale
models

 

Figure 2. Phenomenological models of the van der Pol oscillator 

 

 The van der Pol oscillator is exactly described by van der Pol's equation 

(1) 0)1( 2 =+′−−′′ yyyy ε , 
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where y(t) is the oscillation variable, y' = dy/dt, y'' = d2y/dt2 and ε is a parameter related to 

the strength of the damping. As is characteristic of a self-excited oscillator, this is a 

system with non-linear friction. For y < 1 the "–εy" term dominates so there is negative 

damping (so-called "negative friction"), and this increases the amplitude of oscillation. 

For y > 1, the "+εy" term dominates and oscillations are damped. Eq. (1) is of the form  

(2) 0),( =+′−′′ yyyFy ε                    10 <<< ε , 

where F is a nonlinear polynomial. This nonlinearity means that the oscillator equation 

cannot be solved exactly, nor, in general, can it be solved using approximation techniques 

involving regular limits, such as regular perturbation methods. Over a long timescale, 

equations of the form (2) “break down,” in the sense that they (plus regular perturbation 

methods) fail to yield results anywhere close to the observations. Nonetheless, the 

behaviour of the van der Pol oscillator over the long timescale can be derived to an 

arbitrary degree of accuracy using any one of several singular perturbation techniques.  

 The Krylov-Bogoliubov-Mitropolsky (KBM) method, for instance, can be used to 

determine a solution of any differential equation of form (2) to an arbitrary degree of 

approximation. The method involves one substantive assumption about the solution: the 

amplitude and phase of the solution vary slowly, if at all, with respect to the period of 

oscillation. Thus, the KBM method assumes a solution of the form 

(3) ...),(),(cos 2
2

1 +++= ψεψεψ auauay  

where the ui terms are periodic functions of ψ with period 2π, a is the amplitude of the 

first fundamental harmonic (the fast oscillation) as a function of time, and ψ is the 

frequency of the first fundamental harmonic as a function of time. The time derivative of 

a and ψ can be written 
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(4) ...)()( 2
2

1 ++=′ aAaAa εε  

and 

(5) ...)()(1 2
2

1 +++=′ aBaB εεψ  

The functions ui, Ai and Bi are chosen so that when the expressions for a and ψ obtained 

from integrating eqs. (4) and (5) are substituted into eq. (3), it becomes a solution of eq. 

(2). So the problem of finding a solution to eq. (2) reduces to the more tractable problem 

of solving eqs. (4) and (5). In practice, eqs. (3), (4) and (5) are limited to a finite number 

of terms, and in many applications, including the van der Pol oscillator, consideration of 

terms up to order ε2 is sufficient. Curiously, the success of the KBM method does not 

depend on whether the infinite series eqs. (3), (4) and (5) converge, but rather on their 

asymptotic properties for a fixed finite order in the limit ε  0. The KBM method 

provides a general mathematical procedure to determine the functions ui, Ai and Bi to any 

finite order for any F(y, y') in eq. (2) because the finite analogues of the series (3), (4) and 

(5) are increasingly accurate approximations as ε  0 and as the number of terms in the 

series increase.  

 The KBM method to order ε2 can be used to derive limit cycle properties. The full 

second-order solution is complicated, but properties of interest can be investigated by 

looking at the variation of amplitude over time 

(6) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−⎟

⎠
⎞

⎜
⎝
⎛=′

4
1

2

2aaa ε . 

Figure 3 shows a graph of eq. (6), rate of change of amplitude da/dt versus amplitude a, 

and it illustrates several of the novel upper-level features of the van der Pol oscillator. 

The curve approximates the observed curve in the right-hand diagram of Figure 2. It is 
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worth repeating that, as is typical of singular problems, in the van der Pol case the 

solution includes ampliative steps, that is, steps in which additional substantive 

information is required beyond the basic equation of motion and initial and boundary 

conditions. We might be inclined to say that the limit cycle solution is contained in the 

van der Pol equation although not deducible from it. 

 

 

Figure 3. Variation in amplitude to order ε2 for the van der Pol oscillator 

4. Singular limits and basal explainability 

Batterman and Rueger claim that in singular limit cases, upper-level phenomena cannot 

be explained exclusively in base-level terms. Their examples, from dynamical systems 

theory, condensed matter physics, statistical mechanics and quantum mechanics, give the 

impression that somehow the singular limit is responsible for the failure of basal 

explanation. Batterman does not put forward a definite account of basal explanation, but 

he focuses on cases in which it is plausible that basal explanation fails. As we have seen 
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his main concern is slightly different, namely to characterize asymptotic explanation at 

the upper level. Rueger has a clear account of the relevant sort of what he calls “reductive 

explanation”: for an upper-level theory Tε=0 and a base-level theory Tε, “Tε explains Tε=0 

because lim Tε = Tε=0” (Rueger 2001, 506, my notation). Basal explanation is identified 

with a regular limit relation, so by definition basal explanation is impossible in any 

singular limit case. Clearly, this is far too quick. 

 A more careful look at the van der Pol oscillator shows that the presence of a singular 

limit does not imply explanatory failure at the base level. On the contrary: while the 

singular limit indicates a breakdown of regular approximation techniques, and while it 

does preclude deductive derivation of upper-level phenomena from base-level theory, this 

does not mean that upper-level concepts and structures must be invoked to fill the gap. 

Rather, as we have seen, the gap may very well be filled by additional conditions that are 

themselves entirely characterizable in base-level terms. The additional substantive 

assumption that goes into solving the van der Pol case is that amplitude and phase do not 

vary quickly relative to the period of oscillation. The key point is that this assumption is 

characterized exclusively in basal terms. To say that amplitude and phase vary slowly 

does not require concepts or structures foreign to base-level theory, that is, concepts or 

structures imported from another (e.g., upper-level) theory. This is not to say that base-

level theory somehow contains this assumption. The base-level theory is of a simple 

harmonic oscillator with fixed amplitude and phase, and this is inconsistent with the 

assumption of slowly varying amplitude and phase. Rather, the claim here is that the 

assumption can be articulated using concepts exclusively at the base level: harmonic 

oscillation, amplitude and phase. The novel upper-level properties of the van der Pol 

oscillator—limit cycles, their precise structure and their stability—are derived and 
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explained in terms of the base-level simple harmonic oscillator, an initial condition (a 

starting point in phase space), the assumption of slowly-varying amplitude and phase, and 

the techniques of asymptotic analysis sketched in the previous section. None of these 

explanatory resources makes reference to upper-level structures or any other physical 

concepts beyond those characterizable at base level. Thus the novel upper-level 

properties of the van der Pol oscillator are entirely basally explainable—indeed, they are 

basally explained.  

 One might object, as Patrick McGivern does, that we do not truly have an explanation 

entirely in base-level terms (McGivern 2007). The asymptotic KBM method appears to 

derive long-timescale behaviour from base-level considerations, McGivern notes, “[b]ut 

arriving at that solution in the first place is not possible without [first] distinguishing 

between the system’s two characteristic timescales” (McGivern 2007, 6). The explanation 

of upper-level limit cycles begins with the assumption that there is some phenomenon 

involving change in amplitude that can only be characterized over the long timescale, he 

claims. 

In terms of the distinction between ‘levels’ suggested by the perturbation 

technique itself – the fast and slow timescales – basal explainability seems to fail 

since predicting the limit cycle behaviour involves explicitly recognizing the 

different timescales characterizing the system (McGivern 2007, 7). 

But it is not the perturbation technique that suggests the division into base and upper 

levels. Rather, as we have seen, that division is a consequence of a phenomenological 

investigation of the system, our interest in the novel limit cycles and our observations of 

various behaviours of the system under a range of conditions. The characterization of 

base-level models is predicated on recognizing different behaviours of interest at distinct 
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timescales. Prior recognition of distinct levels in the van der Pol case is a typical—I 

would say ineliminable—element of inter-level scientific explanation. For example, a 

paradigm case of a non-emergent property is the total (macro) force on a non-relativistic 

classical object. A satisfactory basal explanation of the total force on the object appeals to 

facts about the base-level (micro) forces and a vector addition law for forces that itself 

presupposes the micro-macro distinction. The explanatory resources, nonetheless, can be 

characterized in base-level terms, and clearly macro forces reduce to, are predicted from, 

and are explained by micro forces. If prior recognition of distinct levels vitiates basal 

explanation, as McGivern suggests, then no upper-level property is basally explainable. 

What is needed, rather, is a distinction between cases in which upper-level resources are 

required for the explanation and those in which they are not, a distinction which depends 

sensitively on the details of the ampliative approximation methods used to construct 

upper-level model. 

 To see this last point another way, it will be instructive to contrast the van der Pol 

case with one of Batterman's paradigm cases of the failure of basal explainability 

mentioned above, rainbows (Batterman 2002b, 77-97). Rainbows are described by the 

asymptotic limit of wave optics (base theory) in a singular asymptotic regime as 

wavelength goes to zero. The theory of rainbows uses geometrical optics (upper-level 

theory). This boundary regime, where base theory breaks down, is only characterizable in 

upper-level theory terms (Batterman 2005a, 161). In the rainbow case, setting up specific 

initial and boundary conditions that correspond to this limit case, and that correspond to 

the specific phenomenon of the rainbow, ineliminably involves reference to concepts of 

geometrical optics (upper-level theory), Batterman claims. Hence rainbows are not 

explainable in base terms. 
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Granted that both limit cycles and rainbows are upper-level phenomena whose 

derivations involve singular limit relations; that in these kinds of cases, upper-level 

properties cannot be derived and explained exclusively on the basis of basal theory plus 

purely deductive perturbation methods (i.e., regular perturbation analysis); and that 

additional substantive assumptions about the system must be made. These are important 

considerations. It is just that they are less relevant to the issue of explanation, and 

ultimately emergence, than proponents of the singular limits approach take them to be. 

Whether an upper-level phenomenon can be explained in basal terms depends, rather, on 

the particular details of the explanatory resources brought to bear after breakdown at the 

singular limit, including initial conditions, boundary conditions and empirical premises in 

the asymptotic methods used at singularity. In the van der Pol case, the additional 

assumptions are completely characterizable in basal terms, and we have seen how limit 

cycles are, in fact, basally explained. By contrast, in the rainbow case some of the 

additional assumptions needed to explain the upper-level phenomena themselves are (if 

Batterman is right) only characterizable in upper-level terms. 

5. Novelty and reduction 

We have seen that the presence of a singular limit does not imply explanatory failure at 

the base level. But explanatory failure is not the only criterion regularly invoked in 

discussions of emergence. Batterman and Rueger follow common practice in also 

claiming that the novelty and irreducibility of upper-level properties are sufficient for 

emergence. However, Batterman and Rueger’s accounts of novelty and irreducibility are 

closely linked with the presence of a singular limit, and they provide no independent 
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support for the claim that the presence of a singular limit is an adequate criterion for 

emergence.  

 It is no easy task to make precise the intuitive idea that certain properties described by 

upper-level theory are truly novel with respect to base-level theory, whereas other 

properties are merely different. Rueger begins with a distinction between “quantitative” 

and “qualitative” differences between upper- and base-level properties (Rueger 2000a). 

In the case of the van der Pol oscillator, although its short-timescale behaviour is 

quantitatively close to that of an undamped oscillator, the limit-cycle behaviour over a 

long timescale is qualitatively different from the undamped case. Rueger makes the 

notion of a qualitative difference precise in terms of the topological inequivalence of the 

phase-space trajectories of the undamped and van der Pol oscillators (Rueger 2000a, 

303). But why should topological inequivalence be sufficient for qualitative difference, 

and thus for novelty and emergence? Because topological inequivalence captures the 

singular limit relation, according to Rueger. 

The problem we encountered in the cases of singular limits now can be phrased as the 

lack of limits of such [topologically equivalent] sequences of models of [base-level 

theory] which are themselves models of [base-level theory].... Such a change in the 

topology is reflected, in our examples, in giving up on the requirement of uniform 

convergence of perturbation expansions in order to accommodate the singular limit 

cases (Rueger 2001, 517-8). 

Batterman reaches a similar conclusion. “Novelty,” he notes, is commonly used, 

especially in the context of physics, to describe phenomena that are unexplainable or 

irreducible and so does not provide an independent criterion for emergence. The one 

notable exception is Jaegwon Kim’s account of emergence in terms of the novel causal 
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powers of the upper-level properties (Kim 1999). As Batterman argues, however, the 

expansion of the notion of levels to include scales and other non-spatial relations, along 

with a general lack of causal models of systems of interest, makes this criterion largely 

inapplicable in physics (Batterman 2002b, 127). Batterman suggests that the concept of 

novelty is best understood within physics in terms of properties playing novel 

explanatory roles: “novel” properties are those that cannot be explained exclusively in 

base-level terms. Batterman concludes: “the novelty of the emergent phenomena I am 

discussing is a direct result of the singular nature of the correspondence relations 

between the two theories” (Batterman 2002b, 120). 

 With respect to reduction, Rueger asserts that the upper-level limit-cycle behaviour in 

the van der Pol oscillator is irreducible to the base undamped harmonic oscillator because 

of the presence of a singular limit (Rueger 2000a), and Batterman makes similar claims 

about the cases he studies. On their approach, reductive failure is simply identified with 

the presence of a singular limit. A base-level theory Tε reduces to a coarser upper-level 

theory Tε=0 in the limit as parameter ε tends to zero (Rueger 2000a, 305; Batterman 

2002b, 78; Nickles 1973), 

(7) 0
0

lim =
→

= εε
ε

TT . 

In this way, for example, the special theory of relativity (Tε) reduces to Newtonian 

mechanics (Tε=0) as (v/c)2  0. Sometimes dubbed the “physicists’ notion of reduction,” 

on this approach base-level theories reduce to upper-level theories through a process of 

coarse-graining using a regular limit procedure (this is opposite in direction to most 

philosophical notions of reduction, in which the upper-level theory reduces to base-level 

theory). In the van der Pol case, base-level theory fails to reduce to upper-level theory; as 
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we have seen, the theory of time-dependent amplitude and convergence to limit cycles 

cannot be derived from base theory using a regular limit relation. Clearly, however, this 

sort of reductive failure provides no independent support for an emergence claim beyond 

the presence of the singular limit relation itself. 

 It is tempting to respond that the physicists’ notion of reduction fails to capture our 

intuitions about reduction and is simply too weak to provide an independent criterion for 

emergence; a more robust account of reductive failure would surely fit the bill. This line 

of thinking should be resisted, I submit: reductive failure does not give any better 

criterion for emergence on the main philosophical approaches to reduction. Orthodox 

thinking about reduction in physics is based on an approach going back to Nagel (Nagel 

1961; cf. Schaffner 1976, Schaffner 2008). Here, reduction is a derivational relation 

between upper-level and base-level theories. Where upper-level theory has terms not 

already in the base-level one, the terms must be connected using bridge laws, which are 

universally quantified conditional or bi-conditional sentences. One of the problems with 

derivational approaches to reduction is that failure can always be remedied in an ad hoc 

way, as the British emergentist C.D. Broad well recognized (Broad 1925). Broad’s 

paradigm case of an emergent phenomenon was chemical composition. He recognized 

that it is possible to gerrymander a "law of composition" that oxygen combines with 

hydrogen in fixed proportions to form water with a given set of properties, such as 

liquidity. But this "law" relies on upper-level information specific to this case—facts 

about the very upper-level phenomena the "law" is supposed to cover. The "law" is not 

general and it is gerrymandered post hoc, so properties of water are emergent, not 

resultant. Chemical compounds more generally, Broad believed, require new "laws of 
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composition" for each particular compound, and it is for this reason that he took their 

properties to be emergent (this was prior to the development of quantum mechanics). 

The obvious response is to introduce constraints on bridge laws that preclude 

gerrymandered or case-specific laws. This can be done in such a way as to make it 

plausible that all and only Nagel-irreducible upper-level properties are emergent. The 

important point for our purposes is that all the work relevant to the concept of emergence 

is being done by these additional constraints. For example, one could introduce the 

condition that bridge laws used in reductions must themselves be fully explainable in 

base-level terms. The result would be a notion of reduction that matches a plausible 

notion of emergence. This fails to restore any substantive link between reduction and 

emergence, however, because a condition has been introduced into the definition of 

reduction simply to achieve this match. Without such additional emergence-related 

conditions, I suggest, the success or failure of Nagel-type reduction has no implications 

for emergence. 

 On the main alternative to Nagelian reduction developed by Jaegwon Kim, an upper-

level property is emergent only if it is not functionally reducible to basal properties (Kim 

1999; 2005; 2006). Kim’s functional reduction requires that one find a base-level (micro) 

property that fulfills the causal role of the upper- level (macro) property to be reduced. 

The account presumes that the causal powers of the macro and micro properties are 

identical—and so the properties are identical—as the first step towards functionalizing 

and thus reducing the macro property. In physics, however, micro-based macro properties 

fulfilling these macro causal roles are generally not to be found, and so Kim’s functional 

reductions fail to get off the ground (Rueger 2006). As well, Kim has focused on spatial 

relations between levels, and as we have seen, the expansion of the notion of levels in the 
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context of physics to include energy scales, timescales and other non-spatial relations 

makes the causal criterion largely inapplicable. Here again, failure of reduction, in this 

case of functional reduction, gives us no good reason to infer that macro properties are 

emergent. On the contrary, in some fields of physics virtually no macro property can be 

functionally reduced, and we surely do not want to say of these fields that virtually all of 

their macro properties are emergent. 

6. To BE or not to BE, that is the question 

Batterman and Rueger acknowledge that emergent properties are associated with cases in 

which base-level theory is, in Batterman’s term, "explanatorily deficient" (Batterman 

2002b, 109). They claim that the explanatory deficiency of the upper level is a 

consequence of the presence of a singular limit relation. This paper shows this not to be 

the case; a singular limit does not imply the failure of basal explanation. The moral of the 

story is that whether a particular property is emergent depends not just on the breakdown 

of a regular approximation scheme, but more devilishly on the finer details of the 

explanation. The presence of a singular limit is less relevant to the issue of intertheoretic 

relations than Batterman and Rueger have taken it to be. 

 To basally explain or not to basally explain, that is the question. I suggest that failure 

of basal explanation is the key to a useful account of emergence in physics (this 

suggestion is developed in Wayne and Arciszewski 2009). For one thing, it makes sense 

of intuitions about the differences between the van der Pol oscillator and Batterman 

cases. It seems reasonable to think that upper-level phenomena in the van der Pol 

oscillator and similar nonlinear dynamical systems are not emergent, and this is the 

unanimous opinion of physicists with whom I have discussed the case. This contrasts 
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markedly with views on Batterman’s rainbow and critical phenomena cases, where 

physicists’ opinions were diverse but many were willing to consider these as interesting 

and open questions about emergence. What motivates this contrast between the van der 

Pol case and seemingly more robust candidates for emergence, I am inclined to think, is 

that in the former we have a complete basal explanation and in the latter, well, we are not 

so sure.  

 What I began by calling the “sensible approach” to emergence taken by Batterman 

and Rueger is surely along the right lines. Emergence is best understood as an epistemic 

failure, and I have proposed that this should be cashed out more specifically as a failure 

of basal explanation. The proposal is not without its challenges, of course. Basal 

explanation in physics does not fit orthodox accounts of scientific explanation. As the 

example of the van der Pol oscillator shows, such explanations may fail to trace causal 

structure, and they may make use of false premises and a non-deductive derivational 

structure. Clearly, what is needed is an account of scientific explanation that makes sense 

of physicists’ widespread appeal to highly idealized models in their explanatory practices 

(Wayne 2010).  

 Another set of challenges comes from alternative accounts of emergence, of which 

Paul Humphreys usefully distinguishes three types (Humphreys 2008). On inferential 

approaches to emergence, an entity is emergent with respect to a base-level domain if and 

only if it is impossible to predict or compute that entity on the basis of base-level theory. 

Mark Bedau’s account of “weak emergence” is an example of this approach (Bedau 

1997, Bedau 2008). On conceptual approaches to emergence, an entity is emergent with 

respect to a base-level domain if and only if a conceptual apparatus is required to 

represent the entity that is not available in base-level theory. Finally, ontological 
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approaches to emergence try to capture the idea that an entity is emergent when it is 

genuinely novel and ontologically irreducible to the base-level domain. These include 

Humphreys’ own fusion model of emergence (Humphreys 1997), the ontological account 

most relevant to emergence in physics. Prima facie, the account of emergence as failure 

of basal explanation suggested here fails to fit comfortably into any of these categories. 

The relation between explanans and explanandum may be inferential, but only in an 

attenuated sense, and the inferences involved differ fundamentally from the predictive, 

deductive or computational inferences that have heretofore characterized this approach. 

In any event, what is needed is an account that provides a basis for constructive 

engagement with a wide range of cases in physics, both contemporary and historical. 

Interesting and substantive questions undoubtedly remain yet to be explored about 

emergence in physics. 
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